JP2022022974A - DRUG AND INSPECTION KIT USING ANTI-SARS-CoV-2 ANTIBODY - Google Patents

DRUG AND INSPECTION KIT USING ANTI-SARS-CoV-2 ANTIBODY Download PDF

Info

Publication number
JP2022022974A
JP2022022974A JP2021076810A JP2021076810A JP2022022974A JP 2022022974 A JP2022022974 A JP 2022022974A JP 2021076810 A JP2021076810 A JP 2021076810A JP 2021076810 A JP2021076810 A JP 2021076810A JP 2022022974 A JP2022022974 A JP 2022022974A
Authority
JP
Japan
Prior art keywords
amino acid
acid sequence
seq
antibody
cov
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021076810A
Other languages
Japanese (ja)
Other versions
JP7174961B2 (en
Inventor
佑太 松村
Yuta Matsumura
卓人 東條
Takahito Tojo
拓也 森本
Takuya Morimoto
悠記 石田
Yuki Ishida
峻亮 稲浦
Shunsuke Inaura
和彦 片山
Kazuhiko Katayama
慧 芳賀
Satoshi Haga
玲子 戸高
Reiko Todaka
成史 澤田
Shigefumi Sawada
重文 熊地
Shigefumi Kumachi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Kitasato Institute
Epsilon Molecular Engineering Inc
Original Assignee
Kao Corp
Kitasato Institute
Epsilon Molecular Engineering Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp, Kitasato Institute, Epsilon Molecular Engineering Inc filed Critical Kao Corp
Publication of JP2022022974A publication Critical patent/JP2022022974A/en
Application granted granted Critical
Publication of JP7174961B2 publication Critical patent/JP7174961B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/08Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from viruses
    • C07K16/10Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from viruses from RNA viruses
    • C07K16/1002Coronaviridae
    • C07K16/1003Severe acute respiratory syndrome coronavirus 2 [SARS‐CoV‐2 or Covid-19]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/54Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound
    • A61K47/55Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound the modifying agent being also a pharmacologically or therapeutically active agent, i.e. the entire conjugate being a codrug, i.e. a dimer, oligomer or polymer of pharmacologically or therapeutically active compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/68Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • C07K14/08RNA viruses
    • C07K14/165Coronaviridae, e.g. avian infectious bronchitis virus
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/569Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses

Abstract

To provide a method for detecting SARS-CoV-2 using an antibody binding to SARS-CoV-2, and a drug and an inspection kit using the antibody.SOLUTION: A method for detecting SARS-CoV-2 in a sample comprises bring an antibody that binds to SARS-CoV-2 having one or more structural domains into contact with a test sample, where the structural domain comprises: CDR1 consisting of an amino acid sequence shown in SEQ ID NO:1 or an amino acid sequence in which one amino acid is replaced with another amino acid in the amino acid sequence; CDR2 consisting of an amino acid sequence shown in SEQ ID NO:2 or an amino acid sequence in which one amino acid is replaced with another amino acid in the amino acid sequence; and CDR3 consisting of an amino acid sequence shown in SEQ ID NO:3 or an amino acid sequence in which one amino acid is replaced with another amino acid in the amino acid sequence.SELECTED DRAWING: None

Description

本発明はSARS-CoV-2に結合する抗体を用いたSARS-CoV-2の検出方法、当該抗体を用いた医薬及び検査キットに関する。 The present invention relates to a method for detecting SARS-CoV-2 using an antibody that binds to SARS-CoV-2, a drug and a test kit using the antibody.

SARSコロナウイルス-2(Severe acute respiratory syndrome coronavirus 2,;SARS-CoV-2)は、SARSコロナウイルス(SARS-CoV)やMERSコロナウイルス(MERS-CoV)と同様ベータコロナウイルス属に属し、急性呼吸器疾患(COVID-19)の原因となるSARS関連コロナウイルスである。2019年に中国湖北省武漢市付近で発生が初めて確認され、その後、COVID-19の世界的流行(パンデミック)を引き起こしている。 SARS coronavirus-2 (Severe acute respiratory syndrome 2,; SARS-CoV-2) belongs to the genus Beta coronavirus like SARS coronavirus (SARS-CoV) and MERS coronavirus (MERS-CoV), and acute respiration. It is a SARS-related coronavirus that causes organ disease (COVID-19). The outbreak was first confirmed in 2019 near Wuhan City, Hubei Province, China, and has since caused a global pandemic of COVID-19.

SARS-CoV-2は、そのウイルスゲノムは29,903塩基程度で、一本鎖プラス鎖RNAウイルスである。また、ウイルス粒子(ビリオン)は、50~200nmほどの大きさである。一般的なコロナウイルスと同様に、スパイクタンパク質、ヌクレオタンパク質、内在性膜タンパク質、エンベロープタンパク質として知られる4つのタンパク質と、RNAより構成されている。このうちヌクレオタンパク質がRNAと結合してヌクレオカプシドを形成し、脂質と結合したスパイクタンパク質、内在性膜タンパク質、エンベロープタンパク質がその周りを取り囲んでエンベロープを形成する(非特許文献1、2)。 SARS-CoV-2 has a viral genome of about 29,903 bases and is a single-strand plus-strand RNA virus. The virus particles (virions) have a size of about 50 to 200 nm. Like a common coronavirus, it is composed of four proteins known as spike proteins, nucleoproteins, endogenous membrane proteins, and enveloped proteins, and RNA. Of these, nucleoprotein binds to RNA to form nucleocapsid, and spike protein, endogenous membrane protein, and envelope protein bound to lipid surround it to form an envelope (Non-Patent Documents 1 and 2).

スパイクタンパク質は、2つのサブユニット、S1及びS2からなる大きなI型膜貫通型タンパク質で、S1は主に、細胞表面の受容体を認識する受容体結合ドメイン(RBD)が、S2には膜融合に必要な要素が含まれている。スパイクタンパク質は、中和抗体及びT細胞応答の誘導、並びに防御免疫において重要な役割を果たすとされている。 Peplomers are large transmembrane proteins of type I consisting of two subunits, S1 and S2, where S1 is primarily a receptor binding domain (RBD) that recognizes cell surface receptors and S2 is a membrane fusion. Contains the necessary elements. Peplomers have been implicated in inducing neutralizing antibodies and T cell responses, as well as in protective immunity.

S1に結合する既知の受容体には、ACE2(アンジオテンシン変換酵素2)、DPP4(ジペプチジルペプチダーゼ-4)、APN(アミノペプチダーゼN)、CEACAM(癌胎児性抗原関連細胞接着分子1)、O-ac Sia(O-アセチル化シアル酸)があり、SARS-CoV-2は、ヒトACE2を介してヒト呼吸上皮細胞に感染することが報告されている(非特許文献3)。 Known receptors that bind to S1 include ACE2 (angiotensin converting enzyme 2), DPP4 (dipeptidyl peptidase-4), APN (aminopeptidase N), CEACAM (cancer fetal antigen-related cell adhesion molecule 1), O- There is ac Sia (O-acetylated sialic acid), and SARS-CoV-2 has been reported to infect human respiratory epithelial cells via human ACE2 (Non-Patent Document 3).

COVID-19のウイルス学的診断には主に遺伝子増幅法(PCR)によるSARS-CoV-2の遺伝子検出が行われている。PCR検査は、現時点で使えるウイルス検査の中では最も正確とされているが、検査を実施するには時間や手間がかかり、PCR検査を本当に必要な数まで拡大するのが難しいという問題が存在する。一方、ウイルスの検出には、ウイルスの遺伝物質を検出するPCRとは異なり、ウイルス表面のタンパク質の断片を検出する抗原検査も存在する。抗原が検出できれば、高価な機械や訓練、労力がなくても、感染しているかどうかが数分で診断できる。したがって、信頼できる抗原検査があれば、検査規模を容易に拡大でき、自宅や診療現場でCOVID-19の診断ができるようになり、一刻も早い臨床現場への導入が求められている。また、血清中のウイルス特異的抗体を検出するイムノクロマト法や酵素抗体法(ELISA)を利用した血清学的診断法が検討されている。特に、COVID-19は、多くの症例において感染から発症までの潜伏期間が長いと考えられている。また、発症から1週間程度経過した後に症状が急速に悪化して重症肺炎に至るなど、臨床経過が長い症例も報告されている。そのため、COVID-19の診断において血清学的診断が有用となることが期待されている。 For the virological diagnosis of COVIDEO-19, the gene detection of SARS-CoV-2 is mainly performed by the gene amplification method (PCR). The PCR test is considered to be the most accurate virus test available at the moment, but there is a problem that it takes time and effort to perform the test and it is difficult to expand the PCR test to the number really required. .. On the other hand, in the detection of a virus, unlike PCR in which a genetic substance of a virus is detected, there is also an antigen test for detecting a fragment of a protein on the surface of the virus. If the antigen can be detected, it can be diagnosed in a few minutes without expensive machinery, training, or labor. Therefore, if there is a reliable antigen test, the scale of the test can be easily expanded, and COVID-19 can be diagnosed at home or in a clinical setting, and it is required to introduce it to a clinical setting as soon as possible. In addition, a serological diagnostic method using an immunochromatography method for detecting a virus-specific antibody in serum or an enzyme-linked immunosorbent assay (ELISA) is being studied. In particular, COVID-19 is considered to have a long incubation period from infection to onset in many cases. In addition, there have been reports of cases with a long clinical course, such as the rapid deterioration of symptoms about one week after the onset, leading to severe pneumonia. Therefore, it is expected that serological diagnosis will be useful in the diagnosis of COVID-19.

一方、ラクダ科動物の血清中から見いだされた重鎖抗体の可変領域を利用した天然のシングルドメイン抗体であるVHH抗体は、その分子量がIgG抗体の10分の1と小さく、耐酸性や耐熱性に優れる。また、IgG抗体は培養細胞を用いて生産する必要があるが、VHH抗体は大腸菌や酵母で生産できる。また、VHH抗体は1本鎖のペプチドなので、蛋白質工学や化学修飾による機能の改変がしやすく、抗体薬物複合体(ADC)を作製しやすいという特徴を有する。その一方で、基質との親和性が高いVHH抗体を取得するのは難しいという問題がある。 On the other hand, VHH antibody, which is a natural single domain antibody using the variable region of heavy chain antibody found in the serum of camelids, has a molecular weight as small as 1/10 of that of IgG antibody, and has acid resistance and heat resistance. Excellent for. In addition, IgG antibody needs to be produced using cultured cells, but VHH antibody can be produced in Escherichia coli or yeast. Further, since the VHH antibody is a single-stranded peptide, it has a feature that the function can be easily modified by protein engineering or chemical modification, and an antibody drug conjugate (ADC) can be easily produced. On the other hand, there is a problem that it is difficult to obtain a VHH antibody having a high affinity with a substrate.

A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020 Mar;579(7798):270-273.A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020 Mar; 579 (7798): 270-273. A new coronavirus associated with human respiratory disease in China. Nature. 2020 Mar;579(7798):265-269.A new coronavirus associated with human respiratory disease in China. Nature. 2020 Mar; 579 (7798): 265-269. Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein Cell. Volume 181, Issue 2, 16 April 2020, Pages 281-292.e6Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein Cell. Volume 181, Issue 2, 16 April 2020, Pages 281-292.e6

本発明は、SARS-CoV-2に結合する抗体を用いたSARS-CoV-2の検出方法、当該抗体を用いた医薬及び検査キットを提供することに関する。 The present invention relates to a method for detecting SARS-CoV-2 using an antibody that binds to SARS-CoV-2, and to provide a drug and a test kit using the antibody.

本発明者らはSARS-CoV-2に結合する抗体を得るべく検討した結果、特定のアミノ酸数を有するCDR1~3をコンストラクトに含むVHH抗体ライブラリから、cDNAディスプレイ法によるスクリーニングにより、SARS-CoV-2に反応性の高いクローンを得ることに成功した。 As a result of investigating to obtain an antibody that binds to SARS-CoV-2, the present inventors examined SARS-CoV- from a VHH antibody library containing CDR1 to 3 having a specific amino acid number in a construct by screening by the cDNA display method. We succeeded in obtaining a highly reactive clone in 2.

すなわち、本発明は以下の1)~3)に係るものである。
1)配列番号1で示されるアミノ酸配列又は当該アミノ酸配列において1個のアミノ酸が他のアミノ酸に置換されたアミノ酸配列からなるCDR1と、配列番号2で示されるアミノ酸配列又は当該アミノ酸配列において1個のアミノ酸が他のアミノ酸に置換されたアミノ酸配列からなるCDR2と、配列番号3で示されるアミノ酸配列又は当該アミノ酸配列において1個のアミノ酸が他のアミノ酸に置換されたアミノ酸配列からなるCDR3を含む構造ドメインを1つ以上有するSARS-CoV-2に結合する抗体を被験試料に接触させる工程を含む、試料中のSARS-CoV-2の検出方法。
2)配列番号1で示されるアミノ酸配列又は当該アミノ酸配列において1個のアミノ酸が他のアミノ酸に置換されたアミノ酸配列からなるCDR1と、配列番号2で示されるアミノ酸配列又は当該アミノ酸配列において1個のアミノ酸が他のアミノ酸に置換されたアミノ酸配列からなるCDR2と、配列番号3で示されるアミノ酸配列又は当該アミノ酸配列において1個のアミノ酸が他のアミノ酸に置換されたアミノ酸配列からなるCDR3を含む構造ドメインを1つ以上有するSARS-CoV-2に結合する抗体を含有するSARS-CoV-2検出キット。
3)配列番号1で示されるアミノ酸配列又は当該アミノ酸配列において1個のアミノ酸が他のアミノ酸に置換されたアミノ酸配列からなるCDR1と、配列番号2で示されるアミノ酸配列又は当該アミノ酸配列において1個のアミノ酸が他のアミノ酸に置換されたアミノ酸配列からなるCDR2と、配列番号3で示されるアミノ酸配列又は当該アミノ酸配列において1個のアミノ酸が他のアミノ酸に置換されたアミノ酸配列からなるCDR3を含む構造ドメインを1つ以上有するSARS-CoV-2に結合する抗体を含有する医薬。
That is, the present invention relates to the following 1) to 3).
1) CDR1 consisting of the amino acid sequence represented by SEQ ID NO: 1 or an amino acid sequence in which one amino acid is replaced with another amino acid in the amino acid sequence, and one amino acid sequence represented by SEQ ID NO: 2 or one amino acid sequence. A structural domain containing CDR2 consisting of an amino acid sequence in which an amino acid is replaced with another amino acid, and CDR3 consisting of the amino acid sequence represented by SEQ ID NO: 3 or an amino acid sequence in which one amino acid is replaced with another amino acid in the amino acid sequence. A method for detecting SARS-CoV-2 in a sample, which comprises contacting an antibody that binds to SARS-CoV-2 having one or more of the amino acids with a test sample.
2) CDR1 consisting of the amino acid sequence represented by SEQ ID NO: 1 or an amino acid sequence in which one amino acid is replaced with another amino acid in the amino acid sequence, and one amino acid sequence represented by SEQ ID NO: 2 or one amino acid sequence in the amino acid sequence. A structural domain containing CDR2 consisting of an amino acid sequence in which an amino acid is replaced with another amino acid, and CDR3 consisting of the amino acid sequence represented by SEQ ID NO: 3 or an amino acid sequence in which one amino acid is replaced with another amino acid in the amino acid sequence. A SARS-CoV-2 detection kit containing an antibody that binds to SARS-CoV-2 having one or more of.
3) CDR1 consisting of the amino acid sequence represented by SEQ ID NO: 1 or an amino acid sequence in which one amino acid is replaced with another amino acid in the amino acid sequence, and one amino acid sequence represented by SEQ ID NO: 2 or one amino acid sequence. A structural domain containing CDR2 consisting of an amino acid sequence in which an amino acid is replaced with another amino acid, and CDR3 consisting of the amino acid sequence represented by SEQ ID NO: 3 or an amino acid sequence in which one amino acid is replaced with another amino acid in the amino acid sequence. A drug containing an antibody that binds to SARS-CoV-2 having one or more of.

本発明によれば、SARS-CoV-2の検出、すなわちSARS-CoV-2感染症である急性呼吸器疾患(COVID-19)の迅速な検出が可能となり、また当該疾患の予防又は治療が可能となる。 According to the present invention, SARS-CoV-2 can be detected, that is, acute respiratory disease (COVID-19), which is a SARS-CoV-2 infection, can be rapidly detected, and the disease can be prevented or treated. Will be.

各ラウンドのセレクション後に出現した抗SARS-CoV-2抗体候補の出現頻度の分布(上位10に絞って表示)。矢印はCoVHH1の出現頻度を示す。Distribution of frequency of appearance of anti-SARS-CoV-2 antibody candidates that appeared after each round selection (displayed only in the top 10). Arrows indicate the frequency of appearance of CoVHH1. セレクションにより選抜されたCoVHH1とCoVHH1変異体のアミノ酸配列のアライメント図。*は保存されたアミノ酸を示す。CoVHH1のアミノ酸配列と比較して、アミノ酸が置換されている場所を四角で囲うことで示した。Alignment diagram of amino acid sequences of CoVHH1 and CoVHH1 mutant selected by selection. * Indicates a conserved amino acid. Compared with the amino acid sequence of CoVHH1, the place where the amino acid is substituted is shown by enclosing it in a square. VHH遺伝子を組み込んだ枯草菌培養上清についてのウエスタンブロッティング像。*は目的タンパク質のバンドを示す。Western blotting image of Bacillus subtilis culture supernatant incorporating the VHH gene. * Indicates the band of the target protein. バイオレイヤー干渉法によるCoVHH1のSARS-CoV-2のS1タンパク質に対する結合活性測定。灰色線は計測された生データに基づく結合乖離曲線、黒線はフィッティング後の結合乖離曲線を示す。Measurement of binding activity of SARS-CoV-2 to S1 protein of CoVHH1 by biolayer interferometry. The gray line shows the coupling divergence curve based on the measured raw data, and the black line shows the coupling divergence curve after fitting. ELISA法によるCoVHH1とCoVHH1二量体のSARS-CoV-2のS1タンパク質に対する結合活性測定。Measurement of binding activity of SARS-CoV-2 to S1 protein of CoVHH1 and CoVHH1 dimers by ELISA method. サンドイッチELISA法によるCoVHH1のSARS-CoV-2のS1タンパク質に対する結合活性測定。Measurement of binding activity of SARS-CoV-2 to S1 protein of CoVHH1 by sandwich ELISA method. ELISA法によるCoVHH1のコロナウイルスS1タンパク質に対する結合特異性評価。Evaluation of binding specificity of CoVHH1 to coronavirus S1 protein by ELISA method. バイオレイヤー干渉法によるCoVHH1のSARS-CoV-2のS1タンパク質に対する結合活性測定。黒線は計測された生データに基づく結合乖離曲線、灰色線はフィッティング後の結合乖離曲線を示す。Measurement of binding activity of SARS-CoV-2 to S1 protein of CoVHH1 by biolayer interferometry. The black line shows the coupling divergence curve based on the measured raw data, and the gray line shows the coupling divergence curve after fitting. 表面プラズモン共鳴法によるCoVHH1のpH7.4におけるS1タンパク質に対する結合活性測定。黒線は計測された生データに基づく結合乖離曲線、灰色線はフィッティング後の結合乖離曲線を示す。Measurement of binding activity of CoVHH1 to S1 protein at pH 7.4 by surface plasmon resonance method. The black line shows the coupling divergence curve based on the measured raw data, and the gray line shows the coupling divergence curve after fitting. 表面プラズモン共鳴法によるCoVHH1のpH6.5におけるS1タンパク質に対する結合活性測定。黒線は計測された生データに基づく結合乖離曲線、灰色線はフィッティング後の結合乖離曲線を示す。Measurement of binding activity of CoVHH1 to S1 protein at pH 6.5 by surface plasmon resonance method. The black line shows the coupling divergence curve based on the measured raw data, and the gray line shows the coupling divergence curve after fitting. サンドイッチELISA法によるCoVHH1のSARS-CoV-2のS1タンパク質に対する結合活性測定。Measurement of binding activity of SARS-CoV-2 to S1 protein of CoVHH1 by sandwich ELISA method.

本発明のSARS-CoV-2に結合する抗体(以下、「本発明の抗体」と称する)は、配列番号1で示されるアミノ酸配列又は当該アミノ酸配列において1個のアミノ酸が他のアミノ酸に置換されたアミノ酸配列からなるCDR1と、配列番号2で示されるアミノ酸配列又は当該アミノ酸配列において1個のアミノ酸が他のアミノ酸に置換されたアミノ酸配列からなるCDR2と、配列番号3で示されるアミノ酸配列又は当該アミノ酸配列において1個のアミノ酸が他のアミノ酸に置換されたアミノ酸配列からなるCDR3を含む構造ドメインを1つ以上有する、抗SARS-CoV-2抗体である。 In the antibody that binds to SARS-CoV-2 of the present invention (hereinafter referred to as "antibody of the present invention"), the amino acid sequence represented by SEQ ID NO: 1 or one amino acid in the amino acid sequence is replaced with another amino acid. CDR1 consisting of the amino acid sequence and the amino acid sequence represented by SEQ ID NO: 2 or the amino acid sequence in which one amino acid is replaced with another amino acid in the amino acid sequence, and the amino acid sequence represented by SEQ ID NO: 3 or the said. An anti-SARS-CoV-2 antibody having one or more structural domains containing CDR3 consisting of an amino acid sequence in which one amino acid is replaced with another amino acid in the amino acid sequence.

SARS-CoV-2は、急性呼吸器疾患(COVID-19)の原因となる、SARS関連コロナウイルスであり、そのウイルスゲノムは29,903塩基程度の一本鎖プラス鎖RNAウイルスである。本発明の抗体は、SARS-CoV-2に結合する抗体であるが、詳細には、SARS-CoV-2のスパイクタンパク質のうちのS1サブユニットに結合する抗体である。 SARS-CoV-2 is a SARS-related coronavirus that causes acute respiratory disease (COVID-19), and its viral genome is a single-strand plus-strand RNA virus of about 29,903 bases. The antibody of the present invention is an antibody that binds to SARS-CoV-2, and more specifically, an antibody that binds to the S1 subunit of the spike protein of SARS-CoV-2.

本発明の抗体の構造ドメインは、CDR1、CDR2及びCDR3の3つのCDRを有する。CDR(Complementarity Determining Region;相補性決定領域)とは、配列可変な抗原認識部位又はランダム配列領域を含み、超可変領域とも云われる。本発明の抗体の構造ドメインにおいて、3つのCDRは、N末端側からCDR1、CDR2、CDR3の順で存在する。 The structural domain of the antibody of the present invention has three CDRs, CDR1, CDR2 and CDR3. CDRs (Complementarity Determining Regions) include sequence-variable antigen recognition sites or random sequence regions, and are also referred to as hypervariable regions. In the structural domain of the antibody of the present invention, the three CDRs exist in the order of CDR1, CDR2, and CDR3 from the N-terminal side.

本発明の抗体の構造ドメインにおいて、
CDR1は、配列番号1で示されるアミノ酸配列又は当該アミノ酸配列において1個のアミノ酸が他のアミノ酸に置換されたアミノ酸配列からなり、
CDR2は、配列番号2で示されるアミノ酸配列又は当該アミノ酸配列において1個のアミノ酸が他のアミノ酸に置換されたアミノ酸配列からなり、
CDR3は、配列番号3で示されるアミノ酸配列又は当該アミノ酸配列において1個のアミノ酸が他のアミノ酸に置換されたアミノ酸配列からなる。
ここで、配列番号1で示されるアミノ酸配列はGSTFSDYVMAであり、配列番号2で示されるアミノ酸配列TISRNGGTTTであり、配列番号3で示されるアミノ酸配列からなるCDR3のアミノ酸配列はVGGDGDSである。
In the structural domain of the antibody of the invention
CDR1 consists of the amino acid sequence shown by SEQ ID NO: 1 or an amino acid sequence in which one amino acid is replaced with another amino acid in the amino acid sequence.
CDR2 consists of the amino acid sequence shown in SEQ ID NO: 2 or an amino acid sequence in which one amino acid is replaced with another amino acid in the amino acid sequence.
CDR3 consists of the amino acid sequence shown in SEQ ID NO: 3 or an amino acid sequence in which one amino acid is replaced with another amino acid in the amino acid sequence.
Here, the amino acid sequence shown by SEQ ID NO: 1 is GSTFSDYVMA, the amino acid sequence shown by SEQ ID NO: 2 is TISRNGGTTT, and the amino acid sequence of CDR3 consisting of the amino acid sequence shown by SEQ ID NO: 3 is VGGDGDS.

上記配列番号1~3で示されるアミノ酸配列において1個のアミノ酸が他のアミノ酸に置換されたアミノ酸配列からなるCDRは、配列番号1~3で示されるアミノ酸配列からなるCDRに変異が導入されたCDRを意味する。また、CDR1、CDR2、CDR3に変異が導入されていても、SARS-CoV-2に対する結合能を有している限り、本発明の抗体のCDRに包含される。
ここで、置換されるアミノ酸の位置は限定されないが、好ましい位置として、CDR1においては3、4、5又は10番目が挙げられ、CDR2においては3、4、5、6、7、8、9又は10番目が挙げられ、CDR3においては1、2、3又は4番目が挙げられる。
また、置換後のアミノ酸の種類は限定されないが、好ましい置換として、極性や大きさが類似のアミノ酸への置換が挙げられる。また、スレオニン残基のアスパラギン残基、イソロイシン残基またはメチオニン残基への置換、フェニルアラニン残基のイソロイシン残基への置換、セリン残基のアルギニン残基またはアスパラギン残基への置換、アラニン残基のスレオニン残基への置換、アルギニン残基のセリン残基への置換、アスパラギン残基のチロシン残基への置換、グリシン残基のセリン残基への置換、バリン残基のフェニルアラニン残基またはイソロイシン残基への置換、アスパラギン酸残基のグリシン残基またはバリン残基への置換も好ましい置換として挙げられる。
置換されるアミノ酸の位置及び置換後のアミノ酸の種類の好ましい組み合わせとしては、CDR1においては、3番目のスレオニン残基のアスパラギン残基への置換、4番目のフェニルアラニン残基のイソロイシン残基への置換、5番目のセリン残基のアルギニン残基への置換、10番目のアラニン残基のスレオニン残基への置換、
CDR2においては、3番目のセリン残基のアスパラギン残基への置換、4番目アルギニン残基のセリン残基への置換、5番目のアスパラギン残基のチロシン残基への置換、6番目のグリシン残基のセリン残基への置換、7番目のグリシン残基のセリン残基への置換、8番目のスレオニン残基のメチオニン残基への置換、9番目のスレオニン残基のイソロイシン残基への置換、10番目のスレオニン残基のメチオニン残基への置換、
CDR3においては、1番目のバリン残基のイソロイシン残基への置換、3番目のグリシン残基のバリン残基への置換、4番目のアスパラギン酸残基のグリシン残基またはバリン残基への置換、が好ましい。
In the amino acid sequence represented by SEQ ID NOs: 1 to 3, the CDR consisting of an amino acid sequence in which one amino acid is replaced with another amino acid has a mutation introduced into the CDR consisting of the amino acid sequences represented by SEQ ID NOs: 1 to 3. It means CDR. Further, even if a mutation is introduced into CDR1, CDR2, and CDR3, it is included in the CDR of the antibody of the present invention as long as it has a binding ability to SARS-CoV-2.
Here, the position of the amino acid to be substituted is not limited, but preferred positions include the 3, 4, 5, or 10th position in CDR1 and 3, 4, 5, 6, 7, 8, 9 or in CDR2. The tenth is mentioned, and in CDR3, the first, second, third or fourth are mentioned.
The type of amino acid after the substitution is not limited, but a preferable substitution includes substitution with an amino acid having a similar polarity and size. Also, replacement of threonine residues with asparagine residues, isoleucine residues or methionine residues, substitution of phenylalanine residues with isoleucine residues, substitution of serine residues with arginine residues or asparagine residues, alanine residues. Substitution of threonine residue, substitution of arginine residue with serine residue, substitution of asparagine residue with tyrosine residue, substitution of glycine residue with serine residue, phenylalanine residue or isoleucine of valine residue Substitution with residues, substitution of aspartic acid residues with glycine or valine residues are also preferred substitutions.
A preferred combination of the position of the amino acid to be substituted and the type of amino acid after substitution is the substitution of the third threonine residue with the asparagine residue and the substitution of the fourth phenylalanine residue with the isoleucine residue in CDR1. , Substitution of the 5th serine residue to the arginine residue, 10th substitution of the alanine residue to the threonine residue,
In CDR2, the third serine residue is replaced with an asparagine residue, the fourth arginine residue is replaced with a serine residue, the fifth asparagine residue is replaced with a tyrosine residue, and the sixth glycine residue is present. Substitution of the base serine residue, substitution of the 7th glycine residue with the serine residue, substitution of the 8th threonine residue with the methionine residue, substitution of the 9th threonine residue with the isoleucine residue Substitution of the 10th threonine residue with a methionine residue,
In CDR3, the first valine residue is replaced with isoleucine residue, the third glycine residue is replaced with valine residue, and the fourth aspartic acid residue is replaced with glycine residue or valine residue. , Are preferred.

なお、SARS-CoV-2に対する結合能は、当業者に公知の方法により評価できる。具体的には、後述する実施例に示すように、バイオレイヤー干渉法により、平衡乖離定数KDを求めることにより評価できる。また、例えば抗原を固定したELISA法、イムノクロマト法、等温滴定カロリメトリー法、表面プラズモン共鳴測定法等を用いた方法によっても評価できる。 The binding ability to SARS-CoV-2 can be evaluated by a method known to those skilled in the art. Specifically, as shown in Examples described later, it can be evaluated by obtaining the equilibrium deviation constant KD by the biolayer interferometry. Further, for example, it can be evaluated by a method using an ELISA method in which an antigen is immobilized, an immunochromatography method, an isothermal titration calorimetry method, a surface plasmon resonance measurement method, or the like.

本発明の抗体の構造ドメインは、CDR1、CDR2、CDR3の両端にフレームワーク領域を有するものであってもよい。
フレームワーク領域とは、抗体分子の可変領域において相補性決定領域を除く領域であり、保存性の高い領域を指す。
すなわち、本発明の構造ドメインは、一態様として、第1フレームワーク領域(FR1)、CDR1、第2フレームワーク領域(FR2)、CDR2、第3フレームワーク領域(FR3)、CDR3及び第4フレームワーク領域(FR4)をこの順に有するものが挙げられる。
構造ドメインにおけるフレームワーク領域のアミノ酸配列としては以下のものが挙げられる。
FR1:配列番号4で示されるアミノ酸配列又は当該アミノ酸配列と80%以上の同一性を有するアミノ酸配列
FR2:配列番号5で示されるアミノ酸配列又は当該アミノ酸配列と80%以上の同一性を有するアミノ酸配列
FR3:配列番号6で示されるアミノ酸配列又は当該アミノ酸配列と80%以上の同一性を有するアミノ酸配列
FR4:配列番号7で示されるアミノ酸配列又は当該アミノ酸配列と80%以上の同一性を有するアミノ酸配列
The structural domain of the antibody of the present invention may have framework regions at both ends of CDR1, CDR2, and CDR3.
The framework region is a region excluding the complementarity determining region in the variable region of the antibody molecule, and refers to a region with high conservativeness.
That is, the structural domain of the present invention is, in one aspect, a first framework region (FR1), a CDR1, a second framework region (FR2), a CDR2, a third framework region (FR3), a CDR3, and a fourth framework. Those having regions (FR4) in this order can be mentioned.
The amino acid sequences of the framework region in the structural domain include the following.
FR1: Amino acid sequence represented by SEQ ID NO: 4 or an amino acid sequence having 80% or more identity with the amino acid sequence FR2: Amino acid sequence represented by SEQ ID NO: 5 or an amino acid sequence having 80% or more identity with the amino acid sequence. FR3: Amino acid sequence represented by SEQ ID NO: 6 or an amino acid sequence having 80% or more identity with the amino acid sequence FR4: Amino acid sequence represented by SEQ ID NO: 7 or an amino acid sequence having 80% or more identity with the amino acid sequence.

配列番号4~7で示されるアミノ酸配列と80%以上の同一性を有するアミノ酸配列からなるフレームワーク領域としては、好ましくは85%以上、より好ましくは90%以上、より好ましくは95%以上、より好ましくは96%以上、より好ましくは97%以上、より好ましくは98%以上、より好ましくは99%以上の同一性を有するアミノ酸配列からなるフレームワーク領域が挙げられる。 The framework region consisting of an amino acid sequence having 80% or more identity with the amino acid sequence represented by SEQ ID NOs: 4 to 7 is preferably 85% or more, more preferably 90% or more, more preferably 95% or more, and more. A framework region consisting of an amino acid sequence having an identity of 96% or more, more preferably 97% or more, more preferably 98% or more, and more preferably 99% or more can be mentioned.

ここで、アミノ酸配列の同一性とは、2つのアミノ酸配列をアラインメントしたときに両方の配列において同一のアミノ酸残基が存在する位置の数の全長アミノ酸残基数に対する割合(%)をいう。配列同一性は、例えばNational Center for Biotechnology Information (NCBI)のBLAST (Basic Local Alignment Search Tool)を用いて解析を行なうことにより算出できる。 Here, the identity of the amino acid sequence means the ratio (%) of the number of positions where the same amino acid residue exists in both sequences to the total number of amino acid residues when the two amino acid sequences are aligned. Sequence identity can be calculated, for example, by performing analysis using BLAST (Basic Local Alignment Sensor Tool) of National Center for Biotechnology Information (NCBI).

本発明の抗体のうち、FR1-CDR1-FR2-CDR2-FR3-CDR3-FR4がこの順で連結され、CDR1が配列番号1で示されるアミノ酸配列、CDR2が配列番号2で示されるアミノ酸配列、CDR3が配列番号3で示されるアミノ酸配列であり、FR1が配列番号4で示されるアミノ酸配列、FR2が配列番号5で示されるアミノ酸配列、FR3が配列番号6で示されるアミノ酸配列、FR4が配列番号7で示されるアミノ酸配列である構造ドメイン(配列番号9)を有する抗体は、後述する実施例において、cDNAディスプレイ法によるスクリーニングにより得られた、SARS-CoV-2に反応性の高いクローン(CoVHH1)であり、好適な抗SARS-CoV-2抗体である。 Among the antibodies of the present invention, FR1-CDR1-FR2-CDR2-FR3-CDR3-FR4 are linked in this order, CDR1 is the amino acid sequence shown by SEQ ID NO: 1, CDR2 is the amino acid sequence shown by SEQ ID NO: 2, and CDR3. Is the amino acid sequence shown by SEQ ID NO: 3, FR1 is the amino acid sequence shown by SEQ ID NO: 4, FR2 is the amino acid sequence shown by SEQ ID NO: 5, FR3 is the amino acid sequence shown by SEQ ID NO: 6, and FR4 is the amino acid sequence shown by SEQ ID NO: 7. The antibody having the structural domain (SEQ ID NO: 9) which is the amino acid sequence shown in 1 is a highly reactive clone (CoVHH1) of SARS-CoV-2 obtained by screening by the cDNA display method in the examples described later. Yes, it is a suitable anti-SARS-CoV-2 antibody.

本発明の抗体は、上記の構造ドメインを少なくとも1つ有するものであればその形態は限定されず、VHH抗体のようなシングルドメイン抗体(ナノボディーとも呼ばれる)の他、一本鎖抗体、重鎖抗体、可変領域断片をペプチドリンカーなどで結合させた多量体、例えば二量体、更には、可変領域断片と抗原特異性の異なる可変領域断片の1または複数を連結した多量体であってもよい。
また、本発明の抗体はヒト化されていてもよい。ヒト化された抗体は、ヒトに投与することが可能であるため、医薬として応用することができる。
The form of the antibody of the present invention is not limited as long as it has at least one of the above structural domains, and is not limited to a single domain antibody (also called a nanobody) such as a VHH antibody, a single chain antibody, or a heavy chain antibody. It may be a multimer in which an antibody or a variable region fragment is bound with a peptide linker or the like, for example, a dimer, or a multimer in which one or a plurality of variable region fragments having different antigen specificities are linked to the variable region fragment. ..
Further, the antibody of the present invention may be humanized. Since the humanized antibody can be administered to humans, it can be applied as a medicine.

本発明の抗体の作製方法は特に限定されず、当該技術分野における公知技術により容易に作製することができる。例えば、ペプチド固相合成法とネイティブ・ケミカル・リゲーション(Native Chemical Ligation;NCL)法を組み合わせて作製することや遺伝子工学的に作製することができるが、本発明の抗体をコードする核酸を適当なベクターに組み込んで、これを宿主細胞に導入し、組換え抗体として産生させる方法が好ましい。 The method for producing the antibody of the present invention is not particularly limited, and the antibody can be easily produced by a technique known in the art. For example, it can be prepared by combining a peptide solid phase synthesis method and a native chemical ligation (NCL) method, or can be genetically engineered, but the nucleic acid encoding the antibody of the present invention is suitable. It is preferable to incorporate it into a vector, introduce it into a host cell, and produce it as a recombinant antibody.

組換え抗体として産生において使用される宿主細胞としては、例えば、大腸菌、枯草菌、カビ、動物細胞、植物細胞、バキュロウイルス/昆虫細胞または酵母細胞等が挙げられる。
抗体を発現させるための発現用ベクターは、各種宿主細胞に適したベクターを用いることができる。発現ベクターとしては、例えば、pBR322、pBR325、pUC12、pUC13等の大腸菌由来のベクター;pUB110、pTP5、pC194等の枯草菌由来のベクター;pHY300PLK等の大腸菌と枯草菌で共用することができるシャトルベクター;pSH19、pSH15等の酵母由来ベクター;λファージ等のバクテリオファージ;アデノウイルス、アデノ随伴ウイルス、レンチウイルス、ワクシニアウイルス、バキュロウイルス等のウイルス;及びこれらを改変したベクター等を用いることができる。
これらの発現ベクターは、各々のベクターに適した、複製開始点、選択マーカー及びプロモーターを有しており、必要に応じて、エンハンサー、転写集結配列(ターミネーター)、リボソーム結合部位及びポリアデニル化シグナル等を有していてもよい。さらに、発現ベクターには、発現したポリペプチドの精製を容易にするため、FLAGタグ、Hisタグ、HAタグ及びGSTタグなどを融合させて発現させるための塩基配列が挿入されていてもよい。
Host cells used in the production of recombinant antibodies include, for example, Escherichia coli, bacillus, mold, animal cells, plant cells, baculovirus / insect cells, yeast cells and the like.
As an expression vector for expressing an antibody, a vector suitable for various host cells can be used. As the expression vector, for example, a vector derived from Escherichia coli such as pBR322, pBR325, pUC12, pUC13; a vector derived from bacteriophage such as pUB110, pTP5, pC194; a shuttle vector that can be shared with E. coli such as pHY300PLK; Yeast-derived vectors such as pSH19 and pSH15; bacteriophages such as λ phage; viruses such as adenovirus, adeno-associated virus, lentivirus, vaccinia virus, and baculovirus; and vectors modified thereto can be used.
These expression vectors have replication initiation sites, selectable markers and promoters suitable for each vector, and optionally include enhancers, transcriptional concentrating sequences (terminators), ribosome binding sites, polyadenylation signals and the like. You may have. Further, in order to facilitate the purification of the expressed polypeptide, a base sequence for fusing and expressing a FLAG tag, a His tag, an HA tag, a GST tag, or the like may be inserted into the expression vector.

発現させた本発明の抗体を培養菌体または培養細胞から抽出する際には、培養後、公知の方法で菌体または培養細胞を集め、これを適当な緩衝液に懸濁し、超音波、リゾチーム及び/または凍結融解などによって菌体または細胞を破壊したのち、遠心分離や濾過により、可溶性抽出液を取得する。得られた抽出液から、公知の分離・精製法を適切に組み合わせて目的の抗体を取得することができる。
公知の分離、精製法としては、塩析や溶媒沈澱法などの溶解度を利用する方法、透析法、限外ろ過法、ゲルろ過法、SDS-PAGE等の主として分子量の差を利用する方法、イオン交換クロマトグラフィーなどの電荷の差を利用する方法、アフィニティークロマトグラフィーなどの特異的親和性を利用する方法、逆相高速液体クロマトグラフィーなどの疎水性の差を利用する方法または等電点電気泳動法などの等電点の差を利用する方法などが用いられる。
When the expressed antibody of the present invention is extracted from cultured cells or cells, after culturing, the cells or cultured cells are collected by a known method, suspended in an appropriate buffer, and ultrasonically or lysoteam. And / or after destroying the cells or cells by freezing and thawing, a soluble extract is obtained by centrifugation or filtration. From the obtained extract, the desired antibody can be obtained by appropriately combining known separation / purification methods.
Known separation and purification methods include methods that utilize solubility such as salting out and solvent precipitation, methods that mainly utilize differences in molecular weight such as dialysis method, ultrafiltration method, gel filtration method, and SDS-PAGE, and ions. A method that utilizes the difference in charge such as exchange chromatography, a method that utilizes a specific affinity such as affinity chromatography, a method that utilizes a difference in hydrophobicity such as reverse phase high-speed liquid chromatography, or an isoelectric focusing method. A method that utilizes the difference in isoelectric focusing such as is used.

本発明の抗体は、SARS-CoV-2に結合することから、これを、SARS-CoV-2を含有するか、または含有する可能性のある被験試料と接触させることによって、当該試料中にSARS-CoV-2が存在すること、あるいは存在しないことを確認できる。
具体的には、本発明の抗体を用いたSARS-CoV-2の検出は、本発明の抗体と、被験試料とを接触させ、本発明の抗体と前記被験試料中のSARS-CoV-2との結合体を形成させる工程と、前記結合体中のSARS-CoV-2を検出する工程、を備えてなる。
また、本発明の抗体は、血清中のウイルス特異的抗体の検出において、固定化した被験試料(血清)中に含まれる抗SARS-CoV-2抗体(例えば血清抗体)に対して、SARS-CoV-2抗原の一部を添加して結合させ、当該結合体状態にあるSARS-CoV-2抗原の存在を確認する抗体として使用することもできる。
Since the antibody of the present invention binds to SARS-CoV-2, it is contained in the sample by contacting it with a test sample containing or may contain SARS-CoV-2. -It can be confirmed that CoV-2 exists or does not exist.
Specifically, in the detection of SARS-CoV-2 using the antibody of the present invention, the antibody of the present invention is brought into contact with the test sample, and the antibody of the present invention and SARS-CoV-2 in the test sample are combined. It is provided with a step of forming the conjugate of SARS-CoV-2 and a step of detecting SARS-CoV-2 in the conjugate.
In addition, the antibody of the present invention has a SARS-CoV against an anti-SARS-CoV-2 antibody (for example, a serum antibody) contained in an immobilized test sample (serum) in the detection of a virus-specific antibody in serum. -It can also be used as an antibody for confirming the presence of the SARS-CoV-2 antigen in the bound state by adding a part of the -2 antigen and binding the antibody.

被験試料としては、気管スワブ、鼻腔拭い液、咽頭拭い液、鼻腔洗浄液、鼻腔吸引液、鼻汁鼻かみ液、唾液、痰、血液、血清、尿、糞便、組織、細胞、組織又は細胞の破砕物等の生体試料の他、ウイルスが付着している可能性のある固体表面、例えばドアノブ、便器等から採取された試料が挙げられる。抗体は固相に固定されていてもよく、固相に固定されていなくてもよい。
上記の結合体中のSARS-CoV-2を検出する工程は、例えば、上記の結合体に、結合体中の本発明の抗体とは異なるエピトープを認識する、抗SARS-CoV-2抗体を反応させることにより行うことができる。或いは、ホモジニアスアッセイにより、液相中で上記の結合体中のSARS-CoV-2を検出してもよい。
Test samples include tracheal swabs, nasal swabs, pharyngeal swabs, nasal lavage fluids, nasal suction fluids, nasal juices and nasal chews, saliva, sputum, blood, serum, urine, feces, tissues, cells, tissues or crushed cells. In addition to biological samples such as the above, a sample collected from a solid surface to which a virus may be attached, for example, a door knob, a nasal cavity, or the like can be mentioned. The antibody may or may not be immobilized on the solid phase.
The step of detecting SARS-CoV-2 in the above-mentioned conjugate is, for example, reacting the above-mentioned conjugate with an anti-SARS-CoV-2 antibody that recognizes an epitope different from the antibody of the present invention in the conjugate. It can be done by letting it. Alternatively, a homogenius assay may detect SARS-CoV-2 in the above conjugate in the liquid phase.

また、本発明の抗体は、SARS-CoV-2検出用キットの構成成分となり得る。当該キットは、SARS-CoV-2感染症(COVID-19)の診断薬として、またSARS-CoV-2感染症治療薬の開発用のツールとして使用可能である。
当該検出キットは、本発明の抗SARS-CoV-2抗体の他、検出に必要な試薬及び器具、例えば抗体、固相担体、緩衝液、酵素反応停止液、マイクロプレートリーダー等を含むことができる。
当該検出キットにおいて、本発明の抗体は固相に固定されていてもよい。固相としては、例えば、ビーズ、膜、反応容器の側面や底面、スライドガラス等の板状基板、イムノプレート等のウェル基板等が挙げられ、本発明の抗体が直接的又は間接的に固定される。
In addition, the antibody of the present invention can be a component of the SARS-CoV-2 detection kit. The kit can be used as a diagnostic agent for SARS-CoV-2 infection (COVID-19) and as a tool for developing a therapeutic agent for SARS-CoV-2 infection.
In addition to the anti-SARS-CoV-2 antibody of the present invention, the detection kit can include reagents and instruments necessary for detection, such as an antibody, a solid phase carrier, a buffer solution, an enzyme reaction terminator, a microplate reader, and the like. ..
In the detection kit, the antibody of the present invention may be immobilized on a solid phase. Examples of the solid phase include beads, a membrane, side surfaces and bottom surfaces of a reaction vessel, a plate-like substrate such as a slide glass, a well substrate such as an immunoplate, and the like, and the antibody of the present invention is directly or indirectly immobilized. Ru.

また、本発明の抗体は、SARS-CoV-2のS1サブユニットに結合し、ウイルスの細胞への結合を阻害することが考えられる。したがって、本発明の抗体は、哺乳動物に投与し、SARS-CoV-2感染症の予防又は治療するための医薬として利用することも可能である。哺乳動物としては、ヒト、マウス、ラット、ハムスター、モルモット、ウサギ、ネコ、イヌ、サル、ウシ、ウマ、ブタ等があげられるが、ヒトが好ましい。
本発明の抗体を医薬として用いる場合には、その態様は、経口、非経口のいずれでもよく、適宜、周知の薬学的に許容可能な無毒性の担体、希釈剤と組み合わせて用いることができる。非経口投与としては、典型的には注射剤が挙げられるが、噴霧剤等と共に吸入による投与も可能である。
Further, it is considered that the antibody of the present invention binds to the S1 subunit of SARS-CoV-2 and inhibits the binding of the virus to cells. Therefore, the antibody of the present invention can be administered to mammals and used as a medicine for preventing or treating SARS-CoV-2 infection. Examples of mammals include humans, mice, rats, hamsters, guinea pigs, rabbits, cats, dogs, monkeys, cows, horses, pigs and the like, but humans are preferred.
When the antibody of the present invention is used as a pharmaceutical, the embodiment may be oral or parenteral, and can be appropriately used in combination with a well-known pharmaceutically acceptable non-toxic carrier or diluent. The parenteral administration is typically an injection, but it can also be administered by inhalation together with a spray or the like.

斯かる医薬において、その組成物中における本発明の抗体の含有量は適宜調整できる。
また、斯かる医薬は、本発明の抗体として、有効量を1週間に1~数回程度の間隔で、SARS-CoV-2感染症の予防又は治療が必要な対象、例えば患者に投与することにより適用することができる。この場合の投与方法としては、好適には静脈注射、点滴等が挙げられる。
In such a pharmaceutical, the content of the antibody of the present invention in the composition can be appropriately adjusted.
In addition, such a drug should be administered as an antibody of the present invention in an effective amount at intervals of about 1 to several times a week to a target, for example, a patient who needs prevention or treatment of SARS-CoV-2 infection. Can be applied by. In this case, the administration method preferably includes intravenous injection, infusion and the like.

本発明においては上述した実施形態に関し、さらに以下の態様が開示される。
<1>配列番号1で示されるアミノ酸配列又は当該アミノ酸配列において1個のアミノ酸が他のアミノ酸に置換されたアミノ酸配列からなるCDR1と、配列番号2で示されるアミノ酸配列又は当該アミノ酸配列において1個のアミノ酸が他のアミノ酸に置換されたアミノ酸配列からなるCDR2と、配列番号3で示されるアミノ酸配列又は当該アミノ酸配列において1個のアミノ酸が他のアミノ酸に置換されたアミノ酸配列からなるCDR3を含む構造ドメインを1つ以上有するSARS-CoV-2に結合する抗体を被験試料に接触させる工程を含む、試料中のSARS-CoV-2の検出方法。
<2>配列番号1で示されるアミノ酸配列又は当該アミノ酸配列において1個のアミノ酸が他のアミノ酸に置換されたアミノ酸配列からなるCDR1と、配列番号2で示されるアミノ酸配列又は当該アミノ酸配列において1個のアミノ酸が他のアミノ酸に置換されたアミノ酸配列からなるCDR2と、配列番号3で示されるアミノ酸配列又は当該アミノ酸配列において1個のアミノ酸が他のアミノ酸に置換されたアミノ酸配列からなるCDR3を含む構造ドメインを1つ以上有するSARS-CoV-2に結合する抗体を含有するSARS-CoV-2検出キット。
<3>配列番号1で示されるアミノ酸配列又は当該アミノ酸配列において1個のアミノ酸が他のアミノ酸に置換されたアミノ酸配列からなるCDR1と、配列番号2で示されるアミノ酸配列又は当該アミノ酸配列において1個のアミノ酸が他のアミノ酸に置換されたアミノ酸配列からなるCDR2と、配列番号3で示されるアミノ酸配列又は当該アミノ酸配列において1個のアミノ酸が他のアミノ酸に置換されたアミノ酸配列からなるCDR3を含む構造ドメインを1つ以上有するSARS-CoV-2に結合する抗体を含有する医薬。
<4>SARS-CoV-2感染症の予防又は治療のための<3>の医薬。
<5>抗体が、VHH抗体、重鎖抗体又はVHH抗体多量体である、<1>の方法、<2>のキット、又は<3>若しくは<4>の医薬。
<6>VHH抗体多量体が、前記構造ドメインを複数連結した多量体である、<5>の方法、キット又は医薬。
<7>VHH抗体多量体が、前記構造ドメインの1又は複数と、該構造ドメインとは抗原特異性の異なる構造ドメインの1又は複数を連結した多量体である<5>の方法、キット又は医薬。
In the present invention, the following aspects are further disclosed with respect to the above-described embodiment.
<1> CDR1 consisting of the amino acid sequence represented by SEQ ID NO: 1 or an amino acid sequence in which one amino acid is replaced with another amino acid in the amino acid sequence, and one in the amino acid sequence represented by SEQ ID NO: 2 or the amino acid sequence. A structure containing CDR2 consisting of an amino acid sequence in which one amino acid is replaced with another amino acid, and CDR3 consisting of the amino acid sequence represented by SEQ ID NO: 3 or an amino acid sequence in which one amino acid is replaced with another amino acid in the amino acid sequence. A method for detecting SARS-CoV-2 in a sample, which comprises contacting a test sample with an antibody that binds to SARS-CoV-2 having one or more domains.
<2> CDR1 consisting of the amino acid sequence represented by SEQ ID NO: 1 or an amino acid sequence in which one amino acid is replaced with another amino acid in the amino acid sequence, and one in the amino acid sequence represented by SEQ ID NO: 2 or the amino acid sequence. A structure containing CDR2 consisting of an amino acid sequence in which one amino acid is replaced with another amino acid, and CDR3 consisting of the amino acid sequence represented by SEQ ID NO: 3 or an amino acid sequence in which one amino acid is replaced with another amino acid in the amino acid sequence. A SARS-CoV-2 detection kit containing an antibody that binds to SARS-CoV-2 having one or more domains.
<3> CDR1 consisting of the amino acid sequence represented by SEQ ID NO: 1 or an amino acid sequence in which one amino acid is replaced with another amino acid in the amino acid sequence, and one in the amino acid sequence represented by SEQ ID NO: 2 or the amino acid sequence. A structure containing CDR2 consisting of an amino acid sequence in which one amino acid is replaced with another amino acid, and CDR3 consisting of the amino acid sequence represented by SEQ ID NO: 3 or an amino acid sequence in which one amino acid is replaced with another amino acid in the amino acid sequence. A drug containing an antibody that binds to SARS-CoV-2 having one or more domains.
<4> The drug of <3> for the prevention or treatment of SARS-CoV-2 infection.
<5> The method of <1>, the kit of <2>, or the pharmaceutical of <3> or <4>, wherein the antibody is a VHH antibody, a heavy chain antibody, or a VHH antibody multimer.
<6> The method, kit or pharmaceutical of <5>, wherein the VHH antibody multimer is a multimer in which a plurality of the structural domains are linked.
<7> The method, kit or pharmaceutical of <5>, wherein the VHH antibody multimer is a multimer in which one or more of the structural domains and one or more of structural domains having different antigen specificities from the structural domains are linked. ..

<8>医薬を製造するための、配列番号1で示されるアミノ酸配列又は当該アミノ酸配列において1個のアミノ酸が他のアミノ酸に置換されたアミノ酸配列からなるCDR1と、配列番号2で示されるアミノ酸配列又は当該アミノ酸配列において1個のアミノ酸が他のアミノ酸に置換されたアミノ酸配列からなるCDR2と、配列番号3で示されるアミノ酸配列又は当該アミノ酸配列において1個のアミノ酸が他のアミノ酸に置換されたアミノ酸配列からなるCDR3を含む構造ドメインを1つ以上有するSARS-CoV-2に結合する抗体の使用。
<9>医薬として使用するための、配列番号1で示されるアミノ酸配列又は当該アミノ酸配列において1個のアミノ酸が他のアミノ酸に置換されたアミノ酸配列からなるCDR1と、配列番号2で示されるアミノ酸配列又は当該アミノ酸配列において1個のアミノ酸が他のアミノ酸に置換されたアミノ酸配列からなるCDR2と、配列番号3で示されるアミノ酸配列又は当該アミノ酸配列において1個のアミノ酸が他のアミノ酸に置換されたアミノ酸配列からなるCDR3を含む構造ドメインを1つ以上有するSARS-CoV-2に結合する抗体。
<10>医薬がSARS-CoV-2感染症の予防又は治療のための医薬である、<8>の使用又は<9>の抗体。
<11>配列番号1で示されるアミノ酸配列又は当該アミノ酸配列において1個のアミノ酸が他のアミノ酸に置換されたアミノ酸配列からなるCDR1と、配列番号2で示されるアミノ酸配列又は当該アミノ酸配列において1個のアミノ酸が他のアミノ酸に置換されたアミノ酸配列からなるCDR2と、配列番号3で示されるアミノ酸配列又は当該アミノ酸配列において1個のアミノ酸が他のアミノ酸に置換されたアミノ酸配列からなるCDR3を含む構造ドメインを1つ以上有するSARS-CoV-2に結合する抗体を必要とする対象に投与する、SARS-CoV-2感染症の予防又は治療方法。
<12>抗体が、VHH抗体、重鎖抗体又はVHH抗体多量体である、<8>若しくは<10>の使用、<9>若しくは<10>の抗体、又は<11>の方法。
<13>VHH抗体多量体が、前記構造ドメインを複数連結した多量体である、<12>の使用、抗体又は方法。
<14>VHH抗体多量体が、前記構造ドメインの1又は複数と、該構造ドメインとは抗原特異性の異なる構造ドメインの1又は複数を連結した多量体である、<12>の使用、抗体又は方法。
<8> CDR1 consisting of the amino acid sequence represented by SEQ ID NO: 1 or an amino acid sequence in which one amino acid is replaced with another amino acid in the amino acid sequence for producing a drug, and the amino acid sequence represented by SEQ ID NO: 2. Alternatively, CDR2 consisting of an amino acid sequence in which one amino acid is replaced with another amino acid in the amino acid sequence, and an amino acid sequence represented by SEQ ID NO: 3 or an amino acid in which one amino acid is replaced with another amino acid in the amino acid sequence. Use of an antibody that binds to SARS-CoV-2 having one or more structural domains containing CDR3 consisting of a sequence.
<9> CDR1 consisting of the amino acid sequence shown by SEQ ID NO: 1 or an amino acid sequence in which one amino acid is replaced with another amino acid in the amino acid sequence for use as a medicine, and the amino acid sequence shown by SEQ ID NO: 2. Alternatively, CDR2 consisting of an amino acid sequence in which one amino acid is replaced with another amino acid in the amino acid sequence, and an amino acid sequence represented by SEQ ID NO: 3 or an amino acid in which one amino acid is replaced with another amino acid in the amino acid sequence. An amino acid that binds to SARS-CoV-2 having one or more structural domains containing CDR3 consisting of a sequence.
<10> Use of <8> or antibody of <9>, wherein the drug is a drug for the prevention or treatment of SARS-CoV-2 infection.
<11> CDR1 consisting of the amino acid sequence represented by SEQ ID NO: 1 or an amino acid sequence in which one amino acid is replaced with another amino acid in the amino acid sequence, and one in the amino acid sequence represented by SEQ ID NO: 2 or the amino acid sequence. A structure containing CDR2 consisting of an amino acid sequence in which one amino acid is replaced with another amino acid, and CDR3 consisting of the amino acid sequence represented by SEQ ID NO: 3 or an amino acid sequence in which one amino acid is replaced with another amino acid in the amino acid sequence. A method for preventing or treating a SARS-CoV-2 infection, which is administered to a subject in need of an antibody that binds to SARS-CoV-2 having one or more domains.
<12> Use of <8> or <10>, the antibody of <9> or <10>, or the method of <11>, wherein the antibody is a VHH antibody, heavy chain antibody or VHH antibody multimer.
<13> The use, antibody or method of <12>, wherein the VHH antibody multimer is a multimer in which a plurality of the structural domains are linked.
<14> Use of <12>, an antibody, or a VHH antibody multimer, which is a multimer in which one or more of the structural domains and one or a plurality of structural domains having different antigen specificities from the structural domains are linked. Method.

<15>配列番号1で示されるアミノ酸配列において1個のアミノ酸の他のアミノ酸への置換が、3番目のスレオニン残基のアスパラギン残基への置換、4番目のフェニルアラニン残基のイソロイシン残基への置換、5番目のセリン残基のアルギニン残基への置換、又は10番目のアラニン残基のスレオニン残基への置換である、<1>の方法、<2>のキット、<3>若しくは<4>の医薬、<8>の使用、<9>の抗体、又は<11>の方法。
<16>配列番号2で示されるアミノ酸配列において1個のアミノ酸の他のアミノ酸への置換が、3番目のセリン残基のアスパラギン残基への置換、4番目アルギニン残基のセリン残基への置換、5番目のアスパラギン残基のチロシン残基への置換、6番目のグリシン残基のセリン残基への置換、7番目のグリシン残基のセリン残基への置換、8番目のスレオニン残基のメチオニン残基への置換、9番目のスレオニン残基のイソロイシン残基への置換、又は10番目のスレオニン残基のメチオニン残基への置換である、<1>の方法、<2>のキット、<3>若しくは<4>の医薬、<8>の使用、<9>の抗体、又は<11>の方法。
<17>配列番号3で示されるアミノ酸配列において1個のアミノ酸の他のアミノ酸への置換が、CDR3においては、1番目のバリン残基のイソロイシン残基への置換、3番目のグリシン残基のバリン残基への置換、又は4番目のアスパラギン酸残基のグリシン残基またはバリン残基への置換である、<1>の方法、<2>のキット、<3>若しくは<4>の医薬、<8>の使用、<9>の抗体、又は<11>の方法。
<18>構造ドメインが、第1フレームワーク領域(FR1)、CDR1、第2フレームワーク領域(FR2)、CDR2、第3フレームワーク領域(FR3)、CDR3及び第4フレームワーク領域(FR4)をこの順に有するものである、<1>の方法、<2>のキット、<3>若しくは<4>の医薬、<8>の使用、<9>の抗体、又は<11>の方法。
<19>FR1~FR4が以下のアミノ酸配列からなる、<18>の方法、キット、医薬、使用又は抗体。
FR1:配列番号4で示されるアミノ酸配列又は当該アミノ酸配列と80%以上の同一性を有するアミノ酸配列
FR2:配列番号5で示されるアミノ酸配列又は当該アミノ酸配列と80%以上の同一性を有するアミノ酸配列
FR3:配列番号6で示されるアミノ酸配列又は当該アミノ酸配列と80%以上の同一性を有するアミノ酸配列
FR4:配列番号7で示されるアミノ酸配列又は当該アミノ酸配列と80%以上の同一性を有するアミノ酸配列
<20>FR1-CDR1-FR2-CDR2-FR3-CDR3-FR4がこの順で連結され、CDR1が配列番号1で示されるアミノ酸配列、CDR2が配列番号2で示されるアミノ酸配列、CDR3が配列番号3で示されるアミノ酸配列であり、FR1が配列番号4で示されるアミノ酸配列、FR2が配列番号5で示されるアミノ酸配列、FR3が配列番号6で示されるアミノ酸配列、FR4が配列番号7で示されるアミノ酸配列である、<18>の方法、キット、医薬、使用又は抗体。
<15> In the amino acid sequence shown in SEQ ID NO: 1, the substitution of one amino acid with another amino acid is replaced with the asparagine residue of the third threonine residue to the isoleucine residue of the fourth phenylalanine residue. The method of <1>, the kit of <2>, <3> or the substitution of the 5th serine residue with an arginine residue or the 10th alanine residue with a threonine residue. The drug of <4>, the use of <8>, the antibody of <9>, or the method of <11>.
<16> In the amino acid sequence shown in SEQ ID NO: 2, the substitution of one amino acid with another amino acid is the substitution of the third serine residue with the asparagine residue and the substitution of the fourth serine residue with the serine residue. Substitution, substitution of the 5th asparagine residue with a tyrosine residue, substitution of the 6th glycine residue with a serine residue, substitution of the 7th glycine residue with a serine residue, 8th threonine residue The method of <1>, the kit of <2>, which is the substitution of a methionine residue with a methionine residue, the substitution of a 9th threonine residue with an isoleucine residue, or the substitution of a 10th threonine residue with a methionine residue. , <3> or <4> drug, <8> use, <9> antibody, or <11> method.
<17> In the amino acid sequence shown by SEQ ID NO: 3, the substitution of one amino acid with another amino acid, and in CDR3, the substitution of the first valine residue with the isoleucine residue and the substitution of the third glycine residue. The method of <1>, the kit of <2>, the pharmaceutical of <3> or <4>, which is a substitution with a valine residue or a substitution with a glycine residue or a valine residue of the fourth aspartic acid residue. , <8> use, <9> antibody, or <11> method.
<18> The structural domain includes the first framework region (FR1), CDR1, the second framework region (FR2), CDR2, the third framework region (FR3), CDR3, and the fourth framework region (FR4). The method of <1>, the kit of <2>, the drug of <3> or <4>, the use of <8>, the antibody of <9>, or the method of <11>, which are possessed in order.
<19> The method, kit, drug, use or antibody of <18>, wherein FR1 to FR4 consist of the following amino acid sequences.
FR1: Amino acid sequence represented by SEQ ID NO: 4 or an amino acid sequence having 80% or more identity with the amino acid sequence FR2: Amino acid sequence represented by SEQ ID NO: 5 or an amino acid sequence having 80% or more identity with the amino acid sequence. FR3: Amino acid sequence represented by SEQ ID NO: 6 or an amino acid sequence having 80% or more identity with the amino acid sequence FR4: Amino acid sequence represented by SEQ ID NO: 7 or an amino acid sequence having 80% or more identity with the amino acid sequence. <20> FR1-CDR1-FR2-CDR2-FR3-CDR3-FR4 are linked in this order, CDR1 is the amino acid sequence shown by SEQ ID NO: 1, CDR2 is the amino acid sequence shown by SEQ ID NO: 2, and CDR3 is SEQ ID NO: 3. FR1 is the amino acid sequence shown by SEQ ID NO: 4, FR2 is the amino acid sequence shown by SEQ ID NO: 5, FR3 is the amino acid sequence shown by SEQ ID NO: 6, and FR4 is the amino acid sequence shown by SEQ ID NO: 7. The method, kit, drug, use or antibody of <18>, which is a sequence.

実施例1 抗SARS-CoV-2抗体のスクリーニング
<材料と方法>
1.スクリーニングの標的分子
標的分子として、SARS-CoV-2(2019-nCoV)Spike Protein(S1 Subunit,His Tag)(Hisタグ付きS1タンパク質、Sino Biological)を用いた。
Example 1 Screening for anti-SARS-CoV-2 antibody <Materials and methods>
1. 1. Target molecule for screening
As a target molecule, SARS-CoV-2 (2019-nCoV) Spike Protein (S1 subunit, His Tag) (His-tagged S1 protein, SinoBiological) was used.

2.cDNAディスプレイの合成
(1)初期ライブラリーの合成
VHHナイーブDNAライブラリーAlipLib L hinge(60 ng/μL;RePHAGEN)又はAlipLib S hinge(60 ng/μL;RePHAGEN)を鋳型DNAにしたPCR増幅により、1x1014の多様性をもつAlipLib L hinge 1st PCR product又はAlipLib S hinge 1st PCR productを調製した。AlipLib L hingeのPCR増幅には、プライマーphage_to_cDNA_dis.とLHinge-GGGS-His-Rsを使用した。AlipLib S hingeのPCR増幅には、プライマーphage_to_cDNA_dis.とSHinge-GGGS-His-Rとを使用した。
PCR用溶液の組成は250μL反応スケールに調整し、テストチューブ5本に分注した。テストチューブ1本あたり、300ngのVHHナイーブDNAライブラリーを鋳型DNAとし、上記プライマーまたはプライマーSHinge-GGGS-His-R、PrimeSTAR DNAポリメラーゼ(タカラバイオ)、5x PrimeSTAR Buffer(タカラバイオ)、2.5 mM dNTP mix、及びHO(Ultra Pure DNase/RNase-Free Distilled Water、ThermoFisher Scientific)を含むものとした。
PCR産物の精製はAgencourt AMPure XP(Beckman Coulter)を用いた。1μLのPCR産物あたり約2容量のビーズを加え、ピペッティングして混合し、数分間静置した後に上清を除去し、70%エタノールを用いてビーズを洗浄した。この後、ビーズを風乾させ、適当量のHOを添加してビーズを懸濁させ、上清を回収した。その後、吸光度測定(A260/A280)によりDNA濃度を定量した。
次にAlipLib L hinge 1st PCR product又はAlipLib S hinge 1st PCR productを鋳型DNAにしたPCR増幅により、AlipLib L hinge 2nd PCR product又はAlipLib S hinge 2nd PCR productを調製した。PCR増幅にはプライマーとしてT7-Ω及びHis-C (Ytag cnvK)とを使用した。
PCR用溶液は500μL反応スケールで調製し、10本のテストチューブに分注した。各テストチューブは、3000ngの鋳型DNA、プライマー(T7-Ω及びHis-C)、PrimeSTAR DNAポリメラーゼ(タカラバイオ)、5x PrimeSTAR Buffer(タカラバイオ)、2.5 mM dNTP mix、HO(Ultra Pure DNase/RNase-Free Distilled Water、ThermoFisher Scientific)を含むものとした。
PCR産物をアガロースゲル電気泳動に供し、目的位置に分離されたVHHライブラリーフラグメント(PCR産物)を含むゲルを切り出した後、NucleoSpin Gel and PCR Clean-up (タカラバイオ)を用いて精製して、AlipLib L hinge 2nd PCR product及びAlipLib S hinge 2nd PCR productを得た。DNA濃度は、吸光度測定(A260/A280)により行い、DNA濃度を定量した。
4,500ngのAlipLib L hinge 2nd PCR product及び4,500ngのAlipLib S hinge 2nd PCR product(Epsilon Molecular Engineering)をPCRで増幅した。反応液は1サンプルあたり25μLのKAPA HiFi HotStart Ready Mix(2X)(Kapa biosystems)、1.5μLの10μM Forward primer、1.5μLの10μM Reverse index primer、300ngのDNAを混合し、NUCLEASE FREE WATERで50μLになるように調製した。プライマーは5’-GATCCCGCGAAATTAATACGACTCACTATAGGG-3’(配列番号10)と5’-TTTCCACGCCGCCCCCCGTCCT-3’(配列番号11)を用いた。PCRは95℃で5分間の後、98℃で20秒間、65℃で15秒間、72℃で30秒を5サイクル、そして72℃で5分間の条件で行った。PCR産物の精製はAgencourt AMPure
XP(Beckman Coulter)を用いた。1μLのPCR産物あたり1.8μLのビーズを加え、ピペッティングによる混合後、5分間静置した。磁性プレート上で透明になるまで静置した後、上清を除去した。1.4mLの70%エタノールを添加し、30秒静置した後、上清を除去した。このエタノール洗浄は3回行った。上清の除去後、磁気プレート上で3分間静置し、ビーズを風乾させた。チューブを磁気プレートから下ろし、100μLのNUCLEASE FREE WATERを添加後、ピペッティングによりビーズを懸濁し5分静置した。チューブを磁気プレート上で2分間静置した後、上清を回収した。
2. 2. Synthesis of cDNA display (1) Synthesis of initial library 1x10 by PCR amplification using VHH naive DNA library AlipLib L hinge (60 ng / μL; RePHAGE) or AlipLib Shinge (60 ng / μL; RePHAGE) as template DNA. AlipLib Lhinge 1st PCR products or AlipLib Shinge 1st PCR products with 14 varieties were prepared. Primers page_to_DNA_dis. And LHinge-GGGS-His-Rs were used for PCR amplification of AlipLib Linge. Primers page_to_DNA_dis. And SHinge-GGGS-His-R were used for PCR amplification of AlipLive Hinge.
The composition of the PCR solution was adjusted to a 250 μL reaction scale and dispensed into 5 test tubes. Using 300 ng of VHH naive DNA library as template DNA per test tube, the above primers or primers SHinge-GGGS-His-R, PrimeSTAR DNA polymerase (Takarabio), 5x PrimeSTAR Buffer (Takarabio), 2.5 mM It was assumed to include dNTP mix and H2O (Ultra Pure DNase / RNase-Free Distilled Water, Thermo Fisher Scientific).
The PCR product was purified using Agencourt AMPure XP (Beckman Coulter). Approximately 2 volumes of beads per 1 μL of PCR product were added, pipetted and mixed, allowed to stand for a few minutes, then the supernatant was removed and the beads were washed with 70% ethanol. After that, the beads were air-dried, an appropriate amount of H2O was added to suspend the beads, and the supernatant was collected. Then, the DNA concentration was quantified by absorbance measurement (A260 / A280).
Next, the AlipLib L hinge 2nd PCR project or the AlipLib Hinge 2nd PCR was prepared by PCR amplification using the AlipLib L hinge 1st PCR product or the AlipLib Shinge 1st PCR product as the template DNA. T7-Ω and His-C (Ytag cnvK) were used as primers for PCR amplification.
The PCR solution was prepared on a 500 μL reaction scale and dispensed into 10 test tubes. Each test tube contains 3000 ng of template DNA, primers (T7-Ω and His-C), PrimeSTAR DNA polymerase (Takara Bio), 5x PrimeSTAR Buffer (Takara Bio), 2.5 mM dNTP mix, H 2 O (Ultra Pure). DNase / RNase-Free Distilled Water, Thermo Fisher Scientific) was included.
The PCR product was subjected to agarose gel electrophoresis, a gel containing the VHH library fragment (PCR product) separated at the desired position was cut out, and then purified using NucleoSpin Gel and PCR Clean-up (Takara Bio). AlipLib Linge 2nd PCR project and AlipLib Schinge 2nd PCR product were obtained. The DNA concentration was measured by absorbance measurement (A260 / A280), and the DNA concentration was quantified.
4,500 ng of AlipLib L hinge 2 nd PCR project and 4,500 ng of AlipLib Shinge 2nd PCR project (Epsilon Molecular Engineering) were amplified by PCR. The reaction mixture was 25 μL of KAPA HiFi HotStart Ready Mix (2X) (Kappa biosystems), 1.5 μL of 10 μM Forward primer, 1.5 μL of 10 μM Reverse index primer, and 300 μL of 10 μM Reverse index primer, 300 NG. It was prepared to be. Primers used were 5'-GATCCCGCGAAAATTAATACGACTCATCATAGGG-3'(SEQ ID NO: 10) and 5'-TTTCCACGCCGCCCCCCGTCCT-3' (SEQ ID NO: 11). PCR was performed at 95 ° C. for 5 minutes, then 98 ° C. for 20 seconds, 65 ° C. for 15 seconds, 72 ° C. for 30 seconds for 5 cycles, and 72 ° C. for 5 minutes. Purification of PCR products is Agencourt AMPure
XP (Beckman Coulter) was used. 1.8 μL of beads per 1 μL of PCR product was added, mixed by pipetting, and allowed to stand for 5 minutes. After allowing to stand on a magnetic plate until it became transparent, the supernatant was removed. After adding 1.4 mL of 70% ethanol and allowing to stand for 30 seconds, the supernatant was removed. This ethanol washing was performed 3 times. After removing the supernatant, the beads were allowed to stand on a magnetic plate for 3 minutes and the beads were air-dried. The tube was removed from the magnetic plate, 100 μL of UNCLEASE FREE WATER was added, and the beads were suspended by pipetting and allowed to stand for 5 minutes. The tube was allowed to stand on a magnetic plate for 2 minutes, and then the supernatant was collected.

(2)in vitro転写
T7 RiboMAX Express Large Scale RNA Production System(Promega)を用いた。25μLのRiboMAX(商標) Express T7 2X Buffer,20pmol PCR産物、5μLのEnzyme Mixを混合し,37℃で30分間インキュベートした。続いて、5μLのRQ1 RNase-Free DNaseを添加し、37℃で15分間インキュベートした。転写産物の精製はRNAClean XP(Beckman Coulter)を用いた。1μLの転写産物あたり1.8μLのビーズを加え、ピペッティングによる混合後、5分間静置した。磁性プレート上で透明になるまで静置した後、上清を除去した。200μLの70%エタノールを添加し、30秒静置した後、上清を除去した。このエタノール洗浄は3回行った。上清の除去後、磁気プレート上で10分間静置し、ビーズを風乾させた。チューブを磁気プレートから下ろし、20μLのNUCLEASE FREE WATERを添加後、ピペッティングによりビーズを懸濁し5分静置した。チューブを磁気プレート上で1分間静置した後、上清を回収した。精製後、NanoPad DS-11FX(DeNovix)によりRNAを定量した。
(2) In vitro transcription T7 RiboMAX Express Large Scale RNA Production System (Promega) was used. 25 μL of RivoMAX ™ Express T7 2X Buffer, 20 pmol PCR product, 5 μL of Enzyme Mix were mixed and incubated at 37 ° C. for 30 minutes. Subsequently, 5 μL of RQ1 RNase-Free DNase was added and incubated at 37 ° C. for 15 minutes. RNA Clean XP (Beckman Coulter) was used for purification of the transcript. 1.8 μL of beads per 1 μL of transcript was added, mixed by pipetting and allowed to stand for 5 minutes. After allowing to stand on a magnetic plate until it became transparent, the supernatant was removed. 200 μL of 70% ethanol was added, and the mixture was allowed to stand for 30 seconds, and then the supernatant was removed. This ethanol washing was performed 3 times. After removing the supernatant, the beads were allowed to stand on a magnetic plate for 10 minutes and the beads were air-dried. The tube was removed from the magnetic plate, 20 μL of UNCLEASE FREE WATER was added, and the beads were suspended by pipetting and allowed to stand for 5 minutes. The tube was allowed to stand on a magnetic plate for 1 minute, and then the supernatant was collected. After purification, RNA was quantified by NanoPad DS-11FX (DeNovix).

(3)mRNAとピューロマイシンリンカーの連結
4μLの0.25M Tris-HCl(pH7.5)、4μLの1M NaCl、20pmolのmRNA、20pmolのcnvK riboG linkerを混合し、NUCLEASE FREE WATERで20μLになるように反応液を調製した。アニーリングはProFlex PCR System(Life technologies)を用いて、90℃で2分間、70℃で1分間、25℃で30秒、4℃でインキュベートの条件で行った。Ramp rateは0.1℃/秒に設定した。続いて、Handheld UV Lamp,6W、UVGL-58、254/365nm、100V(Analytik jena US、An Endress+Hauser Company)を用いて波長365nmの紫外線を5分間照射した。mRNA-リンカー連結体は使用するまで遮光し、氷冷した。
(3) Coupling of mRNA and puromycin linker 4 μL of 0.25M Tris-HCl (pH 7.5), 4 μL of 1M NaCl, 20 pmol of mRNA, and 20 pmol of cnvK riboG linker are mixed to make 20 μL with NUCLASE FREE WATER. A reaction solution was prepared in. Annealing was performed using a ProFlex PCR System (Life technologies) at 90 ° C. for 2 minutes, 70 ° C. for 1 minute, 25 ° C. for 30 seconds, and incubation at 4 ° C. The Ramp rate was set to 0.1 ° C./sec. Subsequently, ultraviolet rays having a wavelength of 365 nm were irradiated for 5 minutes using Handheld UV Lamp, 6W, UVGL-58, 254/365 nm, 100 V (Anallytic jena US, An Endress + Houser Company). The mRNA-linker conjugate was shaded and ice-cooled until use.

(4)無細胞翻訳
mRNA-リンカー連結体からのmRNA-VHH連結体の合成にはRabbit Reticulocyte Lysate System、Nuclease Treated(Promega)を用いた。10.5μLのNUCLEASE FREE WATER、1.5μLの20x Translation Mix,52.5μLのRabbit Reticulocyte Lysate、1.5μLのRNasin(商標) Ribonuclease Inhibitor(40U/μL)(Promega)、9μLのmRNA-リンカー連結体を混合した。この反応液を37℃で15分間インキュベートした後、36μLのIVV formation buffer(3M KCl,1M MgCl)混合液を加え、さらに37℃で20分間反応させることで、mRNA-VHH連結体を合成した。
(4) Cell-free translation Rabbit Reticulocyte Lysate System, Nuclease Treated (Promega) was used for the synthesis of mRNA-VHH conjugate from mRNA-linker conjugate. 10.5 μL NUCLEASE FREE WATER, 1.5 μL 20x Translation Mix, 52.5 μL Rabbit Reticulocyte Lysate, 1.5 μL RNassin ™ Ribonuclease Inhibitor (40U / μL) Was mixed. After incubating this reaction solution at 37 ° C. for 15 minutes, 36 μL of IVV formation buffer (3M KCl, 1M MgCl 2 ) mixture was added, and the mixture was further reacted at 37 ° C. for 20 minutes to synthesize an mRNA-VHH conjugate. ..

(5)ストレプトアビジン磁性体ビーズへの固定化
60μLのDynabeads My One Streptavidin C1 (Thermo Fisher Scientific)に60μLの2x Binding buffer(20mM Tris-HCl、2M NaCl、0.2% Tween 20、2mM EDTA,pH8)を添加し、1分間ピペッティングすることで懸濁させた。磁気プレート上で1分間静置し、上清を捨てた。この洗浄は2回行った。75μLのmRNA-VHH連結体、75μLの2xBinding buffer、洗浄済みのストレプトアビジン磁性体ビーズと混合し、室温で30分間インキュベートした。磁性プレート上で1分間静置した後、上清を除去した。200μLのBinding buffer(10mM Tris-HCl、1M NaCl、0.1% Tween 20、1mM EDTA,pH8)を添加し、1分間ピペッティングした後、上清を除去した。この洗浄は2回行った。
(5) Immobilization on streptavidin magnetic beads 60 μL of Dynabeads My One Streptavidin C1 (Thermo Fisher Scientific) with 60 μL of 2x Binding buffer (20 mM Tris-HCl, 2M mM NaCl) ) Was added and suspended by pipetting for 1 minute. It was allowed to stand on a magnetic plate for 1 minute, and the supernatant was discarded. This wash was performed twice. It was mixed with 75 μL of mRNA-VHH conjugate, 75 μL of 2xBindering buffer, and washed streptavidin magnetic beads and incubated for 30 minutes at room temperature. After allowing to stand on a magnetic plate for 1 minute, the supernatant was removed. 200 μL of Binding buffer (10 mM Tris-HCl, 1M NaCl, 0.1% Tween 20, 1 mM EDTA, pH 8) was added, pipetting for 1 minute, and then the supernatant was removed. This wash was performed twice.

(6)逆転写反応
55.5μLのNUCLEASE FREE WATER、15μLの5x ReverTra Ace Buffer (Toyobo Life Science)、3μLの25mM dNTP Mix、1.5μLのReverTra Ace(100U/μL)(Toyobo Life Science)を混合した。上記の反応液にストレプトアビジン磁性体ビーズ上に固定化されたmRNA-VHH連結体を添加し、42℃、30分間インキュベートすることで逆転写反応を行うことで、cDNA-VHH連結体を合成した。
(6) Reverse transcription reaction 55.5 μL of UNCLEASE FREE WATER, 15 μL of 5x RiverTra Ace Buffer (Toyobo Life Scene), 3 μL of 25 mM dNTP Mix, 1.5 μL of RiverTlaCe (100 μL) did. A cDNA-VHH conjugate was synthesized by adding an mRNA-VHH conjugate immobilized on streptavidin magnetic beads to the above reaction solution and incubating at 42 ° C. for 30 minutes to carry out a reverse transcription reaction. ..

(7)ビーズからの切り出し
ストレプトアビジン磁性体ビーズ上に固定化されたcDNA-VHH連結体に対して、His-tag wash buffer(20mM Sodium phosphate、500mM NaCl、5mM Imidazole、0.05% Tween 20、pH7.4)を添加し、1分間ピペッティングすることで懸濁させた。磁気プレート上で1分間静置し、上清を捨てた。続いて、30μLの10U RNase T1(Thermo Fisher Scientific)含有His-tag wash bufferを添加し、1分間ピペッティングすることで懸濁させた後、37℃で15分間静置することでcDNA-VHH連結体を溶出させた。
(7) Cut out from beads His-tag wash buffer (20 mM Sodium phosphate, 500 mM NaCl, 5 mM Imidazole, 0.05% Tween 20, for the cDNA-VHH conjugate immobilized on the streptavidin magnetic beads, pH 7.4) was added, and the mixture was suspended by pipetting for 1 minute. It was allowed to stand on a magnetic plate for 1 minute, and the supernatant was discarded. Subsequently, 30 μL of His-tag wash buffer containing 10 U RNase T1 (Thermo Fisher Scientific) was added, suspended by pipetting for 1 minute, and then allowed to stand at 37 ° C. for 15 minutes for cDNA-VHH linkage. The body was eluted.

(8)精製
30μLのHis Mag Sepharose Ni Beads(GE Health Care)を磁気プレート上で1分間静置し、上清を捨てた後、His-tag wash bufferで再懸濁した。この洗浄操作は2回行った。cDNA-ペプチド連結体の溶出液とHis Mag Sepharose Ni Beads懸濁液を混合し、室温で30分間インキュベートした後、磁気プレート上で1分間静置し、上清を捨てた。200μLのHis-tag wash bufferを添加し、1分間ピペッティングすることで懸濁させた。磁気プレート上で1分間静置し、上清を捨てた。この洗浄操作は2回行った。10μLのHis-tag elution buffer(20 mM Sodium phosphate、500mM NaCl、250mM Imidazole、0.05% Tween 20、pH7.4)を添加し、室温で15分間インキュベートすることで、cDNA-VHH連結体を溶出した。
(8) Purification 30 μL of His Mag Sepharose Ni Beads (GE Health Care) was allowed to stand on a magnetic plate for 1 minute, the supernatant was discarded, and then the cells were resuspended in His-tag wash buffer. This cleaning operation was performed twice. The eluate of the cDNA-peptide conjugate was mixed with the His Mag Sepharose Ni Beads suspension, incubated for 30 minutes at room temperature, then allowed to stand on a magnetic plate for 1 minute and the supernatant was discarded. 200 μL of His-tag wash buffer was added and suspended by pipetting for 1 minute. It was allowed to stand on a magnetic plate for 1 minute, and the supernatant was discarded. This cleaning operation was performed twice. The cDNA-VHH conjugate is eluted by adding 10 μL of His-tag elution buffer (20 mM Sodium phosphate, 500 mM NaCl, 250 mM Imidazole, 0.05% Tween 20, pH 7.4) and incubating at room temperature for 15 minutes. did.

3.セレクション
(1)標的分子の固相化とブロッキング
SARS-CoV-2(2019-nCoV)Spike Protein(S1 Subunit、His Tag)(Sino Biological)を標的分子として用いた。Nunc-Immuno(商標) Plate II(Thermo Fisher Scientific)の各ウェルに100μLの100ug/mL(セレクションラウンド1、R1)、10ug/mL(セレクションラウンド2、R2)、1ug/mL(セレクションラウンド3、R3)SARS-CoV-2のS1タンパク質/PBSを添加し、シーリング後、4℃で一晩静置した。ピペットを用いて丁寧にウェルに吸着しなかったS1タンパク質/PBSを取り除いた後、200μLの3%BSA/PBST(0.02% Tween20含有PBS)を添加し、室温で2時間インキュベートした。ピペットを用いて丁寧にBSA/PBSTを取り除いた後、200μLのHBST(20mM HEPES、500mM NaCl、0.02% Tween20、pH7.2)を添加し、5分静置した後、ピペットを用いて丁寧に取り除いた。この洗浄操作は3回行った。
3. 3. Selection (1) Immobilization and blocking of target molecule SARS-CoV-2 (2019-nCoV) Spike Protein (S1 subunit, His Tag) (SinoBiological) was used as the target molecule. 100 μL of 100 ug / mL (selection round 1, R1), 10 ug / mL (selection round 2, R2), 1 ug / mL (selection round 3, R3) in each well of Nunc-Immuno ™ Plate II (Thermo Fisher Scientific). ) SARS-CoV-2 S1 protein / PBS was added, and after sealing, the mixture was allowed to stand at 4 ° C. overnight. After carefully removing the S1 protein / PBS that was not adsorbed to the wells using a pipette, 200 μL of 3% BSA / PBST (PBS containing 0.02% Tween 20) was added, and the mixture was incubated at room temperature for 2 hours. After carefully removing BSA / PBST using a pipette, add 200 μL of HBST (20 mM HEPES, 500 mM NaCl, 0.02% Tween 20, pH 7.2), allow to stand for 5 minutes, and then carefully use a pipette. Removed to. This cleaning operation was performed three times.

(2)セレクション
セレクションラウンド1(R1)では200pmol、セレクションラウンド2(R2)及びセレクションラウンド3(R3)では6pmolに調製されたcDNAディスプレイライブラリを用いた。各cDNAディスプレイライブラリはHBST(20mM HEPES、500mM NaCl、0.02% Tween20、pH7.2、0.5%Bovine serum albumin)を添加し、100μLに調製した。S1タンパク質が固相化されたウェルに添加し、室温で1時間インキュベートした。ピペットを用いて丁寧にcDNAディスプレイ溶液を取り除いた後、200μLのHBSTを添加し、室温で5分間インキュベートした後、ピペットを用いて丁寧に取り除いた。この洗浄操作は10回行った。100μLの100mM Tris(hydroxymethyl)aminomethane(pH11)を添加し、丁寧にピペッティングした後、室温で5分間静置した。静置後、上清を新しいチューブに回収した。
(2) Selection A cDNA display library prepared to 200 pmol in selection round 1 (R1) and 6 pmol in selection round 2 (R2) and selection round 3 (R3) was used. Each cDNA display library was prepared to 100 μL by adding HBST (20 mM HEPES, 500 mM NaCl, 0.02% Tween 20, pH 7.2, 0.5% Bovine serum albumin). The S1 protein was added to the immobilized well and incubated at room temperature for 1 hour. After carefully removing the cDNA display solution using a pipette, 200 μL of HBST was added, and the mixture was incubated at room temperature for 5 minutes and then carefully removed using a pipette. This cleaning operation was performed 10 times. 100 μL of 100 mM Tris (hydroxymethyl) aminomethane (pH 11) was added, and after careful pipetting, the mixture was allowed to stand at room temperature for 5 minutes. After standing, the supernatant was collected in a new tube.

4.PCR増幅
溶出液をPCRに供した。反応液は1サンプルあたり25μLのKAPA HiFi HotStart Ready Mix(2X)(Kapa biosystems)、1.5μLの10μM Forward primer、1.5μLの10μM Reverse index primer、12.5μLのcDNA-VHH連結体、9.5
μLのNuclease free waterを混合し調製した。プライマーは5’-GATCCCGCGAAATTAATACGACTCACTATAGGGGAAGTATTTTTACAACAATTACCAACA-3’(配列番号12)と5’-TTTCCACGCCGCCCCCCGTCCT-3’(配列番号11)を用いた。PCRは95℃で2分間の後、98℃で20秒間、68℃で15秒間、72℃で20秒間を22サイクル(R1)または24サイクル(R2以降)、そして72℃で5分間の条件で行った。PCR産物の精製はAgencourt AMPure XP(Beckman Coulter)を用いた。1μLのPCR産物あたり1.8μLのビーズを加え、ピペッティングによる混合後、5分間静置した。磁性プレート上で透明になるまで静置した後、上清を除去した。200μLの70%エタノールを添加し、30秒静置した後、上清を除去した。このエタノール洗浄は2回行った。上清の除去後、磁気プレート上で5分間静置し、ビーズを風乾させた。チューブを磁気プレートから下ろし、45μLのNUCLEASE FREE WATERを添加後、ピペッティングによりビーズを懸濁し5分静置した。チューブを磁気プレート上で1分間静置した後、上清を回収した。
4. The PCR amplified eluate was subjected to PCR. The reaction mixture was 25 μL of KAPA HiFi HotStart Ready Mix (2X) (Kapa biosystems), 1.5 μL of 10 μM Forward primer, 1.5 μL of 10 μM Reverse index primer, 12.5 μL of 12.5 μL of Kapa Bihot Start Ready Mix (2X). 5
μL of Nuclease free water was mixed and prepared. Primers used were 5'-GATCCCGCGAAAATTAATACGACTCACTATAGGGAAGTTATTTTTACACAAATTACCAACCA-3'(SEQ ID NO: 12) and 5'-TTTCCACGCCGCCCCCCGTCCT-3'(SEQ ID NO: 11). PCR is performed at 95 ° C for 2 minutes, then at 98 ° C for 20 seconds, at 68 ° C for 15 seconds, at 72 ° C for 20 seconds for 22 cycles (R1) or 24 cycles (R2 or later), and at 72 ° C for 5 minutes. went. The PCR product was purified using Agencourt AMPure XP (Beckman Coulter). 1.8 μL of beads per 1 μL of PCR product was added, mixed by pipetting, and allowed to stand for 5 minutes. After allowing to stand on a magnetic plate until it became transparent, the supernatant was removed. 200 μL of 70% ethanol was added, and the mixture was allowed to stand for 30 seconds, and then the supernatant was removed. This ethanol washing was performed twice. After removing the supernatant, the beads were allowed to stand on a magnetic plate for 5 minutes and the beads were air-dried. The tube was removed from the magnetic plate, 45 μL of UNCLEASE FREE WATER was added, and the beads were suspended by pipetting and allowed to stand for 5 minutes. The tube was allowed to stand on a magnetic plate for 1 minute, and then the supernatant was collected.

5.VHH抗体候補配列の抽出
(1)PCR産物の定量と濃度調製
PicoGreen(商標) dsDNA reagent kit (Thermo Fisher Scientific)を用いてPCR産物の定量を行った。定量値に従い、各サンプルの濃度を100ng/mLに調製した。
5. Extraction of VHH antibody candidate sequence (1) Quantification and concentration preparation of PCR product PCR product was quantified using PicoGreen ™ dsDNA reagent kit (Thermo Fisher Scientific). The concentration of each sample was adjusted to 100 ng / mL according to the quantitative value.

(2)シーケンスライブラリーの調製
st PCRを行った。反応液は1サンプルあたり12.5μLのKAPA HiFi HotStart Ready Mix(2X)(Kapa biosystems)、0.5μLの10μM Forward primer、0.5μLの10μM Reverse primer、2.5μLの前段落記載のPCR産物、9μLのNuclease free waterを混合し調製した。プライマーは5’-TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGNNNNATGGCTGAGGTGCAGCTCGTG-3’(配列番号13)と5’-GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGNNNNTGATGATGATGGCTACCACCTCCCG-3’(配列番号14)を用いた。PCRは95℃で3分間の後、98℃で20秒間、62℃で15秒間、72℃で20秒を16サイクル、そして72℃で5分間の条件で行った。
PCR産物の精製はAgencourt AMPure XP(Beckman Coulter)を用いた。1μLのPCR産物あたり1.8μLのビーズを加え、ピペッティングによる混合後、5分間静置した。磁性プレート上で透明になるまで静置した後、上清を除去した。200μLの70%エタノールを添加し、30秒静置した後、上清を除去した。このエタノール洗浄は2回行った。上清の除去後、磁気プレート上で5分間静置し、ビーズを風乾させた。チューブを磁気プレートから下ろし、20μLのNUCLEASE FREE WATERを添加後、ピペッティングによりビーズを懸濁し5分静置した。チューブを磁気プレート上で1分間静置した後、上清を回収した。
続いて、Index PCRを行った。反応液は1サンプルあたり12.5μLのKAPA HiFi HotStart Ready Mix(2X)(Kapa biosystems)、1μLの10μM Forward index primer(Nextera XT Index Kit v2、Illumina)、1μLの10 μM Reverse index primer(Nextera XT Index Kit v2、Illumina)、2.5μLのテンプレートDNA、8μLのNuclease free waterを混合し調製した。PCRは95℃で3分間の後、98℃で20秒間、55℃で15秒間、72℃で30秒を8サイクル、そして72℃で5分間の条件で行った。PCR産物の精製はAgencourt AMPure XP(Beckman Coulter)を用いた。ポリアクリルアミドゲル電気泳動によりPCR産物のサイズを確認後、Quant-iT PicoGreen dsDNA Assay Kit(Thermo Fisher Scientific)を用いてPCR産物の定量を行い、以下の式(1)に従ってモル濃度を算出した。得られた定量値に基づき、NUCLEASE FREE WATERで希釈することで4nMに調製した。
DNA濃度[ng/μL]/(660[g/mol]×550[bp])×10=DNA濃度[nM]・・・(1)
(2) Preparation of sequence library 1st PCR was performed. Reaction solution is 12.5 μL of KAPA HiFi HotStart Ready Mix (2X) (Kappa biosystems) per sample, 0.5 μL of 10 μM Forward primer, 0.5 μL of 10 μM Reverse primer, 2.5 μL of the preceding paragraph. 9 μL of Nuclease free water was mixed and prepared. Primers were 5'-TCGTCGGGCAGGCGTCAGATGTGTAATAAGAGACAGNNNNNATGCTGAGGTGCAGCTCGTG-3'(SEQ ID NO: 13) and 5'-GTCTCGTGGGCGCTCGGAGATGTGTAGTAAGACAGNACGNNTGACGSATGACTG. PCR was performed at 95 ° C. for 3 minutes, then 98 ° C. for 20 seconds, 62 ° C. for 15 seconds, 72 ° C. for 20 seconds for 16 cycles, and 72 ° C. for 5 minutes.
The PCR product was purified using Agencourt AMPure XP (Beckman Coulter). 1.8 μL of beads per 1 μL of PCR product was added, mixed by pipetting, and allowed to stand for 5 minutes. After allowing to stand on a magnetic plate until it became transparent, the supernatant was removed. 200 μL of 70% ethanol was added, and the mixture was allowed to stand for 30 seconds, and then the supernatant was removed. This ethanol washing was performed twice. After removing the supernatant, the beads were allowed to stand on a magnetic plate for 5 minutes and the beads were air-dried. The tube was removed from the magnetic plate, 20 μL of UNCLEASE FREE WATER was added, and the beads were suspended by pipetting and allowed to stand for 5 minutes. The tube was allowed to stand on a magnetic plate for 1 minute, and then the supernatant was collected.
Subsequently, Index PCR was performed. The reaction solution was 12.5 μL of KAPA HiFi HotStart Ready Mix (2X) (Kappa biosystems), 1 μL of 10 μM Forward index primer (Nuclease XT Index Primer), 1 μL IX Index Kit v2, Illumina. Kit v2, Illumina), 2.5 μL of template DNA, and 8 μL of Nuclease free water were mixed and prepared. PCR was performed at 95 ° C. for 3 minutes, then 98 ° C. for 20 seconds, 55 ° C. for 15 seconds, 72 ° C. for 30 seconds for 8 cycles, and 72 ° C. for 5 minutes. The PCR product was purified using Agencourt AMPure XP (Beckman Coulter). After confirming the size of the PCR product by polyacrylamide gel electrophoresis, the PCR product was quantified using the Quant-iT PicoGreen dsDNA Assay Kit (Thermo Fisher Scientific), and the molar concentration was calculated according to the following formula (1). Based on the obtained quantitative values, it was prepared to 4 nM by diluting with nucleoASE FREE WATER.
DNA concentration [ng / μL] / (660 [g / mol] × 550 [bp]) × 10 6 = DNA concentration [nM] ... (1)

(3)シーケンス
4nMライブラリーを使用する際の推奨プロトコルに従って調製した。変性・希釈済みのサンプルライブラリーの最終濃度は7pMになるように調製した。また、サンプルライブラリー中のPhiX Controlは5%になるように調製した。MiSeq(Illumina)とMiSeq Reagent Nano Kit v2 500 cycle(Illumina)を用いてシーケンスを行った。
(3) Sequence Prepared according to the recommended protocol when using the 4nM library. The final concentration of the denatured and diluted sample library was adjusted to 7 pM. In addition, the PhiX Control in the sample library was adjusted to be 5%. Sequences were performed using MiSeq (Illumina) and MiSeq Reagent Nano Kit v2 500 cycle (Illumina).

(4)シーケンスデータからVHH抗体のアミノ酸配列の抽出と重複数の計測
MiSeq Controllerを用いてDemultiplexingされた配列データを解析に供した。シーケンスデータからVHH抗体がコードされている塩基配列領域を抜き出し、アミノ酸配列に翻訳した。その後、各アミノ酸配列と完全に一致したアミノ酸配列数を計測した。
(4) Extraction of amino acid sequence of VHH antibody from sequence data and multiple measurement The sequence data demolated using MiSeq Controller was used for analysis. The base sequence region in which the VHH antibody was encoded was extracted from the sequence data and translated into an amino acid sequence. Then, the number of amino acid sequences that completely matched each amino acid sequence was counted.

(5)抗SARS-CoV-2 VHH抗体候補配列の選抜
R2とR3のセレクション後のライブラリーに共通して出現するVHH抗体のアミノ酸配列と各配列のクローン数を算出した。VHH抗体全長のアミノ酸配列の完全一致によりクローン数を求めた結果、CoVHH1がライブラリー中で最も優占していることがわかった(図1)。
CoVHH1をコードする全塩基配列は配列番号8に示すとおりであり、そのアミノ酸配列はAEVQLVESGGGQVETGGSLRLSCQASGSTFSDYVMAWFRQRPGKEREFVATISRNGGTTTYGSSVKGRFTISRDNAKSTVYLQMNSLKPEDTAVYYCYAVGGDGDSWGQGTQVTVSS(配列番号9)である。なお、アミノ酸をコードする塩基配列は配列番号8に示すコドンに限定されるものではない。当該アミノ酸配列において、1~26番がFR1、27~36番がCDR1、37~50番がFR2、51~60番がCDR2、61~99番がFR3、100~106番がCDR3、108~117番がFR4である。
(5) Selection of anti-SARS-CoV-2 VHH antibody candidate sequences The amino acid sequences of VHH antibodies that commonly appear in the libraries after selection of R2 and R3 and the number of clones of each sequence were calculated. As a result of determining the number of clones by perfect matching of the amino acid sequences of the full length of the VHH antibody, it was found that CoVHH1 was the most dominant in the library (Fig. 1).
The entire base sequence encoding CoVHH1 is as shown in SEQ ID NO: 8, and the amino acid sequence thereof is AEVQLVESGGGQVETGGSLRLSCQASGSTFSDYVMAWFRQRPGKEREFVATISRNGGTTYGSSVKGRFTISRDNAKSTVYLQSRGDYGSVTYLGSTVISSRDNAKSTVYLQMNDSSWVGSTVG The base sequence encoding the amino acid is not limited to the codon shown in SEQ ID NO: 8. In the amino acid sequence, Nos. 1 to 26 are FR1, Nos. 27 to 36 are CDR1, Nos. 37 to 50 are FR2, Nos. 51 to 60 are CDR2, Nos. 61 to 99 are FR3, Nos. 100 to 106 are CDR3, 108 to 117. The number is FR4.

(6)VHH抗体のCDR領域アミノ酸配列の抽出
R2とR3のセレクション後のライブラリーに共通して出現し、さらに出現頻度の最も高かったCoVHH1とアミノ酸配列が類似したCoVHH1変異体について、CDR領域の比較を行った(図2)。CoVHH1変異体として、CDR1領域変異体は4配列(CoVHH1301(配列番号34)、CoVHH319(配列番号35)、CoVHH39(配列番号36)、CoVHH327(配列番号37))、CDR2領域変異体は8配列(CoVHH47(配列番号38)、CoVHH16(配列番号39)、CoVHH49(配列番号40)、CoVHH58(配列番号41)、CoVHH417(配列番号42)、CoVHH118(配列番号43)、CoVHH416(配列番号44)、CoVHH3342(配列番号45))、CDR3領域変異体は6配列(CoVHH201(配列番号46)、CoVHH20(配列番号47)、CoVHH112(配列番号48)、CoVHH2017(配列番号49)、CoVHH137(配列番号50)、CoVHH96(配列番号51))が見出された。
(6) Extraction of CDR Region Amino Acid Sequences of VHH Antibodies CoVHH1 mutants that commonly appeared in the libraries after selection of R2 and R3 and had similar amino acid sequences to CoVHH1 that appeared most frequently were found in the CDR regions. Comparisons were made (Fig. 2). As CoVHH1 variants, the CDR1 region variant has 4 sequences (CoVHH1301 (SEQ ID NO: 34), CoVHH319 (SEQ ID NO: 35), CoVHH39 (SEQ ID NO: 36), CoVHH327 (SEQ ID NO: 37)), and the CDR2 region variant has 8 sequences (SEQ ID NO: 37). CoVHH47 (SEQ ID NO: 38), CoVHH16 (SEQ ID NO: 39), CoVHH49 (SEQ ID NO: 40), CoVHH58 (SEQ ID NO: 41), CoVHH417 (SEQ ID NO: 42), CoVHH118 (SEQ ID NO: 43), CoVHH416 (SEQ ID NO: 44), CoVHH3342. (SEQ ID NO: 45)), the CDR3 region variant has 6 sequences (CoVHH201 (SEQ ID NO: 46), CoVHH20 (SEQ ID NO: 47), CoVHH112 (SEQ ID NO: 48), CoVHH2017 (SEQ ID NO: 49), CoVHH137 (SEQ ID NO: 50), CoVHH96 (SEQ ID NO: 51)) was found.

実施例2 プロテアーゼ欠損組換え枯草菌によるVHHの生産(1)遺伝子の人工合成
合成されるCoVHH1のアミノ酸配列は、配列番号9のC末端側にヒンジ配列を介したHisタグ配列(配列番号25、EPKTPKPQSHHHHHH)が付与された配列番号26となる。そのため、CoVHH1発現用の人工合成遺伝子には、配列番号26をコードする塩基配列の3’末端に終止コドンが付与された配列番号27となる。さらに、CoVHH1発現用の人工合成遺伝子をプラスミドベクターに挿入するための配列として、配列番号27に対して、GCAGCTCTTGCAGCA(配列番号28)が5’末端に、TCTATTAAACTAGTT(配列番号29)が3’末端に付加されたものをユーロフィン社で人工合成し、実験に供した。
Example 2 Production of VHH by protease-deficient recombinant bacillus (1) Artificial synthesis of gene The amino acid sequence of CoVHH1 synthesized is a His tag sequence (SEQ ID NO: 25, SEQ ID NO: 25, via a hinge sequence on the C-terminal side of SEQ ID NO: 9. EPKTPKPQSHHHHH) is assigned SEQ ID NO: 26. Therefore, the artificially synthesized gene for CoVHH1 expression is SEQ ID NO: 27 in which a stop codon is added to the 3'end of the base sequence encoding SEQ ID NO: 26. Further, as a sequence for inserting an artificially synthesized gene for CoVHH1 expression into a plasmid vector, GCACTAACTTGCAGCA (SEQ ID NO: 28) is at the 5'end and TCTATTAAACTAGTT (SEQ ID NO: 29) is at the 3'end with respect to SEQ ID NO: 27. The added product was artificially synthesized by Eurofins Scientific and used for the experiment.

(2)Hisタグ付きVHH発現用プラスミドの構築
pHY300PLKをベースとして作製された組換えプラスミドpHY-S237(特開2014-158430)をテンプレートとし、5’-GATCCCCGGGAATTCCTGTTATAAAAAAAGG-3’(配列番号15)と5’-ATGATGTTAAGAAAGAAAACAAAGCAG-3’(配列番号16)のプライマーセットとPrimeSTAR Max DNAポリメラーゼ(TaKaRa)を用いたPCRによりプラスミド配列を増幅した。168株のゲノムをテンプレートとし、5’-GAATTCCCGGGGATCTAAGAAAAGTGATTCTGGGAGAG-3’(配列番号17)と5’-CTTTCTTAACATCATAGTAGTTCACCACCTTTTCCC-3’(配列番号18)のプライマーセットを用いたPCRによりspoVG遺伝子由来のプロモーターDNAを増幅した。得られたプロモーターDNAを、In-Fusion HD Cloning Kit(Takara)を用いてプラスミド配列に組み込み、spoVGプロモーターと連結されたVHH発現用プラスミドを構築した。5’-TGCTGCAAGAGCTGCCGGAAATAAA-3’(配列番号19)及び5’-TCTATTAAACTAGTTATAGGG-3’(配列番号20)のプライマーセットとPrimeSTAR Max DNAポリメラーゼ(TaKaRa)を用いたPCRによりプラスミド配列を増幅した。得られたPCR断片に、(1)の人工合成遺伝子を含むDNAをIn-Fusion HD Cloning Kit(Takara)を用いて組み込み、人工合成VHH遺伝子の各々を含むVHH発現用プラスミドを構築した。このHisタグ付きCoVHH1発現用プラスミドをCoVHH1-His-pHYと呼ぶ。
また、CoVHH二量体については以下のように構築を行った。CoVHH1二量体についてはCoVHH1発現用の人工合成遺伝子をテンプレートとし、5’-GCAGCTCTTGCAGCAGCTGAAG-3’(配列番号21)及び5’-CGCGGCTGCTGAACTCACGGTTACCTGAG-3’(配列番号22)のプライマーセット、及びVHH1をテンプレートとし、5’-AGTTCAGCAGCCGCGGAAGTGCAACTGGTTGAGTCTG-3’(配列番号23)及び5’-AACTAGTTTAATAGATTAATG-3’(配列番号24)のプライマーセットを用いて、PrimeSTAR Max DNAポリメラーゼ(TaKaRa)によるPCRにより得られたPCR断片(遺伝子)をIn-Fusion HD Cloning Kit(Takara)を用いて上記と同様にspoVGプロモーターと連結されたVHH発現用プラスミドへと組み込んだ。このHisタグ付きCoVHH1二量体発現用プラスミドをCoVHH1(dimer)-His-pHYと呼ぶ。
(2) Construction of plasmid for expressing VHH with His tag Using the recombinant plasmid pHY-S237 (Japanese Patent Laid-Open No. 2014-158430) prepared based on pHY300PLK as a template, 5'-GATCCCCGGGGAATTTCCTGTATAAAAAAAAG-3'(SEQ ID NO: 15) and 5 The plasmid sequence was amplified by PCR using the primer set of'-ATGATGTTAAGAAGAAAACAAAGCAG-3'(SEQ ID NO: 16) and PrimeSTAR Max DNA polymerase (TaKaRa). A promoter derived from the spoVG gene was amplified by PCR using the genome of the 168 strain as a template and the primer sets of 5'-GAATTCCGGGGATCTAAGAAAGTGATTCTGGGAGAG-3'(SEQ ID NO: 17) and 5'-CTTTCTTAACTCATCATCATCATCACCACTTTTCCC-3'(SEQ ID NO: 18). .. The obtained promoter DNA was incorporated into a plasmid sequence using an In-Fusion HD Cloning Kit (Takara) to construct a plasmid for VHH expression linked to the spoVG promoter. The plasmid sequence was amplified by PCR using the primer sets of 5'-TGCTGCAAGAGCTGGCCGGAAATAAA-3'(SEQ ID NO: 19) and 5'-TCTATTAAACTAGTTATAGGG-3' (SEQ ID NO: 20) and PrimeSTAR Max DNA polymerase (TaKaRa). A DNA containing the artificially synthesized gene (1) was incorporated into the obtained PCR fragment using an In-Fusion HD Cloning Kit (Takara) to construct a plasmid for expressing VHH containing each of the artificially synthesized VHH genes. This His-tagged CoVHH1 expression plasmid is called CoVHH1-His-pHY.
The CoVHH dimer was constructed as follows. For the CoVHH1 dimer, the artificially synthesized gene for CoVHH1 expression is used as a template, and the primer set of 5'-GCAGCTCTTGCAGCCGCTGAAG-3'(SEQ ID NO: 21) and 5'-CGCGCGCTGGACTGAACTCACGGTTACCTGAG-3'(SEQ ID NO: 22), and VHH1 are used as templates. A fragment obtained by PCR with PrimeSTAR Max DNA polymerase (TaKaRa) using the primer sets of 5'-AGTTCAGCCGCCGCGGAAGTGCAACTGGGTTGGTCG-3'(SEQ ID NO: 23) and 5'-AACTAGTTTAATAGATTAATG-3'(SEQ ID NO: 24). The gene) was integrated into a VHH expression plasmid linked to the spoVG promoter in the same manner as above using the In-Fusion HD Cloning Kit (Takara). This His-tagged CoVHH1 dimer expression plasmid is called CoVHH1 (dimer) -His-pHY.

(3)FLAGタグ付きVHH発現用プラスミドの構築
CoVHH1-His-pHYをテンプレートとし、5’-GCAGCTCTTGCAGCAGCTGAAGTGCAACTGGTTGAG-3’(配列番号31)及び5’-AACTAGTTTAATAGATTATTTGTCATCATCATCCTTATAGTCCGACTGTGGTTTCGGTGTTTTG-3’(配列番号32)のプライマーセットとPrimeSTAR Max DNAポリメラーゼ(TaKaRa)を用いたPCRによりFLAGタグ付きCoVHH1のPCR断片を増幅した。前述のspoVGプロモーターと連結されたVHH発現用プラスミドをテンプレートとし、5’-TGCTGCAAGAGCTGCCGGAAATAAA-3’(配列番号19)及び5’-TCTATTAAACTAGTTATAGGG-3’(配列番号20)のプライマーセットとPrimeSTAR Max DNAポリメラーゼ(TaKaRa)を用いたPCRによりプラスミド配列を増幅した。得られたプラスミドPCR断片に、FLAGタグ付きCoVHH1のPCR断片をIn-Fusion HD Cloning Kit(Takara)を用いて組み込みこんだ。このFLAGタグ付きCoVHH1二量体発現用プラスミドをCoVHH1-FLAG-pHYと呼ぶ。
構築したプラスミドを、下記(4)に示す手順に従ってBacillus subtilis 168株から、特開2006-174707号に記載されている方法に従って、9種の細胞外プロテアーゼ遺伝子(epr、wprA、mpr、nprB、bpr、nprE、vpr、aprE及びaprX)を全て欠損させ、さらに特許第4336082に記載されている方法に従い、胞子形成に関与するsigF遺伝子を欠損させることにより得られた株(Dpr9ΔsigF)に導入した。
(3) Construction of FLAG-tagged plasmid for VHH expression Using CoVHH1-His-pHY as a template, 5'-GCAGCTCTTGCAGCAGCTGAAGTAGCAACTGGGTTGAG-3'(SEQ ID NO: 31) and 5'-ACTAGTTTAATAGGATTTTTGTTGTCATGTCATGTGTCATGTGTCATGTGTcat A PCR fragment of FLAG-tagged CoVHH1 was amplified by PCR with PrimeSTAR Max DNA polymerase (TaKaRa). Primer sets of 5'-TGCTGCAAGGCTGCCGGAAATAAA-3'(SEQ ID NO: 19) and 5'-TCATTATAAAACTAGTTATAGGG-3' (SEQ ID NO: 20) and PrimeSTAR Max DNA polymerase (SEQ ID NO: 20) using the plasmid for VHH expression linked to the above-mentioned spoVG promoter as a template. The plasmid sequence was amplified by PCR using TaKaRa). A PCR fragment of FLAG-tagged CoVHH1 was incorporated into the obtained plasmid PCR fragment using an In-Fusion HD Cloning Kit (Takara). This FLAG-tagged CoVHH1 dimer expression plasmid is called CoVHH1-FLAG-pHY.
The constructed plasmid was transferred from Bacillus subtilis 168 strain according to the procedure shown in (4) below, according to the method described in JP-A-2006-174707, and 9 kinds of extracellular protease genes (epr, wprA, mpr, nprB, bpr). , NprE, vpr, aprE and aprX) were all deleted, and the strain was introduced into a strain (Dpr9ΔsigF) obtained by deleting the sigF gene involved in sporulation according to the method described in Japanese Patent No. 4336882.

(4)組換え枯草菌の作製
枯草菌株へのプラスミド導入は以下に示すプロトプラスト法によって行った。1mLのLB液体培地にグリセロールストックした枯草菌を植菌し、30℃、210rpmで一晩振とう培養した。翌日、新たな1mLのLB液体培地にこの培養液を10μL植菌し、37℃、210rpmで約2時間振とう培養した。この培養液を1.5mLチューブに回収し、1,2000rpmで5分間遠心し、上清を除去したペレットをLysozyme(SIGMA)4mg/mLを含むSMMP500μLに懸濁し、37℃で1時間インキュベートした。次いで、3,500rpmで10分間遠心し、上清を除去したペレットをSMMP400μLに懸濁した。この懸濁液33μLを各種プラスミドと混合し、さらに40%PEGを100μL添加してボルテックスした。この液にSMMPを350μL加えて転倒混和し、30℃、210rpmで1時間振とうした後、DM3寒天培地プレートに全量塗布し、30℃で2~3日間インキュベートした。
(4) Preparation of recombinant Bacillus subtilis The plasmid was introduced into the Bacillus subtilis strain by the protoplast method shown below. Bacillus subtilis stocked with glycerol was inoculated into 1 mL of LB liquid medium and cultured at 30 ° C. and 210 rpm with shaking overnight. The next day, 10 μL of this culture solution was inoculated into a new 1 mL LB liquid medium and shake-cultured at 37 ° C. and 210 rpm for about 2 hours. The culture was collected in 1.5 mL tubes, centrifuged at 1,2000 rpm for 5 minutes, the pellet from which the supernatant had been removed was suspended in 500 μL of SMMP containing 4 mg / mL of Lysozyme (SIGMA), and incubated at 37 ° C. for 1 hour. Then, the pellet was centrifuged at 3,500 rpm for 10 minutes, and the pellet from which the supernatant had been removed was suspended in 400 μL of SMMP. 33 μL of this suspension was mixed with various plasmids, and 100 μL of 40% PEG was further added for vortexing. 350 μL of SMMP was added to this solution, mixed by inversion, shaken at 30 ° C. and 210 rpm for 1 hour, and then the whole amount was applied to a DM3 agar plate and incubated at 30 ° C. for 2 to 3 days.

(5)VHH産生
(4)で作製した組換え枯草菌を1mLの50ppmテトラサイクリンを含むLB培地に植菌し、32℃で一晩往復振とうし、前培養液とした。Dpr9ΔsigFは、前培養液をひだ付き三角フラスコに入れた20mLの2×L-mal培地に1%接種し、30℃で72時間振とう培養した。培養終了時に1mLの培養液をマイクロチューブにて4℃、15,000rpm、5分間遠心し、上清を回収した。各VHHについてはNi-NTAアガロースビーズ(富士フィルム和光純薬)を用い、キットのプロトコルに従って精製した。溶出液にはPBS(50mM イミダゾール)を用いた。
培養上清における抗体の生産を確認するため、ウエスタンブロッティングを行った。SDS-PAGEについては、ゲルはスーパーセップエース、15-20%(トリシンゲル)(富士フィルム和光純薬)を用い、各ウェルに0.5μLの培養上清を含むサンプルをアプライした後に120Vで3時間泳動した。分子量マーカーにはxL ladder(Broad)(アプロサイエンス)を用いた。SDS-PAGEゲルから、Trans-Blot Turbo Mini PVDF Transfer Packs(BIO-RAD)、及びTrans-Blot Turbo System(BIO-RAD)を用いてタンパク質をPVDF膜へ転写した。抗体は6×-His Tag Monoclonal Antibody(3D5),HRP(Invitorogen)またはANTI-FLAG M2-ペルオキシダーゼ(HRP)コンンジュゲート(シグマアルドリッチ)を、抗体反応にはiBind Western System(Invitrogen)を用いた。1-Step Ultra TMB-Blotting Solution(Thermo Scientific)を用いて目的タンパク質を検出した(図3)。
(5) VHH production The recombinant Bacillus subtilis prepared in (4) was inoculated into LB medium containing 1 mL of 50 ppm tetracycline and shaken back and forth at 32 ° C. overnight to prepare a preculture solution. Dpr9ΔsigF was inoculated at 1% in 20 mL of 2 × L-mal medium in which the preculture solution was placed in a pleated Erlenmeyer flask, and cultured at 30 ° C. for 72 hours with shaking. At the end of the culture, 1 mL of the culture solution was centrifuged in a microtube at 4 ° C., 15,000 rpm for 5 minutes, and the supernatant was collected. Each VHH was purified using Ni-NTA agarose beads (Fuji Film Wako Pure Chemical Industries, Ltd.) according to the protocol of the kit. PBS (50 mM imidazole) was used as the eluate.
Western blotting was performed to confirm the production of the antibody in the culture supernatant. For SDS-PAGE, use Super Cep Ace, 15-20% (Tricin gel) (Fuji Film Wako Pure Chemical Industries, Ltd.) as the gel, and apply a sample containing 0.5 μL of the culture supernatant to each well, and then apply the sample at 120 V for 3 hours. It was run. An xL ladder (Broad) (Aproscience) was used as the molecular weight marker. Proteins were transferred from SDS-PAGE gels to PVDF membranes using Trans-Blot Turbo Mini PVDF Transfer Packs (BIO-RAD) and Trans-Blot Turbo System (BIO-RAD). The antibody was 6 × -His Tag Monoclonal Antibody (3D5), HRP (Invitrogen) or ANTI-FLAG M2-peroxidase (HRP) conjugate (Sigma-Aldrich), and iBind Western System (Invitrogen) was used for the antibody reaction. The target protein was detected using 1-Step Ultra TMB-Blotting Solution (Thermo Scientific) (Fig. 3).

その結果、CoVHH1とCoVHH1二量体が合成されていることが確認された。この方法で合成されるHisタグ付きCoVHH1のアミノ酸配列は配列番号26に示す通りであり、Hisタグ付きCoVHH1二量体は配列番号30に示す通りであり、FLAGタグ付きCoVHH1のアミノ酸配列は配列番号33に示す通りである。 As a result, it was confirmed that CoVHH1 and CoVHH1 dimer were synthesized. The amino acid sequence of His-tagged CoVHH1 synthesized by this method is as shown in SEQ ID NO: 26, the His-tagged CoVHH1 dimer is as shown in SEQ ID NO: 30, and the amino acid sequence of FLAG-tagged CoVHH1 is SEQ ID NO: As shown in 33.

実施例3 バイオレイヤー干渉法による結合活性測定
BLItz bio-layer interferometer(Fortebio)を用いてNi-NTAセンサーチップに固相化したCoVHH1のS1タンパク質に対する結合活性を測定した。Advanced kinetics modeを選択し、250μLの各測定液をBlack 0.5mL Tubeに添加して測定した。測定前にDip and Read(商標) Ni-NTA(NTA)Biosensors(Fortebio)の先端を100μLのPBST(0.1% Tween20含有PBS,pH7.4)に1晩浸漬させることでチップを水和させた。ラン毎の測定順は以下の通りである;1)Baseline step:PBST中で30秒間の測定、2)Loading step:PBSTで希釈調製した1-10μg/mL Hisタグ付きCoVHH1で120秒間の測定、3)Baseline step: PBST中で30秒間の測定、4)Association step:PBSTで希釈し調製した0-693.1nM SARS-CoV-2 S1 subunit-Fc(Fcタグ付きS1タンパク質、The Native Antigen Company)で180秒間の測定、5)Dissociation step:PBST中で300秒間の測定。BLItz Proソフトウェアバージョン(1.2.1.5)(Molecular Devices)を用いてGlobal Fittingを行い、結合活性を算出した(図4)。
その結果、CoVHH1のS1タンパク質に対する平衡乖離定数(KD)は7.131x10-9M(ka=1.604x10(1/Ms)、kd=1.144x10-4(1/s))であった。
Example 3 Measurement of binding activity by biolayer interferometry The binding activity of CoVHH1 immobilized on a Ni-NTA sensor chip to the S1 protein was measured using Blitz bio-layer interferometer (Fortebio). The Advanced kinetics mode was selected, and 250 μL of each measurement solution was added to Black 0.5 mL Tube for measurement. Prior to measurement, the tip was hydrated by immersing the tip of Dip and Read ™ Ni-NTA (NTA) Biosensors (Fortebio) in 100 μL PBST (PBS containing 0.1% Tween 20, pH 7.4) overnight. rice field. The measurement order for each run is as follows; 1) Baseline step: Measurement in PBST for 30 seconds, 2) Loading step: Measurement in 1-10 μg / mL His-tagged CoVHH1 diluted with PBST for 120 seconds, 3) Baseline step: Measurement in PBST for 30 seconds, 4) Association step: 0-693.1 nM SARS-CoV-2 S1 subunit-Fc (Fc-tagged S1 protein, The Native Agent Company) prepared by diluting with PBST. Measurement for 180 seconds, 5) Dilution step: Measurement for 300 seconds in PBST. Global Fitting was performed using BLItz Pro software version (1.2.1.5) (Molecular Devices) to calculate binding activity (FIG. 4).
As a result, the equilibrium deviation constant (KD) of CoVHH1 with respect to the S1 protein was 7.131x10-9M (ka = 1.604x10 4 (1 / Ms), kd = 1.144x10 -4 (1 / s)). ..

実施例4 ELISA
Nunc-Immuno(商標) Plate II(Thermo Fisher Scientific)の各ウェルにPBSで希釈し調整した100μLの0-10μg/mL SARS-CoV-2 S1 subunit-Fc(Fcタグ付きS1タンパク質、The Native Antigen Company)を添加し、シーリング後、4℃で一晩静置した。ピペットを用いて丁寧にウェルに吸着しなかったS1タンパク質分散液を取り除いた後、200μLの5%スキムミルク/PBST(0.05% Tween20含有PBS)を添加し、室温で1時間インキュベートした。ピペットを用いて丁寧にスキムミルクを取り除いた後、200μLのPBSTを添加し、5分静置した後、ピペットを用いて丁寧に取り除いた。この洗浄操作は3回行った。S1タンパク質を固相化した各ウェルに対して100μLの2μg/mL Hisタグ付きCoVHH1又はHisタグ付きCoVHH1二量体/PBSTを添加し、室温で1時間インキュベートした。ピペットを用いて丁寧にVHH抗体を取り除いた後、200μLのPBSTを添加し、5分静置した後、ピペットを用いて丁寧に取り除いた。この洗浄操作は3回行った。一次抗体にはAnti-His-tag mAb-Biotin(Monoclonal、OGHis)(MEDICAL & BIOLOGICAL LABORATORIES)を用いた。PBSTにより一次抗体を1/5,000に希釈した。各ウェルに100μLの一次抗体を添加し、室温で1時間インキュベートした。ピペットを用いて丁寧に一次抗体を取り除いた後、200μLのPBSTを添加し、5分静置した後、ピペットを用いて丁寧に取り除いた。この洗浄操作は3回行った。一次抗体の検出にはStreptavidin HRP Conjugate(東京化成工業)を用いた。PBSTによりStreptavidin HRP Conjugate溶液を1/5,000に希釈し、各ウェルに100μLずつ添加した後、室温で1時間インキュベートした。ピペットを用いて丁寧にStreptavidin HRP Conjugate溶液を取り除いた後、200μLのPBSTを添加し、5分静置した後、ピペットを用いて丁寧に取り除いた。この洗浄操作は3回行った。発色基質はOPDタブレット(Thermo Fisher Scientific)をStable Peroxide Substrate Buffer(Thermo Fisher Scientific)で溶解し調製した。各ウェルに100μLの発色基質を添加し,遮光下で20分間インキュベートした後、直ちにMicroplate Reader Infinite M1000 PRO(TECAN)を用いて吸光度450nmを測定した。その結果、CoVHH1及びCoVHH1二量体ともにS1タンパク質に対する結合活性が認められた。さらにCoVHH1を二量体化することにより、結合活性が向上することがわかった(図5)。
Example 4 ELISA
100 μL 0-10 μg / mL SARS-CoV-2 S1 subunit-Fc (Fc-tagged S1 protein, The Native Engine) diluted with PBS and adjusted to each well of Nunc-Immuno ™ Plate II (Thermo Fisher Scientific). ) Was added, and after sealing, the mixture was allowed to stand at 4 ° C. overnight. After carefully removing the S1 protein dispersion that was not adsorbed to the wells using a pipette, 200 μL of 5% skim milk / PBST (PBS containing 0.05% Tween 20) was added, and the mixture was incubated at room temperature for 1 hour. After carefully removing skim milk using a pipette, 200 μL of PBST was added, and the mixture was allowed to stand for 5 minutes and then carefully removed using a pipette. This cleaning operation was performed three times. 100 μL of 2 μg / mL His-tagged CoVHH1 or His-tagged CoVHH1 dimer / PBST was added to each well on which the S1 protein was immobilized and incubated for 1 hour at room temperature. After carefully removing the VHH antibody using a pipette, 200 μL of PBST was added, and the mixture was allowed to stand for 5 minutes and then carefully removed using a pipette. This cleaning operation was performed three times. Anti-His-tag mAb-Biotin (Monoclonal, OGHis) (MEDICAL & BIOLOGICAL LABORATORIES) was used as the primary antibody. The primary antibody was diluted to 1 / 5,000 with PBST. 100 μL of primary antibody was added to each well and incubated for 1 hour at room temperature. After carefully removing the primary antibody using a pipette, 200 μL of PBST was added, and the mixture was allowed to stand for 5 minutes and then carefully removed using a pipette. This cleaning operation was performed three times. Streptavidin HRP Conjugate (Tokyo Chemical Industry) was used for the detection of the primary antibody. Streptavidin HRP Conjugate solution was diluted to 1 / 5,000 with PBST, 100 μL was added to each well, and the mixture was incubated at room temperature for 1 hour. The Streptavidin HRP Conjugate solution was carefully removed using a pipette, 200 μL of PBST was added, and the mixture was allowed to stand for 5 minutes, and then carefully removed using a pipette. This cleaning operation was performed three times. The color-developing substrate was prepared by dissolving an OPD tablet (Thermo Fisher Scientific) in a Table Peroxide Substrate Buffer (Thermo Fisher Scientific). After adding 100 μL of a color-developing substrate to each well and incubating for 20 minutes under shading, the absorbance at 450 nm was immediately measured using a Microplate Reader Infinite M1000 PRO (TECAN). As a result, both CoVHH1 and CoVHH1 dimers were found to have binding activity to S1 protein. Further, it was found that the binding activity was improved by dimerizing CoVHH1 (FIG. 5).

実施例5 中和活性試験
前記の方法で取得したHisタグ付きCoVHH1とHisタグ付きCoVHH1二量体のSARS-CoV-2に対する中和活性を測定した。CoVHH1溶液とCoVHH1二量体溶液は2%Fetal Bovine Serum(FBS)/Dulbecco Modified Eagle Medium(DMEM)と混合することで、それぞれ323.4μg/mLと122.5μg/mLの濃度になるように調製した。100μLの各混合液と100μLの2%FBS/DMEMを混合することで2倍希釈液を調製し、同様にして2%FBS/DMEMを用いて128倍希釈まで抗体の2倍希釈系列溶液を調製した(表1)。
Example 5 Neutralizing activity test The neutralizing activity of the His-tagged CoVHH1 and His-tagged CoVHH1 dimers obtained by the above method against SARS-CoV-2 was measured. CoVHH1 solution and CoVHH1 dimer solution are prepared to have concentrations of 323.4 μg / mL and 122.5 μg / mL, respectively, by mixing with 2% Fetal Bovine Serum (FBS) / Dulbecco Modified Eagle's Medium (DMEM). did. A 2-fold dilution is prepared by mixing 100 μL of each mixture with 100 μL of 2% FBS / DMEM, and similarly, a 2-fold dilution series solution of the antibody is prepared using 2% FBS / DMEM up to 128-fold dilution. (Table 1).

Figure 2022022974000001
Figure 2022022974000001

96ウェルプレートにHisタグ付きCoVHH1またはHisタグ付きCoVHH1二量体の各2倍希釈系列溶液を100μL添加し、さらに2.5×10pfu/mLのSARS-CoV-2溶液(国立感染症研究所から入手)をそれぞれ100μLずつ添加した。その後、37℃で2時間インキュベートした後、4℃で一晩インキュベートし、抗体とウイルスを接触させた。Vero-E6/TMPRSS2細胞(JCRB細胞バンクより購入)を播種したウェルに、抗体とウイルスを接触させた溶液100μLを加え、37℃、5%CO環境下で培養した。コントロールとして、CoVHH1とCoVHH1二量体の溶解に用いているPBS(50mM イミダゾール含有)を用いた。培養開始3日後に顕微鏡により細胞変性効果(CPE)を測定し中和活性を評価した。結果を表2に示す。 Add 100 μL of each 2-fold diluted series solution of His-tagged CoVHH1 or His-tagged CoVHH1 dimer to a 96-well plate, and further add 2.5 × 10 5 pfu / mL SARS-CoV-2 solution (National Institute of Infectious Diseases). (Obtained from the same place) was added in an amount of 100 μL each. Then, after incubating at 37 ° C. for 2 hours, the cells were incubated overnight at 4 ° C. to contact the antibody with the virus. To wells inoculated with Vero-E6 / TMPRSS2 cells (purchased from JCRB cell bank), 100 μL of a solution in which an antibody and a virus were contacted was added, and the cells were cultured at 37 ° C. in a 5% CO 2 environment. As a control, PBS (containing 50 mM imidazole) used for dissolving the CoVHH1 and CoVHH1 dimers was used. Three days after the start of culture, the cytopathic effect (CPE) was measured with a microscope to evaluate the neutralizing activity. The results are shown in Table 2.

Figure 2022022974000002
Figure 2022022974000002

その結果、イミダゾールを添加した場合ではすべてのウェルで細胞変性が認められたのに対し、CoVHH1は4.043μg/wellで中和活性能を示し、CoVHH1二量体は0.8750μg/wellで中和活性能を示すことが明らかとなった。即ち、CoVHH1の中和活性は、多量体化することにより高まることが示された。 As a result, when imidazole was added, cytopathic effect was observed in all wells, whereas CoVHH1 showed neutralizing activity at 4.043 μg / well, and CoVHH1 dimer showed medium at 0.8750 μg / well. It was clarified that it showed a sum-active ability. That is, it was shown that the neutralization activity of CoVHH1 is enhanced by increasing the number of multimers.

実施例6 サンドイッチELISAによるSARS-CoV-2のS1タンパク質の検出
Pierce(商品商標) Nickel Coated Plates、Clear、96-Well(Thermo Fisher Scientific)の各ウェルに100μLの5μg/mL Hisタグ付きCoVHH1を添加し、4℃で一晩静置した。ピペットを用いて丁寧にウェルに吸着しなかったVHH抗体を取り除いた後、200μLの5%スキムミルク/PBST(0.05% Tween 20含有PBS)を添加し、室温で1時間インキュベートした。ピペットを用いて丁寧にブロッキング剤を取り除いた後、200μLのPBSTを添加し、ピペットを用いて丁寧に取り除いた。この洗浄操作は3回行った。VHH抗体を固相化した各ウェルに対して100μLの0~1μg/mL SARS-CoV-2 S1 subunit-Fc(Fcタグ付きS1タンパク質、The Native Antigen Company)/PBSTを添加し、室温で50分間インキュベートした。ピペットを用いて丁寧にFcタグ付きS1タンパク質を取り除いた後、200μLのPBSTを添加し、ピペットを用いて丁寧に取り除いた。この洗浄操作は3回行った。一次抗体にはRabbit Anti-Sheep IgG Fc(Abcam)を用いた。PBSTにより一次抗体を1/5,000に希釈した。各ウェルに100μLの一次抗体を添加し、室温で50分間インキュベートした。ピペットを用いて丁寧に一次抗体を取り除いた後、200μLのPBSTを添加し、ピペットを用いて丁寧に取り除いた。この洗浄操作は3回行った。二次抗体にはGoat Anti-Rabbit IgG H&L(HRP)(abcam)を用いた。PBSTにより二次抗体を1/5,000に希釈した。各ウェルに100μLの二次抗体を添加し、室温で50分間インキュベートした。ピペットを用いて丁寧に二次抗体を取り除いた後、200μLのPBSTを添加し、ピペットを用いて丁寧に取り除いた。この洗浄操作は3回行った。発色基質はOPDタブレット(Thermo Fisher Scientific)をStable Peroxide Substrate Buffer(Thermo Fisher Scientific)で溶解し調製した。各ウェルに100μLの発色基質を添加し、遮光下で30分間インキュベートした後、直ちにMicroplate Reader Infinite M1000 PRO(TECAN)を用いて吸光度450nmを測定した。
Example 6 Detection of S1 Protein of SARS-CoV-2 by Sandwich ELISA Add 100 μL of 5 μg / mL His-tagged CoVH1 to each well of Nickel Coated Plates, Clear, 96-Well (Thermo Fisher Scientific). Then, it was allowed to stand at 4 ° C. overnight. After carefully removing the VHH antibody that was not adsorbed to the wells using a pipette, 200 μL of 5% skim milk / PBST (PBS containing 0.05% Tween 20) was added, and the mixture was incubated at room temperature for 1 hour. After the blocking agent was carefully removed using a pipette, 200 μL of PBST was added and the blocking agent was carefully removed using a pipette. This cleaning operation was performed three times. 100 μL of 0 to 1 μg / mL SARS-CoV-2 S1 subunit-Fc (Fc-tagged S1 protein, The Native Antigen Company) / PBST was added to each well on which the VHH antibody was immobilized, and the mixture was added at room temperature for 50 minutes. Incubated. After carefully removing the Fc-tagged S1 protein using a pipette, 200 μL of PBST was added and carefully removed using a pipette. This cleaning operation was performed three times. Rabbit Anti-Sheep IgG Fc (Abcam) was used as the primary antibody. The primary antibody was diluted to 1 / 5,000 with PBST. 100 μL of primary antibody was added to each well and incubated for 50 minutes at room temperature. After carefully removing the primary antibody using a pipette, 200 μL of PBST was added and carefully removed using a pipette. This cleaning operation was performed three times. Goat Anti-Rabbit IgG H & L (HRP) (abcam) was used as the secondary antibody. The secondary antibody was diluted to 1 / 5,000 with PBST. 100 μL of secondary antibody was added to each well and incubated for 50 minutes at room temperature. After carefully removing the secondary antibody using a pipette, 200 μL of PBST was added and carefully removed using a pipette. This cleaning operation was performed three times. The color-developing substrate was prepared by dissolving an OPD tablet (Thermo Fisher Scientific) in a Table Peroxide Substrate Buffer (Thermo Fisher Scientific). After adding 100 μL of a color-developing substrate to each well and incubating for 30 minutes under shading, the absorbance at 450 nm was immediately measured using a Microplate Reader Infinite M1000 PRO (TECAN).

その結果、CoVHH1をプレートに固相化することにより、SARS-CoV-2のS1タンパク質を検出することが出来ることが明らかになった(図6)。 As a result, it was clarified that the S1 protein of SARS-CoV-2 can be detected by immobilizing CoVHH1 on a plate (FIG. 6).

実施例7 ELISAによるCoVHH1の結合特異性評価
Nunc-Immuno(商標) Plate II(Thermo Fisher Scientific)の各ウェルに100μLの0-10μg/mL コロナウイルスのHisタグ付きS1タンパク質/PBSを添加、シーリング後、4℃で一晩静置した。コロナウイルスのS1タンパク質としては、Human coronavirus HKU1(isolate N1)(HCoV-HKU1)Spike/S1 Protein(S1 Subunit、His Tag)、Human coronavirus(HCoV-NL63)Spike/S1 Protein(S1 Subunit、 His Tag)、Human coronavirus(HCoV-229E)Spike/S1 Protein(S1 Subunit、His Tag)、Human coronavirus(HCoV-OC43)Spike S1 Protein(His Tag)、SARS-CoV-2(2019-nCoV)Spike Protein(S1 Subunit,His Tag)、MERS-CoV Spike/S1 Protein(S1 Subunit、aa 1-725、His Tag)(いずれもSino Biological)、SARS Coronavirus Spike Glycoprotein (S1)、His-Tag (HEK293)(The Native Antigen Company)を用いた。ピペットを用いて丁寧にウェルに吸着しなかったS1タンパク質分散液を取り除いた後、200μLの5%スキムミルク/PBST(0.05% Tween20含有PBS)を添加し、室温で1時間インキュベートした。ピペットを用いて丁寧にスキムミルクを取り除いた後、200μLのPBSTを添加し、ピペットを用いて丁寧に取り除いた。この洗浄操作は3回行った。S1タンパク質を固相化した各ウェルに対して100μLの20μg/mL FLAGタグ付きCoVHH1/PBSTを添加し、室温で1時間インキュベートした。ピペットを用いて丁寧にVHH抗体を取り除いた後、200μLのPBSTを添加し、ピペットを用いて丁寧に取り除いた。この洗浄操作は3回行った。検出抗体にはモノクローナル抗FLAG(登録商標) M2抗体-ペルオキシダーゼ(HRP)標識 マウス宿主抗体(Merck)を用いた。PBSTにより検出抗体を1/5000に希釈した。各ウェルに100μLの検出抗体を添加し、室温で1時間インキュベートした。ピペットを用いて丁寧に検出抗体を取り除いた後、200μLのPBSTを添加し、ピペットを用いて丁寧に取り除いた。この洗浄操作は3回行った。発色基質はOPDタブレット(Thermo Fisher Scientific)をStable Peroxide Substrate Buffer(Thermo Fisher Scientific)で溶解し調製した。各ウェルに100μLの発色基質を添加し、遮光下で30分間インキュベートし、直ちにMicroplate Reader Infinite M1000 PRO(TECAN)を用いて吸光度450nmを測定した。
Example 7 Evaluation of CoVHH1 Binding Specificity by ELISA Add 100 μL of 0-10 μg / mL coronavirus His-tagged S1 protein / PBS to each well of Nunc-Immuno ™ Plate II (Thermo Fisher Scientific) after sealing. It was allowed to stand at 4 ° C. overnight. Examples of the coronavirus S1 protein include Human coronavirus HKU1 (isolate N1) (HCoV-HKU1) Spike / S1 Protein (S1 Subunit, His Tag), Human coronavirus (HCoV-NiS), and Human coronavirus (HCoV-NL63). , Human coronavirus (HCoV-229E) Spike / S1 Protein (S1 Subunit, His Tag), Human coronavirus (HCoV-OC43) Spike S1 Protein (HisTag) -SSA , His Tag), MERS-CoV Spike / S1 Protein (S1 Subunit, aa 1-725, His Tag) (all Sino Biological), SARS Coronavirus Spike / Engine (S1) ) Was used. After carefully removing the S1 protein dispersion that was not adsorbed to the wells using a pipette, 200 μL of 5% skim milk / PBST (PBS containing 0.05% Tween 20) was added, and the mixture was incubated at room temperature for 1 hour. After the skim milk was carefully removed using a pipette, 200 μL of PBST was added and the skim milk was carefully removed using a pipette. This cleaning operation was performed three times. 100 μL of 20 μg / mL FLAG-tagged CoVHH1 / PBST was added to each well on which the S1 protein was immobilized, and the mixture was incubated at room temperature for 1 hour. After carefully removing the VHH antibody using a pipette, 200 μL of PBST was added, and the VHH antibody was carefully removed using a pipette. This cleaning operation was performed three times. Monoclonal anti-FLAG® M2 antibody-peroxidase (HRP) -labeled mouse host antibody (Merck) was used as the detection antibody. The detected antibody was diluted to 1/5000 with PBST. 100 μL of detection antibody was added to each well and incubated for 1 hour at room temperature. After carefully removing the detected antibody using a pipette, 200 μL of PBST was added, and the detection antibody was carefully removed using a pipette. This cleaning operation was performed three times. The color-developing substrate was prepared by dissolving an OPD tablet (Thermo Fisher Scientific) in a Table Peroxide Substrate Buffer (Thermo Fisher Scientific). 100 μL of a chromogenic substrate was added to each well, incubated for 30 minutes under shading, and immediately measured for an absorbance of 450 nm using a Microplate Reader Infinite M1000 PRO (TECAN).

その結果、CoVHH1はSARS-CoV-2のS1タンパク質に対しては結合を示したが、その他のコロナウイルスのS1タンパク質に対する結合は認められなかった(図7)。 As a result, CoVHH1 showed binding to the S1 protein of SARS-CoV-2, but no binding to the S1 protein of other coronaviruses was observed (FIG. 7).

実施例8 バイオレイヤー干渉法による結合活性測定
S1タンパク質に対するCoVHH1の結合活性をより高精度に測定するため、Octet RED 384システム(Fortebio)を用いて、HIS1Kセンサーチップに固相化したCoVHH1のS1タンパク質に対する結合活性を測定した。バッファーにはPBST(0.05% Tween20含有PBS)を用い、反応温度は25℃に設定した。50μLの各反応液は384-well black plate(Fortebio)の各ウェルに入れて測定した。測定条件は以下の通りである。1)Baseline
step:PBST中で30秒間の測定、2)Loading step:PBSTで希釈調製したHisタグ付きCoVHH1でBindingが0.3nmになるように測定、3)Baseline step:PBST中で30秒間の測定、4)Association step:PBSTで希釈し調製した0-245.8nM SARS―CoV―2 (2019-nCoV) Spike S1-Fc Recombinant Proteinで180秒間の測定、5)Dissociation step:PBST中で240秒間の測定。ForteBio Octet analysis software (Date Analysis HT Version 11.1.2.48)を用いて1:1のFittingを行い、結合活性を算出した(図8)。その結果、CoVHH1のS1タンパク質に対する平衡乖離定数(KD)は1.40x10-9M(ka=6.72x10(1/Ms)、kd=9.42x10-4(1/s))であった。
Example 8 Measurement of binding activity by biolayer interferometry In order to measure the binding activity of CoVHH1 to S1 protein with higher accuracy, the S1 protein of CoVHH1 immobilized on the HIS1K sensor chip using the Octet RED 384 system (Fortebio). The binding activity to was measured. PBST (PBS containing 0.05% Tween 20) was used as a buffer, and the reaction temperature was set to 25 ° C. Each 50 μL reaction was measured in each well of a 384-well black plate (Fortebio). The measurement conditions are as follows. 1) Baseline
step: Measurement in PBST for 30 seconds, 2) Loading step: Measurement with His-tagged CoVHH1 diluted with PBST so that binding is 0.3 nm, 3) Baseline step: Measurement in PBST for 30 seconds, 4 ) Association step: Measurement for 180 seconds with 0-245.8 nM SARS-CoV-2 (2019-nCoV) Spike S1-Fc Recombinant Protein diluted with PBST, 5) Measurement step: Measurement for 240 seconds in PBST. 1: 1 Fitting was performed using ForestBio Octet analysis software (Date Analysis HT Version 11.1.2.48) to calculate the binding activity (FIG. 8). As a result, the equilibrium deviation constant (KD) of CoVHH1 with respect to the S1 protein was 1.40x10-9M (ka = 6.72x10 4 (1 / Ms), kd = 9.42x10 -4 (1 / s)). ..

実施例9 表面プラズモン共鳴(SPR)法共鳴法による結合活性の測定
Biacore(商標)T200(Cytiva)を用いてSeries S Sensor Chip NTA(Cytiva)に固相化したHisタグ付きCoVHH1のS1タンパク質に対する結合活性を測定した。Wizard、Kinetics/Affinityのモードで測定した。温度は25℃に設定した。ランニング緩衝液には10mM HEPES、150mM NaCl、50μM EDTA、0.005%(v/v)Tween20(pH 7.4)又は50mM MES、150mM NaCl、50μM EDTA、0.005%(v/v)Tween20(pH 6.5)を用いた。ラン毎の測定順は以下の通りである;1)VHHの固相化:流速を10μL/mLに設定し、0.5mM NiCl2水溶液を60秒間添加し、その後、ランニング緩衝液で希釈したHisタグ付きVHH溶液を60秒間添加することで200RU固定化した。2)結合活性の測定:流速を30μL/mLに設定し、ランニング緩衝液で希釈したSARS-CoV-2(2019-nCoV)Spike S1-Fc Recombinant Protein(Fcタグ付きS1タンパク質、Sino Biological)をAssociation Time180秒間、Dissociation Time400秒間に設定して相互作用させた。3)センサーチップ表面の再生:流速を30μL/mLに設定し、350mM EDTA溶液(pH 8.0)を60秒間添加することで固相化されたHisタグ付きVHHを溶離した。Biacore(商標)T200 Evaluation(ソフトウェアバージョン2.0)(Cytiva)を用いて1:1 binding modelによる解析を行い、結合活性を算出した(図9、図10)。その結果、Hisタグ付きCoVHH1のS1タンパク質に対する平衡乖離定数(KD)はpH7.4で3.77x10-9M(ka=8.87x10(1/Ms)、kd=3.35x10-4(1/s))、pH6.5で4.32x10-12M(ka=6.97x10(1/Ms)、kd=3.01x10-7(1/s))であった。
Example 9 Measurement of binding activity by surface plasmon resonance (SPR) resonance method Binding of His-tagged CoVHH1 to S1 protein immobilized on Series S Sensor Chip NTA (Cytiva) using Biacore ™ T200 (Cytiva). The activity was measured. Measurements were made in Wizard, Kinetics / Efficiency modes. The temperature was set to 25 ° C. Running buffers include 10 mM HEPES, 150 mM NaCl, 50 μM EDTA, 0.005% (v / v) Tween 20 (pH 7.4) or 50 mM MES, 150 mM NaCl, 50 μM EDTA, 0.005% (v / v) Tween 20. (PH 6.5) was used. The measurement order for each run is as follows; 1) VHH solidification: The His tag was set to a flow rate of 10 μL / mL, a 0.5 mM NiCl2 aqueous solution was added for 60 seconds, and then diluted with a running buffer. 200 RU immobilization was performed by adding the attached VHH solution for 60 seconds. 2) Measurement of binding activity: Associated SARS-CoV-2 (2019-nCoV) Spike S1-FcRecombinant Protein (S1 protein with Fc tag, SinoBiological) diluted with running buffer at a flow rate of 30 μL / mL. The interaction was set to Time 180 seconds and Dilution Time 400 seconds. 3) Regeneration of sensor chip surface: The flow rate was set to 30 μL / mL, and 350 mM EDTA solution (pH 8.0) was added for 60 seconds to elute the immobilized His-tagged VHH. Analysis by a 1: 1 binding model was performed using Biacore ™ T200 Assessment (software version 2.0) (Cytiva) to calculate binding activity (FIGS. 9 and 10). As a result, the equilibrium deviation constant (KD) of the His-tagged CoVHH1 with respect to the S1 protein was 3.77x10-9M (ka = 8.87x10 4 (1 / Ms)) at pH 7.4, and kd = 3.35x10 -4 (1). / S)), 4.32x10-12 M (ka = 6.97x10 4 (1 / Ms), kd = 3.01x10-7 (1 / s)) at pH 6.5.

実施例10 CoVHH1及びCoVHH1変異体の合成
CoVHH1(配列番号9)及びCoVHH1変異体(CoVHH1301(配列番号34)、CoVHH319(配列番号35)、CoVHH39(配列番号36)、CoVHH327(配列番号37)、CoVHH47(配列番号38)、CoVHH16(配列番号39)、CoVHH49(配列番号40)、CoVHH58(配列番号41)、CoVHH417(配列番号42)、CoVHH118(配列番号43)、CoVHH416(配列番号44)、CoVHH3342(配列番号45)、CoVHH201(配列番号46)、CoVHH20(配列番号47)、CoVHH112(配列番号48)、CoVHH2017(配列番号49)、CoVHH137(配列番号50)、CoVHH96(配列番号51))のC末端側にELISAのためGGGSHHHHHH(配列番号52)を付与したものを実施例2の方法に従い合成した。それぞれのVHHを合成するための人工合成遺伝子の配列は表3に示す通りである。これら人工合成遺伝子をもとに、実施例2の(2)以降の手順に従って、CoVHH1及びCoVHH1変異体を合成した。その結果、CoVHH118を除く全てのCoVHH1及びCoVHH1変異体が合成されたことが確認された。
Example 10 Synthesis of CoVHH1 and CoVHH1 variants CoVHH1 (SEQ ID NO: 9) and CoVHH1 variants (CoVHH1301 (SEQ ID NO: 34), CoVHH319 (SEQ ID NO: 35), CoVHH39 (SEQ ID NO: 36), CoVHH327 (SEQ ID NO: 37), CoVHH47 (SEQ ID NO: 38), CoVHH16 (SEQ ID NO: 39), CoVHH49 (SEQ ID NO: 40), CoVHH58 (SEQ ID NO: 41), CoVHH417 (SEQ ID NO: 42), CoVHH118 (SEQ ID NO: 43), CoVHH416 (SEQ ID NO: 44), CoVHH3342 (SEQ ID NO: 38). SEQ ID NO: 45), CoVHH201 (SEQ ID NO: 46), CoVHH20 (SEQ ID NO: 47), CoVHH112 (SEQ ID NO: 48), CoVHH2017 (SEQ ID NO: 49), CoVHH137 (SEQ ID NO: 50), CoVHH96 (SEQ ID NO: 51). GGGSHHHHH (SEQ ID NO: 52) was added to the side for ELISA and synthesized according to the method of Example 2. The sequences of artificially synthesized genes for synthesizing each VHH are as shown in Table 3. Based on these artificially synthesized genes, CoVHH1 and CoVHH1 mutants were synthesized according to the procedure from (2) of Example 2. As a result, it was confirmed that all CoVHH1 and CoVHH1 mutants except CoVHH118 were synthesized.

Figure 2022022974000003
Figure 2022022974000003

実施例11 サンドイッチELISAによるCoVHH1変異体の結合活性の評価
Pierce(商品商標) Nickel Coated Plates、Clear、96-Well(Thermo Fisher Scientific)の各ウェルに実施例10にて合成した100μLの5μg/mL Hisタグ付きCoVHH1または各CoVHH1変異体を添加し、4℃で一晩静置した。ピペットを用いて丁寧にウェルに吸着しなかったVHH抗体を取り除いた後、200μLの5%スキムミルク/PBST(0.05% Tween 20含有PBS)を添加し、室温で1時間インキュベートした。ピペットを用いて丁寧にブロッキング剤を取り除いた後、200μLのPBSTを添加し、ピペットを用いて丁寧に取り除いた。この洗浄操作は3回行った。VHH抗体を固相化した各ウェルに対して100μLの0~0.1μg/mL SARS-CoV-2(2019-nCoV)Spike S1-Fc Recombinant Protein(Fcタグ付きS1タンパク質、Sino Biological)/PBSTを添加し、室温で50分間インキュベートした。ピペットを用いて丁寧にFcタグ付きS1タンパク質を取り除いた後、200μLのPBSTを添加し、ピペットを用いて丁寧に取り除いた。この洗浄操作は3回行った。検出抗体にはGoat Anti-Human IgG Fc(HRP)(アブカム)を用いた。PBSTにより一次抗体を1/5,000に希釈した。各ウェルに100μLの検出抗体を添加し、室温で50分間インキュベートした。ピペットを用いて丁寧に検出抗体を取り除いた後、200μLのPBSTを添加し、ピペットを用いて丁寧に取り除いた。この洗浄操作は3回行った。発色基質はOPDタブレット(Thermo Fisher Scientific)をStable Peroxide Substrate Buffer(Thermo Fisher Scientific)で溶解し調製した。各ウェルに100μLの発色基質を添加し、遮光下で20分間インキュベートした後、直ちにMicroplate Reader Infinite M1000 PRO(TECAN)を用いて吸光度450nmを測定した。
Example 11 Evaluation of binding activity of CoVHH1 mutant by sandwich ELISA 100 μL of 5 μg / mL His synthesized in Example 10 in each well of Piece (trademark) Nickel Coated Plates, Clear, 96-Well (Thermo Fisher Scientific). Tagged CoVHH1 or each CoVHH1 variant was added and allowed to stand overnight at 4 ° C. After carefully removing the VHH antibody that was not adsorbed to the wells using a pipette, 200 μL of 5% skim milk / PBST (PBS containing 0.05% Tween 20) was added, and the mixture was incubated at room temperature for 1 hour. After the blocking agent was carefully removed using a pipette, 200 μL of PBST was added and the blocking agent was carefully removed using a pipette. This cleaning operation was performed three times. 100 μL of 0-0.1 μg / mL SARS-CoV-2 (2019-nCoV) Spike S1-Fc Recombinant Protein (S1 protein with Fc tag, SinoBiological) / PBST for each well on which the VHH antibody was immobilized. It was added and incubated for 50 minutes at room temperature. After carefully removing the Fc-tagged S1 protein using a pipette, 200 μL of PBST was added and carefully removed using a pipette. This cleaning operation was performed three times. Goat Anti-Human IgG Fc (HRP) (abcam) was used as the detection antibody. The primary antibody was diluted to 1 / 5,000 with PBST. 100 μL of detection antibody was added to each well and incubated at room temperature for 50 minutes. After carefully removing the detected antibody using a pipette, 200 μL of PBST was added, and the detection antibody was carefully removed using a pipette. This cleaning operation was performed three times. The color-developing substrate was prepared by dissolving an OPD tablet (Thermo Fisher Scientific) in a Table Peroxide Substrate Buffer (Thermo Fisher Scientific). After adding 100 μL of a color-developing substrate to each well and incubating for 20 minutes under shading, the absorbance at 450 nm was immediately measured using a Microplate Reader Infinite M1000 PRO (TECAN).

その結果、スクリーニングにより取得されたCoVHH1変異体のうち、CoVHH1301(配列番号34)、CoVHH319(配列番号35)、CoVHH39(配列番号36)、CoVHH327(配列番号37)、CoVHH47(配列番号38)、CoVHH16(配列番号39)、CoVHH49(配列番号40)、CoVHH58(配列番号41)、CoVHH417(配列番号42)、CoVHH416(配列番号44)、CoVHH3342(配列番号45)、CoVHH20(配列番号47)、CoVHH112(配列番号48)、CoVHH2017(配列番号49)、CoVHH137(配列番号50)について、CoVHH1と同様にSARS―CoV―2のS1タンパク質に対する結合活性があることが確認された(図11)。このことから、cDNAディスプレイ法によるスクリーニングを経て取得されたCoVHH1変異体(CoVHH1のいずれかのCDR領域に1つのアミノ酸変異を持つVHH抗体)はSARS―CoV―2のS1タンパク質に対する結合活性があることが示された。 As a result, among the CoVHH1 variants obtained by screening, CoVHH1301 (SEQ ID NO: 34), CoVHH319 (SEQ ID NO: 35), CoVHH39 (SEQ ID NO: 36), CoVHH327 (SEQ ID NO: 37), CoVHH47 (SEQ ID NO: 38), CoVHH16 (SEQ ID NO: 39), CoVHH49 (SEQ ID NO: 40), CoVHH58 (SEQ ID NO: 41), CoVHH417 (SEQ ID NO: 42), CoVHH416 (SEQ ID NO: 44), CoVHH3342 (SEQ ID NO: 45), CoVHH20 (SEQ ID NO: 47), CoVHH112 (SEQ ID NO: 39). It was confirmed that SEQ ID NO: 48), CoVHH2017 (SEQ ID NO: 49), and CoVHH137 (SEQ ID NO: 50) have the same binding activity of SARS-CoV-2 to the S1 protein as CoVHH1 (FIG. 11). From this, the CoVHH1 mutant (VHH antibody having one amino acid mutation in any of the CDR regions of CoVHH1) obtained through screening by the cDNA display method has a binding activity to the S1 protein of SARS-CoV-2. It has been shown.

Claims (7)

配列番号1で示されるアミノ酸配列又は当該アミノ酸配列において1個のアミノ酸が他のアミノ酸に置換されたアミノ酸配列からなるCDR1と、配列番号2で示されるアミノ酸配列又は当該アミノ酸配列において1個のアミノ酸が他のアミノ酸に置換されたアミノ酸配列からなるCDR2と、配列番号3で示されるアミノ酸配列又は当該アミノ酸配列において1個のアミノ酸が他のアミノ酸に置換されたアミノ酸配列からなるCDR3を含む構造ドメインを1つ以上有するSARS-CoV-2に結合する抗体を被験試料に接触させる工程を含む、試料中のSARS-CoV-2の検出方法。 CDR1 consisting of the amino acid sequence represented by SEQ ID NO: 1 or an amino acid sequence in which one amino acid is replaced with another amino acid in the amino acid sequence, and the amino acid sequence represented by SEQ ID NO: 2 or one amino acid in the amino acid sequence. 1 is a structural domain containing CDR2 consisting of an amino acid sequence substituted with another amino acid and CDR3 consisting of the amino acid sequence represented by SEQ ID NO: 3 or an amino acid sequence in which one amino acid is substituted with another amino acid in the amino acid sequence. A method for detecting SARS-CoV-2 in a sample, which comprises contacting a test sample with one or more antibodies that bind to SARS-CoV-2. 配列番号1で示されるアミノ酸配列又は当該アミノ酸配列において1個のアミノ酸が他のアミノ酸に置換されたアミノ酸配列からなるCDR1と、配列番号2で示されるアミノ酸配列又は当該アミノ酸配列において1個のアミノ酸が他のアミノ酸に置換されたアミノ酸配列からなるCDR2と、配列番号3で示されるアミノ酸配列又は当該アミノ酸配列において1個のアミノ酸が他のアミノ酸に置換されたアミノ酸配列からなるCDR3を含む構造ドメインを1つ以上有するSARS-CoV-2に結合する抗体を含有するSARS-CoV-2検出キット。 CDR1 consisting of the amino acid sequence represented by SEQ ID NO: 1 or an amino acid sequence in which one amino acid is replaced with another amino acid in the amino acid sequence, and the amino acid sequence represented by SEQ ID NO: 2 or one amino acid in the amino acid sequence. 1 is a structural domain containing CDR2 consisting of an amino acid sequence substituted with another amino acid and CDR3 consisting of the amino acid sequence represented by SEQ ID NO: 3 or an amino acid sequence in which one amino acid is substituted with another amino acid in the amino acid sequence. A SARS-CoV-2 detection kit containing an antibody that binds to SARS-CoV-2 having one or more. 配列番号1で示されるアミノ酸配列又は当該アミノ酸配列において1個のアミノ酸が他のアミノ酸に置換されたアミノ酸配列からなるCDR1と、配列番号2で示されるアミノ酸配列又は当該アミノ酸配列において1個のアミノ酸が他のアミノ酸に置換されたアミノ酸配列からなるCDR2と、配列番号3で示されるアミノ酸配列又は当該アミノ酸配列において1個のアミノ酸が他のアミノ酸に置換されたアミノ酸配列からなるCDR3を含む構造ドメインを1つ以上有するSARS-CoV-2に結合する抗体を含有する医薬。 CDR1 consisting of the amino acid sequence represented by SEQ ID NO: 1 or an amino acid sequence in which one amino acid is replaced with another amino acid in the amino acid sequence, and the amino acid sequence represented by SEQ ID NO: 2 or one amino acid in the amino acid sequence. 1 is a structural domain containing CDR2 consisting of an amino acid sequence substituted with another amino acid and CDR3 consisting of the amino acid sequence represented by SEQ ID NO: 3 or an amino acid sequence in which one amino acid is substituted with another amino acid in the amino acid sequence. A drug containing an antibody that binds to SARS-CoV-2 having one or more. SARS-CoV-2感染症の予防又は治療のための請求項3記載の医薬。 The medicine according to claim 3 for the prevention or treatment of SARS-CoV-2 infection. 抗体が、VHH抗体、重鎖抗体又はVHH抗体多量体である、請求項1記載の方法、請求項2記載のキット、又は請求項3若しくは4記載の医薬。 The method according to claim 1, the kit according to claim 2, or the pharmaceutical agent according to claim 3 or 4, wherein the antibody is a VHH antibody, a heavy chain antibody, or a VHH antibody multimer. VHH抗体多量体が、前記構造ドメインを複数連結した多量体である、請求項5記載の方法、キット又は医薬。 The method, kit or pharmaceutical according to claim 5, wherein the VHH antibody multimer is a multimer in which a plurality of the structural domains are linked. VHH抗体多量体が、前記構造ドメインの1又は複数と、該構造ドメインとは抗原特異性の異なる構造ドメインの1又は複数を連結した多量体である、請求項5記載の方法、キット又は医薬。
The method, kit or pharmaceutical according to claim 5, wherein the VHH antibody multimer is a multimer in which one or more of the structural domains and one or a plurality of structural domains having different antigen specificities from the structural domains are linked.
JP2021076810A 2020-05-01 2021-04-28 Medicines and test kits using anti-SARS-CoV-2 antibodies Active JP7174961B2 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2020081543 2020-05-01
JP2020081543 2020-05-01
JP2020115153 2020-07-02
JP2020115153 2020-07-02
JP2020193808 2020-11-20
JP2020193808 2020-11-20

Publications (2)

Publication Number Publication Date
JP2022022974A true JP2022022974A (en) 2022-02-07
JP7174961B2 JP7174961B2 (en) 2022-11-18

Family

ID=78332011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021076810A Active JP7174961B2 (en) 2020-05-01 2021-04-28 Medicines and test kits using anti-SARS-CoV-2 antibodies

Country Status (3)

Country Link
JP (1) JP7174961B2 (en)
TW (1) TW202146899A (en)
WO (1) WO2021221137A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008505050A (en) * 2003-12-10 2008-02-21 エイジェンシー フォア サイエンス テクノロジー アンド リサーチ SARS coronavirus S protein and use thereof
JP2008529504A (en) * 2005-02-08 2008-08-07 ニューヨーク ブラッド センター Neutralizing monoclonal antibody against severe acute respiratory syndrome-related coronavirus

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3950959B1 (en) * 2020-03-24 2023-10-25 DRK-Blutspendedienst Baden-Württemberg - Hessen gemeinnützige GmbH Detection of sars-cov-2 in a plurality of biological samples

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008505050A (en) * 2003-12-10 2008-02-21 エイジェンシー フォア サイエンス テクノロジー アンド リサーチ SARS coronavirus S protein and use thereof
JP2008529504A (en) * 2005-02-08 2008-08-07 ニューヨーク ブラッド センター Neutralizing monoclonal antibody against severe acute respiratory syndrome-related coronavirus

Also Published As

Publication number Publication date
WO2021221137A1 (en) 2021-11-04
JP7174961B2 (en) 2022-11-18
TW202146899A (en) 2021-12-16

Similar Documents

Publication Publication Date Title
CA2857998C (en) Multiplex immuno screening assay
WO2021244089A1 (en) Sars-cov-2 spike protein binding molecule and application thereof
JP5998222B2 (en) Binding molecule with neutralizing activity of influenza A virus produced in human B cells
Gao et al. Designing a soluble near full-length HIV-1 gp41 trimer
Bailey et al. Applications for an engineered Protein-G variant with a pH controllable affinity to antibody fragments
US20230176057A1 (en) Detection assay for sars-cov-2 virus
WO2022061594A1 (en) Sars-cov-2 spike protein binding molecule and use thereof
CN113087792B (en) Canine distemper virus nano antibody and application thereof
WO2022181550A1 (en) Anti-sars-cov-2 antibody
JP7038367B2 (en) Anti-SARS-CoV-2 antibody
WO2021221137A1 (en) Medicine and test kit each using anti-sars-cov-2 antibody
JP7414225B2 (en) SARS-CoV-2 binding peptide
TW202204381A (en) Recombinant antibodies, kits comprising the same, and uses thereof
CN108699551B (en) Polypeptide libraries
WO2023199955A1 (en) Anti-sars-cov-2 antibody
TWI820716B (en) Recombinant antibodies, kits comprising the same, and uses thereof in diagnosing influenza virus
JP2023156197A (en) SARS-CoV-2 binding peptide
Liu et al. Isolating multiple formats of human monoclonal neutralizing antibodies against SARS-CoV-2 by in vitro site-directed antibody screening
CN116547004A (en) SARS-CoV-2 binding peptides
Pagneux et al. Neutralization of SARS-CoV-2 and Intranasal Protection of Mice with a nanoCLAMP Antibody Mimetic
CN116987183A (en) Neutralizing antibodies against respiratory syncytial virus and uses thereof
WO2023224618A1 (en) Recombinant antibodies, kits comprising the same, and uses thereof in diagnosing influenza virus
CN117430696A (en) Recombinant system for expressing Fab fragment library
Liu et al. Isolating multiple formats of human monoclonal neutralizing antibodies against

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210513

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210812

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211221

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20211221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220404

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220809

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20220809

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20220824

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20220830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221028

R150 Certificate of patent or registration of utility model

Ref document number: 7174961

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150