JP2022024337A - AUSTENITIC Fe-BASED HEAT RESISTANCE ALLOY - Google Patents

AUSTENITIC Fe-BASED HEAT RESISTANCE ALLOY Download PDF

Info

Publication number
JP2022024337A
JP2022024337A JP2020122366A JP2020122366A JP2022024337A JP 2022024337 A JP2022024337 A JP 2022024337A JP 2020122366 A JP2020122366 A JP 2020122366A JP 2020122366 A JP2020122366 A JP 2020122366A JP 2022024337 A JP2022024337 A JP 2022024337A
Authority
JP
Japan
Prior art keywords
alloy
austenitic
room temperature
ductility
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020122366A
Other languages
Japanese (ja)
Inventor
利光 鉄井
Toshimitsu Tetsui
智博 平城
Tomohiro Hirashiro
英人 佐々木
Hideto Sasaki
慎太郎 三上
Shintaro Mikami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toho Zinc Co Ltd
National Institute for Materials Science
Original Assignee
Toho Zinc Co Ltd
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Zinc Co Ltd, National Institute for Materials Science filed Critical Toho Zinc Co Ltd
Priority to JP2020122366A priority Critical patent/JP2022024337A/en
Publication of JP2022024337A publication Critical patent/JP2022024337A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

To provide a novel Fe-based heat resistance alloy that can be processed and produced as a member by general methods such as melting, casting, forging, rolling, and has sufficient ductility at room temperature and sufficiently high strength at high temperatures.SOLUTION: An austenitic Fe-based heat resistance alloy contains, in atom%, Al: 10-21%, Ni: 25-40%, Cr: 5-16%, Nb: 2-5% with the balance being Fe and unavoidable impurities.SELECTED DRAWING: Figure 9

Description

本発明は、各種エンジン及びタービン等の高温回転部品、並びに高温耐食部材等として用いるのに好適な、室温延性と高温強度が良好なオーステナイト系Fe基耐熱合金に関する。 The present invention relates to an austenitic Fe-based heat-resistant alloy having good room temperature ductility and high-temperature strength, which is suitable for use as high-temperature rotating parts such as various engines and turbines, and high-temperature corrosion-resistant members.

各種エンジン及びタービン等の高温回転部品では、燃料消費量の低減や二酸化炭素排出量の削減の要請を受け、さらなる高温化や高回転化が求められている。このような部品及び装置等に適した材料として、高温化や高回転化に十分に耐え得る性能を有するとともに、汎用的な製造方法で比較的安価に製造し得る材料が求められている。 High-temperature rotating parts such as various engines and turbines are required to have higher temperatures and higher rotation speeds in response to requests for reduction of fuel consumption and carbon dioxide emissions. As a material suitable for such parts and devices, there is a demand for a material that has sufficient performance to withstand high temperatures and high rotation speeds and can be manufactured at a relatively low cost by a general-purpose manufacturing method.

従来、高温環境下で使用される各種製品用材料として、SUS321H、SUS347H等の18-8系オーステナイト系耐熱鋼が使用されてきた。しかし、近年、高温環境下における部品及び装置等の使用条件が一段と過酷になり、それに伴って使用される材料に対する高温強度等の要求性能が厳しさを増していることから、従来の18-8系オーステナイト系耐熱鋼材料に代わる優れた耐熱鋼が必要とされている。 Conventionally, 18-8 austenitic heat resistant steels such as SUS321H and SUS347H have been used as materials for various products used in a high temperature environment. However, in recent years, the conditions of use of parts and devices in a high temperature environment have become more severe, and along with this, the required performance such as high temperature strength for the materials used has become stricter. Therefore, the conventional 18-8. There is a need for superior heat-resistant steel to replace austenitic heat-resistant steel materials.

従来の18-8系オーステナイト系耐熱鋼に代わる耐熱鋼の候補として、例えば、特許文献1(特開2001-011583)には、重量比でC:0.01~0.10%、Si:≦1.50%、Mn:≦1.50%、P:≦0.030%、S:≦0.015%、Ni:25.00~35.00%、Cr:19.00~29.00%、Mo+W:≦3.0%、V:≦0.5%、Co:≦5.0%、Al:≦0.15%、Ti:≦0.15%、Nb+Ta:≦1.0%、N:0.1~0.35%を含有し、残部はFe及び不可避不純物からなることを特徴とする耐熱性合金が開示されている。 As a candidate for heat-resistant steel to replace the conventional 18-8 austenitic heat-resistant steel, for example, Patent Document 1 (Japanese Patent Laid-Open No. 2001-011583) states that C: 0.01 to 0.10% and Si: ≦ by weight ratio. 1.50%, Mn: ≤1.50%, P: ≤0.030%, S: ≤0.015%, Ni: 25.00 to 35.00%, Cr: 19.00 to 29.00% , Mo + W: ≤3.0%, V: ≤0.5%, Co: ≤5.0%, Al: ≤0.15%, Ti: ≤0.15%, Nb + Ta: ≤1.0%, N : A heat-resistant alloy containing 0.1 to 0.35% and having a balance consisting of Fe and unavoidable impurities is disclosed.

特許文献2(特開2003-041347)には、重量%で、Cr:12~15%、Ni:20~30%、Ti:0.20~0.50%、Nb:0.10~0.30%、P:0.025~0.08%、V:0.2~0.4%、残部がFeからなることを特徴とするオーステナイト系耐熱鋼が開示されている。 According to Patent Document 2 (Japanese Patent Laid-Open No. 2003-041347), Cr: 12 to 15%, Ni: 20 to 30%, Ti: 0.20 to 0.50%, Nb: 0.10 to 0. Disclosed are austenitic heat-resistant steels characterized by 30%, P: 0.025 to 0.08%, V: 0.2 to 0.4%, and the balance consisting of Fe.

特許文献3(特開2012-001749)には、質量%で、C:0.01~0.12%、Si:0.2~1.0%、Mn:1.0~2.5%、Ni:10.0~28.0%、Cr:18.0~26.0%、Al:0.001~0.050%、P:0.040%以下、S:0.010%以下、N:0.09~0.30%、Nb+V:0.25~0.70%、Mo+0.5W:1.5~4.0%、W/Mo:3~16、を含有し、残部Feおよび不可避不純物からなり、1180~1250℃で固溶化処理することを特徴とするオーステナイト系耐熱鋼が開示されている。 In Patent Document 3 (Japanese Patent Laid-Open No. 2012-001749), C: 0.01 to 0.12%, Si: 0.2 to 1.0%, Mn: 1.0 to 2.5%, in mass%, Ni: 10.0 to 28.0%, Cr: 18.0 to 26.0%, Al: 0.001 to 0.050%, P: 0.040% or less, S: 0.010% or less, N : 0.09 to 0.30%, Nb + V: 0.25 to 0.70%, Mo + 0.5W: 1.5 to 4.0%, W / Mo: 3 to 16, the balance Fe and inevitable There is disclosed an austenite-based heat-resistant steel which is composed of impurities and is characterized by being solidified at 1180 to 1250 ° C.

しかしながら、上記のいずれの文献に記載された耐熱鋼も、高温強度の向上にはさらなる改善の余地があり、また、室温付近での環境下において必要なその他の特性、例えば室温延性を具備しているか否かについて必ずしも明らかではなかった。 However, the heat-resistant steels described in any of the above documents have room for further improvement in improving high-temperature strength, and also have other properties required in an environment near room temperature, such as room temperature ductility. It was not always clear whether or not it was.

特開2001-011583号公報Japanese Unexamined Patent Publication No. 2001-011583 特開2003-041347号公報Japanese Patent Application Laid-Open No. 2003-041347 特開2012-001749号公報Japanese Unexamined Patent Publication No. 2012-001749

本発明は、上記の背景技術の項で説明した従来の問題点を解消するためになされたものであって、溶解、鋳造又は鍛造、圧延法等の汎用的な方法で部材としての加工や製造が可能であり、室温において十分な延性を有するとともに、高温での強度が十分に高い新規なFe基耐熱合金を提供することを目的とする。 The present invention has been made to solve the conventional problems described in the above background technology section, and is processed or manufactured as a member by a general-purpose method such as melting, casting or forging, or rolling method. It is an object of the present invention to provide a novel Fe-based heat-resistant alloy having sufficient ductility at room temperature and sufficiently high strength at high temperature.

本発明者らは、上記の文献に記載されている従来のオーステナイト系Fe基耐熱合金とは異なる組成比の合金について、特にB2型金属間化合物に着目して仮説を構築しつつ、鋭意検討を進めた結果、意外なことに、Al含有比を特定の組成範囲で含有し、且つ、Ni、Cr及びNbをそれぞれ特定の組成範囲とし、残部をFe及び不可避不純物からなる合金とした場合に、室温での高い延性と高温での高い強度という一見して相反し得る重要な特性の両立が図られることを見出すに至り、上記課題を解決し得る手段として本発明を完成した。 The present inventors have been diligently studying alloys having a composition ratio different from that of the conventional austenite-based Fe-based heat-resistant alloys described in the above documents, while constructing a hypothesis focusing on B2-type intermetallic compounds. As a result of advancing, surprisingly, when the Al content ratio is contained in a specific composition range, Ni, Cr and Nb are each in a specific composition range, and the balance is an alloy composed of Fe and unavoidable impurities. We have found that both high ductility at room temperature and high strength at high temperature can achieve both seemingly contradictory important characteristics, and have completed the present invention as a means for solving the above problems.

即ち、本発明の要旨は、以下の通りである。
[1] 原子%で、Al:10~21%、Ni:25~40%、Cr:5~16%、Nb:2~5%を含有し、残部がFe及び不可避不純物からなる、オーステナイト系Fe基耐熱合金。
[2] さらに、原子%で、W:1~3%を含有し、残部がFe及び不可避不純物からなる、上記[1]に記載のオーステナイト系Fe基耐熱合金。
[3] 原子%で、Al:11~19%、Ni:26~38%、Cr:5~15%、Nb:2~5%、W:1~3%を含有し、残部がFe及び不可避不純物からなる、オーステナイト系Fe基耐熱合金。
[4] 室温での引張試験において、伸び5%以上の延性を有する、上記[1]~[3]のいずれかに記載の合金。
[5] 700℃での引張試験において、引張強度450MPa以上の高温強度を有する、[1]~[4]のいずれかに記載の合金。
That is, the gist of the present invention is as follows.
[1] Austenitic Fe containing 10 to 21% Al, 25 to 40% Ni, 5 to 16% Cr, and 2 to 5% Nb in atomic%, with the balance being Fe and unavoidable impurities. Basic heat resistant alloy.
[2] The austenitic Fe-based heat-resistant alloy according to the above [1], which further contains W: 1 to 3% in atomic% and the balance is Fe and unavoidable impurities.
[3] In atomic%, Al: 11 to 19%, Ni: 26 to 38%, Cr: 5 to 15%, Nb: 2 to 5%, W: 1 to 3%, and the balance is Fe and unavoidable. Austenitic Fe-based heat-resistant alloy composed of impurities.
[4] The alloy according to any one of the above [1] to [3], which has a ductility of 5% or more in a tensile test at room temperature.
[5] The alloy according to any one of [1] to [4], which has a high-temperature strength of 450 MPa or more in a tensile test at 700 ° C.

本発明のオーステナイト系Fe基耐熱合金は、従来の溶解、鋳造又は鍛造、圧延法等の汎用的な方法で部材としての加工や製造が可能であり、且つ、室温において十分な延性を有するとともに、高温での強度が十分に高いという優れた効果を両立し得る。 The austenitic Fe-based heat-resistant alloy of the present invention can be processed and manufactured as a member by a general-purpose method such as conventional melting, casting or forging, and rolling method, has sufficient ductility at room temperature, and has sufficient ductility. It is possible to achieve both the excellent effect that the strength at high temperature is sufficiently high.

実施例で作製したインゴットの外観を示す図である。It is a figure which shows the appearance of the ingot produced in an Example. 実施例で作製した溝ロール圧延材の外観を示す図である。It is a figure which shows the appearance of the groove roll rolled material produced in an Example. 実施例における引張試験片形状を示す図である。It is a figure which shows the tensile test piece shape in an Example. 合金1(比較合金)の反射電子像写真である。It is a backscattered electron image photograph of alloy 1 (comparative alloy). 合金5(比較合金)の反射電子像写真である。It is a backscattered electron image photograph of alloy 5 (comparative alloy). 合金20(比較合金)の反射電子像写真である。It is a backscattered electron image photograph of alloy 20 (comparative alloy). 合金25(参考合金)の反射電子像写真である。It is a backscattered electron image photograph of alloy 25 (reference alloy). 合金7(発明合金)の反射電子像写真である。It is a backscattered electron image photograph of alloy 7 (invention alloy). 合金17(発明合金)の反射電子像写真である。It is a backscattered electron image photograph of alloy 17 (invention alloy).

以下、本発明を実施する好ましい形態の一例について説明する。ただし、下記の実施形態は本発明を説明するための例示であり、本発明は下記の実施形態に何ら限定されるものではない。 Hereinafter, an example of a preferred embodiment of the present invention will be described. However, the following embodiments are examples for explaining the present invention, and the present invention is not limited to the following embodiments.

[オーステナイト系Fe基合金の各成分]
本発明のオーステナイト系Fe基合金の各成分について説明する。
<Al>
本発明のオーステナイト系Fe基板合金は、必須成分としてAlを含む。Alは、合金の基本的な構成元素である鉄(Fe)と反応し、B2型金属間化合物を形成し得る成分である。本発明のFe基合金中でB2相が適度に析出していることにより、合金の高温強度を向上するという効果を奏すると考えられ、この点が、本発明の重要な特徴の一つである。
合金作製時のAlの配合比は、原子%で、10%以上であることが好ましく、11%以上であることがより好ましく、また、21%以下であることが好ましく、19%以下であることがより好ましい。上記の下限を下回ると、Alの効果が不十分となる場合があり、上限を超えると、合金の室温での延性が低下し、この原因としてB2相の析出量が多すぎることが考えられる。
[Each component of austenitic Fe-based alloy]
Each component of the austenite-based Fe-based alloy of the present invention will be described.
<Al>
The austenitic Fe substrate alloy of the present invention contains Al as an essential component. Al is a component that can react with iron (Fe), which is a basic constituent element of an alloy, to form a B2 type intermetallic compound. It is considered that the appropriate precipitation of the B2 phase in the Fe-based alloy of the present invention has the effect of improving the high-temperature strength of the alloy, and this point is one of the important features of the present invention. ..
The compounding ratio of Al at the time of alloy production is preferably 10% or more, more preferably 11% or more, preferably 21% or less, and preferably 19% or less in atomic%. Is more preferable. If it is below the above lower limit, the effect of Al may be insufficient, and if it exceeds the upper limit, the ductility of the alloy at room temperature is lowered, and it is considered that the cause of this is that the amount of B2 phase precipitation is too large.

<Ni>
本発明のオーステナイト系Fe基板合金は、必須成分としてNiを含む。Niは、合金のオーステナイト相の安定化に寄与する成分であり、これにより、合金の室温での延性を高めるという効果を示す。
合金作製時のNiの配合比は、原子%で、25%以上であることが好ましく、26%以上であることがより好ましく、また、40%以下であることが好ましく、38%以下であることがより好ましい。上記の下限を下回ると、合金の室温での延性が低下し、上限を超えると、合金の高温強度が低下する。
<Ni>
The austenitic Fe substrate alloy of the present invention contains Ni as an essential component. Ni is a component that contributes to the stabilization of the austenite phase of the alloy, thereby exhibiting the effect of increasing the ductility of the alloy at room temperature.
The compounding ratio of Ni at the time of alloy production is preferably 25% or more, more preferably 26% or more, preferably 40% or less, and 38% or less in atomic%. Is more preferable. Below the above lower limit, the ductility of the alloy at room temperature decreases, and above the upper limit, the high temperature strength of the alloy decreases.

<Cr>
本発明のオーステナイト系Fe基板合金は、必須成分としてCrを含む。Crは、母相の固溶強化に寄与する成分であり、これにより、合金の高温での強度を向上するという効果を示す。
合金作製時のCrの配合比は、原子%で、5%以上であることが好ましく、また、16%以下であることが好ましく、15%以下であることがより好ましい。上記の下限を下回ると、Crの効果が不十分となる場合があり、上限を超えると、合金の室温での延性が低下し、この原因としてラーベス相などの脆い相の量が多くなりすぎることが考えられる。
<Cr>
The austenitic Fe substrate alloy of the present invention contains Cr as an essential component. Cr is a component that contributes to the solid solution strengthening of the matrix phase, thereby exhibiting the effect of improving the strength of the alloy at high temperatures.
The Cr compounding ratio at the time of alloy production is preferably 5% or more, preferably 16% or less, and more preferably 15% or less in atomic%. Below the above lower limit, the effect of Cr may be insufficient, and above the upper limit, the ductility of the alloy at room temperature decreases, which is caused by an excessive amount of brittle phase such as Laves phase. Can be considered.

<Nb>
本発明のオーステナイト系Fe基板合金は、必須成分として少量のNbを含む。Nbは、析出強化に寄与する成分であり、これにより、合金の高温での強度を向上するという効果を示す。
合金作製時のNbの配合比は、原子%で、2%以上であることが好ましく、また、5%以下であることが好ましい。上記の下限を下回ると、Nbの効果が不十分となる場合があり、上限を超えると、合金の室温での延性が低下し、この原因としてラーベス相などの脆い相の量が多くなりすぎることが考えられる。
<Nb>
The austenitic Fe substrate alloy of the present invention contains a small amount of Nb as an essential component. Nb is a component that contributes to strengthening precipitation, which has the effect of improving the strength of the alloy at high temperatures.
The compounding ratio of Nb at the time of alloy production is preferably 2% or more in atomic%, and preferably 5% or less. Below the above lower limit, the effect of Nb may be inadequate, and above the upper limit, the ductility of the alloy at room temperature decreases, which is caused by an excessive amount of brittle phase such as Laves phase. Can be considered.

<W>
本発明のオーステナイト系Fe基板合金は、少量のWを含むことが好ましい。Wは、Nbと同様に、析出強化に寄与する成分であり、これにより、合金の高温での強度を向上するという効果を示す。
合金作製時のWの配合比は、原子%で、2%以上であることが好ましく、また、5%以下であることが好ましい。上記の下限を下回ると、Wの効果が不十分となる場合があり、上限を超えると、合金の室温での延性が低下し、この原因としてラーベス相などの脆い相の量が多くなりすぎることが考えられる。
<W>
The austenitic Fe substrate alloy of the present invention preferably contains a small amount of W. Like Nb, W is a component that contributes to strengthening precipitation, thereby exhibiting the effect of improving the strength of the alloy at high temperatures.
The compounding ratio of W at the time of alloy production is preferably 2% or more in atomic%, and preferably 5% or less. Below the above lower limit, the effect of W may be inadequate, and above the upper limit, the ductility of the alloy at room temperature will decrease, which is due to the excessive amount of brittle phases such as the Laves phase. Can be considered.

[オーステナイト系Fe基合金の特性]
本発明のオーステナイト系Fe基合金の特性について説明する。
[Characteristics of austenitic Fe-based alloy]
The characteristics of the austenitic Fe-based alloy of the present invention will be described.

<室温延性>
本発明のオーステナイト系Fe基板合金は、室温での引張試験において、好ましくは伸び4.3%以上の延性を有し、より好ましくは伸び5.0%以上の延性を有し、さらに好ましくは伸び5.5%以上の延性を有し、最も好ましくは伸び6.0%以上の延性を有する。上記の延性の下限値は、使用時の安定性を確保するための目安として設定することができる。
<Room temperature ductility>
The austenitic Fe substrate alloy of the present invention preferably has a ductility of 4.3% or more, more preferably a ductility of 5.0% or more, and more preferably an elongation in a tensile test at room temperature. It has a ductility of 5.5% or more, and most preferably an elongation of 6.0% or more. The above lower limit of ductility can be set as a guide for ensuring stability during use.

<高温強度>
本発明のオーステナイト系Fe基板合金は、700℃での引張試験において、好ましくは引張強度435MPa以上の高温強度を有し、より好ましくは引張強度450MPa以上の高温強度を有し、さらに好ましくは引張強度460MPa以上の高温強度を有し、最も好ましくは引張強度465MPa以上の高温強度を有する。上記の700℃での引張強度の下限値は、既知の通常のオーステナイト系耐熱鋼以上の強度を目安として設定することができる。
<High temperature strength>
The austenite-based Fe substrate alloy of the present invention preferably has a high-temperature strength of 435 MPa or more in a tensile test at 700 ° C., more preferably has a high-temperature strength of 450 MPa or more, and more preferably a tensile strength. It has a high temperature strength of 460 MPa or more, and most preferably a high temperature strength of 465 MPa or more. The lower limit of the tensile strength at 700 ° C. can be set with a strength equal to or higher than that of known ordinary austenitic heat-resistant steel as a guide.

[オーステナイト系Fe基合金の製造方法] [Manufacturing method of austenitic Fe-based alloy]

本発明のオーステナイト系Fe基合金は、各成分元素の原料を溶解、鋳造又は鍛造、圧延法等の汎用的な方法を用いて製造することができ、その他、当該技術分野における公知、周知の方法に関する技術を適宜組み合わせて製造してもよい。また、後述する実施例の手順に沿って、アルミナるつぼを用いた高周波溶解によるインゴット作製、1100℃の加熱を用いた溝ロール圧延、及び/又は900℃で50時間の熱処理を順次行ってもよい。
本発明の必須の元素成分であるAl、Ni、Cr、Nb及び任意選択でWをオーステナイト組織中に固溶及び析出させて、Fe基合金の固溶強化及び析出強化を図るため、熱処理温度は、800~1300℃とするのが好ましく、850~1200℃とするのがさらに好ましく、900~1100℃とするのが最も好ましく、また、熱処理時間は、1~100時間とするのが好ましく、5~70時間とするのがさらに好ましく、10~50時間とするのが最も好ましい。本発明のFe基合金の製造条件は、その合金が本発明の効果を発揮し得る限り、熱処理における鋼材の酸化ロスの防止や熱処理にかかるコスト低減の観点から適宜選択することができる。
The austenite-based Fe-based alloy of the present invention can be produced by using a general-purpose method such as melting, casting or forging, rolling method, etc. of the raw materials of each component element, and other known and well-known methods in the art. It may be manufactured by appropriately combining the technologies related to the above. Further, ingots may be produced by high frequency melting using an alumina crucible, groove roll rolling using heating at 1100 ° C., and / or heat treatment at 900 ° C. for 50 hours in sequence according to the procedure of Examples described later. ..
The heat treatment temperature is set to strengthen the solid solution and precipitation of the Fe-based alloy by dissolving and precipitating Al, Ni, Cr, Nb, which are essential elemental components of the present invention, and optionally W in the austenite structure. , 800 to 1300 ° C., more preferably 850 to 1200 ° C., most preferably 900 to 1100 ° C., and the heat treatment time is preferably 1 to 100 hours. It is more preferably about 70 hours, and most preferably 10 to 50 hours. The production conditions of the Fe-based alloy of the present invention can be appropriately selected from the viewpoint of preventing oxidation loss of the steel material in the heat treatment and reducing the cost of the heat treatment as long as the alloy can exert the effect of the present invention.

[本発明のオーステナイト系Fe基合金の作用]
後述する実施例において、本発明のオーステナイト系Fe基合金を製造し、当該合金が有する優れた効果について実証することができたが、その詳細な全ての理由は必ずしも厳密には明らかではないものの、以下のように推測される。
本発明のオーステナイト系Fe基合金の最大のポイントは、通常のオーステナイト系Fe基耐熱合金よりもAlを多量に添加することで、FeAlを基本とするB2型金属間化合物を多く析出させ、その効果によって、合金の十分な室温延性を確保しつつ、合金の高温強度を向上させることにある。
従来のオーステナイト系Fe基耐熱合金は、固溶体合金であることから、構造強化のメカニズムは、添加元素による母相の固溶強化が基本であり、さらに添加成分による微細析出物の析出強化が意図されているが、このような手法のみでは高温強度の向上に限界があると考えられる。
これに対して、本発明のオーステナイト系Fe基耐熱合金は、固溶強化や微細析出物の析出強化に加えて、FeAlを基本とするB2型金属間化合物による析出強化をも可能としている点に特徴がある。このような複合的な構造強化の手法を採用したことにより、本発明の耐熱合金は、装置等の高温部位における耐熱材料として使用することが期待される。本発明では、FeAlを基本とするB2型金属間化合物そのものが高温で変形しにくいという特徴が生かされており、また、金属間化合物と母相との界面において界面効果による強化メカニズムも発現し得るという特徴も生かされている。これらの特徴を備えたオーステナイト系Fe基合金は、前述の先行技術文献には記載も示唆もなされておらず、本発明者らの鋭意検討によって初めて見出されたものである。
[Action of austenitic Fe-based alloy of the present invention]
In the examples described later, the austenitic Fe-based alloy of the present invention could be produced and the excellent effect of the alloy could be demonstrated, although not exactly all the detailed reasons are clear. It is inferred as follows.
The most important point of the austenite-based Fe-based alloy of the present invention is that by adding a larger amount of Al than a normal austenite-based Fe-based heat-resistant alloy, a large amount of FeAl-based B2 type intermetallic compound is precipitated, and its effect. The purpose is to improve the high temperature strength of the alloy while ensuring sufficient room temperature ductility of the alloy.
Since the conventional austenite-based Fe-based heat-resistant alloy is a solid solution alloy, the mechanism of structural strengthening is basically the solid solution strengthening of the parent phase by the additive element, and further, the precipitation strengthening of fine precipitates by the additive component is intended. However, it is considered that there is a limit to the improvement of high temperature strength only by such a method.
On the other hand, the austenite-based Fe-based heat-resistant alloy of the present invention is capable of strengthening precipitation with a B2 type intermetallic compound based on FeAl, in addition to strengthening solid solution and strengthening precipitation of fine precipitates. There is a feature. By adopting such a complex structural strengthening method, the heat-resistant alloy of the present invention is expected to be used as a heat-resistant material in a high-temperature part such as an apparatus. In the present invention, the feature that the B2 type intermetallic compound itself based on FeAl is not easily deformed at a high temperature is utilized, and a strengthening mechanism by an interface effect can be exhibited at the interface between the intermetallic compound and the matrix. The feature is also utilized. The austenitic Fe-based alloy having these characteristics has not been described or suggested in the above-mentioned prior art documents, and has been discovered for the first time by the diligent studies of the present inventors.

以下、実施例に基づき、本発明のオーステナイト系Fe基耐熱合金の作製及びその特性について、更に詳しく説明する。なお、これらの記載は本発明の実施形態の例示であって、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the production of the austenitic Fe-based heat-resistant alloy of the present invention and its characteristics will be described in more detail based on Examples. It should be noted that these descriptions are examples of embodiments of the present invention, and the present invention is not limited to these examples.

[手順1:インゴット作製]
図1は本実施例で作製したインゴットの外観を示す写真である。以下の表1に示す組成を有するインゴットを、アルミナるつぼを用いた高周波溶解によって作製した。インゴットの原料としては、塊状の電解鉄と、粒状のAl、Ni、Cr、Nb、Wを用い、合計重量を約1.5kgとした。溶解雰囲気はアルゴンガス中とした。鋳造は内径φ40mmの鋳鉄製鋳型に行い、切断は図1に点線で示した位置で切断し、下側(長さ約90mm)を後述の溝ロール圧延に供した。
[Procedure 1: Ingot preparation]
FIG. 1 is a photograph showing the appearance of the ingot produced in this example. An ingot having the composition shown in Table 1 below was prepared by high frequency melting using an alumina crucible. As the raw material of the ingot, massive electrolytic iron and granular Al, Ni, Cr, Nb, and W were used, and the total weight was about 1.5 kg. The dissolution atmosphere was in argon gas. Casting was performed on a cast iron mold having an inner diameter of φ40 mm, cutting was performed at the position shown by the dotted line in FIG. 1, and the lower side (length of about 90 mm) was subjected to groove roll rolling described later.

[手順2:溝ロール圧延]
押し湯を切断して得たφ40mm×90mmのインゴットを、1100℃に加熱して溝ロール圧延を行った。溝の形状は正方形であり、サイズが異なる溝の間にインゴットを順番に通すことによって、徐々に断面積を細くした。また、およそ3回の圧延後に、再加熱を施した。加熱保持時間は約10分とした。以下に、溝ロール圧延工程の一例を、矢印記号を用いて示す(数字は溝の一辺の長さ(mm)である。):
<開始> →加熱保持→ 38.2→ 35.0→ 31.7→ 再加熱→ 28.7→ 25.9→ 23.5→ 再加熱→ 21.3→ 19.3→ 17.5→ 再加熱→ 15.8→ 14.3→ 12.9→ <終了>
本実施例では、上記工程により、図2に示す溝ロール圧延材を得た。
[Procedure 2: Groove roll rolling]
An ingot having a diameter of 40 mm and a diameter of 90 mm obtained by cutting the pressed water was heated to 1100 ° C. and subjected to groove roll rolling. The shape of the grooves was square, and the cross-sectional area was gradually reduced by passing ingots in order between grooves of different sizes. Further, after rolling about 3 times, reheating was performed. The heating and holding time was about 10 minutes. An example of the groove roll rolling process is shown below using arrow symbols (the numbers are the length of one side of the groove (mm)):
<Start> → Heat retention → 38.2 → 35.0 → 31.7 → Reheat → 28.7 → 25.9 → 23.5 → Reheat → 21.3 → 19.3 → 17.5 → Re Heating → 15.8 → 14.3 → 12.9 → <End>
In this embodiment, the groove roll rolled material shown in FIG. 2 was obtained by the above steps.

[手順3:熱処理及び組織観察]
溝ロール圧延材について、900℃で50時間の熱処理を行った後、反射電子像による組織観察を行った。合金1、5、20、25、7及び17の反射電子像組織の写真を、それぞれ図4~図9に示す。
[Procedure 3: Heat treatment and microstructure observation]
The groove roll rolled material was heat-treated at 900 ° C. for 50 hours, and then the structure was observed by a backscattered electron image. Pictures of the backscattered electron image structures of alloys 1, 5, 20, 25, 7 and 17, are shown in FIGS. 4 to 9, respectively.

[手順4:特性評価]
熱処理後の溝ロール圧延材から、図3に示す試験片を加工し、室温での引張試験と700℃での引張試験を行った。室温での引張試験では、室温延性の評価として伸びを測定し、700℃での引張試験では、高温強度の評価として引張強度を測定した。
測定結果を以下の表1に示す。

Figure 2022024337000002

[Procedure 4: Characteristic evaluation]
The test piece shown in FIG. 3 was processed from the rolled groove roll material after the heat treatment, and a tensile test at room temperature and a tensile test at 700 ° C. were performed. In the tensile test at room temperature, elongation was measured as an evaluation of room temperature ductility, and in the tensile test at 700 ° C., tensile strength was measured as an evaluation of high temperature strength.
The measurement results are shown in Table 1 below.
Figure 2022024337000002

表1から、特定の組成(成分比)で作製した各インゴットの溝ロール圧延材について、以下のことが判明した。 From Table 1, it was found that the groove roll rolled material of each ingot produced with a specific composition (component ratio) was as follows.

(1)Alの好適な成分比について
合金1~5は、Al成分比を大きく変化させたグループである。このグループでは、Al並びにFe及び不可避不純物を除く成分比が、原子%で、Ni(25~40%):Cr(5~15%):Nb(2~5%):W(1~3%)の範囲内であるところ、Alが11.0%、16.0%、及び19.0%の場合(それぞれ合金1、2及び3)に、室温延性と高温強度がいずれも良好(◎)であるが、Alが9.0%と比較的少ない場合(合金1、比較合金)には高温強度が不良(×)であり、Alが22.0%と比較的多い場合(合金5、比較合金)には、室温延性が不良(×)であることがわかった。
比較合金である合金1では、Al成分比が10~20%の範囲を下回っており、反射電子像写真(図4)から観察されるように、B2相(黒い相)の量が少ないことがわかる。このため、合金1では、Al添加による高温強度向上の効果が見られなかったものと考えられる。
一方、比較合金である合金5では、Al成分が10~20%の範囲を上回っており、反射電子像写真(図5)から観察されるように、B2相(黒い相)の量が多すぎるため、これが原因となって室温延性が低く不良であったものと考えられる。
(1) Suitable component ratio of Al Alloys 1 to 5 are a group in which the Al component ratio is significantly changed. In this group, the component ratio excluding Al, Fe and unavoidable impurities is atomic%, Ni (25-40%): Cr (5-15%): Nb (2-5%): W (1-3%). ), When Al is 11.0%, 16.0%, and 19.0% (alloys 1, 2 and 3 respectively), both room temperature ductility and high temperature strength are good (◎). However, when Al is relatively low at 9.0% (alloy 1, comparative alloy), the high-temperature strength is poor (x), and when Al is relatively high at 22.0% (alloy 5, comparison). It was found that the alloy) had poor room temperature ductility (x).
In alloy 1, which is a comparative alloy, the Al component ratio is below the range of 10 to 20%, and as can be seen from the backscattered electron image photograph (FIG. 4), the amount of B2 phase (black phase) is small. Recognize. Therefore, it is probable that the alloy 1 did not have the effect of improving the high temperature strength by adding Al.
On the other hand, in the alloy 5 which is a comparative alloy, the Al component exceeds the range of 10 to 20%, and the amount of the B2 phase (black phase) is too large as observed from the backscattered electron image photograph (FIG. 5). Therefore, it is probable that this was the cause of the poor room temperature ductility.

(2)Niの好適な成分比について
合金6~10は、Ni成分比を大きく変化させたグループである。このグループでは、Ni並びにFe及び不可避不純物を除く成分比が、原子%で、Al(10~20%):Cr(5~15%):Nb(2~5%):W(1~3%)の範囲内であるところ、Niが26.0%、32.0%、及び38.0%の場合(それぞれ合金7、8及び9)に、室温延性と高温強度がいずれも良好(◎)であるが、Niが24.0%と比較的少ない場合(合金6、比較合金)には室温延性が不良(×)であり、Niが41.0%と比較的多い場合(合金10、比較合金)には、高温強度が不良(×)であることがわかった。
比較合金である合金6では、Nl成分比が25~40%の範囲を下回っており、このため、オーステナイト相が安定せず、室温延性が不良であったものと考えられる。
一方、比較合金である合金10では、Ni成分が25~40%の範囲を上回っており、このことが原因となって高温強度が低下したものと考えられる。
なお、発明合金である合金7では、Ni成分比が25~40%の範囲内であり、反射電子像写真(図8)から観察されるように、B2相(黒い相)の量と析出物(白い相)の量とのバランスよく存在し、好適な条件下であるため、室温延性と高温強度が共に良好であったものと考えられる。
(2) Suitable component ratio of Ni Alloys 6 to 10 are a group in which the Ni component ratio is significantly changed. In this group, the component ratio excluding Ni, Fe and unavoidable impurities is atomic%, Al (10 to 20%): Cr (5 to 15%): Nb (2 to 5%): W (1 to 3%). ), When Ni is 26.0%, 32.0%, and 38.0% (alloys 7, 8 and 9 respectively), both room temperature ductility and high temperature strength are good (◎). However, when Ni is relatively low at 24.0% (alloy 6, comparative alloy), the room temperature ductility is poor (x), and when Ni is relatively high at 41.0% (alloy 10, comparison). It was found that the high temperature strength of the alloy) was poor (x).
In the alloy 6 which is a comparative alloy, the Nl component ratio is below the range of 25 to 40%, and it is probable that the austenite phase is not stable and the room temperature ductility is poor.
On the other hand, in the alloy 10 which is a comparative alloy, the Ni component exceeds the range of 25 to 40%, and it is considered that the high temperature strength is lowered due to this.
In the alloy 7 which is the invention alloy, the Ni component ratio is in the range of 25 to 40%, and as can be observed from the backscattered electron image photograph (FIG. 8), the amount of the B2 phase (black phase) and the precipitate. It is probable that both the room temperature ductility and the high temperature strength were good because they existed in a good balance with the amount of (white phase) and were under suitable conditions.

(3)Crの好適な成分比について
合金11~15は、Cr成分比を大きく変化させたグループである。このグループでは、Cr並びにFe及び不可避不純物を除く成分比が、原子%で、Al(10~20%):Ni(25~40%):Nb(2~5%):W(1~3%)の範囲内であるところ、Crが5.0%、10.0%、及び15.0%の場合(それぞれ合金12、13及び14)に、室温延性と高温強度がいずれも良好(◎)であるが、Crが4.0%と比較的少ない場合(合金11、比較合金)には高温強度が不良(×)であり、Crが17.0%と比較的多い場合(合金15、比較合金)には、室温延性が不良(×)であることがわかった。
比較合金である合金11では、Cr成分比が5~15%の範囲を下回っており、固溶強化による高温強度の向上の効果が見られなかったものと考えられる。
一方、比較合金である合金15では、Cr成分が5~15%の範囲を上回っており、ラーベス相などの脆い相の量が多くなりすぎるため、これが原因となって室温延性が不良であったものと考えられる。
(3) Suitable component ratio of Cr Alloys 11 to 15 are a group in which the Cr component ratio is significantly changed. In this group, the component ratio excluding Cr, Fe and unavoidable impurities is atomic%, Al (10 to 20%): Ni (25 to 40%): Nb (2 to 5%): W (1 to 3%). ), When Cr is 5.0%, 10.0%, and 15.0% (alloys 12, 13 and 14, respectively), both room temperature ductility and high temperature strength are good (◎). However, when Cr is relatively low at 4.0% (alloy 11, comparative alloy), the high-temperature strength is poor (x), and when Cr is relatively high at 17.0% (alloy 15, comparison). It was found that the alloy) had poor room temperature ductility (x).
In the alloy 11 which is a comparative alloy, the Cr component ratio is below the range of 5 to 15%, and it is probable that the effect of improving the high temperature strength by the solid solution strengthening was not observed.
On the other hand, in the alloy 15 which is a comparative alloy, the Cr component exceeds the range of 5 to 15%, and the amount of brittle phases such as the Laves phase becomes too large, which causes poor room temperature ductility. It is considered to be.

(4)Nbの好適な成分比について
合金16~20は、Nb成分比を大きく変化させたグループである。このグループでは、Nb並びにFe及び不可避不純物を除く成分比が、原子%で、Al(10~20%):Ni(25~40%):Cr(5~15%):W(1~3%)の範囲内であるところ、Nbが2.0%、3.0%、及び5.0%の場合(それぞれ合金17、18及び19)に、室温延性と高温強度がいずれも良好(◎)であるが、Nbが1.0%と比較的少ない場合(合金16、比較合金)には高温強度が不良(×)であり、Nbが6.0%と比較的多い場合(合金20、比較合金)には、室温延性が不良(×)であることがわかった。
比較合金である合金16では、Nb成分比が2~5%の範囲を下回っており、析出強化による高温強度の向上の効果が見られなかったものと考えられる。
一方、比較合金である合金20では、Nb成分が2~5%の範囲を上回っており、反射電子像写真(図6)から観察されるように、Nb添加に伴う析出物(白い相)の量が多すぎるため、これが原因となって室温延性が不良であったものと考えられる。
なお、発明合金である合金17では、Nb成分比が2~5%の範囲内であり、反射電子像写真(図9)から観察されるように、B2相(黒い相)の量と析出物(白い相)の量とのバランスがよく存在し、好適な条件下にあるため、室温延性と高温強度が共に良好であったものと考えられる。
(4) Suitable component ratio of Nb Alloys 16 to 20 are a group in which the Nb component ratio is significantly changed. In this group, the component ratio excluding Nb, Fe and unavoidable impurities is atomic%, Al (10 to 20%): Ni (25 to 40%): Cr (5 to 15%): W (1 to 3%). ), When Nb is 2.0%, 3.0%, and 5.0% (alloys 17, 18 and 19 respectively), both room temperature ductility and high temperature strength are good (◎). However, when Nb is relatively low at 1.0% (alloy 16, comparative alloy), the high-temperature strength is poor (x), and when Nb is relatively high at 6.0% (alloy 20, comparison). It was found that the alloy) had poor room temperature ductility (x).
In the alloy 16 which is a comparative alloy, the Nb component ratio was below the range of 2 to 5%, and it is probable that the effect of improving the high temperature strength by strengthening precipitation was not observed.
On the other hand, in the alloy 20 which is a comparative alloy, the Nb component exceeds the range of 2 to 5%, and as can be seen from the backscattered electron image photograph (FIG. 6), the precipitate (white phase) associated with the addition of Nb It is probable that the room temperature ductility was poor due to this because the amount was too large.
In the alloy 17 which is the invention alloy, the Nb component ratio is in the range of 2 to 5%, and as can be observed from the backscattered electron image photograph (FIG. 9), the amount of the B2 phase (black phase) and the precipitate. It is probable that both the room temperature ductility and the high temperature strength were good because the balance with the amount of (white phase) was well present and the conditions were suitable.

(5)Wの好適な成分比について
合金21~25は、W成分比を大きく変化させたグループである。このグループでは、W並びにFe及び不可避不純物を除く成分比が、原子%で、Al(10~20%):Ni(25~40%):Cr(5~15%):Nb(2~5%)の範囲内であるところ、Wが1.0%、2.0%、及び3.0%の場合(それぞれ合金22、23及び24)に、室温延性と高温強度がいずれも良好(◎)であるが、Wが0.7%と比較的少ない場合(合金21、参考合金)には高温強度の評価が(〇)にとどまり、Wが4.0%と比較的多い場合(合金25、参考合金)には、室温延性の評価が(〇)にとどまることがわかった。
参考合金である合金21では、W成分比が1~3%の範囲を下回っており、析出強化による高温強度の向上の効果が比較的小さかったものと考えられる。
一方、参考合金である合金25では、W成分が1~3%の範囲を上回っており、反射電子像写真(図7)から観察されるように、W添加に伴う析出物(白い相)の量が若干多すぎるため、これが原因となって室温延性の評価が(〇)にとどまったものと考えられる。
(6)総括
以上の通り、表1の測定結果及び評価結果から、Fe及び不可避不純物を除く成分比が、原子%で、Al(10~20%):Ni(25~40%):Cr(5~15%):Nb(2~5%)の範囲内にあるオーステナイト系Fe基合金が、これらの組成比の範囲外にある合金と比べて、優れた効果を両立することが示された。
また、表1の測定結果及び評価結果から、Fe及び不可避不純物を除く成分比が、原子%で、Al(10~20%):Ni(25~40%):Cr(5~15%):Nb(2~5%):W(1~3%)の範囲内にあるオーステナイト系Fe基合金が、これらの組成比の範囲外にある合金と比べて、さらに優れた効果を両立することが示された。
(5) Suitable component ratio of W Alloys 21 to 25 are a group in which the W component ratio is significantly changed. In this group, the component ratio excluding W, Fe and unavoidable impurities is atomic%, Al (10 to 20%): Ni (25 to 40%): Cr (5 to 15%): Nb (2 to 5%). ), When W is 1.0%, 2.0%, and 3.0% (alloys 22, 23, and 24, respectively), both room temperature ductility and high temperature strength are good (◎). However, when W is relatively low at 0.7% (alloy 21, reference alloy), the evaluation of high temperature strength is limited to (〇), and when W is relatively high at 4.0% (alloy 25, reference alloy). For the reference alloy), it was found that the evaluation of room temperature ductility was limited to (○).
In the alloy 21 which is a reference alloy, the W component ratio is below the range of 1 to 3%, and it is considered that the effect of improving the high temperature strength by strengthening precipitation was relatively small.
On the other hand, in the alloy 25, which is a reference alloy, the W component exceeds the range of 1 to 3%, and as can be seen from the backscattered electron image photograph (FIG. 7), the precipitate (white phase) associated with the addition of W It is probable that the evaluation of room temperature ductility was limited to (○) due to this because the amount was a little too large.
(6) Summary As described above, from the measurement results and evaluation results in Table 1, the component ratio excluding Fe and unavoidable impurities is atomic%, Al (10 to 20%): Ni (25 to 40%): Cr ( 5 to 15%): It was shown that austenitic Fe-based alloys in the range of Nb (2 to 5%) have both excellent effects compared to alloys outside these composition ratios. ..
Further, from the measurement results and evaluation results in Table 1, the component ratio excluding Fe and unavoidable impurities is atomic%, and Al (10 to 20%): Ni (25 to 40%): Cr (5 to 15%) :. Austenitic Fe-based alloys in the range of Nb (2-5%): W (1-3%) may achieve even better effects than alloys outside the range of these composition ratios. Shown.

本発明のオーステナイト系Fe基耐熱合金は、室温において十分な延性を有するとともに、高温での強度が十分に高いので、各種エンジン及びタービン等の高温回転部品、並びに高温耐食部材等の材料として使用するのに好適である。また、本発明のオーステナイト系Fe基耐熱合金は、溶解、鋳造又は鍛造、圧延法等の汎用的な方法で部材としての加工や製造が可能なため、製造コスト的な優位性を維持しつつ、実用に供することができる。
The austenitic Fe-based heat-resistant alloy of the present invention has sufficient ductility at room temperature and has sufficiently high strength at high temperatures, and is therefore used as a material for high-temperature rotating parts such as various engines and turbines, and high-temperature corrosion-resistant members. It is suitable for. Further, since the austenitic Fe-based heat-resistant alloy of the present invention can be processed and manufactured as a member by a general-purpose method such as melting, casting or forging, and rolling method, the superiority in terms of manufacturing cost is maintained. It can be put to practical use.

Claims (5)

原子%で、
Al:10~21%、
Ni:25~40%、
Cr:5~16%、
Nb:2~5%
を含有し、残部がFe及び不可避不純物からなる、オーステナイト系Fe基耐熱合金。
At atomic percent,
Al: 10-21%,
Ni: 25-40%,
Cr: 5-16%,
Nb: 2-5%
Austenitic Fe-based heat-resistant alloy containing Fe and the balance consisting of Fe and unavoidable impurities.
さらに、原子%で、
W:1~3%
を含有し、残部がFe及び不可避不純物からなる、請求項1に記載のオーステナイト系Fe基耐熱合金。
In addition, at atomic%,
W: 1-3%
The austenitic Fe-based heat-resistant alloy according to claim 1, wherein the austenitic Fe-based heat-resistant alloy contains Fe and the balance is composed of Fe and unavoidable impurities.
原子%で、
Al:11~19%、
Ni:26~38%、
Cr:5~15%、
Nb:2~5%、
W:1~3%
を含有し、残部がFe及び不可避不純物からなる、オーステナイト系Fe基耐熱合金。
At atomic percent,
Al: 11-19%,
Ni: 26-38%,
Cr: 5 to 15%,
Nb: 2-5%,
W: 1-3%
Austenitic Fe-based heat-resistant alloy containing Fe and the balance consisting of Fe and unavoidable impurities.
室温での引張試験において、伸び5%以上の延性を有する、請求項1~3のいずれか1項に記載の合金。 The alloy according to any one of claims 1 to 3, which has a ductility of 5% or more in a tensile test at room temperature. 700℃での引張試験において、引張強度450MPa以上の高温強度を有する、請求項1~4のいずれか1項に記載の合金。
The alloy according to any one of claims 1 to 4, which has a high-temperature strength of 450 MPa or more in a tensile test at 700 ° C.
JP2020122366A 2020-07-16 2020-07-16 AUSTENITIC Fe-BASED HEAT RESISTANCE ALLOY Pending JP2022024337A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020122366A JP2022024337A (en) 2020-07-16 2020-07-16 AUSTENITIC Fe-BASED HEAT RESISTANCE ALLOY

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020122366A JP2022024337A (en) 2020-07-16 2020-07-16 AUSTENITIC Fe-BASED HEAT RESISTANCE ALLOY

Publications (1)

Publication Number Publication Date
JP2022024337A true JP2022024337A (en) 2022-02-09

Family

ID=80265456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020122366A Pending JP2022024337A (en) 2020-07-16 2020-07-16 AUSTENITIC Fe-BASED HEAT RESISTANCE ALLOY

Country Status (1)

Country Link
JP (1) JP2022024337A (en)

Similar Documents

Publication Publication Date Title
JP4277113B2 (en) Ni-base alloy for heat-resistant springs
JP5270123B2 (en) Nitride reinforced cobalt-chromium-iron-nickel alloy
JP4430974B2 (en) Method for producing low thermal expansion Ni-base superalloy
JP4262414B2 (en) High Cr ferritic heat resistant steel
JP5792500B2 (en) Ni-base superalloy material and turbine rotor
US20130206287A1 (en) Co-based alloy
JP6675846B2 (en) Fe-Cr-Ni alloy with excellent high-temperature strength
CN110408850B (en) Nano intermetallic compound precipitation strengthened super steel and preparation method thereof
JP6860413B2 (en) Maraging steel and its manufacturing method
KR20180043361A (en) Low thermal expansion super heat resistant alloys and method for manufacturing the same
JP2005002451A (en) Fe-Ni-Cr ALLOY FOR HEAT-RESISTANT SPRING AND PRODUCTION METHOD OF HEAT-RESISTANT SPRING
JP4264411B2 (en) High strength α + β type titanium alloy
JP5636532B2 (en) Oxide dispersion strengthened steel and manufacturing method thereof
WO2014104138A1 (en) Fe-Ni-BASED ALLOY HAVING EXCELLENT HIGH-TEMPERATURE CHARACTERISTICS AND HYDROGEN EMBRITTLEMENT RESISTANCE CHARACTERISTICS, AND METHOD FOR PRODUCING SAME
JPWO2019045001A1 (en) Alloy plate and gasket
JP6602462B2 (en) Chromium-based two-phase alloy and product using the two-phase alloy
JP7205277B2 (en) Heat-resistant alloy and its manufacturing method
JP4768919B2 (en) Ring shape parts for gas turbine blade rings and seal ring retaining rings made of high strength low thermal expansion cast steel and high strength low thermal expansion cast steel
JP5228708B2 (en) Titanium alloy for heat-resistant members with excellent creep resistance and high-temperature fatigue strength
JP2022024337A (en) AUSTENITIC Fe-BASED HEAT RESISTANCE ALLOY
JP6738010B2 (en) Nickel-based alloy with excellent high-temperature strength and high-temperature creep properties
JP4672433B2 (en) Heat-resistant casting alloy and manufacturing method thereof
JP6787246B2 (en) Alloy original plate for heat-resistant parts, alloy plate for heat-resistant parts, and gasket for exhaust system parts of engine
JP3777421B2 (en) High chromium ferritic heat resistant steel
JP4439881B2 (en) Welding material and roll for continuous casting roll overlay