JP2022021826A - Distance measuring device - Google Patents

Distance measuring device Download PDF

Info

Publication number
JP2022021826A
JP2022021826A JP2020125659A JP2020125659A JP2022021826A JP 2022021826 A JP2022021826 A JP 2022021826A JP 2020125659 A JP2020125659 A JP 2020125659A JP 2020125659 A JP2020125659 A JP 2020125659A JP 2022021826 A JP2022021826 A JP 2022021826A
Authority
JP
Japan
Prior art keywords
ranging
distance measuring
unit
distance
laser beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020125659A
Other languages
Japanese (ja)
Other versions
JP2022021826A5 (en
Inventor
貴祥 藤澤
Takayoshi Fujisawa
文明 水野
Fumiaki Mizuno
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2020125659A priority Critical patent/JP2022021826A/en
Priority to CN202180049962.4A priority patent/CN115885192A/en
Priority to PCT/JP2021/026134 priority patent/WO2022019164A1/en
Publication of JP2022021826A publication Critical patent/JP2022021826A/en
Publication of JP2022021826A5 publication Critical patent/JP2022021826A5/ja
Priority to US18/156,289 priority patent/US20230152468A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/87Combinations of systems using electromagnetic waves other than radio waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • G01S17/931Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/10Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/42Simultaneous measurement of distance and other co-ordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4814Constructional features, e.g. arrangements of optical elements of transmitters alone
    • G01S7/4815Constructional features, e.g. arrangements of optical elements of transmitters alone using multiple transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4817Constructional features, e.g. arrangements of optical elements relating to scanning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/497Means for monitoring or calibrating

Abstract

To provide a technique that prevents a plurality of distance measuring units of which measurement regions are partially overlapped with each other to make a wrong measurement of a distance to an object.SOLUTION: A control unit controls the timing t when a distance measuring unit 10B starts scanning a laser beam to the timing when a distance measuring unit 10A starts scanning a laser beam, to be in the range of -Φ≤t≤β. Φ denotes a period of time necessary to move by rotation by the angle formed by a start direction SA of scanning the laser beam by the distance measuring unit 10A and a start direction SB of scanning the laser beam by the distance measuring unit 10B at a predetermined distance measuring rate. β denotes a non-measurement period of time of the distance measuring unit 10B.SELECTED DRAWING: Figure 11

Description

本開示は、測距装置に関する。 The present disclosure relates to a distance measuring device.

レーザ光の反射光に基づいて物体との距離を測定するライダ装置が知られている。ライダ装置は、偏向部材を回転又は揺動させることにより、照射するレーザ光の照射方位を変化させて所定の測距領域内でレーザ光を走査し、照射方位と同一の方位から受光される反射光に基づいて照射方位に存在する物体との距離を測定する、測距処理を実行する。 A rider device that measures a distance to an object based on the reflected light of a laser beam is known. The rider device changes the irradiation direction of the laser light to be irradiated by rotating or swinging the deflection member, scans the laser light within a predetermined ranging region, and reflects light received from the same direction as the irradiation direction. Performs distance measurement processing that measures the distance to an object existing in the irradiation direction based on light.

特許文献1には、車両にライダ装置を搭載し、車両の周辺に存在する物体までの距離を測定する技術が記載されている。 Patent Document 1 describes a technique of mounting a rider device on a vehicle and measuring the distance to an object existing around the vehicle.

米国特許出願公開第2019/0011544号明細書U.S. Patent Application Publication No. 2019/0011544

測距処理を実行する測距部を、測距領域の一部が互いに重複するように複数配置することで、広い範囲において物体を漏れなく検出可能とすることが考えられる。
しかしながら、発明者による詳細な検討の結果、複数の測距部のうちの1つにより照射されたレーザ光が、測距領域の重複する部分に存在する物体で反射され、別の測距部で受光されると、物体との距離が誤って測定される場合があるという課題が見出された。
It is conceivable that by arranging a plurality of ranging units for executing the ranging process so that a part of the ranging area overlaps with each other, it is possible to detect an object in a wide range without omission.
However, as a result of detailed examination by the inventor, the laser beam emitted by one of the plurality of distance measuring units is reflected by an object existing in the overlapping portion of the distance measuring region, and is reflected by another distance measuring unit. A problem has been found in which the distance to an object may be erroneously measured when light is received.

本開示の一局面は、測距領域の一部が互いに重複する複数の測距部により物体との距離が誤って測定されることを抑制する技術を提供する。 One aspect of the present disclosure provides a technique for suppressing erroneous measurement of the distance to an object by a plurality of ranging units in which a part of the ranging area overlaps with each other.

本開示の一態様は、測距装置であって、複数の測距部(10A,10B,10F,10L,10R)と、制御部(20)と、を備える。制御部は、複数の測距部を制御するように構成される。複数の測距部のそれぞれは、レーザ光を偏向する偏向部材を備え、偏向部材を回転又は揺動させることにより、照射するレーザ光の照射方位を変化させて所定の測距領域内でレーザ光を走査し、照射方位と同一の方位から受光される反射光に基づいて照射方位に存在する物体との距離を測定する、測距処理を実行可能に構成される。複数の測距部は、測距領域の一部が互いに重複する第1の測距部及び第2の測距部を備える。制御部は、第1の測距部により照射されるレーザ光が通る領域である第1の通過領域と第2の測距部により照射されるレーザ光が通る領域である第2の通過領域とが測距領域内で干渉しないように、第1の測距部による測距処理と第2の測距部による測距処理とを並行して実行させる。 One aspect of the present disclosure is a distance measuring device, which includes a plurality of distance measuring units (10A, 10B, 10F, 10L, 10R) and a control unit (20). The control unit is configured to control a plurality of distance measuring units. Each of the plurality of ranging units is provided with a deflecting member that deflects the laser beam, and by rotating or swinging the deflecting member, the irradiation direction of the irradiated laser beam is changed and the laser beam is emitted within a predetermined ranging area. Is configured to be capable of performing distance measurement processing, which measures the distance to an object existing in the irradiation direction based on the reflected light received from the same direction as the irradiation direction. The plurality of ranging units include a first ranging unit and a second ranging unit in which a part of the ranging area overlaps with each other. The control unit includes a first passing region, which is a region through which the laser light emitted by the first ranging unit passes, and a second passing region, which is a region through which the laser light emitted by the second ranging unit passes. The range-finding process by the first range-finding unit and the range-finding process by the second range-finding unit are executed in parallel so that the light does not interfere with each other in the range-finding area.

このような構成によれば、測距領域の一部が互いに重複する複数の測距部により物体との距離が誤って測定されることを抑制することができる。 According to such a configuration, it is possible to prevent the distance to the object from being erroneously measured by a plurality of ranging units in which a part of the ranging area overlaps with each other.

車両における測距部の配置を示す図である。It is a figure which shows the arrangement of the distance measuring part in a vehicle. 測距装置の構成を示すブロック図である。It is a block diagram which shows the structure of a distance measuring device. 測距部の構成を模式的に示す斜視図である。It is a perspective view which shows the structure of the distance measuring part schematically. 偏向部材の回転角度の周期的な変化を示す図である。It is a figure which shows the periodic change of the rotation angle of a deflection member. 偏向部材の回転移動方向を示す図である。It is a figure which shows the rotational movement direction of a deflection member. 複数の測距部により照射されるレーザ光の通過領域が測距領域内で干渉している状態を示す図である。It is a figure which shows the state which the passing area of the laser beam irradiated by a plurality of distance measuring parts interferes in a distance measuring area. 複数の測距部により照射されるレーザ光の通過領域が干渉する領域内に物体境界面が存在した状態を示す図である。It is a figure which shows the state which the object boundary surface exists in the region which interferes with the passing region of the laser beam which is radiated by a plurality of ranging parts. 他の測距部により照射されたレーザ光の反射光を受光した状態を示す図である。It is a figure which shows the state which received the reflected light of the laser beam which was radiated by another ranging part. 2つの測距部の測距領域を示す図である。It is a figure which shows the ranging area of two ranging parts. 2つの測距部の配置関係に応じた開始タイミングの条件を示す図である。It is a figure which shows the condition of the start timing according to the arrangement relation of two distance measuring parts. 第1の配置例における各測距部の配置関係を示す図である。It is a figure which shows the arrangement relation of each distance measuring part in the 1st arrangement example. 第1の配置例における各測距部の偏向部材の回転角度の変化を示す図である。It is a figure which shows the change of the rotation angle of the deflection member of each distance measuring part in the 1st arrangement example. 第1の配置例の他の例における各測距部の偏向部材の回転角度の変化を示す図である。It is a figure which shows the change of the rotation angle of the deflection member of each distance measuring part in the other example of the 1st arrangement example. 第2の配置例における各測距部の配置関係を示す図である。It is a figure which shows the arrangement relation of each distance measuring part in the 2nd arrangement example. 第2の配置例における各測距部の偏向部材の回転角度の変化を示す図である。It is a figure which shows the change of the rotation angle of the deflection member of each distance measuring part in the 2nd arrangement example. 第3の配置例における各測距部の配置関係を示す図である。It is a figure which shows the arrangement relation of each distance measuring part in the 3rd arrangement example. 第3の配置例における各測距部の偏向部材の回転角度の変化を示す図である。It is a figure which shows the change of the rotation angle of the deflection member of each distance measuring part in the 3rd arrangement example. 第3の配置例の他の例における各測距部の配置関係を示す図である。It is a figure which shows the arrangement relation of each distance measuring part in the other example of the 3rd arrangement example. 第3の配置例の他の例における各測距部の偏向部材の回転角度の変化を示す図である。It is a figure which shows the change of the rotation angle of the deflection member of each distance measuring part in the other example of the 3rd arrangement example. 第4の配置例における各測距部の配置関係を示す図である。It is a figure which shows the arrangement relation of each distance measuring part in 4th arrangement example. 第4の配置例における各測距部の偏向部材の回転角度の変化を示す図である。It is a figure which shows the change of the rotation angle of the deflection member of each distance measuring part in 4th arrangement example. 第4の配置例の他の例における各測距部の配置関係を示す図である。It is a figure which shows the arrangement relation of each distance measuring part in the other example of the 4th arrangement example. 第4の配置例の他の例における各測距部の偏向部材の回転角度の変化を示す図である。It is a figure which shows the change of the rotation angle of the deflection member of each distance measuring part in the other example of the 4th arrangement example. 第5の配置例における各測距部の配置関係を示す図である。It is a figure which shows the arrangement relation of each distance measuring part in the 5th arrangement example. 第5の配置例における各測距部の偏向部材の回転角度の変化を示す図である。It is a figure which shows the change of the rotation angle of the deflection member of each distance measuring part in the 5th arrangement example. 第6の配置例における各測距部の配置関係を示す図である。It is a figure which shows the arrangement relation of each distance measuring part in 6th arrangement example. 第6の配置例における各測距部の偏向部材の回転角度の変化を示す図である。It is a figure which shows the change of the rotation angle of the deflection member of each distance measuring part in 6th arrangement example. 第6の配置例の他の例における各測距部の配置関係を示す図である。It is a figure which shows the arrangement relation of each distance measuring part in the other example of the 6th arrangement example. 第6の配置例の他の例における各測距部の偏向部材の回転角度の変化を示す図である。It is a figure which shows the change of the rotation angle of the deflection member of each distance measuring part in the other example of the 6th arrangement example. 複数の測距部の走査タイミングを分散しない場合における電流の変化を示す図である。It is a figure which shows the change of the current when the scanning timing of a plurality of ranging parts is not dispersed. 複数の測距部の走査タイミングを分散した場合における電流の変化を示す図である。It is a figure which shows the change of the current when the scanning timing of a plurality of ranging parts is dispersed. 第2実施形態における各測距部の偏向部材の回転角度の変化を示す図である。It is a figure which shows the change of the rotation angle of the deflection member of each distance measuring part in 2nd Embodiment. 各測距部が偏向部材の回転軸の方向に沿って並んで配置された状態を示す図である。It is a figure which shows the state which each distance measuring part is arranged side by side along the direction of the rotation axis of a deflection member. 波形が正弦波の場合における各測距部の偏向部材の回転角度の変化を示す図である。It is a figure which shows the change of the rotation angle of the deflection member of each distance measuring part when the waveform is a sine wave. 波形の種類が互いに異なる場合における各測距部の偏向部材の回転角度の変化を示す図である。It is a figure which shows the change of the rotation angle of the deflection member of each distance measuring part when the type of a waveform is different from each other. 回転移動に周期性が無い場合における各測距部の偏向部材の回転角度の変化を示す図である。It is a figure which shows the change of the rotation angle of the deflection member of each distance measuring part when there is no periodicity in rotation movement.

以下、本開示の例示的な実施形態について図面を参照しながら説明する。
[1.第1実施形態]
[1-1.全体構成]
図1及び図2に示すように、本実施形態の測距装置1は、車両100に搭載され、車両100の周辺における前方側に存在する物体との距離を測定する装置である。測距装置1は、3つの測距部、具体的には、右測距部10R、前測距部10F及び左測距部10Lと、制御部20と、を備える。
Hereinafter, exemplary embodiments of the present disclosure will be described with reference to the drawings.
[1. First Embodiment]
[1-1. overall structure]
As shown in FIGS. 1 and 2, the distance measuring device 1 of the present embodiment is a device mounted on the vehicle 100 and measuring the distance to an object existing on the front side in the vicinity of the vehicle 100. The ranging device 1 includes three ranging units, specifically, a right ranging unit 10R, a front ranging unit 10F, a left ranging unit 10L, and a control unit 20.

右測距部10R、前測距部10F及び左測距部10Lのそれぞれは、後述する偏向部材13を回転又は揺動させることにより、照射するレーザ光の照射方位を変化させて所定の測距領域内でレーザ光を走査し、照射方位と同一の方位から受光される反射光に基づいて照射方位に存在する物体との距離を測定する、測距処理を実行可能に構成される。 Each of the right ranging unit 10R, the front ranging unit 10F, and the left ranging unit 10L changes the irradiation direction of the laser beam to be irradiated by rotating or swinging the deflection member 13, which will be described later, to perform predetermined ranging. It is configured to be capable of performing ranging processing, which scans the laser beam in the region and measures the distance to an object existing in the irradiation direction based on the reflected light received from the same direction as the irradiation direction.

測距領域とは、設計上定められている物体を検出する範囲であり、例えば、測距期間においてレーザ光が走査される角度範囲と、物体の検出を許容する最長距離と、により特定される。 The range-finding area is a range for detecting an object defined by design, and is specified by, for example, an angle range in which the laser beam is scanned during the range-finding period and the longest distance that allows the detection of the object. ..

右測距部10Rは、車両100の右前方の測距領域内でレーザ光を走査するように構成される。前測距部10Fは、車両100の前方の測距領域内でレーザ光を走査するように構成される。左測距部10Lは、車両100の左前方の測距領域内でレーザ光を走査するように構成される。各測距部は、隣に配置される他の測距部と測距領域の一部が互いに重複するように配置される。本実施形態では、右測距部10R及び左測距部10Lは、それぞれ前測距部10Fと測距領域の一部が互いに重複するように配置される。 The right ranging unit 10R is configured to scan the laser beam within the ranging region on the right front side of the vehicle 100. The front ranging unit 10F is configured to scan the laser beam within the ranging region in front of the vehicle 100. The left ranging unit 10L is configured to scan the laser beam in the ranging region on the left front side of the vehicle 100. Each ranging unit is arranged so that a part of the ranging area overlaps with other ranging units arranged adjacent to each other. In the present embodiment, the right ranging unit 10R and the left ranging unit 10L are arranged so that the front ranging unit 10F and a part of the ranging region overlap each other.

[1-2.測距部の構成]
右測距部10R、前測距部10F及び左測距部10Lは、基本的な構成が共通している。各測距部の構成を、図3を用いて説明する。
[1-2. Configuration of distance measuring unit]
The right ranging unit 10R, the front ranging unit 10F, and the left ranging unit 10L have the same basic configuration. The configuration of each ranging unit will be described with reference to FIG.

各測距部は、投光部11と、駆動部12と、偏向部材13と、受光部14と、を備える。
投光部11は、レーザ光を照射するための光源である。本実施形態のレーザ光はパルス状のレーザ光である。投光部11は、制御部20からの指示に従い、偏向部材13へレーザ光を照射するように構成される。
Each ranging unit includes a light projecting unit 11, a driving unit 12, a deflection member 13, and a light receiving unit 14.
The light projecting unit 11 is a light source for irradiating a laser beam. The laser beam of this embodiment is a pulsed laser beam. The light projecting unit 11 is configured to irradiate the deflection member 13 with a laser beam according to an instruction from the control unit 20.

駆動部12は、偏向部材13を回転又は揺動させるためのアクチュエータである。駆動部12は、棒状の軸部材12aを備え、軸部材12aを回転又は揺動させる。本実施形態では、駆動部12は、軸部材12aを揺動させるモータである。軸部材12aの、回転タイミング、回転移動方向及び角速度は、制御部20により制御される。 The drive unit 12 is an actuator for rotating or swinging the deflection member 13. The drive unit 12 includes a rod-shaped shaft member 12a, and rotates or swings the shaft member 12a. In the present embodiment, the drive unit 12 is a motor that swings the shaft member 12a. The rotation timing, rotation movement direction, and angular velocity of the shaft member 12a are controlled by the control unit 20.

偏向部材13は、レーザ光を偏向するための偏向部材である。本実施形態では、偏向部材13は、ミラーである。偏向部材13は、駆動部12の軸部材12aに固定され、軸部材12aと共に揺動する。偏向部材13が揺動することにより、投光部11の照射したレーザ光が偏向部材13によりその回転角度に応じた方向へ偏向され、測距領域内で走査される。また、走査されたレーザ光が測距領域に存在する物体で反射した反射光が、偏向部材13によりその回転角度に応じた方向へ偏向され、受光部14で受光される。 The deflection member 13 is a deflection member for deflecting the laser beam. In this embodiment, the deflection member 13 is a mirror. The deflection member 13 is fixed to the shaft member 12a of the drive unit 12 and swings together with the shaft member 12a. When the deflection member 13 swings, the laser beam emitted by the light projecting unit 11 is deflected by the deflection member 13 in a direction corresponding to the rotation angle thereof, and is scanned in the ranging region. Further, the reflected light reflected by the object existing in the distance measuring region of the scanned laser light is deflected in the direction corresponding to the rotation angle by the deflection member 13, and is received by the light receiving unit 14.

受光部14は、レーザ光を受光するためのセンサである。受光部14は、偏向部材13が走査したレーザ光の照射方位と同一の方位から受光される反射光が、偏向部材13により偏向されて入射する位置に設けられる。受光部14は、受光したレーザ光を電気信号に変換して制御部20へ出力する。 The light receiving unit 14 is a sensor for receiving laser light. The light receiving unit 14 is provided at a position where the reflected light received from the same direction as the irradiation direction of the laser light scanned by the deflection member 13 is deflected by the deflection member 13 and incident. The light receiving unit 14 converts the received laser light into an electric signal and outputs it to the control unit 20.

[1-3.制御部の構成]
図2に示す制御部20は、図示しないCPU、ROM及びRAMを備えた周知のマイクロコンピュータを中心に構成された電子制御装置である。CPUは、非遷移的実体的記録媒体であるROMに格納されたプログラムを実行する。当該プログラムが実行されることで、当該プログラムに対応する方法が実行される。なお、制御部20は、1つのマイクロコンピュータを備えてもよいし、複数のマイクロコンピュータを備えてもよい。また、制御部20の機能を実現する手法はソフトウェアに限るものではなく、その一部又は全部の機能は、一つあるいは複数のハードウェアを用いて実現されてもよい。例えば、上記機能がハードウェアである電子回路によって実現される場合、その電子回路は、デジタル回路、又はアナログ回路、あるいはこれらの組合せによって実現されてもよい。
[1-3. Control unit configuration]
The control unit 20 shown in FIG. 2 is an electronic control device mainly composed of a well-known microcomputer provided with a CPU, ROM, and RAM (not shown). The CPU executes a program stored in ROM, which is a non-transitional substantive recording medium. When the program is executed, the method corresponding to the program is executed. The control unit 20 may include one microcomputer or a plurality of microcomputers. Further, the method for realizing the functions of the control unit 20 is not limited to software, and some or all of the functions may be realized by using one or a plurality of hardware. For example, when the above function is realized by an electronic circuit which is hardware, the electronic circuit may be realized by a digital circuit, an analog circuit, or a combination thereof.

制御部20は、右測距部10R、前測距部10F及び左測距部10Lを制御し、車両100の周辺に存在する物体との距離を測定する。図4において、横軸は時間を示し、縦軸は偏向部材13の揺動の角度範囲の中心を0とした偏向部材13の回転角度を示す。偏向部材13が揺動する周期は、測距部による距離の測定が行われる周期である。以下では、距離の測定が行われる周期を測距周期ともいう。また、測距周期における距離の測定が行われる期間を測距期間ともいい、距離の測定が行われない期間を非測距期間ともいう。本実施形態では、測距周期における測距期間の割合を高くするため、非測距期間における偏向部材13の角速度が測距期間における偏向部材13の角速度よりも速くなるように測距部が制御される。測距期間における偏向部材13の角速度を測距角速度ともいう。図5には、測距期間における偏向部材13の回転移動方向R1、及び、非測距期間における偏向部材13の回転移動方向R2が、それぞれ矢印で示される。図5の例では、測距部がレーザ光を走査する方向は、図5において左から右へ向かう方向である。本実施形態では、説明が複雑になることを避けるため、偏向部材13が回転移動方向R1に回転している期間全体を測距期間とする。以下では、測距部がレーザ光を走査する方向を走査方向ともいう。 The control unit 20 controls the right range-finding unit 10R, the front range-finding unit 10F, and the left range-finding unit 10L, and measures the distance to an object existing around the vehicle 100. In FIG. 4, the horizontal axis indicates time, and the vertical axis indicates the rotation angle of the deflection member 13 with the center of the swing angle range of the deflection member 13 as 0. The period in which the deflection member 13 swings is the period in which the distance is measured by the distance measuring unit. Hereinafter, the cycle in which the distance is measured is also referred to as a distance measurement cycle. Further, the period in which the distance is measured in the distance measurement cycle is also referred to as a distance measurement period, and the period in which the distance is not measured is also referred to as a non-distance measurement period. In the present embodiment, in order to increase the ratio of the ranging period in the ranging cycle, the ranging unit controls the angular velocity of the deflection member 13 in the non-ranging period to be faster than the angular velocity of the deflection member 13 in the ranging period. Will be done. The angular velocity of the deflection member 13 during the ranging period is also referred to as the ranging angular velocity. In FIG. 5, the rotational movement direction R1 of the deflection member 13 during the ranging period and the rotational movement direction R2 of the deflection member 13 during the non-distance measuring period are indicated by arrows. In the example of FIG. 5, the direction in which the ranging unit scans the laser beam is the direction from left to right in FIG. In the present embodiment, in order to avoid complicating the explanation, the entire period during which the deflection member 13 is rotating in the rotational movement direction R1 is defined as the distance measuring period. Hereinafter, the direction in which the distance measuring unit scans the laser beam is also referred to as a scanning direction.

本実施形態において、制御部20は、走査方向、測距周期及び測距角速度がそれぞれ同じになるように、各測距部による測距処理を実行させる。すなわち、各測距部による測距処理は、一定の方向へ所定の角速度で周期的にレーザ光が走査されるように実行される。具体的には、偏向部材13は一定の周期で揺動し、偏向部材13が一定の方向へ回転移動する期間において、投光部11から偏向部材13へレーザ光が照射される。言い換えると、偏向部材13が一定の方向とは反対の方向へ回転移動する期間は、投光部11から偏向部材13へレーザ光が照射されない。 In the present embodiment, the control unit 20 executes distance measurement processing by each distance measurement unit so that the scanning direction, the distance measurement cycle, and the distance measurement angular velocity are the same. That is, the distance measuring process by each distance measuring unit is executed so that the laser beam is periodically scanned in a certain direction at a predetermined angular velocity. Specifically, the deflection member 13 swings at a constant cycle, and the laser beam is irradiated from the light projecting unit 11 to the deflection member 13 during a period in which the deflection member 13 rotates and moves in a certain direction. In other words, the laser beam is not emitted from the light projecting unit 11 to the deflection member 13 during the period in which the deflection member 13 rotates and moves in a direction opposite to a certain direction.

[1-4.測距領域の重複に起因する誤測定を抑制するための構成]
上述のように、各測距部は、それぞれ測距領域の一部が互いに重複するように配置される。これは、死角となる領域を無くし、物体を漏れなく検出可能とするためである。しかしながら、このような構成では、複数の測距部のうちの1つにより照射されたレーザ光が、測距領域の重複する部分に存在する物体で反射され、別の測距部で受光されることにより、物体との距離が誤って測定される場合がある。
[1-4. Configuration to suppress erroneous measurement due to overlapping ranging areas]
As described above, each ranging unit is arranged so that a part of the ranging area overlaps with each other. This is to eliminate the blind spot area and enable the detection of an object without omission. However, in such a configuration, the laser beam emitted by one of the plurality of distance measuring units is reflected by an object existing in the overlapping portion of the distance measuring region and received by another distance measuring unit. As a result, the distance to the object may be measured incorrectly.

本発明者は、次の3つの条件が重なった場合に誤測距が発生することを見出した。
第1の条件:図1に例示されるように、複数の測距部の測距領域の少なくとも一部が互
いに重複すること。
The present inventor has found that erroneous distance measurement occurs when the following three conditions are met.
First condition: As illustrated in FIG. 1, at least a part of the ranging area of a plurality of ranging units overlaps with each other.

第2の条件:複数の測距部により照射されるレーザ光の通過領域が測距領域内で干渉すること。図6に示す例では、右測距部10Rにより照射されるレーザ光の通過領域と前測距部10Fにより照射されるレーザ光の通過領域とが図示しない測距領域内で干渉している。 Second condition: The passing region of the laser beam emitted by a plurality of ranging units interferes within the ranging region. In the example shown in FIG. 6, the passing region of the laser beam emitted by the right ranging unit 10R and the passing region of the laser beam irradiated by the front ranging unit 10F interfere with each other in the ranging region (not shown).

第3の条件:照射されるレーザ光の通過領域の干渉する領域内に物体境界面が存在すること。図7に示す例では、右測距部10Rにより照射されるレーザ光の通過領域と前測距部10Fにより照射されるレーザ光の通過領域とが干渉する領域内に物体境界面Cが存在する。図7において、レーザ光の通過領域は簡易的に直線で図示されている。 Third condition: The object boundary surface is present in the interfering region of the passing region of the irradiated laser beam. In the example shown in FIG. 7, the object boundary surface C exists in the region where the passing region of the laser beam irradiated by the right ranging unit 10R and the passing region of the laser beam irradiated by the front ranging unit 10F interfere with each other. .. In FIG. 7, the passing region of the laser beam is simply shown as a straight line.

測距部により照射されるレーザ光の通過領域とは、レーザ光の照射方位に沿って延びる領域であって、レーザ光が照射された場合にレーザ光が通る領域、つまり、レーザ光と同じ幅を有する領域である。例えばパルス状のレーザ光が照射される場合、パルス波のオン期間だけでなくオフ期間においても当該領域は特定される。 The passing region of the laser beam irradiated by the ranging unit is a region extending along the irradiation direction of the laser beam, and is a region through which the laser beam passes when the laser beam is irradiated, that is, the same width as the laser beam. It is an area having. For example, when a pulsed laser beam is irradiated, the region is specified not only in the on period of the pulse wave but also in the off period.

上記3つの条件が重なった場合、複数の測距部のうちの1つにより照射されたレーザ光が、測距領域の重複する部分に存在する物体で反射されると、別の測距部で受光される場合がある。例えば、図8は、右測距部10Rにより受光されるレーザ光の受光波形を示している。図8において、横軸は前測距部10Fがレーザ光を照射したタイミングを0とした時間を示し、縦軸は受光した反射光の強度を示す。この例では、前測距部10Fは、右測距部10Rにより照射されたレーザ光の反射光を先に受光しているため、前測距部10Fにより照射されたレーザ光の反射光の受光波形Wよりも前に右測距部10Rにより照射されたレーザ光の反射光の受光波形Wが検出されている。物体との距離は、レーザ光が照射されたタイミングと反射光が受光されたタイミングとの差により測定されるため、この場合、前測距部10Fは物体との距離を実際よりも短く誤測距してしまう。 When the above three conditions are overlapped, when the laser beam emitted by one of the plurality of distance measuring units is reflected by an object existing in the overlapping portion of the distance measuring region, the other measuring unit is used. It may receive light. For example, FIG. 8 shows a light receiving waveform of a laser beam received by the right ranging unit 10R. In FIG. 8, the horizontal axis indicates the time when the timing at which the front ranging unit 10F irradiates the laser beam is 0, and the vertical axis indicates the intensity of the received reflected light. In this example, since the front ranging unit 10F receives the reflected light of the laser light emitted by the right ranging unit 10R first, the front ranging unit 10F receives the reflected light of the laser light emitted by the front ranging unit 10F. The received waveform WR of the reflected light of the laser beam irradiated by the right ranging unit 10R before the waveform WF is detected. Since the distance to the object is measured by the difference between the timing at which the laser beam is irradiated and the timing at which the reflected light is received, in this case, the front ranging unit 10F makes a false measurement that the distance to the object is shorter than the actual distance. It will be a distance.

上記3つの条件のうち、上記第1の条件は、設計上の理由により避けることが困難である。また、上記第3の条件は、外的な要因のため対策が困難である。そこで、本実施形態の測距装置1では、上記第2の条件が成立しないように、制御部20が各測距部を制御する。具体的には、制御部20は、複数の測距部により照射されるレーザ光の通過領域が測距領域内で干渉しないように、各測距部がレーザ光の走査を開始する開始タイミングを制御する。開始タイミングの条件は、各測距部の配置関係に応じて異なる。 Of the above three conditions, the first condition is difficult to avoid for design reasons. Further, it is difficult to take measures against the above third condition because of an external factor. Therefore, in the distance measuring device 1 of the present embodiment, the control unit 20 controls each distance measuring unit so that the second condition is not satisfied. Specifically, the control unit 20 sets the start timing at which each ranging unit starts scanning the laser light so that the passing region of the laser light emitted by the plurality of ranging units does not interfere in the ranging region. Control. The conditions for the start timing differ depending on the arrangement relationship of each ranging unit.

以下、2つの測距部の配置関係に応じた開始タイミングの条件について説明する。図9に示す測距部10A及び測距部10Bは、車両100に搭載される3つの測距部のうち、測距領域の一部が互いに重複するように配置された任意の2つの測距部である。図9に示す符号の意味は次のとおりであり、位置及び角度は測距部10A又は測距部10Bが備える偏向部材13の回転軸の方向から見た平面視で特定される。本実施形態では、測距部10A及び測距部10Bが備える偏向部材13の回転軸は平行である。ただし、回転軸の向きは、必ずしも平行である必要はなく、例えば平行に近い向きであってもよい。 Hereinafter, the start timing conditions according to the arrangement relationship between the two ranging units will be described. The range-finding unit 10A and the range-finding unit 10B shown in FIG. 9 are any two range-finding units arranged so that a part of the range-finding area overlaps with each other among the three range-finding units mounted on the vehicle 100. It is a department. The meanings of the reference numerals shown in FIG. 9 are as follows, and the positions and angles are specified in a plan view from the direction of the rotation axis of the deflection member 13 included in the distance measuring unit 10A or the distance measuring unit 10B. In the present embodiment, the rotation axes of the deflection member 13 included in the distance measuring unit 10A and the distance measuring unit 10B are parallel. However, the orientation of the rotation axes does not necessarily have to be parallel, and may be, for example, an orientation close to parallel.

A…測距部10Aの基準方位
B…測距部10Bの基準方位
A…測距部10Aによるレーザ光の走査の開始方位
B…測距部10Bによるレーザ光の走査の開始方位
A…測距部10Aの偏向部材13におけるレーザ光を偏向する点である起点位置
B…測距部10Bの偏向部材13におけるレーザ光を偏向する点である起点位置
A…起点位置PAを通り基準方位DAに平行な直線
γA…基準方位DAを0とする開始方位SAの角度である開始角度
γB…基準方位DBを0とする開始方位SBの角度である開始角度
γd…基準方位DAを0とする基準方位DBの角度である配置ずれ角度
γB_A…基準方位DAを0とする開始方位SBの角度である開き角度
測距部の基準方位とは、設計上基準として定められた方位である。例えば、レーザ光を透過する透過窓が設けられている場合、透過窓の正面の方向、具体的には、透過窓表面における中心又はその近傍部分の法線の方向となることが一般的である。本実施形態では、基準方位は、測距期間においてレーザ光が走査される角度範囲の中心の方位と一致する。
DA ... Reference direction of the ranging unit 10A DB ... Reference direction of the ranging unit 10B S A ... Starting direction of scanning of the laser beam by the ranging unit 10A SB ... Starting direction of scanning of the laser beam by the ranging unit 10B PA ... Starting point position where the laser beam in the deflection member 13 of the ranging unit 10A is deflected P B ... Starting position position where the laser beam is deflected in the deflection member 13 of the ranging unit 10B LA ... Starting position position P A straight line passing through A and parallel to the reference direction D A γ A … The starting angle γ B … the angle of the starting direction S A with the reference direction D A as 0 A certain start angle γ d … Placement deviation angle which is the angle of the reference direction D B where the reference direction D A is 0 γ B_A … The opening angle which is the angle of the start direction S B where the reference direction D A is 0 The reference direction is the direction defined as a design standard. For example, when a transmission window that transmits laser light is provided, it is generally the direction of the front surface of the transmission window, specifically, the direction of the normal of the center or the vicinity thereof on the surface of the transmission window. .. In this embodiment, the reference azimuth coincides with the azimuth of the center of the angular range in which the laser beam is scanned during the ranging period.

開始角度γA,γB、配置ずれ角度γd及び開き角度γB_Aは、測距部10Aの走査方向側を向くほど値が大きくなり、それぞれの基準方位よりも走査方向側でプラスの値、走査方向側とは反対側でマイナスの値をとる。 The values of the start angles γ A , γ B , the misalignment angle γ d , and the opening angle γ B_A increase as they face the scanning direction side of the ranging unit 10A, and are positive values on the scanning direction side of the respective reference directions. It takes a negative value on the side opposite to the scanning direction side.

図10に示すように、開始タイミングの条件は、測距部10A及び測距部10Bの配置関係に応じて、6つの条件に分類される。以下、これら6つの条件について、6種類の配置例に基づき説明する。 As shown in FIG. 10, the start timing conditions are classified into six conditions according to the arrangement relationship between the distance measuring unit 10A and the distance measuring unit 10B. Hereinafter, these six conditions will be described based on six types of arrangement examples.

(第1の配置例)
図11に示すように、第1の配置例は、起点位置PBが基準直線LAよりも測距部10Aの走査方向の反対側であり、開始角度γAと開き角度γB_Aとの関係がγB_A<γAとなるように測距部10A及び測距部10Bが配置された例である。なお、図11に示す第1の配置例では、基準方位DAと基準方位DBとが平行となるように測距部10A及び測距部10Bが配置されているが、これは第1の配置例の条件ではない。
(First arrangement example)
As shown in FIG. 11, in the first arrangement example, the starting point position P B is on the opposite side of the reference straight line LA in the scanning direction of the ranging unit 10A, and the relationship between the starting angle γ A and the opening angle γ B_A . Is an example in which the ranging unit 10A and the ranging unit 10B are arranged so that γ B_AA. In the first arrangement example shown in FIG. 11, the distance measuring unit 10A and the distance measuring unit 10B are arranged so that the reference direction DA and the reference direction D B are parallel to each other. It is not a condition of the arrangement example.

図12は、第1の配置例における、測距部10Aの偏向部材13の回転角度θA及び測
距部10Bの偏向部材13の回転角度θB_Aの変化を示す。回転角度θA及び回転角度θB_Aはいずれも、基準方位DAへレーザ光が照射される回転角度を0とする角度で表される。また、回転角度θA及び回転角度θB_Aの値は、測距期間において上昇し、非測距期間において下降する。測距部10A及び測距部10Bの非測距期間は、それぞれ非測距期間α及び非測距期間βで示される。
FIG. 12 shows changes in the rotation angle θ A of the deflection member 13 of the distance measuring unit 10A and the rotation angle θ B_A of the deflection member 13 of the distance measuring unit 10B in the first arrangement example. Both the rotation angle θ A and the rotation angle θ B_A are represented by angles where the rotation angle at which the laser beam is applied to the reference direction DA is 0. Further, the values of the rotation angle θ A and the rotation angle θ B_A increase in the distance measurement period and decrease in the non-range measurement period. The non-range-finding period of the range-finding unit 10A and the range-finding unit 10B is indicated by the non-range-finding period α and the non-range-finding period β, respectively.

制御部20は、測距部10A及び測距部10Bにより照射されるレーザ光の通過領域が測距領域内で干渉することを抑制するために、測距部10A又は測距部10Bが備える偏向部材13の回転軸の方向から見た平面視で、測距部10Aにより照射されるレーザ光の照射方位と、測距部10Bにより照射されるレーザ光の照射方位と、の共通の基準方位DAに対する角度の大小関係が逆転しないように、測距部10Aによる測距処理と測距部1
0による測距処理とを実行させる。角度の大小関係が逆転するとは、2つの角度をそれぞれθ1,θ2とした場合、θ1>θ2の状態からθ1<θ2の状態になること、又は、θ1<θ2の状態からθ1>θ2の状態になることをいう。θ1=θ2の状態からθ1>θ2又はθ1<θ2の状態になること、及び、θ1>θ2又はθ1<θ2の状態からθ1=θ2の状態になることは、角度の大小関係が逆転する事象に含まれない。
The control unit 20 has a deflection provided by the distance measuring unit 10A or the distance measuring unit 10B in order to prevent the passing region of the laser beam emitted by the distance measuring unit 10A and the distance measuring unit 10B from interfering with each other in the distance measuring region. A common reference direction D of the irradiation direction of the laser light emitted by the distance measuring unit 10A and the irradiation direction of the laser light emitted by the distance measuring unit 10B in a plan view seen from the direction of the rotation axis of the member 13. Distance measurement processing by the distance measuring unit 10A and the distance measuring unit 1 so that the magnitude relationship of the angle with respect to A is not reversed.
Distance measurement processing by 0 is executed. When the magnitude relationship of the angles is reversed, when the two angles are θ1 and θ2, respectively, the state of θ1> θ2 changes to the state of θ1 <θ2, or the state of θ1 <θ2 changes to the state of θ1> θ2. It means to become. The change from the state of θ1 = θ2 to the state of θ1> θ2 or θ1 <θ2, and the change from the state of θ1> θ2 or θ1 <θ2 to the state of θ1 = θ2 are events in which the magnitude relationship of the angles is reversed. Not included.

測距部10A及び測距部10Bそれぞれにより照射されるレーザ光の照射方位の基準方位DAに対する角度は、測距期間における、回転角度θA及び回転角度θB_Aで示されるた
め、制御部20は、測距部10A及び測距部10Bが共に測距期間の状態である共測距状態において回転角度θAと回転角度θB_Aとの値の大小関係が逆転しないように、測距部10Aによる測距処理と測距部10による測距処理とを実行させる。起点位置PBが基準直
線LAよりも測距部10Aの走査方向の反対側である場合、図12に示すように、共測距
状態において回転角度θB_Aが回転角度θAの値が上回らなければよい。回転角度θAに対
する回転角度θB_Aの大きさは、測距部10Aがレーザ光の走査を開始するタイミングに
対する測距部10Bがレーザ光の走査を開始するタイミングが早いほど大きくなる。ただし、第1の配置例では、開き角度γB_Aが開始角度γAよりも小さい。このため、回転角度θB_Aが回転角度θAを上回らない限度で、測距部10Bがレーザ光の走査を開始するタイミングを早くすることができる。一方、測距部10Bがレーザ光の走査を開始するタイミングを遅くしすぎることにより、測距部10Bの測距期間が終了する前に測距部10Aの測距期間が開始すると、回転角度θB_Aが回転角度θAを上回ってしまう。そのため、測距部10Bがレーザ光の走査を開始するタイミングの遅れが、測距部10Bの非測距期間βよりも大きくならないようにする必要がある。
Since the angle of the irradiation direction of the laser beam emitted by the distance measuring unit 10A and the distance measuring unit 10B with respect to the reference direction DA is indicated by the rotation angle θ A and the rotation angle θ B_A during the distance measurement period, the control unit 20 Is the distance measuring unit 10A so that the magnitude relationship between the values of the rotation angle θ A and the rotation angle θ B_A is not reversed in the co-range measuring state in which both the distance measuring unit 10A and the distance measuring unit 10B are in the distance measuring period. And the distance measuring process by the distance measuring unit 10 are executed. When the starting point position P B is on the opposite side of the scanning direction of the distance measuring unit 10A from the reference straight line LA, the rotation angle θ B_A exceeds the value of the rotation angle θ A in the co - distance measuring state as shown in FIG. It's okay if it doesn't exist. The magnitude of the rotation angle θ B_A with respect to the rotation angle θ A increases as the timing at which the ranging unit 10B starts scanning the laser beam with respect to the timing at which the ranging unit 10A starts scanning the laser beam becomes earlier. However, in the first arrangement example, the opening angle γ B_A is smaller than the starting angle γ A. Therefore, as long as the rotation angle θ B_A does not exceed the rotation angle θ A , the timing at which the ranging unit 10B starts scanning the laser beam can be accelerated. On the other hand, if the timing at which the ranging unit 10B starts scanning the laser beam is delayed too much and the ranging period of the ranging unit 10A starts before the ranging period of the ranging unit 10B ends, the rotation angle θ B_A exceeds the rotation angle θ A. Therefore, it is necessary to prevent the delay in the timing at which the distance measuring unit 10B starts scanning the laser beam from being larger than the non-distance measuring period β of the distance measuring unit 10B.

そこで、第1の配置例では、制御部20は、測距部10Aがレーザ光の走査を開始するタイミングに対する測距部10Bがレーザ光の走査を開始するタイミングtを、-Φ≦t≦βの範囲に制御する。ここで、Φは、開始方位SAと開始方位SBとがなす角度を上記測距角速度で回転移動するのに必要な期間である。これにより、測距部10A及び測距部10Bにより照射されるレーザ光の通過領域が干渉することを抑制することができる。 Therefore, in the first arrangement example, the control unit 20 sets the timing t at which the distance measuring unit 10B starts scanning the laser light with respect to the timing at which the distance measuring unit 10A starts scanning the laser light, −Φ≤t≤β. Control to the range of. Here, Φ is a period required for rotationally moving the angle formed by the starting direction S A and the starting direction S B at the distance measuring angular velocity. As a result, it is possible to suppress interference between the passing regions of the laser light emitted by the ranging unit 10A and the ranging unit 10B.

なお、図9に示す配置例は、第1の配置例の他の例である。図11に示す第1の配置例では、基準方位DAと基準方位DBとが平行であるが、図9に示す第1の配置例では、基準方位DAが基準方位DBよりも測距部10Aの走査方向側を向いている。 The arrangement example shown in FIG. 9 is another example of the first arrangement example. In the first arrangement example shown in FIG. 11, the reference direction DA and the reference direction D B are parallel to each other, but in the first arrangement example shown in FIG. 9, the reference direction D A is measured more than the reference direction D B. It faces the scanning direction side of the distance portion 10A.

図13は、図9に示す第1の配置例における、回転角度θA及び回転角度θB_Aの変化を示す。図11に示す第1の配置例と同様、共測距状態において、回転角度θAと回転角度
θB_Aとの値の大小関係が逆転しないためには、回転角度θB_Aが回転角度θAを上回らな
ければよい。したがって、図11に示す第1の配置例と同様、制御部20は、タイミングtを-Φ≦t≦βの範囲に制御することで、測距部10A及び測距部10Bにより照射されるレーザ光の通過領域が干渉することを抑制することができる。
FIG. 13 shows changes in the rotation angle θ A and the rotation angle θ B_A in the first arrangement example shown in FIG. Similar to the first arrangement example shown in FIG. 11, in the co-distance measurement state, the rotation angle θ B_A determines the rotation angle θ A so that the magnitude relationship between the values of the rotation angle θ A and the rotation angle θ B_A does not reverse. It should not exceed. Therefore, as in the first arrangement example shown in FIG. 11, the control unit 20 controls the timing t within the range of −Φ ≦ t ≦ β, and the laser irradiated by the distance measuring unit 10A and the distance measuring unit 10B. It is possible to suppress the interference of the light passing region.

(第2の配置例)
図14に示すように、第2の配置例は、起点位置PBが基準直線LAよりも測距部10Aの走査方向の反対側であり、開始角度γAと開き角度γB_Aとの関係がγB_A=γAとなるように測距部10A及び測距部10Bが配置された例である。
(Second arrangement example)
As shown in FIG. 14, in the second arrangement example, the starting point position P B is on the opposite side of the reference straight line LA in the scanning direction of the ranging unit 10A, and the relationship between the starting angle γ A and the opening angle γ B_A . Is an example in which the ranging unit 10A and the ranging unit 10B are arranged so that γ B_A = γ A.

図15は、第2の配置例における、回転角度θA及び回転角度θB_Aの変化を示す。第2の配置例では、開き角度γB_Aが開始角度γAと等しい。このため、測距部10Bがレーザ光の走査を開始するタイミングを、測距部10Aがレーザ光の走査を開始するタイミングと同時又はそれよりも遅くする必要がある。一方、測距部10Bがレーザ光の走査を開始するタイミングを遅くしすぎることにより、測距部10Bの測距期間が終了する前に測距部10Aの測距期間が開始すると、回転角度θB_Aが回転角度θAを上回ってしまう。そのため、測距部10Bがレーザ光の走査を開始するタイミングの遅れが、測距部10Bの非測距期間βよりも大きくならないようにする必要がある。 FIG. 15 shows changes in the rotation angle θ A and the rotation angle θ B_A in the second arrangement example. In the second arrangement example, the opening angle γ B_A is equal to the starting angle γ A. Therefore, it is necessary to delay the timing at which the ranging unit 10B starts scanning the laser beam at the same time as or later than the timing at which the ranging unit 10A starts scanning the laser beam. On the other hand, if the timing at which the ranging unit 10B starts scanning the laser beam is delayed too much and the ranging period of the ranging unit 10A starts before the ranging period of the ranging unit 10B ends, the rotation angle θ B_A exceeds the rotation angle θ A. Therefore, it is necessary to prevent the delay in the timing at which the distance measuring unit 10B starts scanning the laser beam from being larger than the non-distance measuring period β of the distance measuring unit 10B.

そこで、第2の配置例では、制御部20は、測距部10Aがレーザ光の走査を開始するタイミングに対する測距部10Bがレーザ光の走査を開始するタイミングtを、0≦t≦βの範囲に制御する。これにより、測距部10A及び測距部10Bにより照射されるレーザ光の通過領域が干渉することを抑制することができる。 Therefore, in the second arrangement example, the control unit 20 sets the timing t at which the distance measuring unit 10B starts scanning the laser light with respect to the timing when the distance measuring unit 10A starts scanning the laser light with 0 ≦ t ≦ β. Control to range. As a result, it is possible to suppress interference between the passing regions of the laser light emitted by the ranging unit 10A and the ranging unit 10B.

(第3の配置例)
図16に示すように、第3の配置例は、起点位置PBが基準直線LAよりも測距部10Aの走査方向の反対側であり、開始角度γAと開き角度γB_Aとの関係がγB_A>γAとなるように測距部10A及び測距部10Bが配置された例である。なお、図16に示す第3の配置例では、基準方位DAが基準方位DBよりも測距部10Aの走査方向側を向くように測距
部10A及び測距部10Bが配置されているが、これは第3の配置例の条件ではない。
(Third arrangement example)
As shown in FIG. 16, in the third arrangement example, the starting point position P B is on the opposite side of the reference straight line LA in the scanning direction of the ranging unit 10A, and the relationship between the starting angle γ A and the opening angle γ B_A . Is an example in which the ranging unit 10A and the ranging unit 10B are arranged so that γ B_A > γ A. In the third arrangement example shown in FIG. 16, the distance measuring unit 10A and the distance measuring unit 10B are arranged so that the reference direction DA faces the scanning direction side of the distance measuring unit 10A with respect to the reference direction DB. However, this is not a condition of the third arrangement example.

図17は、第3の配置例における、回転角度θA及び回転角度θB_Aの変化を示す。第3の配置例では、開き角度γB_Aが開始角度γAよりも大きい。このため、回転角度θB_A
回転角度θAを上回らないように、測距部10Bがレーザ光の走査を開始するタイミング
を遅くする必要がある。一方、測距部10Bがレーザ光の走査を開始するタイミングを遅くしすぎることにより、測距部10Bの測距期間が終了する前に測距部10Aの測距期間が開始すると、回転角度θB_Aが回転角度θAを上回ってしまう。そのため、測距部10Bがレーザ光の走査を開始するタイミングの遅れが、測距部10Bの非測距期間βよりも大きくならないようにする必要がある。
FIG. 17 shows changes in the rotation angle θ A and the rotation angle θ B_A in the third arrangement example. In the third arrangement example, the opening angle γ B_A is larger than the starting angle γ A. Therefore, it is necessary to delay the timing at which the ranging unit 10B starts scanning the laser beam so that the rotation angle θ B_A does not exceed the rotation angle θ A. On the other hand, if the timing at which the ranging unit 10B starts scanning the laser beam is delayed too much and the ranging period of the ranging unit 10A starts before the ranging period of the ranging unit 10B ends, the rotation angle θ B_A exceeds the rotation angle θ A. Therefore, it is necessary to prevent the delay in the timing at which the distance measuring unit 10B starts scanning the laser beam from being larger than the non-distance measuring period β of the distance measuring unit 10B.

そこで、第3の配置例では、制御部20は、測距部10Aがレーザ光の走査を開始するタイミングに対する測距部10Bがレーザ光の走査を開始するタイミングtを、Φ≦t≦βの範囲に制御する。これにより、測距部10A及び測距部10Bにより照射されるレーザ光の通過領域が干渉することを抑制することができる。 Therefore, in the third arrangement example, the control unit 20 sets the timing t at which the distance measuring unit 10B starts scanning the laser light with respect to the timing when the distance measuring unit 10A starts scanning the laser light with Φ≤t≤β. Control to range. As a result, it is possible to suppress interference between the passing regions of the laser light emitted by the ranging unit 10A and the ranging unit 10B.

なお、図18に示す配置例は、第3の配置例の他の例である。図16に示す第3の配置例では、基準方位DAが基準方位DBよりも測距部10Aの走査方向側を向いているが、図18に示す第3の配置例では、基準方位DBが基準方位DAよりも測距部10Aの走査方向側を向いている。 The arrangement example shown in FIG. 18 is another example of the third arrangement example. In the third arrangement example shown in FIG. 16, the reference direction DA faces the scanning direction side of the distance measuring unit 10A with respect to the reference direction D B , but in the third arrangement example shown in FIG. 18, the reference direction D B faces the scanning direction side of the ranging unit 10A with respect to the reference direction DA .

図19は、図18に示す第3の配置例における、回転角度θA及び回転角度θB_Aの変化を示す。図16に示す第3の配置例と同様、制御部20は、タイミングtをΦ≦t≦βの範囲に制御することで、測距部10A及び測距部10Bにより照射されるレーザ光の通過領域が干渉することを抑制することができる。 FIG. 19 shows changes in the rotation angle θ A and the rotation angle θ B_A in the third arrangement example shown in FIG. Similar to the third arrangement example shown in FIG. 16, the control unit 20 controls the timing t within the range of Φ ≦ t ≦ β, so that the laser light emitted by the distance measuring unit 10A and the distance measuring unit 10B passes through. It is possible to suppress the interference of the regions.

(第4の配置例)
図20に示すように、第4の配置例は、起点位置PBが基準直線LAよりも測距部10Aの走査方向側であり、開始角度γAと開き角度γB_Aとの関係がγB_A<γAとなるように測距部10A及び測距部10Bが配置された例である。なお、図20に示す第4の配置例では、基準方位DAと基準方位DBとが平行となるように測距部10A及び測距部10Bが配置されているが、これは第4の配置例の条件ではない。
(4th arrangement example)
As shown in FIG. 20, in the fourth arrangement example, the starting point position P B is on the scanning direction side of the distance measuring unit 10A with respect to the reference straight line LA, and the relationship between the starting angle γ A and the opening angle γ B_A is γ . This is an example in which the ranging unit 10A and the ranging unit 10B are arranged so that B_AA. In the fourth arrangement example shown in FIG. 20, the distance measuring unit 10A and the distance measuring unit 10B are arranged so that the reference direction DA and the reference direction D B are parallel to each other. It is not a condition of the arrangement example.

制御部20は、測距部10A及び測距部10Bにより照射されるレーザ光の通過領域が測距領域内で干渉することを抑制するために、測距部10A又は測距部10Bが備える偏向部材13の回転軸の方向から見た平面視で、測距部10Aにより照射されるレーザ光の照射方位と、測距部10Bにより照射されるレーザ光の照射方位と、の共通の基準方位DAに対する角度の大小関係が逆転しないように、測距部10Aによる測距処理と測距部1
0による測距処理とを実行させる。具体的には、制御部20は、共測距状態において回転角度θAと回転角度θB_Aとの値の大小関係が逆転しないように、測距部10Aによる測距処理と測距部10による測距処理とを実行させる。
The control unit 20 has a deflection provided by the distance measuring unit 10A or the distance measuring unit 10B in order to prevent the passing region of the laser beam emitted by the distance measuring unit 10A and the distance measuring unit 10B from interfering with each other in the distance measuring region. A common reference direction D of the irradiation direction of the laser light emitted by the distance measuring unit 10A and the irradiation direction of the laser light emitted by the distance measuring unit 10B in a plan view seen from the direction of the rotation axis of the member 13. Distance measurement processing by the distance measuring unit 10A and the distance measuring unit 1 so that the magnitude relationship of the angle with respect to A is not reversed.
Distance measurement processing by 0 is executed. Specifically, the control unit 20 uses the distance measurement process by the distance measurement unit 10A and the distance measurement unit 10 so that the magnitude relationship between the values of the rotation angle θ A and the rotation angle θ B_A does not reverse in the co-distance measurement state. Execute distance measurement processing.


図21は、第4の配置例における、回転角度θA及び回転角度θB_Aの変化を示す。起点位置PBが基準直線LAよりも測距部10Aの走査方向側である場合、図21に示すように、回転角度θB_Aが回転角度θAを下回らなければよい。第4の配置例では、開き角度γB_Aが開始角度γAよりも大きい。このため、回転角度θB_Aが回転角度θAを下回らないように、測距部10Bがレーザ光の走査を開始するタイミングを早くする必要がある。一方、測距部10Bがレーザ光の走査を開始するタイミングを早くしすぎることにより、測距部10Aの測距期間が終了する前に測距部10Bの測距期間が開始すると、回転角度θB_A
が回転角度θAを下回ってしまう。そのため、測距部10Bがレーザ光の走査を開始する
タイミングのリードが、測距部10Aの非測距期間αよりも大きくならないようにする必要がある。

FIG. 21 shows changes in the rotation angle θ A and the rotation angle θ B_A in the fourth arrangement example. When the starting point position P B is on the scanning direction side of the distance measuring unit 10A with respect to the reference straight line LA, the rotation angle θ B_A does not have to be less than the rotation angle θ A as shown in FIG. In the fourth arrangement example, the opening angle γ B_A is larger than the starting angle γ A. Therefore, it is necessary to advance the timing at which the ranging unit 10B starts scanning the laser beam so that the rotation angle θ B_A does not fall below the rotation angle θ A. On the other hand, if the timing at which the ranging unit 10B starts scanning the laser beam is too early and the ranging period of the ranging unit 10B starts before the ranging period of the ranging unit 10A ends, the rotation angle θ. B_A
Is less than the rotation angle θ A. Therefore, it is necessary to prevent the lead of the timing at which the distance measuring unit 10B starts scanning the laser beam from being larger than the non-distance measuring period α of the distance measuring unit 10A.

そこで、第4の配置例では、制御部20は、測距部10Aがレーザ光の走査を開始するタイミングに対する測距部10Bがレーザ光の走査を開始するタイミングtを、-α≦t≦-Φの範囲に制御する。これにより、測距部10A及び測距部10Bにより照射されるレーザ光の通過領域が干渉することを抑制することができる。 Therefore, in the fourth arrangement example, the control unit 20 sets the timing t at which the distance measuring unit 10B starts scanning the laser light with respect to the timing at which the distance measuring unit 10A starts scanning the laser light, −α ≦ t ≦ −. Control within the range of Φ. As a result, it is possible to suppress interference between the passing regions of the laser light emitted by the ranging unit 10A and the ranging unit 10B.

なお、図22に示す配置例は、第4の配置例の他の例である。図20に示す第4の配置例では、基準方位DAと基準方位DBとが平行であるが、図22に示す第4の配置例では、基準方位DAが基準方位DBよりも測距部10Aの走査方向側を向いている。 The arrangement example shown in FIG. 22 is another example of the fourth arrangement example. In the fourth arrangement example shown in FIG. 20, the reference direction DA and the reference direction D B are parallel to each other, but in the fourth arrangement example shown in FIG. 22, the reference direction D A is measured more than the reference direction D B. It faces the scanning direction side of the distance portion 10A.

図23は、図22に示す第4の配置例における、回転角度θA及び回転角度θB_Aの変化を示す。図20に示す第4の配置例と同様、制御部20は、タイミングtを-α≦t≦-Φの範囲に制御することで、測距部10A及び測距部10Bにより照射されるレーザ光の通過領域が干渉することを抑制することができる。 FIG. 23 shows changes in the rotation angle θ A and the rotation angle θ B_A in the fourth arrangement example shown in FIG. 22. Similar to the fourth arrangement example shown in FIG. 20, the control unit 20 controls the timing t within the range of −α ≦ t ≦ −Φ, so that the laser beam emitted by the distance measuring unit 10A and the distance measuring unit 10B is emitted. It is possible to suppress the interference of the passing region of the light.

なお、第4の配置例は、第3の配置例における測距部10A及び測距部10Bの配置を入れ替えた配置例と捉えることもできる。つまり、第4の配置例は、第3の配置例と実質的に同一である。 The fourth arrangement example can also be regarded as an arrangement example in which the arrangements of the distance measuring unit 10A and the distance measuring unit 10B in the third arrangement example are exchanged. That is, the fourth arrangement example is substantially the same as the third arrangement example.

(第5の配置例)
図24に示すように、第5の配置例は、起点位置PBが基準直線LAよりも測距部10Aの走査方向側であり、開始角度γAと開き角度γB_Aとの関係がγB_A=γAとなるように測距部10A及び測距部10Bが配置された例である。
(Fifth arrangement example)
As shown in FIG. 24, in the fifth arrangement example, the starting point position P B is on the scanning direction side of the distance measuring unit 10A with respect to the reference straight line LA, and the relationship between the starting angle γ A and the opening angle γ B_A is γ . This is an example in which the ranging unit 10A and the ranging unit 10B are arranged so that B_A = γ A.

図25は、第5の配置例における、回転角度θA及び回転角度θB_Aの変化を示す。第5の配置例では、開き角度γB_Aが開始角度γAと等しい。このため、測距部10Bがレーザ光の走査を開始するタイミングを、測距部10Aがレーザ光の走査を開始するタイミングと同時又はそれよりも早くする必要がある。一方、測距部10Bがレーザ光の走査を開始するタイミングを早くしすぎることにより、測距部10Aの測距期間が終了する前に測距部10Bの測距期間が開始すると、回転角度θB_Aが回転角度θAを下回ってしまう。そのため、測距部10Bがレーザ光の走査を開始するタイミングのリードが、測距部10Aの非測距期間αよりも大きくならないようにする必要がある。 FIG. 25 shows changes in the rotation angle θ A and the rotation angle θ B_A in the fifth arrangement example. In the fifth arrangement example, the opening angle γ B_A is equal to the starting angle γ A. Therefore, it is necessary to set the timing at which the ranging unit 10B starts scanning the laser beam at the same time as or earlier than the timing at which the ranging unit 10A starts scanning the laser beam. On the other hand, if the timing at which the ranging unit 10B starts scanning the laser beam is too early and the ranging period of the ranging unit 10B starts before the ranging period of the ranging unit 10A ends, the rotation angle θ. B_A falls below the rotation angle θ A. Therefore, it is necessary to prevent the lead of the timing at which the distance measuring unit 10B starts scanning the laser beam from being larger than the non-distance measuring period α of the distance measuring unit 10A.

そこで、第5の配置例では、制御部20は、測距部10Aがレーザ光の走査を開始するタイミングに対する測距部10Bがレーザ光の走査を開始するタイミングtを、-α≦t≦0の範囲に制御する。これにより、測距部10A及び測距部10Bにより照射されるレーザ光の通過領域が干渉することを抑制することができる。 Therefore, in the fifth arrangement example, the control unit 20 sets the timing t at which the distance measuring unit 10B starts scanning the laser light with respect to the timing when the distance measuring unit 10A starts scanning the laser light with −α ≦ t ≦ 0. Control to the range of. As a result, it is possible to suppress interference between the passing regions of the laser light emitted by the ranging unit 10A and the ranging unit 10B.

なお、第5の配置例は、第2の配置例における測距部10A及び測距部10Bの配置を入れ替えた配置例と捉えることもできる。つまり、第5の配置例は、第2の配置例と実質的に同一である。 The fifth arrangement example can also be regarded as an arrangement example in which the arrangements of the distance measuring unit 10A and the distance measuring unit 10B in the second arrangement example are exchanged. That is, the fifth arrangement example is substantially the same as the second arrangement example.

(第6の配置例)
図26に示すように、第6の配置例は、起点位置PBが基準直線LAよりも測距部10Aの走査方向側であり、開始角度γAと開き角度γB_Aとの関係がγB_A>γAとなるように測距部10A及び測距部10Bが配置された例である。なお、図26に示す第6の配置例では、開始角度γBと配置ずれ角度γdと開き角度γB_Aとの関係がγB_A=γB-γdとなるよ
うに測距部10A及び測距部10Bが配置されているが、これは第6の配置例の条件ではない。
(6th arrangement example)
As shown in FIG. 26, in the sixth arrangement example, the starting point position P B is on the scanning direction side of the distance measuring unit 10A with respect to the reference straight line LA, and the relationship between the starting angle γ A and the opening angle γ B_A is γ . This is an example in which the ranging unit 10A and the ranging unit 10B are arranged so that B_A > γ A. In the sixth arrangement example shown in FIG. 26, the distance measuring unit 10A and the measuring unit 10A are measured so that the relationship between the start angle γ B , the arrangement deviation angle γ d , and the opening angle γ B_A is γ B_A = γ B − γ d . The distance portion 10B is arranged, but this is not a condition of the sixth arrangement example.

図27は、第6の配置例における、回転角度θA及び回転角度θB_Aの変化を示す。第6の配置例では、開き角度γB_Aが開始角度γAよりも小さい。このため、回転角度θB_A
回転角度θAを下回らない限度で、測距部10Bがレーザ光の走査を開始するタイミング
を遅くすることができる。一方、測距部10Bがレーザ光の走査を開始するタイミングを早くしすぎることにより、測距部10Aの測距期間が終了する前に測距部10Bの測距期間が開始すると、回転角度θB_Aが回転角度θAを下回ってしまう。そのため、測距部10Bがレーザ光の走査を開始するタイミングのリードが、測距部10Aの非測距期間αよりも大きくならないようにする必要がある。
FIG. 27 shows changes in the rotation angle θ A and the rotation angle θ B_A in the sixth arrangement example. In the sixth arrangement example, the opening angle γ B_A is smaller than the starting angle γ A. Therefore, the timing at which the ranging unit 10B starts scanning the laser beam can be delayed as long as the rotation angle θ B_A does not fall below the rotation angle θ A. On the other hand, if the timing at which the ranging unit 10B starts scanning the laser beam is too early and the ranging period of the ranging unit 10B starts before the ranging period of the ranging unit 10A ends, the rotation angle θ. B_A falls below the rotation angle θ A. Therefore, it is necessary to prevent the lead of the timing at which the distance measuring unit 10B starts scanning the laser beam from being larger than the non-distance measuring period α of the distance measuring unit 10A.

そこで、第6の配置例では、制御部20は、測距部10Aがレーザ光の走査を開始するタイミングに対する測距部10Bがレーザ光の走査を開始するタイミングtを、-α≦t≦Φの範囲に制御する。これにより、測距部10A及び測距部10Bにより照射されるレーザ光の通過領域が干渉することを抑制することができる。 Therefore, in the sixth arrangement example, the control unit 20 sets the timing t at which the distance measuring unit 10B starts scanning the laser light with respect to the timing when the distance measuring unit 10A starts scanning the laser light with −α ≦ t ≦ Φ. Control to the range of. As a result, it is possible to suppress interference between the passing regions of the laser light emitted by the ranging unit 10A and the ranging unit 10B.

なお、図28に示す配置例は、第6の配置例の他の例である。図26に示す第6の配置例では、開始角度γBと配置ずれ角度γdと開き角度γB_Aとの関係がγB_A=γB-γdであるが、図28に示す配置例は、開始角度γBと配置ずれ角度γdと開き角度γB_Aとの関係
がγB_A=γd-γBである。
The arrangement example shown in FIG. 28 is another example of the sixth arrangement example. In the sixth arrangement example shown in FIG. 26, the relationship between the start angle γ B , the arrangement deviation angle γ d , and the opening angle γ B_A is γ B_A = γ B − γ d . The relationship between the start angle γ B , the misalignment angle γ d , and the opening angle γ B_A is γ B_A = γ d − γ B.

図29は、図28に示す第6の配置例における、回転角度θA及び回転角度θB_Aの変化を示す。図26に示す第6の配置例と同様、制御部20は、タイミングtを-α≦t≦Φの範囲に制御することで、測距部10A及び測距部10Bにより照射されるレーザ光の通過領域が干渉することを抑制することができる。 FIG. 29 shows changes in the rotation angle θ A and the rotation angle θ B_A in the sixth arrangement example shown in FIG. 28. Similar to the sixth arrangement example shown in FIG. 26, the control unit 20 controls the timing t within the range of −α ≦ t ≦ Φ, so that the laser light emitted by the distance measuring unit 10A and the distance measuring unit 10B can be used. It is possible to suppress the interference of the passing region.

なお、第6の配置例は、第1の配置例における測距部10A及び測距部10Bの配置を入れ替えた配置例と捉えることもできる。つまり、第6の配置例は、第1の配置例と実質的に同一である。 The sixth arrangement example can also be regarded as an arrangement example in which the arrangements of the distance measuring unit 10A and the distance measuring unit 10B in the first arrangement example are exchanged. That is, the sixth arrangement example is substantially the same as the first arrangement example.

[1-5.複数の測距部の走査タイミングを分散するための構成]
本実施形態の制御部20は、上述したように誤測距を抑制するだけでなく、複数の測距部の走査タイミングを分散するように、各測距部を制御する。具体的には、制御部20は、偏向部材13の角速度を変化させるタイミングが各測距部で互いに異なるように、各測距部を制御する。また、制御部20は、偏向部材13の角速度が最も速い期間の少なくとも一部が各測距部で互いに重ならないように、各測距部を制御する。なお、以下では、測距部が2つの場合を前提に説明しているが、測距部が3つ以上の場合も同様である。
[1-5. Configuration to disperse the scanning timing of multiple ranging units]
The control unit 20 of the present embodiment not only suppresses erroneous distance measurement as described above, but also controls each distance measurement unit so as to disperse the scanning timings of the plurality of distance measurement units. Specifically, the control unit 20 controls each distance measuring unit so that the timing at which the angular velocity of the deflection member 13 is changed differs between the distance measuring units. Further, the control unit 20 controls each distance measuring unit so that at least a part of the period in which the angular velocity of the deflection member 13 is the fastest does not overlap with each other in the distance measuring unit. In the following, the description is made on the premise that there are two ranging units, but the same applies to the case where there are three or more ranging units.

[1-5-1.複数の測距部の切替タイミングを異ならせるための構成]
本実施形態の測距処理においては、測距期間と非測距期間とが交互に繰り返される。そのため、図30に示すように、測距部10Aの偏向部材13の回転角度θA及び測距部1
0Bの偏向部材13の回転角度θBは、測距期間において上昇し、非測距期間において下
降する。回転角度θBは、基準方位DBへレーザ光が照射される回転角度を0とする角度で表される。制御部20が偏向部材13の角速度を変化させるタイミング、換言すれば、測距期間と非測距期間とが切り替わるタイミングである切替タイミングでは、測距部10Aの駆動部12に流れる電流の値IA及び測距部10Bの駆動部12に流れる電流の値IBが、瞬間的に大きくなる。このため、図30に示すように、複数の測距部の切替タイミングが重なり、瞬時電流のピークが重なると、車両100全体での瞬時電流が増加し、受光部14により出力される電気信号等にノイズが発生する原因になる。また、車両100全体
の電源設計においても、重なった瞬時電流をベースに冗長な設計がされることになる。
[1-5-1. Configuration for different switching timings of multiple ranging units]
In the distance measuring process of the present embodiment, the distance measuring period and the non-distance measuring period are alternately repeated. Therefore, as shown in FIG. 30, the rotation angle θ A of the deflection member 13 of the ranging unit 10A and the ranging unit 1
The rotation angle θ B of the deflection member 13 of 0B increases during the ranging period and decreases during the non-range measuring period. The rotation angle θ B is represented by an angle at which the rotation angle at which the laser beam is applied to the reference direction D B is 0. At the timing at which the control unit 20 changes the angular velocity of the deflection member 13, in other words, at the switching timing at which the distance measurement period and the non-range measurement period are switched, the value I of the current flowing through the drive unit 12 of the distance measurement unit 10A. The value I B of the current flowing through A and the drive unit 12 of the ranging unit 10B increases instantaneously. Therefore, as shown in FIG. 30, when the switching timings of the plurality of ranging units overlap and the peaks of the instantaneous currents overlap, the instantaneous current of the entire vehicle 100 increases, and the electric signal output by the light receiving unit 14 or the like increases. Causes noise. Further, in the power supply design of the entire vehicle 100, a redundant design will be made based on the overlapping instantaneous currents.

そこで、図31に示すように、制御部20は、切替タイミングが複数の測距部で互いに異なるように、つまり、切替タイミングがずれるように、複数の測距部を制御する。このような制御により、瞬時電流のピークが重なりにくくなり、車両100全体での瞬時電流の増加が抑制される。 Therefore, as shown in FIG. 31, the control unit 20 controls the plurality of distance measuring units so that the switching timings differ from each other in the plurality of distance measuring units, that is, the switching timings deviate from each other. By such control, the peaks of the instantaneous currents are less likely to overlap, and the increase of the instantaneous currents in the entire vehicle 100 is suppressed.

[1-5-2.偏向部材の角速度が最も速い期間を重なりにくくするための構成]
偏向部材13の角速度が最も速い期間には、測距部10Aの駆動部12に流れる電流の値IA及び測距部10Bの駆動部12に流れる電流の値IBが他の期間よりも大きくなる。図30に示すように、本実施形態では、非測距期間における偏向部材13の角速度が測距角速度よりも速くなるように測距部が制御される。つまり、本実施形態では、非測距期間が、偏向部材13の角速度が最も速い期間である。この場合、非測距期間においては、測距部10Aの駆動部12に流れる電流の値IA及び測距部10Bの駆動部12に流れる電
流の値IBが、測距期間よりも大きくなる。このため、例えば図30に示すように、複数
の測距部の非測距期間が重なると、車両100全体での電流が増加し、受光部14により出力される電気信号等にノイズが発生する原因になる。また、車両100全体の電源設計においても、重なった瞬時電流をベースに冗長な設計がされることになる。
[1-5-2. Configuration to make it difficult to overlap during the period when the angular velocity of the deflection member is the fastest]
During the period when the angular velocity of the deflection member 13 is the fastest, the value I A of the current flowing through the drive unit 12 of the distance measuring unit 10A and the value I B of the current flowing through the driving unit 12 of the distance measuring unit 10B are larger than those during the other periods. Become. As shown in FIG. 30, in the present embodiment, the ranging unit is controlled so that the angular velocity of the deflection member 13 during the non-ranging period is faster than the ranging angular velocity. That is, in the present embodiment, the non-distance measuring period is the period in which the angular velocity of the deflection member 13 is the fastest. In this case, during the non-distance measuring period, the value I A of the current flowing through the driving unit 12 of the ranging unit 10A and the value I B of the current flowing through the driving unit 12 of the ranging unit 10B are larger than those during the ranging period. .. Therefore, for example, as shown in FIG. 30, when the non-distance measuring periods of the plurality of ranging units overlap, the current in the entire vehicle 100 increases, and noise is generated in the electric signal or the like output by the light receiving unit 14. It causes. Further, in the power supply design of the entire vehicle 100, a redundant design will be made based on the overlapping instantaneous currents.

そこで、図31に示すように、本実施形態では、制御部20は、非測距期間の少なくとも一部が複数の測距部で互いに重ならないように、複数の測距部を制御する。例えば、2つの測距部で非測距期間の長さが互いに異なる場合、長い方の非測距期間の少なくとも一部が短い方の非測距期間と重ならないことは必然である。したがって、このような例では、短い方の非測距期間の少なくとも一部も長い方の非測距期間と重ならないことを意味する。このような制御により、車両100全体での電流の増加が抑制される。 Therefore, as shown in FIG. 31, in the present embodiment, the control unit 20 controls a plurality of distance measuring units so that at least a part of the non-distance measuring period does not overlap with each other in the plurality of distance measuring units. For example, when the lengths of the non-distance measuring periods are different between the two distance measuring units, it is inevitable that at least a part of the longer non-distance measuring period does not overlap with the shorter non-distance measuring period. Therefore, in such an example, it means that at least a part of the shorter non-range-finding period does not overlap with the longer non-range-finding period. By such control, the increase of the current in the entire vehicle 100 is suppressed.

[1-6.効果]
以上詳述した実施形態によれば、以下の効果が得られる。
(1a)測距装置1は、複数の測距部により照射されるレーザ光の通過領域が測距領域内で干渉しないように、各測距部による測距処理を実行する。このような構成によれば、測距領域の一部が互いに重複する複数の測距部により物体との距離が誤って測定されることを抑制することができる。特に、測距装置1は、各測距部による測距処理を並行して実行するため、各測距部による測距処理が並行しないように順に実行される構成と比較して、全ての測距領域についての測距処理を完了するまでに要する時間を短くできる。
[1-6. effect]
According to the embodiment described in detail above, the following effects can be obtained.
(1a) The distance measuring device 1 executes the distance measuring process by each distance measuring unit so that the passing region of the laser beam emitted by the plurality of distance measuring units does not interfere in the distance measuring region. According to such a configuration, it is possible to prevent the distance to the object from being erroneously measured by a plurality of ranging units in which a part of the ranging area overlaps with each other. In particular, since the ranging device 1 executes the ranging processing by each ranging unit in parallel, all the measurements are compared with the configuration in which the ranging processing by each ranging unit is executed in order so as not to be parallel. The time required to complete the distance measurement process for the distance area can be shortened.

(1b)測距装置1は、測距部10A又は測距部10Bが備える偏向部材13の回転軸の方向から見た平面視で、測距部10Aにより照射されるレーザ光の照射方位と、測距部10Bにより照射されるレーザ光の照射方位と、の共通の基準方位DAに対する角度の大
小関係が逆転しないように、測距部10Aによる測距処理と測距部10による測距処理とを実行させる。このような構成によれば、複数の測距部により照射されるレーザ光の通過領域が測距領域内で干渉することを抑制することができる。
(1b) The distance measuring device 1 is a plan view seen from the direction of the rotation axis of the deflection member 13 included in the distance measuring unit 10A or the distance measuring unit 10B, and the irradiation direction of the laser light emitted by the distance measuring unit 10A. Distance measurement processing by the distance measurement unit 10A and distance measurement processing by the distance measurement unit 10 so that the magnitude relationship between the irradiation direction of the laser beam emitted by the distance measurement unit 10B and the angle with respect to the common reference direction DA is not reversed. And to execute. According to such a configuration, it is possible to suppress the interference of the passing region of the laser beam irradiated by the plurality of ranging units in the ranging region.

(1c)測距装置1は、測距周期が同じになるように、各測距部による測距処理を実行させる。このような構成によれば、例えばレーザ光の走査を開始するタイミングを制御することにより、測距部10Aにより照射されるレーザ光の照射方位と、測距部10Bにより照射されるレーザ光の照射方位と、の共通の基準方位DAに対する角度の大小関係が逆
転しないように各測距部による測距周期の位相差を設定することができる。
(1c) The distance measuring device 1 executes the distance measuring process by each distance measuring unit so that the distance measuring cycles are the same. According to such a configuration, for example, by controlling the timing at which the scanning of the laser beam is started, the irradiation direction of the laser beam emitted by the ranging unit 10A and the irradiation of the laser beam emitted by the ranging unit 10B are performed. It is possible to set the phase difference of the ranging cycle by each ranging unit so that the magnitude relationship between the orientation and the angle with respect to the common reference orientation DA is not reversed.

(1d)測距周期には、非測距期間が含まれる。このような構成によれば、複数の測距部により照射されるレーザ光の通過領域が測距領域内で干渉することを抑制しつつ、例え
ばレーザ光の走査を開始するタイミングといったパラメータの設計の自由度を高めることができる。
(1d) The range-finding cycle includes a non-range-finding period. According to such a configuration, while suppressing the interference of the passing region of the laser beam irradiated by the plurality of ranging units in the ranging region, it is possible to design parameters such as the timing at which the scanning of the laser beam is started. The degree of freedom can be increased.

(1e)測距装置1は、測距領域の一部が互いに重複するように配置された2つの測距部のうち、走査方向側に配置された測距部の偏向部材13の回転角度を、走査方向側とは反対側に配置された測距部の偏向部材13の回転角度が上回らないように、各測距部がレーザ光の走査を開始するタイミングを制御する。このような構成によれば、複数の測距部により照射されるレーザ光の通過領域が測距領域内で干渉することを抑制することができる。 (1e) The ranging device 1 determines the rotation angle of the deflection member 13 of the ranging section arranged on the scanning direction side of the two ranging sections arranged so that a part of the ranging area overlaps with each other. The timing at which each ranging unit starts scanning the laser beam is controlled so that the rotation angle of the deflection member 13 of the ranging unit arranged on the side opposite to the scanning direction side does not exceed the rotation angle. According to such a configuration, it is possible to suppress the interference of the passing region of the laser beam irradiated by the plurality of ranging units in the ranging region.

(1f)測距装置1は、切替タイミングが複数の測距部で互いに異なるように、複数の
測距部を制御する。このような構成によれば、瞬時電流のピークの重なりを抑制し、車両100全体での瞬時電流の増加を抑制することができる。
(1f) The distance measuring device 1 controls a plurality of distance measuring units so that the switching timing is different from each other in the plurality of distance measuring units. According to such a configuration, it is possible to suppress the overlap of the peaks of the instantaneous currents and suppress the increase of the instantaneous currents in the entire vehicle 100.

(1g)測距装置1は、偏向部材13の角速度が最も速い期間の少なくとも一部が複数の測距部で互いに重ならないように、複数の測距部を制御する。このような構成によれば、瞬時電流のピークの重なりを抑制し、車両100全体での電流の増加を抑制することができる。 (1g) The ranging device 1 controls a plurality of ranging units so that at least a part of the period in which the angular velocity of the deflection member 13 is the fastest does not overlap with each other in the plurality of ranging units. According to such a configuration, it is possible to suppress the overlap of the peaks of the instantaneous currents and suppress the increase in the current in the entire vehicle 100.

[2.第2実施形態]
第2実施形態は、基本的な構成は第1実施形態と同様であるため、共通する構成については説明を省略し、相違点を中心に説明する。なお、第1実施形態と同じ符号は、同一の構成を示すものであって、先行する本明細書中の記載及び図面を参照する。
[2. Second Embodiment]
Since the basic configuration of the second embodiment is the same as that of the first embodiment, the description of the common configuration will be omitted, and the differences will be mainly described. It should be noted that the same reference numerals as those in the first embodiment indicate the same configurations, and the preceding description and drawings in the present specification are referred to.

第2実施形態では、第1実施形態と同様、制御部20は、走査方向及び測距周期がそれぞれ同じになるように、各測距部による測距処理を実行させる。ただし、第2実施形態では、制御部20は、測距角速度が異なるように各測距部による測距処理を実行させる。 In the second embodiment, as in the first embodiment, the control unit 20 causes each distance measuring unit to execute the distance measuring process so that the scanning direction and the distance measuring cycle are the same. However, in the second embodiment, the control unit 20 executes the distance measurement process by each distance measurement unit so that the distance measurement angular velocities are different.

第2実施形態では、図9に示すように測距部10A及び測距部10Bが配置されている。ただし、測距部10Aの測距角速度ωよりも測距部10Bの測距角速度ωの方が大きい。測距部10A及び測距部10Bにより照射されるレーザ光の通過領域が測距領域内で干渉することを抑制するために、図32に示すように、共測距状態となる期間TAにおいて、回転角度θB_Aが回転角度θAを上回らないようにする必要がある。図32において、測距角速度ω及び測距角速度ωは、測距部10A及び測距部10Bそれぞれの測距期間におけるθA及びθB_Aの値を示す直線の傾きで示される。回転角度θAと回転角度θB_Aとの差は、測距部10Aの測距角速度ωに対する測距部10Bの測距角速度ωが速いほど、急速に縮まる。加えて、共測距状態となる期間TAが長いほど回転角度θAと回
転角度θB_Aとの差が縮まっていく。
In the second embodiment, the distance measuring unit 10A and the distance measuring unit 10B are arranged as shown in FIG. However, the ranging angular velocity ω B of the ranging unit 10B is larger than the ranging angular velocity ω A of the ranging unit 10A. As shown in FIG. 32, in order to suppress the interference of the passing region of the laser beam emitted by the ranging unit 10A and the ranging unit 10B in the ranging region, in the period TA during the co-distance measuring state, as shown in FIG. It is necessary to prevent the rotation angle θ B_A from exceeding the rotation angle θ A. In FIG. 32, the ranging angular velocity ω A and the ranging angular velocity ω B are shown by the slopes of straight lines indicating the values of θ A and θ B_A in the ranging period of the ranging unit 10A and the ranging unit 10B, respectively. The difference between the rotation angle θ A and the rotation angle θ B_A decreases more rapidly as the distance measurement angular velocity ω B of the distance measurement unit 10B is faster than the distance measurement angular velocity ω A of the distance measurement unit 10A. In addition, the longer the TA during the co-distance measurement state, the smaller the difference between the rotation angle θ A and the rotation angle θ B_A .

そこで、制御部20は、共測距状態となる期間TAが、共測距状態の開始時における測距部10Aと測距部10Bとの照射方位のなす角度を共測距状態における第2の測距部と第1の測距部との測距角速度の差分で割った値以下となるように、測距部10Aの測距角速度ω及び測距部10Bの測距角速度ωを制御する。 Therefore, in the control unit 20, the period TA in which the co-distance measuring state is set is the second angle formed by the irradiation directions of the distance measuring unit 10A and the distance measuring unit 10B at the start of the co-distance measuring state in the co-distance measuring state. The range-finding angular velocity ω A of the range-finding unit 10A and the range-finding angular velocity ω B of the range-finding unit 10B are controlled so as to be equal to or less than the value divided by the difference in the range-finding angular velocity between the range-finding unit and the first range-finding unit. do.

また、測距部10Bがレーザ光の走査を開始するタイミングを遅くしすぎることにより、測距部10Bの測距期間が終了する前に測距部10Aの測距期間が開始すると、回転角度θB_Aが回転角度θAを上回ってしまう。さらに、測距部10Bがレーザ光の走査を開始するタイミングを早くしすぎることにより、測距部10Aの測距期間が終了する前に測距部10Bの測距期間が開始しても、回転角度θB_Aが回転角度θAを上回ってしまう。 Further, if the timing at which the ranging unit 10B starts scanning the laser beam is delayed too much and the ranging period of the ranging unit 10A starts before the ranging period of the ranging unit 10B ends, the rotation angle θ. B_A exceeds the rotation angle θ A. Further, by setting the timing at which the ranging unit 10B starts scanning the laser beam too early, even if the ranging period of the ranging unit 10B starts before the ranging period of the ranging unit 10A ends, the rotation is performed. The angle θ B_A exceeds the rotation angle θ A.

そこで、制御部20は、測距部10Aがレーザ光の走査を開始するタイミングに対する測距部10Bがレーザ光の走査を開始するタイミングが、測距部10Aの非測距期間を表す値を下限値とし、測距部10Bの非測距期間を表す値を上限値とする範囲内であるように制御する。つまり、制御部20は、測距部10Aがレーザ光の走査を開始するタイミングに対する測距部10Bがレーザ光の走査を開始するタイミングtを、α≦t≦βの範囲に制御する。 Therefore, in the control unit 20, the lower limit of the timing at which the ranging unit 10B starts scanning the laser beam with respect to the timing at which the ranging unit 10A starts scanning the laser beam is a value indicating the non-distance measuring period of the ranging unit 10A. The value is controlled so that the value is within the range in which the value representing the non-distance measuring period of the ranging unit 10B is the upper limit value. That is, the control unit 20 controls the timing t at which the distance measuring unit 10B starts scanning the laser light with respect to the timing at which the distance measuring unit 10A starts scanning the laser light within the range of α ≦ t ≦ β.

例えば測距部10A及び測距部10Bでレーザ光の走査を開始するタイミングを同時にする場合、制御部20は、測距角速度ω及び測距角速度ωの関係がTA≦|γB_A
γA|/(ω-ω)となるように、測距部10Aの測距角速度ω及び測距部10B
の測距角速度ωを制御する。
For example, when the ranging unit 10A and the ranging unit 10B simultaneously start scanning the laser beam, the control unit 20 determines that the relationship between the ranging angular velocity ω A and the ranging angular velocity ω B is TA ≦ | γ B_A −.
The ranging angular velocity ω A and the ranging section 10B of the ranging section 10A so as to be γ A | / (ω B −ω A ).
Controls the ranging angular velocity ω B.

これにより、測距部10A及び測距部10Bにより照射されるレーザ光の通過領域が測距領域内で干渉することを抑制することができる。
[3.他の実施形態]
以上、本開示の実施形態について説明したが、本開示は、上記実施形態に限定されることなく、種々の形態を採り得ることは言うまでもない。
As a result, it is possible to prevent the passing region of the laser beam emitted by the ranging unit 10A and the ranging unit 10B from interfering with each other in the ranging region.
[3. Other embodiments]
Although the embodiments of the present disclosure have been described above, it is needless to say that the present disclosure is not limited to the above-described embodiments and can take various forms.

(3a)上記各実施形態では、少なくとも走査方向及び測距周期がそれぞれ同じになるように、各測距部による測距処理が実行される構成を例示したが、これらのうち少なくとも1つが異なっていてもよい。例えば、測距周期が異なっていてもよい。 (3a) In each of the above embodiments, a configuration in which distance measurement processing is executed by each distance measurement unit is exemplified so that at least the scanning direction and the distance measurement cycle are the same, but at least one of these is different. You may. For example, the distance measurement cycles may be different.

(3b)上記各実施形態では、制御部20が、各測距部それぞれの動作を制御する機能及び各測距部による測距処理を統括的に制御する機能の両方を有する構成を例示したが、制御部20の構成はこれに限定されるものではない。例えば、各測距部それぞれの動作を制御する機能を、各測距部に分散させてもよい。例えばこの場合、各測距部による測距処理を統括的に制御する機能は、各測距部がそれぞれ備える制御部間において通信することで実現されてもよいし、それらの制御部とは別の制御部が制御を実行することで実現されてもよい。 (3b) In each of the above embodiments, the configuration in which the control unit 20 has both a function of controlling the operation of each distance measuring unit and a function of comprehensively controlling the distance measuring process by each distance measuring unit is illustrated. The configuration of the control unit 20 is not limited to this. For example, the function of controlling the operation of each ranging unit may be distributed to each ranging unit. For example, in this case, the function of comprehensively controlling the ranging process by each ranging unit may be realized by communicating between the control units provided in each ranging unit, or may be realized separately from those control units. It may be realized by the control unit of.

(3c)上記各実施形態では、各測距部は、走査方向に並んで配置されていたが、図33に示すように、測距部10A及び測距部10Bが、偏向部材13の回転軸の方向に沿って並んで配置されてもよい。この場合、各測距部は、隣に配置される他の測距部と測距領域の一部が偏向部材13の回転軸の方向で互いに重複するように配置される。図33に示す例では、各測距部は、断面形状Fが走査方向と垂直な方向に沿って長いレーザ光を走査する。制御部20は、複数の測距部により照射されるレーザ光の通過領域が測距領域の重複する部分で干渉しないように、各測距部による測距処理を実行させる。例えば、走査方向、測距周期及び測距角速度がそれぞれ同じである場合には、回転角度θAと回転角度θB_Aとを異ならせればよい。具体的には、測距期間においてレーザ光が走査される角度範囲が同じである場合、走査タイミングをずらせばよい。また、測距期間においてレーザ光が走査される角度範囲が異なる場合、走査タイミングが一致しない範囲内で走査タイミングを調整すればよい。 (3c) In each of the above embodiments, the distance measuring units are arranged side by side in the scanning direction, but as shown in FIG. 33, the distance measuring unit 10A and the distance measuring unit 10B are the rotation axes of the deflection member 13. They may be arranged side by side along the direction of. In this case, each ranging unit is arranged so that a part of the ranging region and another ranging unit arranged adjacent to each other overlap each other in the direction of the rotation axis of the deflection member 13. In the example shown in FIG. 33, each ranging unit scans a long laser beam along a direction in which the cross-sectional shape F is perpendicular to the scanning direction. The control unit 20 causes each ranging unit to execute the ranging processing so that the passing regions of the laser beams emitted by the plurality of ranging units do not interfere with each other at the overlapping portions of the ranging regions. For example, when the scanning direction, the distance measurement cycle, and the distance measurement angular velocity are the same, the rotation angle θ A and the rotation angle θ B_A may be different. Specifically, when the angle range in which the laser beam is scanned is the same during the ranging period, the scanning timing may be shifted. Further, when the angle range in which the laser beam is scanned is different during the ranging period, the scanning timing may be adjusted within the range in which the scanning timings do not match.

(3d)上記第2実施形態では、測距部10A及び測距部10Bのうち測距部10Bが測距部10Aの走査方向側とは反対側に配置され、測距角速度ωよりも測距角速度ωが大きい構成を例示したが、各測距部の配置及び測距角速度の大小関係はこれに限定されるものではない。例えば、測距部10A及び測距部10Bのうち測距部10Bは測距部10Aの走査方向側に配置されてもよいし、測距角速度ωよりも測距角速度ωの方が大きくてもよい。 (3d) In the second embodiment, the ranging unit 10B of the ranging unit 10A and the ranging unit 10B is arranged on the side opposite to the scanning direction side of the ranging unit 10A, and measures the angular velocity ω A. Although the configuration in which the distance angular velocity ω B is large is illustrated, the arrangement of each distance measuring unit and the magnitude relationship between the distance measuring angular velocities are not limited to this. For example, of the ranging unit 10A and the ranging unit 10B, the ranging unit 10B may be arranged on the scanning direction side of the ranging unit 10A, and the ranging angular velocity ω A is larger than the ranging angular velocity ω B. You may.

(3e)上記各実施形態では、例えば図12に示すように、駆動部12が、回転角度の変化を示す波形が共に周期性のある波形となるように測距部10A及び測距部10Bの偏向部材13を回転移動させる構成を例示した。具体的には、波形の種類が、測距期間と非測距期間とが交互に繰り返される三角波となるように回転移動させる構成を例示したが、偏向部材13の回転移動はこれに限定されるものではない。例えば図34に示すように、駆動部12は、回転角度の変化を示す波形の種類が正弦波となるように偏向部材13を回転移動させてもよい。この例では、測距周期の全体が測距期間である。例えば、測距周期を同じにする場合、測距部10A及び測距部10Bの偏向部材13の回転角度の変化を示す正弦波はそれぞれ、下式(1)及び下式(2)で表される。 (3e) In each of the above embodiments, for example, as shown in FIG. 12, the drive unit 12 has a distance measuring unit 10A and a distance measuring unit 10B so that the waveforms indicating changes in the rotation angle are both periodic waveforms. The configuration in which the deflection member 13 is rotationally moved is illustrated. Specifically, the configuration in which the waveform type is rotationally moved so as to be a triangular wave in which the ranging period and the non-ranging period are alternately repeated is exemplified, but the rotational movement of the deflection member 13 is limited to this. It's not a thing. For example, as shown in FIG. 34, the drive unit 12 may rotate and move the deflection member 13 so that the type of the waveform indicating the change in the rotation angle is a sine wave. In this example, the entire ranging cycle is the ranging period. For example, when the distance measuring period is the same, the sine wave indicating the change in the rotation angle of the deflection member 13 of the distance measuring unit 10A and the distance measuring unit 10B is represented by the following equations (1) and (2), respectively. To.

Figure 2022021826000002
Figure 2022021826000002

ここで、ωは測距部10A及び測距部10Bの偏向部材13の角速度ωであり、tは時間であり、θはθA及びθB_Aの位相差θである。
図9に示すように測距部10A及び測距部10Bが配置される場合、測距部10A及び測距部10Bにより照射されるレーザ光の通過領域が干渉することを抑制するためには、共測距状態において回転角度θB_Aが回転角度θAの値が上回らなければよい。したがって、下式(3)の関係が満たされればよく、ゆえに、下式(4)の関係が満たされるようにθが設定されればよい。
Here, ω is the angular velocity ω of the deflection member 13 of the ranging unit 10A and the ranging unit 10B, t is the time, and θ is the phase difference θ between θ A and θ B_A .
When the ranging unit 10A and the ranging unit 10B are arranged as shown in FIG. 9, in order to suppress interference between the passing regions of the laser light emitted by the ranging unit 10A and the ranging unit 10B, the distance measuring unit 10A and the ranging unit 10B are arranged. It is sufficient that the rotation angle θ B_A does not exceed the value of the rotation angle θ A in the co-distance measurement state. Therefore, it is sufficient that the relation of the following equation (3) is satisfied, and therefore θ may be set so that the relation of the following equation (4) is satisfied.

Figure 2022021826000003
Figure 2022021826000003

また例えば図35に示すように、駆動部12は、回転角度の変化を示す波形の種類が互いに異なるように測距部10A及び測距部10Bの偏向部材13を回転移動させてもよいし、図36に示すように、周期性が無いように回転移動させてもよい。 Further, for example, as shown in FIG. 35, the drive unit 12 may rotate and move the deflection member 13 of the distance measuring unit 10A and the distance measuring unit 10B so that the types of waveforms indicating changes in the rotation angle are different from each other. As shown in FIG. 36, the rotation may be performed so as not to have periodicity.

(3f)上記各実施形態では、駆動部12は、偏向部材13を揺動させる構成であるが、偏向部材13を回転させる構成でもよい。
(3g)上記各実施形態では、複数の測距部により照射されるレーザ光の通過領域が測距領域内のみならず測距領域外においても干渉しないように制御が実行される構成を例示したが、レーザ光の通過領域が測距領域外で干渉することは許容してもよい。
(3f) In each of the above embodiments, the drive unit 12 is configured to swing the deflection member 13, but may be configured to rotate the deflection member 13.
(3g) In each of the above embodiments, a configuration is exemplified in which control is executed so that the passing region of the laser beam irradiated by the plurality of ranging units does not interfere not only in the ranging region but also outside the ranging region. However, it may be allowed that the passing region of the laser beam interferes outside the ranging region.

(3h)上記各実施形態では、3つの測距部がそれぞれ車両100の周囲の前方に測距
領域を持つように配置される構成を例示したが、測距部の数及び配置はこれに限定されるものではない。例えば、測距部の数は2つ又は4つ以上でもよく、また、車両100の周囲の後方に測距領域を持つように各測距部が配置されてもよい。
(3h) In each of the above embodiments, a configuration is exemplified in which the three ranging units are arranged so as to have a ranging region in front of the periphery of the vehicle 100, but the number and arrangement of the ranging units are limited to this. It is not something that will be done. For example, the number of ranging units may be two or four or more, and each ranging unit may be arranged so as to have a ranging region behind the periphery of the vehicle 100.

(3i)上記各実施形態では、車両100に搭載される測距装置1を例示したが、測距装置の用途はこれに限定されない。例えば、車両以外の移動体、具体的にはドローンなどの飛行体に測距装置が搭載されてもよい。 (3i) In each of the above embodiments, the distance measuring device 1 mounted on the vehicle 100 is exemplified, but the application of the distance measuring device is not limited to this. For example, a distance measuring device may be mounted on a moving body other than a vehicle, specifically, a flying body such as a drone.

(3j)上記各実施形態では、駆動部12がモータである構成を例示したが、駆動部12の構成はこれに限定されるものではない。例えば、駆動部12はMEMSでもよい。MEMSとは、Micro-electrical-mechanical systemの略である。 (3j) In each of the above embodiments, the configuration in which the drive unit 12 is a motor is exemplified, but the configuration of the drive unit 12 is not limited to this. For example, the drive unit 12 may be MEMS. MEMS is an abbreviation for Micro-Electrical-Mechanical System.

(3k)上記各実施形態では、偏向部材13としてミラーを用いる構成を例示したが、レーザ光を偏向可能な他の偏向部材、例えばプリズムが用いられてもよい。
(3l)図3に示した測距部の構成は一例であり、他の構成であってもよい。例えば、投光部11からのレーザ光がハーフミラーを透過して偏向部材13へ照射され、偏向部材13からの反射光については当該ハーフミラーで反射されて受光部14で受光されるように、測距部が構成されていてもよい。
(3k) In each of the above embodiments, the configuration in which the mirror is used as the deflection member 13 is exemplified, but another deflection member capable of deflecting the laser beam, for example, a prism may be used.
(3l) The configuration of the distance measuring unit shown in FIG. 3 is an example, and may be another configuration. For example, the laser light from the light projecting unit 11 passes through the half mirror and is applied to the deflection member 13, and the reflected light from the deflection member 13 is reflected by the half mirror and received by the light receiving unit 14. A ranging unit may be configured.

(3m)上記実施形態における1つの構成要素が有する機能を複数の構成要素として分散させたり、複数の構成要素が有する機能を1つの構成要素に統合したりしてもよい。また、上記実施形態の構成の一部を省略してもよい。また、上記実施形態の構成の少なくとも一部を、他の上記実施形態の構成に対して付加、置換等してもよい。 (3m) The functions of one component in the above embodiment may be dispersed as a plurality of components, or the functions of the plurality of components may be integrated into one component. Further, a part of the configuration of the above embodiment may be omitted. Further, at least a part of the configuration of the above embodiment may be added or substituted with respect to the other configurations of the above embodiment.

1…測距装置、10A,10B…測距部、10F…前測距部、10L…左測距部、10R…右測距部、11…投光部、12…駆動部、13…偏向部材、14…受光部、20…制御部。 1 ... ranging device, 10A, 10B ... ranging unit, 10F ... front ranging unit, 10L ... left ranging unit, 10R ... right ranging unit, 11 ... light projecting unit, 12 ... driving unit, 13 ... deflection member , 14 ... Light receiving unit, 20 ... Control unit.

Claims (10)

複数の測距部(10A,10B,10F,10L,10R)と、
前記複数の測距部を制御するように構成される制御部(20)と、
を備え、
前記複数の測距部のそれぞれは、レーザ光を偏向する偏向部材を備え、前記偏向部材を回転又は揺動させることにより、照射するレーザ光の照射方位を変化させて所定の測距領域内でレーザ光を走査し、前記照射方位と同一の方位から受光される反射光に基づいて前記照射方位に存在する物体との距離を測定する、測距処理を実行可能に構成され、
前記複数の測距部は、前記測距領域の一部が互いに重複する第1の測距部及び第2の測距部を備え、
前記制御部は、前記第1の測距部により照射されるレーザ光が通る領域である第1の通過領域と前記第2の測距部により照射されるレーザ光が通る領域である第2の通過領域とが前記測距領域内で干渉しないように、前記第1の測距部による前記測距処理と前記第2の測距部による前記測距処理とを並行して実行させる、測距装置。
With multiple ranging units (10A, 10B, 10F, 10L, 10R),
A control unit (20) configured to control the plurality of distance measuring units,
Equipped with
Each of the plurality of ranging units is provided with a deflection member that deflects the laser beam, and by rotating or swinging the deflection member, the irradiation direction of the laser beam to be irradiated is changed within a predetermined ranging area. It is configured to be capable of performing distance measurement processing that scans the laser beam and measures the distance to an object existing in the irradiation direction based on the reflected light received from the same direction as the irradiation direction.
The plurality of ranging units include a first ranging unit and a second ranging unit in which a part of the ranging area overlaps with each other.
The control unit has a first passing region, which is a region through which the laser light emitted by the first ranging unit passes, and a second region, which is a region through which the laser light emitted by the second ranging unit passes. Distance measurement in which the distance measurement process by the first distance measurement unit and the distance measurement process by the second distance measurement unit are executed in parallel so that the passing area does not interfere with the distance measurement area. Device.
請求項1に記載の測距装置であって、
前記制御部は、前記第1の測距部又は前記第2の測距部が備える前記偏向部材の回転軸の方向から見た平面視で、前記第1の測距部により照射されるレーザ光の前記照射方位と、前記第2の測距部により照射されるレーザ光の前記照射方位と、の共通の基準方位に対する角度の大小関係が逆転しないように、前記第1の測距部による前記測距処理と前記第2の測距部による前記測距処理とを実行させる、測距装置。
The ranging device according to claim 1.
The control unit is a laser beam emitted by the first distance measuring unit in a plan view seen from the direction of the rotation axis of the deflection member included in the first distance measuring unit or the second distance measuring unit. The irradiation direction of the first distance measuring unit is used so that the magnitude relationship between the irradiation direction of the above and the irradiation direction of the laser beam emitted by the second distance measuring unit with respect to the common reference direction is not reversed. A distance measuring device that executes a distance measuring process and the distance measuring process by the second distance measuring unit.
請求項2に記載の測距装置であって、
前記制御部は、距離の測定が行われる周期である測距周期が同じになるように、前記第1の測距部による前記測距処理と前記第2の測距部による前記測距処理とを実行させる、測距装置。
The ranging device according to claim 2.
The control unit performs the distance measurement process by the first distance measurement unit and the distance measurement process by the second distance measurement unit so that the distance measurement cycle, which is the cycle in which the distance is measured, is the same. A distance measuring device to execute.
請求項3に記載の測距装置であって、
前記測距周期には、距離の測定が行われる期間である測距期間と、距離の測定が行われない期間である非測距期間と、が含まれ、
前記制御部は、前記第1の測距部及び前記第2の測距部が共に前記測距期間の状態において前記第1の通過領域と前記第2の通過領域とが前記測距領域内で干渉しないように、前記第1の測距部による前記測距処理と前記第2の測距部による前記測距処理とを実行させる、測距装置。
The ranging device according to claim 3.
The distance measurement cycle includes a distance measurement period, which is a period in which distance measurement is performed, and a non-distance measurement period, which is a period in which distance measurement is not performed.
In the control unit, when both the first distance measuring unit and the second distance measuring unit are in the state of the distance measuring period, the first passing region and the second passing region are within the distance measuring region. A distance measuring device that executes the distance measuring process by the first distance measuring unit and the distance measuring process by the second distance measuring unit so as not to interfere with each other.
請求項4に記載の測距装置であって、
前記制御部は、レーザ光を走査する方向である走査方向、及び、前記測距期間における前記偏向部材の回転又は揺動の角速度である測距角速度が、それぞれ同じになるように、前記第1の測距部による前記測距処理と前記第2の測距部による前記測距処理とを実行させ、
前記第1の測距部及び前記第2の測距部は、前記第1の測距部の前記偏向部材の回転軸が前記第2の測距部の前記偏向部材の回転軸よりも前記走査方向側になるように、前記走査方向に沿って並んで配置され、
前記第1の測距部がレーザ光の走査を開始するタイミングに対する前記第2の測距部がレーザ光の走査を開始するタイミングが、前記第1の測距部がレーザ光の走査を開始する前記照射方位である第1の開始方位と前記第2の測距部がレーザ光の走査を開始する前記照射方位である第2の開始方位とがなす角度を前記測距角速度で回転移動するのに必要な時間を表す値であって前記第1の開始方位が前記第2の開始方位よりも前記走査方向側を向く場合には符号をマイナスとする値を下限値とし、前記第2の測距部の前記非測距期間
を表す値を上限値とする範囲内である、測距装置。
The ranging device according to claim 4.
The first control unit has the same scanning direction, which is the direction in which the laser beam is scanned, and the angular velocity, which is the angular velocity of rotation or rocking of the deflection member during the ranging period. The ranging process by the ranging unit and the ranging process by the second ranging unit are executed.
In the first ranging section and the second ranging section, the rotation axis of the deflection member of the first ranging section is more scanned than the rotation axis of the deflection member of the second ranging section. Arranged side by side along the scanning direction so as to be on the directional side,
The timing at which the second ranging unit starts scanning the laser light with respect to the timing at which the first ranging unit starts scanning the laser beam is the timing at which the first ranging unit starts scanning the laser light. The angle formed by the first start direction, which is the irradiation direction, and the second start direction, which is the irradiation direction, at which the second ranging unit starts scanning the laser beam is rotated and moved at the ranging angle speed. When the first start direction faces the scanning direction side from the second start direction, the lower limit value is a value indicating the time required for the laser, and the lower limit value is the second measurement. A distance measuring device within a range in which a value representing the non-distance measuring period of the distance portion is an upper limit value.
請求項2に記載の測距装置であって、
前記制御部は、距離の測定が行われる期間における前記偏向部材の回転又は揺動の角速度である測距角速度が互いに異なるように、前記第1の測距部による前記測距処理と前記第2の測距部による前記測距処理とを実行させる、測距装置。
The ranging device according to claim 2.
The control unit performs the distance measurement process by the first distance measuring unit and the second A distance measuring device that executes the distance measuring process by the distance measuring unit of the above.
請求項6に記載の測距装置であって、
距離の測定が行われる周期である測距周期には、距離の測定が行われる期間である測距期間と、距離の測定が行われない期間である非測距期間と、が含まれ、
前記制御部は、前記第1の測距部及び前記第2の測距部が共に前記測距期間の状態である共測距状態において前記第1の通過領域と前記第2の通過領域とが前記測距領域内で干渉しないように、前記第1の測距部による前記測距処理と前記第2の測距部による前記測距処理とを実行させる、測距装置。
The distance measuring device according to claim 6.
The distance measurement cycle, which is the period in which the distance is measured, includes the distance measurement period in which the distance is measured and the non-distance measurement period in which the distance is not measured.
In the control unit, the first passing region and the second passing region are in a co-distance measuring state in which both the first distance measuring unit and the second distance measuring unit are in the state of the distance measuring period. A ranging device that executes the ranging process by the first ranging section and the ranging process by the second ranging section so as not to interfere with each other in the ranging area.
請求項7に記載の測距装置であって、
前記制御部は、前記測距周期、及び、レーザ光を走査する方向である走査方向が、それぞれ同じになるように、前記第1の測距部による前記測距処理と前記第2の測距部による前記測距処理とを実行させ、
前記第1の測距部及び前記第2の測距部は、前記第1の測距部の前記偏向部材の回転軸が前記第2の測距部の前記偏向部材の回転軸よりも前記走査方向側になるように、前記走査方向に沿って並んで配置され、
前記共測距状態となる期間が、前記共測距状態の開始時における前記第1の測距部と前記第2の測距部との前記照射方位のなす角度を前記共測距状態における前記第2の測距部と前記第1の測距部との前記測距角速度の差分で割った値以下である、測距装置。
The ranging device according to claim 7.
The control unit has the distance measurement process by the first distance measurement unit and the second distance measurement so that the distance measurement cycle and the scanning direction, which is the direction in which the laser beam is scanned, are the same. The distance measurement process by the unit is executed,
In the first ranging section and the second ranging section, the rotation axis of the deflection member of the first ranging section is more scanned than the rotation axis of the deflection member of the second ranging section. Arranged side by side along the scanning direction so as to be on the directional side,
The period during which the co-distance measuring state is set is the angle formed by the irradiation direction between the first ranging unit and the second ranging unit at the start of the co-distance measuring state. A distance measuring device having a value equal to or less than a value divided by the difference in the distance measuring angular velocities between the second distance measuring unit and the first distance measuring unit.
請求項1から請求項8までのいずれか1項に記載の測距装置であって、
前記制御部は、前記偏向部材の回転又は揺動の角速度を変化させるタイミングが前記複数の測距部で互いに異なるように、前記複数の測距部を制御する、測距装置。
The distance measuring device according to any one of claims 1 to 8.
The control unit is a distance measuring device that controls the plurality of distance measuring units so that the timing at which the angular velocity of rotation or swing of the deflection member is changed differs between the plurality of distance measuring units.
請求項1から請求項9までのいずれか1項に記載の測距装置であって、
前記制御部は、前記偏向部材の回転又は揺動の角速度が最も速い期間の少なくとも一部が前記複数の測距部で互いに重ならないように、前記複数の測距部を制御する、測距装置。
The distance measuring device according to any one of claims 1 to 9.
The control unit controls the plurality of distance measuring units so that at least a part of the period in which the angular velocity of rotation or rocking of the deflection member is the fastest does not overlap with each other in the plurality of distance measuring units. ..
JP2020125659A 2020-07-22 2020-07-22 Distance measuring device Pending JP2022021826A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020125659A JP2022021826A (en) 2020-07-22 2020-07-22 Distance measuring device
CN202180049962.4A CN115885192A (en) 2020-07-22 2021-07-12 Distance measuring device
PCT/JP2021/026134 WO2022019164A1 (en) 2020-07-22 2021-07-12 Ranging device
US18/156,289 US20230152468A1 (en) 2020-07-22 2023-01-18 Ranging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020125659A JP2022021826A (en) 2020-07-22 2020-07-22 Distance measuring device

Publications (2)

Publication Number Publication Date
JP2022021826A true JP2022021826A (en) 2022-02-03
JP2022021826A5 JP2022021826A5 (en) 2022-09-26

Family

ID=79728704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020125659A Pending JP2022021826A (en) 2020-07-22 2020-07-22 Distance measuring device

Country Status (4)

Country Link
US (1) US20230152468A1 (en)
JP (1) JP2022021826A (en)
CN (1) CN115885192A (en)
WO (1) WO2022019164A1 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013113670A (en) * 2011-11-28 2013-06-10 Mitsubishi Electric Corp Laser radar system, laser distance measuring device and control device
US10436904B2 (en) * 2015-04-15 2019-10-08 The Boeing Company Systems and methods for modular LADAR scanning
JP6863185B2 (en) * 2017-09-01 2021-04-21 富士通株式会社 Distance measuring device, distance measuring method and program
DE112019003459T5 (en) * 2018-09-03 2021-04-01 Hitachi Automotive Systems, Ltd. VEHICLE MOUNTED RADAR SYSTEM

Also Published As

Publication number Publication date
US20230152468A1 (en) 2023-05-18
CN115885192A (en) 2023-03-31
WO2022019164A1 (en) 2022-01-27

Similar Documents

Publication Publication Date Title
CN109014565B (en) Laser processing apparatus
JP5541410B2 (en) Laser radar equipment
JP2011197575A (en) Optical scanner and distance measuring device
JP2013513766A (en) Shape tight coupling clutch device, especially mesh clutch device
JP5891893B2 (en) Laser radar equipment
JP2007225342A (en) Three-dimensional measuring device and autonomously moving device provided with three-dimensional measuring device
US4724301A (en) Apparatus utilizing light stripe image for detecting portion to be welded prior to welding thereof
JP5267786B2 (en) Laser radar and boundary monitoring method using laser radar
JP6309754B2 (en) Laser radar equipment
JP3802339B2 (en) Axis adjustment method for rangefinder
JP2001334966A (en) Trailer connecting angle detector
WO2022019164A1 (en) Ranging device
JP2008292308A (en) Optical radar device
JPH0587922A (en) Detecting apparatus of obstacle
JP2003028960A (en) Obstacle detection apparatus
JP5533759B2 (en) Laser radar equipment
WO2019123722A1 (en) Optical scanning device, method for controlling optical scanning device, and program for controlling optical scanning device
WO2021045003A1 (en) Optical distance measurement apparatus
JPH10170636A (en) Optical scanner
JP2009023039A (en) Original point position setting device, original point position setting method, link mechanism, and caster-type robot
JP2013010384A (en) Automatic door opening device for swing door
JP5023382B2 (en) Perimeter monitoring device
JP6747115B2 (en) Laser radar device
JP2009023040A (en) Original point position setting device, original position setting method, link mechanism, and caster-type robot
JP3214253B2 (en) Obstacle detection device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220914

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230627

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231010

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231204

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20240220