JP2022024308A - Shrinkable tube and manufacturing method for shrinkable tube - Google Patents

Shrinkable tube and manufacturing method for shrinkable tube Download PDF

Info

Publication number
JP2022024308A
JP2022024308A JP2020121476A JP2020121476A JP2022024308A JP 2022024308 A JP2022024308 A JP 2022024308A JP 2020121476 A JP2020121476 A JP 2020121476A JP 2020121476 A JP2020121476 A JP 2020121476A JP 2022024308 A JP2022024308 A JP 2022024308A
Authority
JP
Japan
Prior art keywords
tube
precursor
shrinkage
shrinkable
longitudinal direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020121476A
Other languages
Japanese (ja)
Other versions
JP7493763B2 (en
Inventor
弘一 長内
Koichi Osanai
智 海老原
Satoshi Ebihara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chukoh Chemical Industries Ltd
Original Assignee
Chukoh Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chukoh Chemical Industries Ltd filed Critical Chukoh Chemical Industries Ltd
Priority to JP2020121476A priority Critical patent/JP7493763B2/en
Publication of JP2022024308A publication Critical patent/JP2022024308A/en
Application granted granted Critical
Publication of JP7493763B2 publication Critical patent/JP7493763B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Abstract

To provide a shrinkable tube with less fluctuation in a length direction during shrinkage, and a manufacturing method for the shrinkable tube.SOLUTION: A resin shrinkable tube is provided with a variation tolerance in a longitudinal direction of 0% to +5% or less when the shrinkable tube is heated at 260°C for 10 minutes. A manufacturing method also includes extruding a molten resin into a tube shape to obtain an extrudate, cooling the extrudate to obtain a tube precursor, and expanding the tube precursor in diameter. The diameter expansion of the tube precursor is done by heating the tube precursor while applying pressure to the inside of the tube precursor.SELECTED DRAWING: Figure 1

Description

本発明は、収縮チューブ及び収縮チューブの製造方法に関する。 The present invention relates to a shrink tube and a method for manufacturing the shrink tube.

収縮チューブは、様々な分野において汎用されている。例えば、電子機器においては、電線、端子部分およびリード線等の部品の仮固定や仮保護のために、それら部品に熱収縮チューブが被せられ、加熱により該チューブが収縮され部品に密着する。また、収縮チューブは、電線やリード線等を配線する際の色識別のためにも適用され得る。最終的には該チューブは不要となる為、剥離・除去される。 Shrink tubes are widely used in various fields. For example, in an electronic device, a heat-shrinkable tube is put on a component such as an electric wire, a terminal portion, and a lead wire for temporary fixing or temporary protection, and the tube is contracted by heating to be in close contact with the component. The shrinkable tube can also be applied for color identification when wiring an electric wire, a lead wire, or the like. Eventually, the tube becomes unnecessary and is peeled off and removed.

一般的な収縮チューブは、収縮前後で製品長が伸びる又は縮む挙動を示す。即ち、収縮後のチューブ被覆物の長さと被覆対象の部材の長さとの間でずれが生じうる。例えば、収縮チューブで電線を被覆する場合、収縮チューブが長手方向に大幅に縮むと電線の意図しない部分が露出し得る。その為、収縮チューブを用いるにあたって、被覆対象の部材の長さに対して余裕のある長さに収縮チューブを切断し、収縮加工後に余った端部を切り落として仕上げるといった対策が講じられている。 A general shrink tube exhibits a behavior in which the product length expands or contracts before and after shrinkage. That is, there may be a discrepancy between the length of the tube covering after shrinkage and the length of the member to be covered. For example, when the wire is covered with a shrink tube, an unintended portion of the wire may be exposed if the shrink tube shrinks significantly in the longitudinal direction. Therefore, when using the shrinkable tube, measures are taken such as cutting the shrinkage tube to a length sufficient for the length of the member to be covered and cutting off the excess end portion after the shrinkage processing.

収縮前後の長手方向への変動公差が大きい収縮チューブでは、上記のような手順を要するため、次に挙げるリスクが生じる。例えば、長さ1000Lの収縮チューブを用いて長さ500Lの製品を2本被覆する事は難しく、実際的には出来ない。その為、1000L品を2本購入する必要が出るなどコスト面で負担が生じる。また、端部の切り落としによる加工工数の負担が増える。さらには、切り落とし作業時に被覆対象に傷が入って製品として不適となるリスクがある。 With a shrinkable tube having a large longitudinal variation tolerance before and after shrinkage, the above procedure is required, and the following risks arise. For example, it is difficult and practically impossible to cover two products with a length of 500 L using a shrink tube with a length of 1000 L. Therefore, there is a cost burden such as the need to purchase two 1000L products. In addition, the burden of processing man-hours increases due to cutting off the edges. Furthermore, there is a risk that the object to be covered will be scratched during the cutting operation, making it unsuitable as a product.

特許文献1(特開2007-179889号公報)には、熱収縮チューブの剥離・除去工程において刃物を用いずに該チューブを剥離・除去できる熱収縮チューブが開示されている。具体的には、フッ素樹脂からなる熱収縮チューブとその外表面に沿って剥離自在に固着されている筋状体とを含む複合チューブが記載されている。しかし、当該チューブは、熱収縮する際に長手方向に-20%から+20%程度の広い範囲の伸張・収縮を示し、コストや加工工数の面で負担が生じる。 Patent Document 1 (Japanese Unexamined Patent Publication No. 2007-179889) discloses a heat-shrinkable tube capable of peeling / removing the tube without using a blade in the step of peeling / removing the heat-shrinkable tube. Specifically, a composite tube including a heat-shrinkable tube made of a fluororesin and a streak that is detachably fixed along the outer surface thereof is described. However, the tube exhibits expansion and contraction in a wide range of about -20% to + 20% in the longitudinal direction when thermally contracted, which causes a burden in terms of cost and processing man-hours.

特開2007-179889号公報Japanese Unexamined Patent Publication No. 2007-179889

収縮時の長さ方向の変動が少ない収縮チューブ、及び該収縮チューブの製造方法を提供することを目的とする。 It is an object of the present invention to provide a shrinkage tube having little fluctuation in the length direction at the time of shrinkage, and a method for manufacturing the shrinkage tube.

実施形態によれば、樹脂製の収縮チューブが提供される。該収縮チューブを260℃の温度で10分間加熱したときの長手方向の変動公差は、0%から+5%以下である。 According to the embodiment, a shrinkable tube made of resin is provided. The variation tolerance in the longitudinal direction when the shrink tube is heated at a temperature of 260 ° C. for 10 minutes is 0% to + 5% or less.

また、上記収縮チューブの製造方法が提供される。当該製造方法は、溶融した樹脂をチューブ形状に押し出して押出成形体を得ることと、押出成形体を冷却してチューブ前駆体を得ることと、チューブ前駆体を拡径することとを含む。チューブ前駆体の拡径は、チューブ前駆体の管内に圧力を掛けながらチューブ前駆体を加熱することで行われる。 Further, a method for manufacturing the above-mentioned shrink tube is provided. The manufacturing method includes extruding the molten resin into a tube shape to obtain an extruded body, cooling the extruded body to obtain a tube precursor, and expanding the diameter of the tube precursor. The diameter of the tube precursor is expanded by heating the tube precursor while applying pressure to the inside of the tube of the tube precursor.

実施形態に係る収縮チューブは、収縮時に長手方向の寸法変動をほとんど示さない。そのため、当該収縮チューブを適用する際、製造コスト等の負担や製品不良等のリスクを低減できる。実施形態に係る収縮チューブの製造方法によれば、収縮時に長手方向の寸法変動をほとんど示さない収縮チューブが得られる。即ち、当該製造方法は、適用時に製造コスト等の負担や製品不良等のリスクを低減できる収縮チューブを提供できる。 The shrinkable tube according to the embodiment shows almost no longitudinal dimensional variation during shrinkage. Therefore, when the shrinkable tube is applied, it is possible to reduce the burden of manufacturing costs and the risk of product defects. According to the method for manufacturing a shrinkable tube according to the embodiment, a shrinkable tube showing almost no dimensional change in the longitudinal direction during shrinkage can be obtained. That is, the manufacturing method can provide a shrinkable tube that can reduce the burden of manufacturing costs and the risk of product defects at the time of application.

実施形態に係る収縮チューブを概略的に表す斜視図。The perspective view which shows typically the shrinkage tube which concerns on embodiment. 収縮後のチューブを概略的に表す斜視図。A perspective view schematically showing the tube after contraction.

実施形態に係る収縮チューブは、260℃の温度で10分間加熱したとき、0%から+5%以下の長手方向の変動公差を示す樹脂製の収縮チューブである。即ち、当該収縮チューブは、熱収縮の際、径方向には収縮するものの、長手方向には縮まず、長手方向への伸張もほとんど又は全くない熱収縮チューブである。260℃の温度で10分間加熱して収縮させたときの長手方向の変動公差が0%から+1%以下であることが好ましい。 The shrink tube according to the embodiment is a resin shrink tube showing a variation tolerance in the longitudinal direction of 0% to + 5% or less when heated at a temperature of 260 ° C. for 10 minutes. That is, the shrinkable tube is a heat-shrinkable tube that contracts in the radial direction when heat-shrinks, but does not shrink in the longitudinal direction and has little or no extension in the longitudinal direction. It is preferable that the fluctuation tolerance in the longitudinal direction when heated at a temperature of 260 ° C. for 10 minutes and contracted is 0% to + 1% or less.

収縮チューブは、260℃の温度で10分間加熱したときに、例えば、収縮前の内径が収縮後の内径に対し120%以上250%以下になる収縮率で、径方向に収縮し得る。 When heated at a temperature of 260 ° C. for 10 minutes, the shrinkable tube can shrink radially, for example, at a shrinkage rate such that the inner diameter before shrinkage is 120% or more and 250% or less with respect to the inner diameter after shrinkage.

図面を参照しながら例を説明する。図1は、実施形態に係る収縮チューブを概略的に表す斜視図である。図2は、図1に示したチューブを収縮した後の状態を概略的に表す斜視図である。なお、図面では収縮チューブを概略的に表しており、実際の厚み(肉厚)や径等といった寸法や形状等は、図示する例に限られない。 An example will be described with reference to the drawings. FIG. 1 is a perspective view schematically showing a contraction tube according to an embodiment. FIG. 2 is a perspective view schematically showing a state after the tube shown in FIG. 1 is contracted. It should be noted that the shrinkage tube is schematically shown in the drawings, and the dimensions and shapes such as the actual thickness (thickness) and diameter are not limited to the illustrated examples.

図1に示す収縮チューブ1は、例えば、図示するように円形の断面形状を有する管の形状を有し得る。収縮チューブ1の断面形状は図示する形状に限られず、例えば、略円形や楕円形等、他の形状であり得る。収縮チューブ1についてのチューブ径、例えば、断面の直径や長手方向Lへの長さは特に限定されず、用途に応じて適宜設定できる。 The contractile tube 1 shown in FIG. 1 may have, for example, the shape of a tube having a circular cross-sectional shape as shown in the figure. The cross-sectional shape of the shrink tube 1 is not limited to the shape shown in the figure, and may be another shape such as a substantially circular shape or an elliptical shape. The tube diameter of the shrinkable tube 1, for example, the diameter of the cross section and the length in the longitudinal direction L is not particularly limited, and can be appropriately set according to the intended use.

収縮チューブ1を収縮、例えば、260℃の温度で10分間加熱して収縮させると、径方向に収縮した状態のチューブ2が得られる。なお、ここでいう径方向とは、長手方向Lと交差する面内にて収縮チューブ1(又はチューブ2)の内部を中心とした放射方向に沿う方向をいう。収縮前の収縮チューブ1の長手方向Lへの長さL1に対する、260℃で10分間加熱した場合の収縮後のチューブ2の長手方向Lへの長さL2の寸法変動は、0%以上+5%以下の範囲内に収まる(0%≦[(L2-L1)/L1]×100%≦+5%)。ここで、収縮チューブが収縮する際に長手方向へ伸びる場合の寸法変動を正の値とし、長手方向に縮む場合の寸法変動を負の値とする。260℃で10分間加熱した場合の収縮後のチューブ2の内径D2に対する収縮前の収縮チューブ1の内径D1の比は、120%以上250%以下であり得る(120%≦[D1/D2]×100%≦250%)。 When the contracted tube 1 is contracted, for example, heated at a temperature of 260 ° C. for 10 minutes and contracted, the tube 2 in a radialally contracted state is obtained. The radial direction referred to here is a direction along the radial direction centered on the inside of the contraction tube 1 (or tube 2) in the plane intersecting the longitudinal direction L. The dimensional variation of the length L2 of the tube 2 after shrinkage in the longitudinal direction L when heated at 260 ° C. for 10 minutes with respect to the length L1 of the shrinkage tube 1 in the longitudinal direction before shrinkage is 0% or more + 5%. It falls within the following range (0% ≦ [(L2-L1) / L1] × 100% ≦ + 5%). Here, the dimensional variation when the shrink tube expands in the longitudinal direction when it contracts is a positive value, and the dimensional variation when it contracts in the longitudinal direction is a negative value. The ratio of the inner diameter D1 of the contracted tube 1 before shrinkage to the inner diameter D2 of the tube 2 after shrinkage when heated at 260 ° C. for 10 minutes can be 120% or more and 250% or less (120% ≦ [D1 / D2] ×. 100% ≤ 250%).

収縮チューブは、例えば、フッ素樹脂製のチューブである。チューブを構成する樹脂は、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体樹脂(FEP)であることが望ましい。望ましい収縮チューブは、FEPから成る単一素材チューブである。単一素材の樹脂チューブはチューブ全体が同一の樹脂材料で形成されているため、全体に亘って収縮率を均等にしやすい。 The shrinkage tube is, for example, a tube made of fluororesin. The resin constituting the tube is preferably a tetrafluoroethylene-hexafluoropropylene copolymer resin (FEP). The preferred shrink tube is a single material tube made of FEP. Since the entire tube of the resin tube made of a single material is made of the same resin material, it is easy to make the shrinkage rate uniform throughout.

実施形態に係る収縮チューブは、下記方法により製造できる。 The shrinkable tube according to the embodiment can be manufactured by the following method.

収縮チューブの製造方法は、溶融した樹脂をチューブ形状に押し出して押出成形体を得ることと、押出成形体を冷却してチューブ前駆体を得ることと、チューブ前駆体の管内に圧力を掛けながらチューブ前駆体を加熱して拡径することとを含む。即ち、溶融押出成形により素材チューブを成形し、得られた素材チューブに対し、例えば、ブロー成形などの拡径処理を行うことで、収縮チューブを得ることができる。 The method for manufacturing a shrinkable tube is to extrude the molten resin into a tube shape to obtain an extruded body, to cool the extruded body to obtain a tube precursor, and to apply pressure to the inside of the tube precursor to obtain a tube. Includes heating and expanding the diameter of the precursor. That is, a shrink tube can be obtained by molding a material tube by melt extrusion molding and performing a diameter expansion treatment such as blow molding on the obtained material tube.

押出成形体を得るには、溶融した樹脂を、例えば、スクリュー押出機により押し出し、チューブ形状に成形する。押出成形体の寸法出しには、サイジングダイス等の金型を用いない。押出機より押し出される押出成形体を巻き取る際、例えば、押出機の吐出口と押出成形体を巻き取る巻取り機との間の距離を十分に離すことで、空冷により、巻き取りながら押出成形体を冷却できる。押出成形体の巻取り速度を調整することにより、得られるチューブ前駆体のチューブ径を制御できる。このような空冷引き法により得られるチューブ前駆体を素材チューブとして用いて拡径処理を行うことで、長さ方向の挙動が少ない収縮チューブを得ることができる。 To obtain an extruded body, the molten resin is extruded by, for example, a screw extruder and molded into a tube shape. A mold such as a sizing die is not used for dimensioning the extruded body. When winding an extruded body extruded from an extruder, for example, by sufficiently separating the distance between the discharge port of the extruder and the winder that winds up the extruded body, extrusion molding is performed while winding by air cooling. You can cool your body. By adjusting the take-up speed of the extruded body, the tube diameter of the obtained tube precursor can be controlled. By using the tube precursor obtained by such an air-cooled pulling method as a material tube and performing a diameter expansion treatment, a shrinkable tube having less behavior in the length direction can be obtained.

チューブ径の寸法出しにサイジングダイス等の金型を用いると、金型と樹脂とが擦れる事により樹脂成形体内で長さ方向に応力が発生する。この応力が開放されない状態で冷却される為に、得られるチューブ成形品には長さ方向の残留応力が残る。当該チューブ成形品を用いて得られる収縮チューブでは、この残留応力が熱収縮した際の寸法挙動に影響を及ぼす。そのため、収縮時の長手方向への変動公差が大きくなる。 When a mold such as a sizing die is used to determine the diameter of the tube, stress is generated in the length direction in the resin molding body due to the rubbing between the mold and the resin. Since this stress is cooled in a state where it is not released, residual stress in the length direction remains in the obtained tube molded product. In a shrinkable tube obtained by using the tube molded product, this residual stress affects the dimensional behavior when heat shrinks. Therefore, the fluctuation tolerance in the longitudinal direction at the time of contraction becomes large.

また、水冷により押出しチューブを冷却する場合は、チューブを水槽にくぐらせる際も、シリコンパッキン等のシール部材を経由する時にチューブとシール部材が擦れることにより長さ方向にチューブに応力が生じ、それが最終的に得られる収縮チューブにて残留応力として収縮時の長手方向の変動公差を大きくする要因となる。 In addition, when the extruded tube is cooled by water cooling, even when the tube is passed through the water tank, stress is generated in the tube in the length direction due to the rubbing between the tube and the sealing member when passing through the sealing member such as silicon packing. Is a residual stress in the finally obtained shrinkage tube, which is a factor that increases the variation tolerance in the longitudinal direction during shrinkage.

これらのことから、チューブ径の調整に金型を用いず、冷却の手段として空冷を用いる。それにより、長手方向への残留応力が低減された素材チューブを成形できる。このような長手方向の残留応力がない素材チューブを用いることで、収縮時の長手方向の変動公差が極めて少ない収縮チューブが得られる。 For these reasons, air cooling is used as a cooling means without using a mold for adjusting the tube diameter. As a result, a material tube with reduced residual stress in the longitudinal direction can be formed. By using a material tube having no residual stress in the longitudinal direction, a shrinkable tube having an extremely small variation tolerance in the longitudinal direction during contraction can be obtained.

金型を用いずに押出成形体の巻取り速度により寸法出しを行い空冷により冷却を行う上記手法で得られるチューブ前駆体を、下記のとおりチューブ前駆体の管内圧力を高くしながら加熱することで拡径させることにより収縮チューブを得る。 By heating the tube precursor obtained by the above method, which measures the size according to the winding speed of the extruded body without using a mold and cools it by air cooling, while increasing the pressure inside the tube precursor as shown below. A shrink tube is obtained by expanding the diameter.

熱伝導性を有し、例えば、円筒形状を有する直管を準備する。直管の材質は熱伝導性を示すものであれば特に限定されないが、例えば、金属製のものを用いる。直管の寸法については、内径は、所望の収縮チューブ外径に対応させる。直管の長手方向の寸法は特に限定されないが、操作性の観点からは長過ぎない直管の方が好ましい。また、長過ぎない直管の方が全体を均一に加熱しやすい。 Prepare a straight tube having thermal conductivity, for example, a cylindrical shape. The material of the straight pipe is not particularly limited as long as it exhibits thermal conductivity, but for example, a metal material is used. For the dimensions of the straight tube, the inner diameter corresponds to the desired outer diameter of the shrink tube. The length of the straight pipe in the longitudinal direction is not particularly limited, but a straight pipe that is not too long is preferable from the viewpoint of operability. In addition, a straight pipe that is not too long is easier to heat the whole uniformly.

直管にチューブ前駆体を挿入し、チューブの内圧をチューブ外圧より高くする。例えば、チューブ前駆体の片側端部を封止し、もう片側の封止されていない端部にエアー供給ノズルを挿入し内圧を掛ける。内圧は、例えば、1MPa以上6MPa以下に設定する。例えば、ライスター(登録商標)等の熱風溶接機で直管に熱を加えながら、チューブ前駆体の長手方向に沿って直管を移動させることで、チューブ前駆体を長手方向に沿って順次加熱して膨張させる。このように加熱膨張した後、内圧を維持したままチューブ全体を冷まし、収縮チューブを得る。必要に応じて、収縮チューブを長さ方向の所望の長さに裁断する。 Insert the tube precursor into the straight tube and make the internal pressure of the tube higher than the external pressure of the tube. For example, one end of the tube precursor is sealed, and an air supply nozzle is inserted into the other unsealed end to apply internal pressure. The internal pressure is set to, for example, 1 MPa or more and 6 MPa or less. For example, by moving the straight pipe along the longitudinal direction of the tube precursor while applying heat to the straight pipe with a hot air welder such as Leister (registered trademark), the tube precursor is sequentially heated along the longitudinal direction. And inflate. After heating and expanding in this way, the entire tube is cooled while maintaining the internal pressure to obtain a contracted tube. If necessary, the shrink tube is cut to the desired length in the length direction.

上記製造方法により得られる収縮チューブは、260℃及び10分間の条件で熱収縮したときの長手方向の変動公差が0%から+5%以下に抑えられている。即ち、熱収縮時の長さ方向へのチューブ長の変動幅が、伸びる方向に5%以下に留まる。また、当該収縮チューブは、縮む方向には熱収縮時に長さ方向へのチューブ長が変動しない。 The shrinkage tube obtained by the above manufacturing method has a variation tolerance in the longitudinal direction suppressed to 0% to + 5% or less when heat-shrinked under the conditions of 260 ° C. and 10 minutes. That is, the fluctuation range of the tube length in the length direction during heat shrinkage remains at 5% or less in the extending direction. In addition, the length of the contracted tube does not change in the length direction during thermal contraction in the contracted direction.

収縮チューブの収縮時の変動公差および熱収縮の程度は、次のようにして測定することができる。測定対象の収縮チューブの試料を準備し、その寸法を測定する。試料チューブの長手方向の長さは、例えば、金属製直尺を用いて測定する。試料チューブの内径は、例えば、ピンゲージを用いて測定できる。試料チューブを加熱炉に入れ、260℃及び10分間の条件で熱処理を行う。熱処理後、試料チューブの寸法を再度測定する。 The fluctuation tolerance and the degree of heat shrinkage during shrinkage of the shrinkage tube can be measured as follows. Prepare a sample of the shrinkage tube to be measured and measure its dimensions. The longitudinal length of the sample tube is measured, for example, using a metal straightedge. The inner diameter of the sample tube can be measured using, for example, a pin gauge. The sample tube is placed in a heating furnace and heat-treated at 260 ° C. for 10 minutes. After the heat treatment, the dimensions of the sample tube are measured again.

熱処理前の試料チューブの長さをL1、熱処理後の試料チューブの長さをL2とし、下記式1に基づいて長手方向の変動公差を求める:
長手方向の変動公差 = [(L2-L1)/L1]×100% …(式1)。
Let the length of the sample tube before the heat treatment be L1 and the length of the sample tube after the heat treatment be L2, and obtain the variation tolerance in the longitudinal direction based on the following formula 1.
Longitudinal variation tolerance = [(L2-L1) / L1] × 100% ... (Equation 1).

熱処理前の試料チューブの内径をD1、熱処理後の試料チューブの内径をD2とし、下記式2に基づいて径方向の変動率を求める:
径方向の変動率 = (D1/D2)×100% …(式2)。
The inner diameter of the sample tube before the heat treatment is D1, the inner diameter of the sample tube after the heat treatment is D2, and the volatility in the radial direction is obtained based on the following equation 2.
Volatility in the radial direction = (D1 / D2) x 100% ... (Equation 2).

(実施例)
実施形態に係る収縮チューブの具体的な製造例を説明する。
(Example)
A specific manufacturing example of the shrinkage tube according to the embodiment will be described.

チューブの材料樹脂としてのFEPを押出機に投入した。溶融温度は350℃、押出し速度は1.5m/分にそれぞれ設定した。押出機から押し出されたチューブ形状の押出成形体をそのまま巻取り機で巻き取るとともに空冷により徐冷し、チューブ前駆体を得た。 FEP as a material resin for the tube was charged into the extruder. The melting temperature was set to 350 ° C. and the extrusion speed was set to 1.5 m / min. The tube-shaped extruded body extruded from the extruder was wound as it was by a winder and slowly cooled by air cooling to obtain a tube precursor.

得られたチューブ前駆体に対し、拡径処理を次のとおり行った。チューブ前駆体を金属製の直管に挿入した。チューブ前駆体の片方のチューブ端部を封止し、他方の端部にてチューブ内にエアー供給機のノズルを差込み、内圧が5.2MPaとなるようにエアー供給量を調整した。なお、チューブ外圧は、大気圧(1気圧=101.325kPa)とした。内圧を維持したまま、ライスター(登録商標)で直管を加熱しながらチューブ前駆体の長手方向に沿って直管をスライドさせて、チューブを径方向に膨張させた。その後、内圧を維持したままチューブを冷まし、収縮チューブを得た。 The obtained tube precursor was subjected to diameter expansion treatment as follows. The tube precursor was inserted into a straight metal tube. One end of the tube of the tube precursor was sealed, the nozzle of the air supply machine was inserted into the tube at the other end, and the air supply amount was adjusted so that the internal pressure was 5.2 MPa. The external pressure of the tube was set to atmospheric pressure (1 atm = 101.325 kPa). While maintaining the internal pressure, the straight tube was slid along the longitudinal direction of the tube precursor while heating the straight tube with Leister® to inflate the tube in the radial direction. Then, the tube was cooled while maintaining the internal pressure to obtain a contracted tube.

得られた収縮チューブを用いて、先に説明した方法により長手方向の変動公差を測定した。当該収縮チューブでは、260℃の温度で10分間加熱したときの変動公差が1%だった。 Using the obtained shrink tube, the variation tolerance in the longitudinal direction was measured by the method described above. The shrink tube had a variation tolerance of 1% when heated at a temperature of 260 ° C. for 10 minutes.

(比較例)
FEPを押出機に投入した。溶融温度は350℃、押出し速度は1.5m/分にそれぞれ設定した。押出機から押し出されたチューブ形状の押出成形体を、内径寸法1.88mmのサイジングダイスに通すことでチューブ径を実施例1のチューブ前駆体と同様のチューブ径に調整した後、サイジングダイスの内径寸法と略同一の内径寸法を有するシリコンパッキン製のシール部材を経由して水槽に導入させることで押出成形体を冷却し、チューブ前駆体を得た。得られたチューブ前駆体に対し実施例1と同様の手順で拡径処理を行うことにより、収縮チューブを得た。
(Comparative example)
The FEP was charged into the extruder. The melting temperature was set to 350 ° C. and the extrusion speed was set to 1.5 m / min. The tube-shaped extruded body extruded from the extruder is passed through a sizing die having an inner diameter of 1.88 mm to adjust the tube diameter to the same tube diameter as the tube precursor of Example 1, and then the inner diameter of the sizing die. The extruded body was cooled by introducing it into a water tank via a sealing member made of silicon packing having substantially the same inner diameter as the above, and a tube precursor was obtained. A contracted tube was obtained by subjecting the obtained tube precursor to a diameter-expanding treatment in the same procedure as in Example 1.

得られた収縮チューブを用いて、先に説明した方法により長手方向の変動公差を測定した。当該収縮チューブでは、260℃の温度で10分間加熱したときの変動公差が10%だった。 Using the obtained shrink tube, the variation tolerance in the longitudinal direction was measured by the method described above. The shrink tube had a variation tolerance of 10% when heated at a temperature of 260 ° C. for 10 minutes.

以上説明した1以上の実施形態および実施例に係る収縮チューブは、260℃の温度で10分間加熱したとき、0%から+5%以下の長手方向の変動公差を示す樹脂製のチューブである。当該収縮チューブは、長手方向の寸法変動が極端に少ない。そのため、大幅なチューブ長さの変動に起因する不具合が生じるリスクを解消できる。 The shrinkage tube according to one or more embodiments and examples described above is a resin tube showing a variation tolerance in the longitudinal direction of 0% to + 5% or less when heated at a temperature of 260 ° C. for 10 minutes. The shrink tube has extremely little dimensional variation in the longitudinal direction. Therefore, it is possible to eliminate the risk of problems caused by a large fluctuation in tube length.

なお、本発明は、上記実施形態に限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で種々に変形することが可能である。また、各実施形態は適宜組み合わせて実施してもよく、その場合組み合わせた効果が得られる。更に、上記実施形態には種々の発明が含まれており、開示される複数の構成要件から選択された組み合わせにより種々の発明が抽出され得る。例えば、実施形態に示される全構成要件からいくつかの構成要件が削除されても、課題が解決でき、効果が得られる場合には、この構成要件が削除された構成が発明として抽出され得る。 The present invention is not limited to the above embodiment, and can be variously modified at the implementation stage without departing from the gist thereof. In addition, each embodiment may be carried out in combination as appropriate, in which case the combined effect can be obtained. Further, the above-described embodiment includes various inventions, and various inventions can be extracted by a combination selected from a plurality of disclosed constituent requirements. For example, even if some constituent elements are deleted from all the constituent elements shown in the embodiment, if the problem can be solved and the effect is obtained, the configuration in which the constituent elements are deleted can be extracted as an invention.

1…収縮チューブ、2…チューブ。 1 ... Shrink tube, 2 ... Tube.

Claims (5)

260℃の温度で10分間加熱したときの長手方向の変動公差が0%から+5%以下である、樹脂製の収縮チューブ。 A shrinkable resin tube having a longitudinal variation tolerance of 0% to + 5% or less when heated at a temperature of 260 ° C. for 10 minutes. 260℃の温度で10分間加熱したときの長手方向の変動公差が0%から+1%以下である、請求項1記載の収縮チューブ。 The shrinkable tube according to claim 1, wherein the variation tolerance in the longitudinal direction when heated at a temperature of 260 ° C. for 10 minutes is 0% to + 1% or less. 前記樹脂は、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体樹脂である、請求項1又は2に記載の収縮チューブ。 The shrinkage tube according to claim 1 or 2, wherein the resin is a tetrafluoroethylene-hexafluoropropylene copolymer resin. 溶融した樹脂をチューブ形状に押し出して押出成形体を得ることと、
前記押出成形体を冷却してチューブ前駆体を得ることと、
前記チューブ前駆体の管内に圧力を掛けながら前記チューブ前駆体を加熱して拡径することとを含む、請求項1乃至3の何れか1項に記載の収縮チューブの製造方法。
Extruding the molten resin into a tube shape to obtain an extruded body,
Cooling the extruded body to obtain a tube precursor
The method for manufacturing a shrinkable tube according to any one of claims 1 to 3, comprising heating the tube precursor to expand its diameter while applying pressure to the inside of the tube precursor.
前記押出成形体の冷却は前記押出成形体を巻き取ることで行われ、前記押出成形体の巻取り速度により前記チューブ前駆体のチューブ径が制御される、請求項4に記載の製造方法。 The manufacturing method according to claim 4, wherein the extruded body is cooled by winding the extruded body, and the tube diameter of the tube precursor is controlled by the winding speed of the extruded body.
JP2020121476A 2020-07-15 2020-07-15 Shrink tube and method for manufacturing shrink tube Active JP7493763B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020121476A JP7493763B2 (en) 2020-07-15 2020-07-15 Shrink tube and method for manufacturing shrink tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020121476A JP7493763B2 (en) 2020-07-15 2020-07-15 Shrink tube and method for manufacturing shrink tube

Publications (2)

Publication Number Publication Date
JP2022024308A true JP2022024308A (en) 2022-02-09
JP7493763B2 JP7493763B2 (en) 2024-06-03

Family

ID=80265420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020121476A Active JP7493763B2 (en) 2020-07-15 2020-07-15 Shrink tube and method for manufacturing shrink tube

Country Status (1)

Country Link
JP (1) JP7493763B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006058754B4 (en) 2006-12-04 2015-07-16 Sikora Aktiengesellschaft Method for operating a production plant for producing a cable
JP2017132866A (en) 2016-01-27 2017-08-03 三菱ケミカル株式会社 Heat-shrinkable tube and member coated with the tube
CN110370609A (en) 2019-06-28 2019-10-25 大连联合高分子材料有限公司 A kind of preparation method of high convergency multiplying power high temperature resistant perfluoroethylenepropylene heat-shrinkable T bush

Also Published As

Publication number Publication date
JP7493763B2 (en) 2024-06-03

Similar Documents

Publication Publication Date Title
US2964065A (en) Polytetrafluoroethylene tubing and method of making the same
US3859408A (en) Method for making tubular articles
US4056596A (en) Continuous method for making hose with destruction of mandrel
US3776794A (en) Reinforced flexible hose and method of manufacturing same
JP2022024308A (en) Shrinkable tube and manufacturing method for shrinkable tube
US4174365A (en) Continuous method for making hoses with destruction of horizontally disposed mandrel
US4409177A (en) Method of forming a wraparound closure article
US20030017285A1 (en) Heat shrinkable film and jacket
JPS5854973B2 (en) Magarikannoburo - Seikeihou
KR102198668B1 (en) Method for manufacturing composite coil springs and the composite coil springs thereof
JP2900096B2 (en) Manufacturing method of rubber and plastic moldings
JPH07141944A (en) Manufacturing device for rubber-covered electric wire
JP3325540B2 (en) Curved pipe protector
JPS5854649B2 (en) Method for manufacturing heat-shrinkable tube
JPH0140475B2 (en)
JPS63319125A (en) Continuous production equipment of crosslinking type heat-shrinkable tubing
JPS5855892B2 (en) Manufacturing method for heat-shrinkable plastic molded products
RU1825743C (en) Method of making sleeve film with edges tending to fold
KR100819605B1 (en) Apparatus and method for manufacturing an heat shrinkable tube by having equality diameter
KR20120106077A (en) Method and apparatus for manufacturing comprehensive heat shrinkable cable joint unit having compound layer and cable joint unit manufactured by using the same
FI75524B (en) STRAENGPRESSAT PLASTROER MED LAENGSRIKTADE KANALER I VAEGGEN.
JP2022124071A (en) Wiring harness and manufacturing method thereof
CN110789129A (en) Enhanced medical cannula and manufacturing method thereof
JP2002096372A (en) Liner pipe and method for manufacturing it
JP4309077B2 (en) CV cable mold heating tube and CV cable terminal processing method.

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20230113

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230524

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240515

R150 Certificate of patent or registration of utility model

Ref document number: 7493763

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150