JP2022020554A - Active oxygen supply device, processing device using active oxygen and processing method using active oxygen - Google Patents

Active oxygen supply device, processing device using active oxygen and processing method using active oxygen Download PDF

Info

Publication number
JP2022020554A
JP2022020554A JP2021094894A JP2021094894A JP2022020554A JP 2022020554 A JP2022020554 A JP 2022020554A JP 2021094894 A JP2021094894 A JP 2021094894A JP 2021094894 A JP2021094894 A JP 2021094894A JP 2022020554 A JP2022020554 A JP 2022020554A
Authority
JP
Japan
Prior art keywords
active oxygen
induced flow
treated
electrode
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021094894A
Other languages
Japanese (ja)
Other versions
JP7140885B2 (en
Inventor
匠 古川
Takumi Furukawa
一浩 山内
Kazuhiro Yamauchi
雅基 小澤
Masaki Ozawa
健二 ▲高▼嶋
Kenji Takashima
裕一 菊池
Yuichi Kikuchi
翔太 金子
Shota Kaneko
将嗣 本郷
Masatsugu Hongo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to CN202180046623.0A priority Critical patent/CN115997482A/en
Priority to PCT/JP2021/024688 priority patent/WO2022004771A1/en
Priority to KR1020227044636A priority patent/KR20230013108A/en
Priority to EP21832011.7A priority patent/EP4174019A1/en
Priority to JP2021168766A priority patent/JP2022023131A/en
Publication of JP2022020554A publication Critical patent/JP2022020554A/en
Application granted granted Critical
Publication of JP7140885B2 publication Critical patent/JP7140885B2/en
Priority to US18/090,700 priority patent/US20230146111A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide an active oxygen supply device capable of more efficiently supplying active oxygen to a surface of a processed object, a processing device using active oxygen, capable of more efficiently processing the surface of the processed object, with active oxygen, and a processing method for more efficiently processing the surface of the processed object with the active oxygen.SOLUTION: An active oxygen supply device comprises a plasma actuator provided with a plasma generator and an ultraviolet light source in a housing having at least one opening. The plasma generator is provided with a first electrode and a second electrode sandwiching a dielectric substance therebetween, and by applying a voltage between both the electrodes, an induction flow including ozone is generated. The plasma actuator is arranged so that, the induction flow flows outward of the housing, from the opening, the ultraviolet light source radiates the ultraviolet to the induction flow, and in the induction flow, active oxygen is generated. There are also provided a processing device using the active oxygen, and a processing method using the active oxygen.SELECTED DRAWING: Figure 1

Description

本開示は、活性酸素供給装置、活性酸素による処理装置及び活性酸素による処理方法に向けたものである。 The present disclosure is directed to an active oxygen supply device, a treatment device using active oxygen, and a treatment method using active oxygen.

物品等の除菌を行う手段として、紫外線、及び、オゾンが知られている。特許文献1は、紫外線による除菌が、除菌対象物の紫外線が照射される部分に限定されるという課題に対して、オゾン供給装置と紫外線発生ランプと撹拌装置とを有する殺菌装置を用いて、紫外線発生ランプより生成する紫外線をオゾンに照射することにより発生する活性酸素を撹拌して試料の影の部分も殺菌する方法を開示している。 Ultraviolet rays and ozone are known as means for sterilizing articles and the like. Patent Document 1 uses a sterilizer having an ozone supply device, an ultraviolet generation lamp, and a stirrer to solve the problem that sterilization by ultraviolet rays is limited to a portion of the object to be sterilized that is irradiated with ultraviolet rays. Discloses a method of sterilizing the shadow portion of a sample by stirring active oxygen generated by irradiating ozone with ultraviolet rays generated by an ultraviolet ray generating lamp.

特開平1-25865号公報Japanese Unexamined Patent Publication No. 1-25865

本発明者らが、特許文献1に係る殺菌方法による除菌性能について検討したところ、従来のオゾンのみを用いた除菌方法による除菌性能と同等程度である場合があった。活性酸素の除菌能力は、本来オゾンの除菌能力をはるかに上回ると言われているところ、このような検討結果は予想外のものであった。
本開示の一態様は、被処理物の表面に活性酸素をより効率的に供給し得る活性酸素供給装置、被処理物の表面を活性酸素でより効率的に処理し得る活性酸素による処理装置、及び、被処理物の表面を活性酸素でより効率的に処理し得る活性酸素による処理方法の提供に向けたものである。
When the present inventors examined the sterilization performance by the sterilization method according to Patent Document 1, there were cases where the sterilization performance was equivalent to that of the conventional sterilization method using only ozone. It is said that the sterilizing ability of active oxygen is far higher than the sterilizing ability of ozone, but such a study result was unexpected.
One aspect of the present disclosure is an active oxygen supply device capable of more efficiently supplying active oxygen to the surface of the object to be treated, a treatment device using active oxygen capable of more efficiently treating the surface of the object to be treated with active oxygen, and the like. Further, the present invention aims at providing a treatment method using active oxygen, which can treat the surface of the object to be treated with active oxygen more efficiently.

本開示の少なくとも一つの様態によれば、少なくとも一つの開口部を有する筐体内にプラズマ発生装置と紫外線光源とを具備し、該プラズマ発生装置は、誘電体を挟んで第1の電極と第2の電極を設け、両電極間に電圧を印加することによりオゾンを含む誘起流を生じさせるプラズマアクチュエータであり、該プラズマアクチュエータは、該誘起流が該開口部から該筐体外に流出するように配置されており、該紫外線光源は、紫外線を該誘起流に照射し、該誘起流中に活性酸素を発生させる活性酸素供給装置が提供される。 According to at least one aspect of the present disclosure, a plasma generator and an ultraviolet light source are provided in a housing having at least one opening, and the plasma generator has a first electrode and a second electrode with a dielectric interposed therebetween. It is a plasma actuator that generates an induced flow containing ultraviolet rays by providing an electrode of the above and applying a voltage between both electrodes, and the plasma actuator is arranged so that the induced flow flows out of the housing through the opening. The ultraviolet light source is provided with an active oxygen supply device that irradiates the induced flow with ultraviolet rays to generate active oxygen in the induced flow.

また、本開示の少なくとも一つの様態によれば、被処理物の表面を活性酸素で処理する処理装置であって、少なくとも一つの開口部を有する筐体内にプラズマ発生装置と紫外線光源とを具備し、該プラズマ発生装置は、誘電体を挟んで第1の電極と第2の電極を設け、両電極間に電圧を印加することによりオゾンを含む誘起流を生じさせるプラズマアクチュエータであり、該プラズマアクチュエータは、該誘起流が該開口部から該筐体外に流出するように配置されており、該紫外線光源は、紫外線を該誘起流に照射し、該誘起流中に活性酸素を発生させる活性酸素による処理装置が提供される。 Further, according to at least one aspect of the present disclosure, it is a processing device for treating the surface of the object to be treated with active oxygen, and is provided with a plasma generator and an ultraviolet light source in a housing having at least one opening. The plasma generator is a plasma actuator in which a first electrode and a second electrode are provided with a dielectric sandwiched between them, and an induced flow containing ultraviolet rays is generated by applying a voltage between the two electrodes. Is arranged so that the induced flow flows out of the housing through the opening, and the ultraviolet light source is due to active oxygen that irradiates the induced flow with ultraviolet rays and generates active oxygen in the induced flow. Processing equipment is provided.

さらに、本開示の少なくとも一つの態様によれば、被処理物の表面を活性酸素で処理する処理方法であって、
少なくとも一つの開口部を有する筐体内にプラズマ発生装置と紫外線光源とを具備し、該プラズマ発生装置は、誘電体を挟んで第1の電極と第2の電極を設け、両電極間に電圧を印加することによりオゾンを含む誘起流を生じさせるプラズマアクチュエータであり、
該プラズマアクチュエータは、該誘起流が該開口部から該筐体外に流出するように配置されており、該紫外線光源は、紫外線を該誘起流に照射し、該誘起流中に活性酸素を発生させる活性酸素による処理装置を用意する工程と、該活性酸素による処理装置と、該被処理物とを、該開口部から該誘起流を流出させたときに該被処理物の表面が曝される相対的な位置に置く工程と、該開口部から該誘起流を流出させて、該被処理物の表面を活性酸素で処理する工程と、を有する活性酸素による処理方法が提供される。
Further, according to at least one aspect of the present disclosure, it is a treatment method for treating the surface of the object to be treated with active oxygen.
A plasma generator and an ultraviolet light source are provided in a housing having at least one opening, and the plasma generator is provided with a first electrode and a second electrode with a dielectric interposed therebetween, and a voltage is applied between the two electrodes. It is a plasma actuator that generates an induced flow containing ozone by applying it.
The plasma actuator is arranged so that the induced flow flows out of the housing through the opening, and the ultraviolet light source irradiates the induced flow with ultraviolet rays to generate active oxygen in the induced flow. The step of preparing a treatment device using active oxygen, the relative treatment device using the active oxygen, and the object to be treated are exposed to the surface of the object to be treated when the induced flow is discharged from the opening. A treatment method using active oxygen is provided, which comprises a step of placing the induced flow in a specific position and a step of allowing the induced flow to flow out from the opening and treating the surface of the object to be treated with active oxygen.

本開示の一態様によれば、被処理物の表面に活性酸素をより効率的に供給し得る活性酸素供給装置、被処理物の表面を活性酸素でより効率的に処理し得る活性酸素による処理装置及び被処理物の表面を活性酸素でより効率的に処理し得る活性酸素による処理方法を得ることができる。 According to one aspect of the present disclosure, an active oxygen supply device capable of more efficiently supplying active oxygen to the surface of the object to be treated, and treatment with active oxygen capable of more efficiently treating the surface of the object to be treated with active oxygen. It is possible to obtain a treatment method using active oxygen, which can treat the surface of the apparatus and the object to be treated more efficiently with active oxygen.

本開示の一態様に係る活性酸素供給装置の構成示す概略断面図。The schematic sectional view showing the structure of the active oxygen supply apparatus which concerns on one aspect of this disclosure. 本開示の一態様に係るプラズマ発生装置の構成を示す概略断面図。The schematic cross-sectional view which shows the structure of the plasma generator which concerns on one aspect of this disclosure. 本開示の一態様に係るプラズマアクチュエータの説明図。Explanatory drawing of plasma actuator which concerns on one aspect of this disclosure. 本開示の一態様に係る活性酸素供給装置の寸法説明図説明図。Dimensional explanatory drawing explanatory drawing of the active oxygen supply apparatus which concerns on one aspect of this disclosure. 本開示の他の一態様に係る活性酸素供給装置の平面図。The plan view of the active oxygen supply apparatus which concerns on another aspect of this disclosure. 図5のAA線断面図。FIG. 5 is a sectional view taken along line AA of FIG. 本開示の他の一態様に係る活性酸素供給装置を用いた処理方法の概略説明図。The schematic explanatory view of the processing method using the active oxygen supply apparatus which concerns on another aspect of this disclosure.

以下、図面を参照して、この開示を実施するための形態を、具体的に例示する。ただし、この形態に記載されている構成部品の寸法、材質、形状それらの相対配置などは、開示が適用される部材の構成や各種条件により適宜変更されるべきものである。すなわち、この開示の範囲を以下の形態に限定する趣旨のものではない。
また、本開示において、数値範囲を表す「XX以上YY以下」や「XX~YY」の記載は、特に断りのない限り、端点である下限及び上限を含む数値範囲を意味する。数値範囲が段階的に記載されている場合、各数値範囲の上限及び下限は任意に組み合わせることができる。
Hereinafter, embodiments for carrying out this disclosure will be specifically exemplified with reference to the drawings. However, the dimensions, materials, shapes, etc. of the components described in this form should be appropriately changed depending on the composition of the members to which the disclosure is applied and various conditions. That is, it is not intended to limit the scope of this disclosure to the following forms.
Further, in the present disclosure, the description of "XX or more and YY or less" or "XX to YY" indicating a numerical range means a numerical range including a lower limit and an upper limit which are end points, unless otherwise specified. When numerical ranges are described step by step, the upper and lower limits of each numerical range can be arbitrarily combined.

また、本開示に係る「除菌」の対象物としての「菌」とは微生物を指し、該微生物には、真菌、細菌、単細胞藻類、ウイルス、原生動物等に加え、動物又は植物の細胞(幹細胞、脱分化細胞、分化細胞を含む。)、組織培養物、遺伝子工学によって得られた融合細胞(ハイブリドーマを含む。)、脱分化細胞、形質転換体(微生物)が含まれる。ウイルスの例としては、例えば、ノロウイルス、ロタウイルス、インフルエンザウイルス、アデノウイルス、コロナウイルス、麻疹ウイルス、風疹ウイルス、肝炎ウイルス、ヘルペスウイルス、HIVウイルスなどが挙げられる。また、細菌の例としては、例えば、ブドウ球菌、大腸菌、サルモネラ菌、緑膿菌、コレラ菌、赤痢菌、炭そ菌、結核菌、ボツリヌス菌、破傷風菌、連鎖球菌などが挙げられる。さらに、真菌の例としては、白癬菌、アスペルギルス、カンジダ等が挙げられる。 In addition, the term "bacteria" as an object of "eradication" according to the present disclosure refers to microorganisms, which include fungi, bacteria, unicellular algae, viruses, protozoa, etc., as well as animal or plant cells ( Includes stem cells, dedifferentiated cells, differentiated cells), tissue cultures, fusion cells obtained by genetic engineering (including hybridomas), dedifferentiated cells, and transformants (microorganisms). Examples of viruses include norovirus, rotavirus, influenza virus, adenovirus, coronavirus, measles virus, ruin virus, hepatitis virus, herpesvirus, HIV virus and the like. Examples of bacteria include staphylococci, Escherichia coli, salmonella, pyogenic, cholera, shigella, charcoal, tuberculosis, botulinum, tetanus, and streptococcus. Further, examples of fungi include Trichophyton, Aspergillus, Candida and the like.

さらに、以下の説明では、同一の機能を有する構成には図面中に同一の番号を付し、その説明を省略する場合がある。
さらにまた、本明細書において、本開示の活性酸素供給装置および本開示の活性酸素による処理装置を総称して、単に「活性酸素供給装置」ともいう。
Further, in the following description, configurations having the same function may be numbered the same in the drawings, and the description thereof may be omitted.
Furthermore, in the present specification, the active oxygen supply device of the present disclosure and the treatment device using the active oxygen of the present disclosure are collectively referred to simply as "active oxygen supply device".

本発明者らの検討によれば、特許文献1に係る殺菌装置の除菌能力が限定的である理由
を以下のように推測している。
特許文献1は、オゾンに対して、紫外線を照射することで、オゾンを励起し、極めて除菌力の高い活性酸素を生成している。ここで、活性酸素とは、スーパーオキシドアニオンラジカル(・О )、ヒドロキシルラジカル(・ОH)等の反応性の高い酸素活性種の総称で、それ自身がもつ高い反応性により、細菌やウイルスを即座に酸化分解できる。
According to the studies by the present inventors, the reason why the sterilizing ability of the sterilizing apparatus according to Patent Document 1 is limited is presumed as follows.
Patent Document 1 excites ozone by irradiating it with ultraviolet rays to generate active oxygen having extremely high sterilizing power. Here, active oxygen is a general term for highly reactive oxygen-active species such as superoxide anion radical (・О2- ) and hydroxyl radical (・ ОH), and due to its high reactivity, bacteria and viruses. Can be oxidatively decomposed immediately.

しかしながら、オゾンは紫外線を極めてよく吸収するため、特許文献1に係る殺菌装置においては、活性酸素の発生は紫外線発生ランプの近傍に限定されると考えられる。すなわち、紫外線発生ランプから離れた位置に存在するオゾンにまでは紫外線が十分到達せず、紫外線発生ランプから離れたところでは活性酸素は発生し難いと考えられる。
また、活性酸素は非常に不安定であり、・О の半減期は10-6秒、・ОHの半減期は10-9秒と極めて短く、速やかに安定な酸素、水に変換される。そのため、紫外線発生ランプの近傍で生成した活性酸素を、受動的に殺菌装置の本体内部に充満させることは困難であると考えられる。言い換えれば、特許文献1に係る殺菌方法による除菌は、実質的にはオゾンによって行われていると考えられる。そのため、特許文献1に係る殺菌方法による除菌性能が、従来のオゾンのみを用いた除菌方法による除菌性能と同等程度となっているものと考えられる。
このような考察から、本発明者らは、寿命が短い活性酸素を用いて被処理物を処理するうえでは、被処理物や被処理表面をより能動的に活性酸素雰囲気下に置くことが必要であることを認識した。そして、かかる認識の下で本発明者らが検討した結果、以下で説明する活性酸素供給装置によれば、被処理物をより能動的に活性酸素雰囲気下に置くことができることを見出した。なお、本開示において、活性酸素による被処理物の「処理」には、活性酸素による被処理物の被処理面の表面改質(親水化処理)、除菌、消臭、漂白の如き、活性酸素によって達成し得るあらゆる処理を含むものとする。
However, since ozone absorbs ultraviolet rays very well, it is considered that the generation of active oxygen is limited to the vicinity of the ultraviolet generation lamp in the sterilizer according to Patent Document 1. That is, it is considered that the ultraviolet rays do not sufficiently reach the ozone existing at a position away from the ultraviolet generation lamp, and it is difficult to generate active oxygen at a place away from the ultraviolet generation lamp.
In addition, active oxygen is extremely unstable, with an extremely short half - life of 10-6 seconds for О2- and 10-9 seconds for ОH, and it is quickly converted to stable oxygen and water. .. Therefore, it is considered difficult to passively fill the inside of the main body of the sterilizer with the active oxygen generated in the vicinity of the ultraviolet generation lamp. In other words, it is considered that the sterilization by the sterilization method according to Patent Document 1 is substantially performed by ozone. Therefore, it is considered that the sterilization performance by the sterilization method according to Patent Document 1 is about the same as the sterilization performance by the conventional sterilization method using only ozone.
Based on these considerations, the present inventors need to more actively place the object to be treated and the surface to be treated in an active oxygen atmosphere in order to treat the object to be treated with active oxygen having a short life. Recognized that. As a result of studies by the present inventors based on this recognition, it has been found that the object to be treated can be more actively placed in an active oxygen atmosphere according to the active oxygen supply device described below. In the present disclosure, the "treatment" of the object to be treated with active oxygen includes activities such as surface modification (hydrophilization treatment), sterilization, deodorization, and bleaching of the surface of the object to be treated with active oxygen. It shall include all treatments that can be achieved with oxygen.

以下、図1を用いて本開示の一態様に係る活性酸素供給装置101について説明する。本開示の一態様に係る活性酸素供給装置101は、少なくとも一つの開口部106を有する筐体107内に紫外線光源102と、プラズマ発生装置103とを具備する。
紫外線光源102は、紫外線を誘起流105に照射し、誘起流105中に活性酸素を発生させる。図1中、符号104は被処理物である。
Hereinafter, the active oxygen supply device 101 according to one aspect of the present disclosure will be described with reference to FIG. The active oxygen supply device 101 according to one aspect of the present disclosure includes an ultraviolet light source 102 and a plasma generator 103 in a housing 107 having at least one opening 106.
The ultraviolet light source 102 irradiates the induced flow 105 with ultraviolet rays to generate active oxygen in the induced flow 105. In FIG. 1, reference numeral 104 is an object to be processed.

また、プラズマ発生装置103の一態様の断面構造を図2に示す。該プラズマ発生装置は、誘電体201の一方の表面(以降、「第1の表面」ともいう)に第1の電極203、第1の表面とは反対側の表面(以降、「第2の表面」ともいう)に第2の電極205が設けられた、いわゆる誘電体バリア放電(Dielectric Barrier Discharge:DBD)プラズマアクチュエータ(以降、単に「DBD-PA」と記載する場合がある)である。図2中、符号206は誘電体基板、符号207は電源である。
プラズマ発生装置103において、誘電体201を挟んで配置された第1の電極203と第2の電極205とは、斜向かいにずれて配置されている。これらの電極間(両電極間)に電圧を印加することで、第1の電極203から第2の電極205に向けてプラズマ202が発生し、第1の電極203の縁部204から誘電体201の第1の表面の露出部(第1の電極で被覆されていない部分)201-1に沿って表面プラズマ202による噴流状の流れが誘起される。また同時に、容器内の空間から電極に向かう、空気の吸い込み流れも発生する。該表面プラズマ202中の電子は、空気中の酸素分子に衝突し、該酸素分子を解離させ、酸素原子を生じさせる。生じた酸素原子は未解離の酸素分子と衝突して、オゾンが発生する。したがって、表面プラズマ202による噴流状の流れと空気の吸い込み流れとの作用により、第1の電極203の縁部204から誘電体201の表面に沿って、高濃度のオゾンを含む誘起流105が発生する。
そして、プラズマ発生装置103は、誘起流105が、開口部106から筐体107外に流出し、被処理物104の処理表面104-1に供給されるように配置されている。
Further, FIG. 2 shows a cross-sectional structure of one aspect of the plasma generator 103. In the plasma generator, the first electrode 203 is on one surface of the dielectric 201 (hereinafter, also referred to as “first surface”), and the surface opposite to the first surface (hereinafter, “second surface”). A second electrode 205 is provided in a so-called dielectric barrier discharge (DBD) plasma actuator (hereinafter, may be simply referred to as “DBD-PA”). In FIG. 2, reference numeral 206 is a dielectric substrate and reference numeral 207 is a power supply.
In the plasma generator 103, the first electrode 203 and the second electrode 205 arranged so as to sandwich the dielectric 201 are arranged so as to be obliquely opposite to each other. By applying a voltage between these electrodes (between both electrodes), plasma 202 is generated from the first electrode 203 toward the second electrode 205, and the dielectric 201 is generated from the edge 204 of the first electrode 203. A jet-like flow is induced by the surface plasma 202 along the exposed portion (the portion not covered with the first electrode) 21-1 of the first surface of the above. At the same time, an air suction flow from the space inside the container toward the electrodes is also generated. The electrons in the surface plasma 202 collide with oxygen molecules in the air and dissociate the oxygen molecules to generate oxygen atoms. The generated oxygen atoms collide with undissociated oxygen molecules to generate ozone. Therefore, due to the action of the jet-like flow by the surface plasma 202 and the suction flow of air, an induced flow 105 containing a high concentration of ozone is generated from the edge 204 of the first electrode 203 along the surface of the dielectric 201. do.
The plasma generator 103 is arranged so that the induced flow 105 flows out of the housing 107 from the opening 106 and is supplied to the treated surface 104-1 of the object to be processed 104.

すなわち、本開示の一態様に係る活性酸素供給装置においては、プラズマ発生装置103からのオゾンを含む誘起流105が、開口部106から筐体107外に流出し、被処理物104の処理表面104-1に供給され、紫外線光源102が紫外線を誘起流105に照射して誘起流105中に活性酸素を発生させることにより、処理表面104-1近傍の領域、具体的には例えば処理表面から高さ1mm程度までの空間領域(以降、「表面領域」ともいう)に活性酸素を能動的に供給することができる。そのため、生成した活性酸素が酸素及び水に変換される前に、該活性酸素を被処理物の表面に供給することができる。その結果として、被処理物104の処理表面104-1は、活性酸素によってより確実に処理される。 That is, in the active oxygen supply device according to one aspect of the present disclosure, the induced flow 105 containing ozone from the plasma generator 103 flows out of the housing 107 from the opening 106, and the treated surface 104 of the object to be treated 104. -1, the ultraviolet light source 102 irradiates the induced flow 105 with ultraviolet rays to generate active oxygen in the induced flow 105, whereby the region near the treated surface 104-1, specifically, high from the treated surface, for example. Active oxygen can be actively supplied to a spatial region (hereinafter, also referred to as "surface region") up to about 1 mm. Therefore, the active oxygen can be supplied to the surface of the object to be treated before the generated active oxygen is converted into oxygen and water. As a result, the treated surface 104-1 of the object to be treated 104 is more reliably treated with active oxygen.

<電極及び誘電体>
第1の電極及び第2の電極を構成する材料としては、良導電性の材料であれば、特に限定されることない。例えば、銅、アルミ、ステンレス鋼、金、銀、プラチナなどの金属、および、それらにメッキや蒸着をしたもの、カーボンブラック、グラファイト、カーボンナノチューブなどの導電性炭素材料、および、それらを樹脂などと混合した複合材料などを用いることができる。第1の電極を構成する材料と第2の電極を構成する材料とは、同一であってもよく、異なっていてもよい。
これらのなかでも、電極の腐食を避けて放電の均一化を図る観点から、第1の電極を構成する材料はアルミニウム、ステンレス鋼又は銀であることが好ましい。同様の理由で、第2の電極を構成する材料もアルミニウム、ステンレス鋼又は銀であることが好ましい。
また、第1の電極及び第2の電極の形状は、平板状、ワイヤ状、針状などを特に制限なく採用することができる。好ましくは、第1の電極の形状は平板状である。また、好ましくは、第2の電極の形状は平板状である。第1の電極及び第2の電極の少なくとも一の電極が平板状である場合、該平板のアスペクト比(長辺の長さ/短辺の長さ)が2以上であることが好ましい。
第1の電極及び第2の電極の少なくとも一の電極は、頂角が45°以下である(すなわち、電極が尖っている)ことも好ましい態様であるが、これに限定されない。なお、図面においては、第1の電極及び第2の電極の頂角はいずれも90°である場合を示しているが、頂角が45°を超える態様も本開示に含まれる。
誘電体は、高い電気絶縁性を有する材料であれば、特に限定されることない。例えば、ポリイミド、ポリエステル、フッ素樹脂、シリコーン樹脂、アクリル樹脂、フェノール樹脂などの樹脂、ガラス、セラミックス、および、それらを樹脂などと混合した複合材料などを用いることができる。これらのなかでも、電流がリークした場合でも延焼しにくいことから、誘電体がセラミックス又はガラスであることが好ましい。
<Electrodes and dielectrics>
The material constituting the first electrode and the second electrode is not particularly limited as long as it is a material having good conductivity. For example, metals such as copper, aluminum, stainless steel, gold, silver, and platinum, and plated or vapor-deposited materials, conductive carbon materials such as carbon black, graphite, and carbon nanotubes, and resin. A mixed composite material or the like can be used. The material constituting the first electrode and the material constituting the second electrode may be the same or different.
Among these, from the viewpoint of avoiding corrosion of the electrode and achieving uniform discharge, the material constituting the first electrode is preferably aluminum, stainless steel or silver. For the same reason, the material constituting the second electrode is also preferably aluminum, stainless steel or silver.
Further, the shapes of the first electrode and the second electrode may be flat plate-shaped, wire-shaped, needle-shaped or the like without particular limitation. Preferably, the shape of the first electrode is flat plate. Further, preferably, the shape of the second electrode is a flat plate. When at least one of the first electrode and the second electrode has a flat plate shape, the aspect ratio (length of long side / length of short side) of the flat plate is preferably 2 or more.
It is also preferable, but not limited to, that the first electrode and at least one of the second electrodes have an apex angle of 45 ° or less (that is, the electrodes are sharp). Although the drawings show the case where the apex angle of both the first electrode and the second electrode is 90 °, the present disclosure also includes an embodiment in which the apex angle exceeds 45 °.
The dielectric is not particularly limited as long as it is a material having high electrical insulation. For example, resins such as polyimide, polyester, fluororesin, silicone resin, acrylic resin, and phenol resin, glass, ceramics, and composite materials obtained by mixing them with a resin or the like can be used. Among these, it is preferable that the dielectric is ceramics or glass because it is difficult for the fire to spread even if a current leaks.

<プラズマアクチュエータ>
プラズマアクチュエータは、誘電体を挟んで第1の電極と第2の電極を設け、両電極間に電圧を印加することによりオゾンを含む誘起流を生じさせうるものであれば、特に限定されない。
プラズマアクチュエータにおいて、第1の電極と第2の電極の最短距離が短いほどプラズマが発生しやすい。そのため誘電体の膜厚は電気絶縁破壊しない範囲であれば薄膜であるほど好ましく、10μm~1000μm、好ましくは10μm~200μmとすることができる。また、第1の電極と第2の電極の最短距離は、200μm以下であることが好ましい。
図3は、オゾン発生装置であるプラズマアクチュエータの第1の電極203と第2の電極205のオーバーラップについての説明図である。プラズマアクチュエータの断面図である。
斜向かいに配置した第1の電極203及び第2の電極205は、断面図の上側から見たときに、第1の電極の縁部が、誘電体を挟んで第2の電極の形成部分に存在していてもよ
い。すなわち、第1の電極と第2の電極とが誘電体を挟んでオーバーラップするように設けられていてもよい。この場合、第1の電極と第2の電極とが誘電体を挟んで重なっている部分において電圧印加時に絶縁破壊しないようにすることが好ましい。
また、第1の電極と第2の電極が断面図の上部から見て、離れている場合には、電極間距離が離れることによる電界の弱まりを補うために電圧を高めることが好ましい。第1の電極の縁部と第2の電極の縁部との重なりは、オーバーラップする長さを正とすると、断面図の上部から見て、-100μm~+1000μmとすることがより好ましい。
電極の厚みとしては、第1の電極及び第2の電極ともに特に限定は無いが、10μm~1000μmとすることができる。10μm以上であると、抵抗が低くなりプラズマの発生がしやすくなる。1000μm以下であると、電界集中が起こりやすくなるためプラズマが発生しやすくなる。
電極の幅としては、第1の電極及び第2の電極ともに特に限定されないが、1000μm以上とすることができる。
また、第2の電極の縁部が露出している場合、第2の電極の縁部からもプラズマが発生し、第1の電極由来の誘起流105とは反対側の向きの誘起流が生じ得る。本態様に係る活性酸素供給装置においては、被処理物の表面領域以外の活性酸素供給装置の内部空間のオゾン濃度はできる限り低くしておくことが好ましい。また、誘起流105の流れを乱すような気体の流動を容器内に発生させないことが好ましい。そのため、第2の電極由来の誘起流を発生させないことが好ましい。そこで、第2の電極205は、図2及び図3に示すように誘電体基板206の如き誘電体で被覆したり、誘電体201に埋め込み、第2電極の縁部からのプラズマの発生を防止したりすることが好ましい。
<Plasma actuator>
The plasma actuator is not particularly limited as long as it is capable of generating an induced flow containing ozone by providing a first electrode and a second electrode with a dielectric interposed therebetween and applying a voltage between the two electrodes.
In the plasma actuator, the shorter the shortest distance between the first electrode and the second electrode, the easier it is for plasma to be generated. Therefore, the film thickness of the dielectric is preferably as long as it is within the range where electrical dielectric breakdown does not occur, and can be preferably 10 μm to 1000 μm, preferably 10 μm to 200 μm. The shortest distance between the first electrode and the second electrode is preferably 200 μm or less.
FIG. 3 is an explanatory diagram of the overlap between the first electrode 203 and the second electrode 205 of the plasma actuator which is an ozone generator. It is sectional drawing of a plasma actuator.
When viewed from the upper side of the cross-sectional view, the first electrode 203 and the second electrode 205 arranged diagonally opposite each other have the edge of the first electrode on the forming portion of the second electrode with the dielectric interposed therebetween. It may exist. That is, the first electrode and the second electrode may be provided so as to overlap each other with the dielectric interposed therebetween. In this case, it is preferable to prevent dielectric breakdown when a voltage is applied at a portion where the first electrode and the second electrode overlap each other with the dielectric sandwiched between them.
When the first electrode and the second electrode are separated from each other when viewed from the upper part of the cross-sectional view, it is preferable to increase the voltage in order to compensate for the weakening of the electric field due to the distance between the electrodes. The overlap between the edge portion of the first electrode and the edge portion of the second electrode is more preferably -100 μm to +1000 μm when viewed from the upper part of the cross-sectional view, where the overlapping length is positive.
The thickness of the electrodes is not particularly limited for both the first electrode and the second electrode, but can be 10 μm to 1000 μm. When it is 10 μm or more, the resistance becomes low and plasma is easily generated. When it is 1000 μm or less, electric field concentration is likely to occur, so plasma is likely to be generated.
The width of the electrodes is not particularly limited for both the first electrode and the second electrode, but can be 1000 μm or more.
Further, when the edge of the second electrode is exposed, plasma is also generated from the edge of the second electrode, and an induced flow in the direction opposite to the induced flow 105 derived from the first electrode is generated. obtain. In the active oxygen supply device according to this embodiment, it is preferable to keep the ozone concentration in the internal space of the active oxygen supply device other than the surface region of the object to be treated as low as possible. Further, it is preferable not to generate a gas flow in the container that disturbs the flow of the induced flow 105. Therefore, it is preferable not to generate an induced flow derived from the second electrode. Therefore, as shown in FIGS. 2 and 3, the second electrode 205 is covered with a dielectric such as the dielectric substrate 206 or embedded in the dielectric 201 to prevent the generation of plasma from the edge of the second electrode. It is preferable to do so.

高濃度オゾンを含む誘起流105は、第1の電極203の縁部204から誘電体201の第1の表面の露出部201-1に沿った表面プラズマによる噴流状の流れ方向、すなわち、第1の電極203の縁部204から誘電体の第1の表面の露出部201-1に沿う方向に流れる。この誘起流は、数m/s~数十m/s程度の速度を持った、高濃度オゾンを含む気体の流れである。
プラズマアクチュエータの第1の電極203と第2の電極205の間にかける電圧としては、プラズマアクチュエータにプラズマを生じさせることができる態様であれば特に制限されない。また、直流電圧でも、交流電圧でもよいが、交流電圧であることが好ましい。また、該電圧をパルス電圧とすることも好ましい態様である。
さらに、該電圧の振幅、周波数は、誘起流の流速、誘起流中のオゾン濃度を調整するために適宜設定することができる。この場合、処理の目的に応じた有効活性酸素濃度又は有効活性酸素量を生成させるために必要なオゾン濃度を誘起流中に発生させること、生成された活性酸素を、処理の目的に応じた有効活性酸素濃度又は有効活性酸素量を維持した状態で被処理物の表面領域に供給すること、などの観点から適宜選択するとよい。
例えば、該電圧の振幅は1kV~100kVとすることができる。さらにまた、該電圧の周波数は好ましくは1kHz以上、より好ましくは10kHz~100kHzとすることができる。
該電圧を交流電圧とする場合、該交流電圧の波形は特に制限されず、サイン波、矩形波、三角波などを採用できるが、電圧の立ち上がりの早さの観点からは矩形波であることが好ましい。
該電圧のデューティー比も適宜選択可能であるが、電圧の立ち上がりが早いことが好ましい。好ましくは、波長の振幅の底から頂点に達する電圧の立ち上がりが、400,0000V/秒以上となるように電圧を印加する。
なお、第1の電極203と第2の電極205の間に印加する電圧の振幅を、誘電体201の膜厚で除した値(電圧/膜厚)は、10kV/mm以上とすることが好ましい。
The induced flow 105 containing high-concentration ozone is jet-like flow direction by surface plasma from the edge 204 of the first electrode 203 to the exposed portion 21-1 of the first surface of the dielectric 201, that is, the first. Flows from the edge 204 of the electrode 203 along the exposed portion 21-1 on the first surface of the dielectric. This induced flow is a flow of a gas containing high-concentration ozone having a velocity of about several m / s to several tens of m / s.
The voltage applied between the first electrode 203 and the second electrode 205 of the plasma actuator is not particularly limited as long as it can generate plasma in the plasma actuator. Further, it may be a DC voltage or an AC voltage, but an AC voltage is preferable. It is also a preferred embodiment that the voltage is a pulse voltage.
Further, the amplitude and frequency of the voltage can be appropriately set in order to adjust the flow velocity of the induced flow and the ozone concentration in the induced flow. In this case, the effective active oxygen concentration according to the purpose of the treatment or the ozone concentration required to generate the effective active oxygen amount is generated in the induced flow, and the generated active oxygen is effective according to the purpose of the treatment. It may be appropriately selected from the viewpoint of supplying to the surface region of the object to be treated while maintaining the active oxygen concentration or the effective active oxygen amount.
For example, the amplitude of the voltage can be 1 kV to 100 kV. Furthermore, the frequency of the voltage can be preferably 1 kHz or higher, more preferably 10 kHz to 100 kHz.
When the voltage is an AC voltage, the waveform of the AC voltage is not particularly limited, and a sine wave, a rectangular wave, a triangular wave, or the like can be adopted, but a rectangular wave is preferable from the viewpoint of the speed of voltage rise. ..
The duty ratio of the voltage can be appropriately selected, but it is preferable that the voltage rises quickly. Preferably, the voltage is applied so that the rise of the voltage reaching the peak from the bottom of the amplitude of the wavelength is 400,000 V / sec or more.
The value (voltage / film thickness) obtained by dividing the amplitude of the voltage applied between the first electrode 203 and the second electrode 205 by the film thickness of the dielectric 201 is preferably 10 kV / mm or more. ..

<紫外線光源および紫外線>
紫外線光源としては、オゾンを励起し、活性酸素を生成させうる紫外線を照射できるも
のであれば特に限定されない。また、該紫外線光源は、オゾンを励起し、処理の目的に応じた有効活性酸素濃度又は有効活性酸素量を得るために必要な、紫外線の波長及びその照度を有していれば特に限定されない。
例えば、オゾンの光吸収スペクトルのピーク値が260nmであることから、該紫外線のピーク波長は、220nm~310nmであることが好ましく、253nm~285nmであることがより好ましく、253nm~266nmであることがさらに好ましい。
具体的な紫外線光源としては、石英ガラス内にアルゴンやネオン等の不活性ガスと共に水銀が封入されてなる低圧水銀ランプや、冷陰極管紫外線ランプ(UV-CCL)、紫外LEDなどが使用できる。低圧水銀ランプや冷陰極管紫外線ランプの波長は、254nmなどから選択するとよい。一方、紫外LEDの波長は、出力性能の観点から、265nm、275nm、280nmなどから選択するとよい。
<Ultraviolet light source and ultraviolet rays>
The ultraviolet light source is not particularly limited as long as it can irradiate ultraviolet rays that can excite ozone and generate active oxygen. Further, the ultraviolet light source is not particularly limited as long as it has the wavelength of ultraviolet rays and the illuminance thereof necessary for exciting ozone and obtaining an effective active oxygen concentration or an effective active oxygen amount according to the purpose of treatment.
For example, since the peak value of the light absorption spectrum of ozone is 260 nm, the peak wavelength of the ultraviolet rays is preferably 220 nm to 310 nm, more preferably 253 nm to 285 nm, and more preferably 253 nm to 266 nm. More preferred.
As a specific ultraviolet light source, a low-pressure mercury lamp in which mercury is sealed together with an inert gas such as argon or neon in quartz glass, a cold cathode fluorescent lamp (UV-CCL), an ultraviolet LED, or the like can be used. The wavelength of the low-pressure mercury lamp or the cold-cathode tube ultraviolet lamp may be selected from 254 nm and the like. On the other hand, the wavelength of the ultraviolet LED may be selected from 265 nm, 275 nm, 280 nm and the like from the viewpoint of output performance.

<プラズマ発生装置、紫外線光源及び被処理物の配置>
活性酸素供給装置101においては、オゾンを含む誘起流を生じさせるプラズマ発生装置103の位置は、紫外線光源102から照射された紫外線によって該誘起流105が、処理の目的に応じた有効活性酸素濃度又は有効活性酸素量が維持された状態で、開口部から筐体外に流出し、被処理物の表面に供給されるように配置されていれば特に限定されない。
例えば、紫外線によって発生した活性酸素を含む誘起流105が、最短距離で、被処理物の表面に供給されるようにプラズマ発生装置と紫外線光源とを配置するとよい。
また、例えば、プラズマアクチュエータの第1の電極の縁部から誘電体の第1の表面の露出部201-1に沿った方向の延長線上に被処理物の処理表面104-1が含まれるように配置するとよい。
さらに、活性酸素供給装置の開口部を鉛直下方に向けた場合において、プラズマアクチュエータの第1の電極の縁部から誘電体の第1の表面の露出部201-1に沿う方向の延長線201-1-1と水平面(鉛直方向と直角な平面)とのなす狭角θ(以降、プラズマアクチュエータ入射角度、PA入射角度ともいう。図4を参照)は、処理の目的に応じた有効活性酸素又は有効活性酸素量を維持した状態で、被処理物の表面領域まで誘起流を能動的に供給し得る角度、又は、活性酸素により処理し得る角度であれば特に制限されないが、0°~90°であることが好ましく、30°~70°であることがより好ましい。
プラズマ発生装置と紫外線光源とを、上記のように配置することで、ある程度の流速を有する、活性酸素を含む誘起流を、被処理物の表面近傍の領域に局所的に供給すること又は活性酸素により処理することができる。
<Arrangement of plasma generator, ultraviolet light source and object to be processed>
In the active oxygen supply device 101, the position of the plasma generator 103 that generates the induced flow containing ozone is such that the induced flow 105 is the effective active oxygen concentration according to the purpose of the treatment due to the ultraviolet rays emitted from the ultraviolet light source 102. It is not particularly limited as long as it is arranged so as to flow out of the housing through the opening and be supplied to the surface of the object to be treated while the amount of effective active oxygen is maintained.
For example, the plasma generator and the ultraviolet light source may be arranged so that the induced flow 105 containing active oxygen generated by ultraviolet rays is supplied to the surface of the object to be processed at the shortest distance.
Further, for example, the treated surface 104-1 of the object to be treated is included on the extension line in the direction from the edge of the first electrode of the plasma actuator to the exposed portion 21-1 of the first surface of the dielectric. It is good to place it.
Further, when the opening of the active oxygen supply device is directed vertically downward, an extension line 201-in the direction from the edge of the first electrode of the plasma actuator to the exposed portion 21-1 of the first surface of the dielectric. The narrow angle θ (hereinafter, also referred to as plasma actuator incident angle, PA incident angle; see FIG. 4) formed by 1-1 and the horizontal plane (plane perpendicular to the vertical direction) is effective active oxygen or effective active oxygen according to the purpose of treatment. The angle is not particularly limited as long as it can actively supply the induced flow to the surface region of the object to be treated while maintaining the effective amount of active oxygen, or the angle can be treated with active oxygen, but it is 0 ° to 90 °. It is preferably 30 ° to 70 °, and more preferably 30 ° to 70 °.
By arranging the plasma generator and the ultraviolet light source as described above, an induced flow containing active oxygen having a certain flow velocity can be locally supplied to a region near the surface of the object to be treated or active oxygen. Can be processed by.

紫外線光源は、紫外線を誘起流に照射し、該誘起流中に活性酸素を発生させ、処理の目的に応じた有効活性酸素濃度又は有効活性酸素量が維持された状態で被処理物の表面での処理が可能なように配置されていれば、それ以外は特段限定されない。
上述のように、オゾンを含む誘起流が、被処理物の表面近傍の領域に能動的に供給されている。また、紫外線を誘起流に照射することで誘起流中に活性酸素を発生させることができる。そのため、該誘起流に紫外線が照射されることで、オゾンが励起され、活性酸素が発生した状態の誘起流を、被処理物の表面に能動的に供給することができ、また、被処理物の表面の活性酸素濃度又は活性酸素量を有意に高めることができる。
紫外線光源とプラズマ発生装置との相対位置は、誘起流中に活性酸素を発生させ、処理の目的に応じた有効活性酸素濃度又は有効活性酸素量が維持された状態で被処理物の表面での処理が可能なように各々が配置されていれば、それ以外は特段限定されない。
また、紫外線光源とプラズマ発生装置との距離も処理の目的によって変化するので、一概には規定できないが、例えば、10mm以下とすることが好ましく、4mm以下とすることがより好ましい。ただし、紫外線光源から10mm程度以内の所にプラズマ発生装置を置く必要はなく、後述する紫外線の照度や波長などとの関係で誘起流中の活性酸素を処理の目的に応じた有効濃度とすることができれば、紫外線光源とプラズマ発生装置との距
離は特に制限されない。
また、紫外線光源及びプラズマ発生装置の少なくとも一方に移動手段を設け、紫外線の照度が均一となるように紫外線光源及びプラズマ発生装置の少なくとも一方を移動自在とすることも好ましい態様である。
The ultraviolet light source irradiates the induced flow with ultraviolet rays, generates active oxygen in the induced flow, and maintains the effective active oxygen concentration or the effective active oxygen amount according to the purpose of the treatment on the surface of the object to be treated. As long as it is arranged so that it can be processed, there is no particular limitation other than that.
As described above, the induced flow containing ozone is actively supplied to the region near the surface of the object to be treated. Further, by irradiating the induced flow with ultraviolet rays, active oxygen can be generated in the induced flow. Therefore, when the induced flow is irradiated with ultraviolet rays, ozone is excited and the induced flow in a state where active oxygen is generated can be actively supplied to the surface of the object to be treated, and the object to be processed The active oxygen concentration or the amount of active oxygen on the surface of the surface can be significantly increased.
The relative position between the ultraviolet light source and the plasma generator is such that active oxygen is generated in the induced flow, and the effective active oxygen concentration or the effective active oxygen amount according to the purpose of the treatment is maintained on the surface of the object to be treated. As long as each is arranged so that processing can be performed, there is no particular limitation other than that.
Further, since the distance between the ultraviolet light source and the plasma generator also changes depending on the purpose of processing, it cannot be unconditionally specified, but for example, it is preferably 10 mm or less, and more preferably 4 mm or less. However, it is not necessary to place the plasma generator within about 10 mm from the ultraviolet light source, and the active oxygen in the induced flow should be the effective concentration according to the purpose of the treatment in relation to the illuminance and wavelength of the ultraviolet rays described later. If possible, the distance between the ultraviolet light source and the plasma generator is not particularly limited.
It is also a preferred embodiment to provide a moving means on at least one of the ultraviolet light source and the plasma generator so that at least one of the ultraviolet light source and the plasma generator can be moved so that the illuminance of the ultraviolet rays becomes uniform.

活性酸素供給装置と被処理物との相対的な位置は、誘起流中に活性酸素を発生させ、処理の目的に応じた有効活性酸素濃度又は有効活性酸素量が維持された誘起流に被処理物の表面が曝されるように各々の少なくとも一方が配置されていればよい。
また、紫外線光源は、紫外線が被処理物の表面を照射可能な位置に配置されていても、紫外線が被処理物の表面を照射可能でない位置に配置されていてもよい。紫外線光源からの紫外線が被処理物の表面を照射可能でない場合であっても、本態様に係る活性酸素による処理装置であれば、誘起流中の活性酸素に被処理面が曝されることにより処理することが可能である。さらに、紫外線による除菌処理においては、除菌されるのは、紫外線が照射された面のみである。しかしながら、本開示に係る活性酸素供給装置による除菌処理においては、活性酸素が到達し得る位置に存在する菌は除菌することができる。従って、例えば、外部からの紫外線照射では除菌が困難な、繊維間に存在する菌であっても除菌し得る。
The relative position between the active oxygen supply device and the object to be treated is such that active oxygen is generated in the induced flow and the induced flow is treated with the effective active oxygen concentration or the amount of effective active oxygen maintained according to the purpose of the treatment. At least one of each may be arranged so that the surface of the object is exposed.
Further, the ultraviolet light source may be arranged at a position where the ultraviolet rays can irradiate the surface of the object to be treated, or may be arranged at a position where the ultraviolet rays cannot irradiate the surface of the object to be processed. Even when the surface of the object to be treated cannot be irradiated with ultraviolet rays from an ultraviolet light source, the surface to be treated is exposed to the active oxygen in the induced flow in the treatment device using active oxygen according to this embodiment. It is possible to process. Further, in the sterilization treatment with ultraviolet rays, only the surface irradiated with ultraviolet rays is sterilized. However, in the sterilization treatment by the active oxygen supply device according to the present disclosure, the bacteria existing at the position where the active oxygen can reach can be sterilized. Therefore, for example, even bacteria existing between fibers, which are difficult to sterilize by irradiation with ultraviolet rays from the outside, can be sterilized.

一方、紫外線光源からの紫外線が、開口部を介して筐体外に置かれた被処理物の表面を照射可能に配置されている場合、誘起流中に存在している未分解のオゾンを、被処理面においてその場的(in situ)に分解し、被処理面上において活性酸素を発生させ得る。その結果、処理の程度や処理の効率をより一層高めることができる。
この場合において、被処理物の表面における紫外線の照度または開口部における紫外線の照度は特に限定されないが、例えば、被処理物の表面または開口部においても、誘起流に含まれるオゾンを分解し、誘起流中に活性酸素を発生させ、処理の目的に応じた有効活性酸素濃度又は有効活性酸素量を生じさせうる紫外線の照度に設定することが好ましい。具体的には、例えば、被処理物の表面における紫外線の照度または開口部における紫外線の照度の具体例として、40μW/cm以上であることが好ましく、100μW/cm以上であることがより好ましく、400μW/cm以上であることがさらに好ましく、1000μW/cm以上であることが特に好ましい。該照度の上限は特に制限されないが、例えば10000μW/cm以下とすることができる。
On the other hand, when the ultraviolet rays from the ultraviolet light source are arranged so as to be able to irradiate the surface of the object to be treated placed outside the housing through the opening, the undecomposed ozone existing in the induced flow is covered. It can decompose in situ on the treated surface and generate active oxygen on the treated surface. As a result, the degree of processing and the efficiency of processing can be further improved.
In this case, the illuminance of ultraviolet rays on the surface of the object to be treated or the illuminance of ultraviolet rays at the openings is not particularly limited, but for example, ozone contained in the induced flow is decomposed and induced also on the surface or openings of the object to be treated. It is preferable to set the illuminance of ultraviolet rays that can generate active oxygen in the flow and generate an effective active oxygen concentration or an effective active oxygen amount according to the purpose of the treatment. Specifically, for example, as a specific example of the illuminance of ultraviolet rays on the surface of the object to be treated or the illuminance of ultraviolet rays at an opening, it is preferably 40 μW / cm 2 or more, and more preferably 100 μW / cm 2 or more. , 400 μW / cm 2 or more is more preferable, and 1000 μW / cm 2 or more is particularly preferable. The upper limit of the illuminance is not particularly limited, but can be, for example, 10000 μW / cm 2 or less.

さらに、紫外線光源と被処理物の表面との距離も処理の目的によって変化するので、一概には規定できないが、例えば、10mm以下とすることが好ましく、4mm以下とすることがより好ましい。ただし、紫外線光源から10mm程度以内の所に被処理物の処理表面があるように被処理物を置く必要はなく、紫外線の照度などとの関係で誘起流中の活性酸素を処理の目的に応じた有効濃度とすることができれば、紫外線光源と被処理物との距離は特に制限されない。
また、プラズマアクチュエータにおける、誘起流に紫外線を照射しない状態での単位時間あたりのオゾン発生量としては、例えば、15μg/分以上であることが好ましい。より好ましくは30μg/分以上である。該オゾン発生量の上限は特に制限されないが、例えば1000μg/分以下である。
誘起流の流速としては、例えば、生成された活性酸素を処理の目的に応じた有効活性酸素濃度又は有効活性酸素量を維持した状態で被処理物の表面領域まで能動的に供給し得る速度であればよい。例えば、上記の通り0.01m/s~100m/s程度である。
上述のようにプラズマアクチュエータから生じる誘起流中のオゾンの濃度や誘起流の流速は、電極や誘電体の厚みや材質、印加する電圧の種類、振幅、周波数などにより制御することができる。
Further, since the distance between the ultraviolet light source and the surface of the object to be treated also changes depending on the purpose of the treatment, it cannot be unconditionally defined, but for example, it is preferably 10 mm or less, and more preferably 4 mm or less. However, it is not necessary to place the object to be treated so that the surface to be treated is within about 10 mm from the ultraviolet light source, and the active oxygen in the induced flow is treated according to the purpose of the treatment in relation to the illuminance of the ultraviolet rays. The distance between the ultraviolet light source and the object to be treated is not particularly limited as long as the effective concentration can be obtained.
Further, the amount of ozone generated per unit time in the plasma actuator in a state where the induced flow is not irradiated with ultraviolet rays is preferably, for example, 15 μg / min or more. More preferably, it is 30 μg / min or more. The upper limit of the ozone generation amount is not particularly limited, but is, for example, 1000 μg / min or less.
The flow velocity of the induced flow is, for example, a speed at which the generated active oxygen can be actively supplied to the surface region of the object to be treated while maintaining the effective active oxygen concentration or the effective active oxygen amount according to the purpose of the treatment. All you need is. For example, as described above, it is about 0.01 m / s to 100 m / s.
As described above, the concentration of ozone in the induced flow generated from the plasma actuator and the flow velocity of the induced flow can be controlled by the thickness and material of the electrode and the dielectric, the type, amplitude, frequency and the like of the applied voltage.

<筐体および開口部>
本開示の活性酸素供給装置は、少なくとも一つの開口部106を有する筐体107と、筐体内に配置された紫外線光源102と、プラズマ発生装置103とを具備する。
該開口部は、プラズマ発生装置103から生じる誘起流105が筐体107外に流出されるような態様であれば特に制限されない。開口部の大きさ、開口部の位置、開口部と被処理物との相対位置は、例えば、生成された活性酸素を、処理の目的に応じた有効活性酸素濃度又は有効活性酸素量を維持した状態で被処理物の表面領域まで能動的に供給し得るように適宜選択することができる。
<Case and opening>
The active oxygen supply device of the present disclosure includes a housing 107 having at least one opening 106, an ultraviolet light source 102 arranged in the housing, and a plasma generator 103.
The opening is not particularly limited as long as the induced flow 105 generated from the plasma generator 103 flows out of the housing 107. The size of the opening, the position of the opening, and the relative position between the opening and the object to be treated were determined by, for example, maintaining the generated active oxygen at an effective active oxygen concentration or an effective active oxygen amount according to the purpose of treatment. It can be appropriately selected so that it can be actively supplied to the surface area of the object to be treated in the state.

本開示の活性酸素供給装置は、被処理物の除菌用途だけでなく、被処理物に活性酸素を供給することで実施される用途全般に用いることができる。例えば、本開示の活性酸素供給装置は、被処理物の消臭用途、被処理物の漂白用途、被処理物の親水化表面処理などにも用いることができる。
また、本開示の活性酸素による処理装置は、被処理物を除菌する処理を行うだけでなく、例えば、被処理物を消臭する処理、被処理物を漂白する処理、被処理物を親水化する表面処理などにも用いることができる。
The active oxygen supply device of the present disclosure can be used not only for sterilization of the object to be treated, but also for all applications implemented by supplying active oxygen to the object to be treated. For example, the active oxygen supply device of the present disclosure can also be used for deodorizing the object to be treated, bleaching the object to be treated, hydrophilizing surface treatment of the object to be treated, and the like.
Further, the treatment device using active oxygen of the present disclosure not only performs a treatment for sterilizing the material to be treated, but also, for example, a treatment for deodorizing the material to be treated, a treatment for bleaching the material to be treated, and a treatment for making the material to be treated hydrophilic. It can also be used for surface treatment to be sterilized.

なお、本開示において「有効活性酸素濃度又は有効活性酸素量」とは、被処理物に対する目的、例えば、除菌、消臭、漂白または親水化などを達成するための活性酸素濃度又は活性酸素量をいい、プラズマアクチュエータを構成する電極、誘電体の厚み、材質、印加する電圧の種類、振幅及び周波数、紫外線の照度及び照射時間、PA入射角度などを用い、目的に応じて適宜調整ができる。 In the present disclosure, the "effective active oxygen concentration or effective active oxygen amount" is the active oxygen concentration or the amount of active oxygen for achieving the purpose for the object to be treated, for example, sterilization, deodorization, bleaching or hydrophilization. The electrodes constituting the plasma actuator, the thickness of the dielectric, the material, the type of applied voltage, the amplitude and frequency, the illuminance and irradiation time of ultraviolet rays, the PA incident angle, and the like can be appropriately adjusted according to the purpose.

以下、実施例及び比較例を用いて本開示をさらに詳細に説明するが、本開示の態様はこれらに限定されない。 Hereinafter, the present disclosure will be described in more detail with reference to Examples and Comparative Examples, but the embodiments of the present disclosure are not limited thereto.

<実施例1>
1.活性酸素供給装置の作製
誘電体としてのガラス板(縦5mm、横(図1における紙面奥行方向)18mm、厚さ150μm)の第1の面に縦2.5mm、横15mm、厚さ100μmのアルミニウム箔を粘着テープで貼り付けて第1の電極を形成した。また、当該ガラス板の第2の面にも縦3mm、横15mm、厚さ100μmのアルミニウム箔を、第1の面に張り付けたアルミニウム箔と斜向かいとなるように粘着テープで貼り付けて第2の電極を形成した。さらに、第2の電極を含む第2の面をポリイミドテープで被覆した。こうして、第1の電極と第2の電極とが誘電体(ガラス板)を挟んで幅0.5mmに亘ってオーバーラップするように設けられてなるプラズマアクチュエータを作製した。このプラズマアクチュエータを2個用意した。
<Example 1>
1. 1. Fabrication of active oxygen supply device Aluminum with a length of 2.5 mm, a width of 15 mm, and a thickness of 100 μm on the first surface of a glass plate (length 5 mm, width (page depth direction in FIG. 1) 18 mm, thickness 150 μm) as a dielectric. The foil was attached with adhesive tape to form the first electrode. Further, an aluminum foil having a length of 3 mm, a width of 15 mm, and a thickness of 100 μm is also attached to the second surface of the glass plate with an adhesive tape so as to be diagonally opposite to the aluminum foil attached to the first surface. Electrode was formed. Further, the second surface including the second electrode was covered with polyimide tape. In this way, a plasma actuator is manufactured in which the first electrode and the second electrode are provided so as to overlap each other over a width of 0.5 mm with a dielectric (glass plate) interposed therebetween. Two of these plasma actuators were prepared.

次に、活性酸素供給装置101の筐体107として、ABS樹脂製の、高さ25mm、幅20mm、長さ170mm、厚さ2mmであり、断面形状が図1に示す略台形状のケースを用意した。該ケースは、その一面に、幅7mm、長さ166mmの開口部106を有していた。次いで、該筐体107の斜辺部分の内壁に、先に作製した2個のプラズマアクチュエータを固定した。具体的には、プラズマアクチュエータ103を、誘電体201の第1の表面の露出部201-1に沿う方向の延長線201-1-1と被処理物の処理表面104-1との交点のなす角θ(上述PA入射角度)と同値)が45°であった。
さらに、筐体内に、紫外線ランプ102(冷陰極管紫外線ランプ、商品名:UW/9F89/9、スタンレー電気社製、直径9mmの円筒状、ピーク波長=254nm)を配置した。紫外線ランプ102とプラズマアクチュエータの誘電体201の第1の表面の露出部201-1との距離(図4における符号403)が2mmとなり、かつ、筐体107の開口部106に平板を当接させたときに該紫外線光源と該平板の該紫外線光源に対向する側
の面との距離(図4における符号401)が3mmとなるように配置した。こうして本実施例に係る活性水素供給装置(活性酸素による処理装置)を作製した。
Next, as the housing 107 of the active oxygen supply device 101, a case made of ABS resin having a height of 25 mm, a width of 20 mm, a length of 170 mm, and a thickness of 2 mm and having a substantially trapezoidal cross-sectional shape shown in FIG. 1 is prepared. bottom. The case had an opening 106 having a width of 7 mm and a length of 166 mm on one side thereof. Next, the two plasma actuators produced earlier were fixed to the inner wall of the hypotenuse portion of the housing 107. Specifically, the plasma actuator 103 is formed by the intersection of the extension line 201-1-1 in the direction along the exposed portion 21-1 of the first surface of the dielectric 201 and the treated surface 104-1 of the object to be treated. The angle θ (equivalent to the PA incident angle described above) was 45 °.
Further, an ultraviolet lamp 102 (cold-cathode tube ultraviolet lamp, trade name: UW / 9F89 / 9, manufactured by Stanley Electric Co., Ltd., cylindrical shape with a diameter of 9 mm, peak wavelength = 254 nm) was arranged in the housing. The distance between the ultraviolet lamp 102 and the exposed portion 21-1 on the first surface of the dielectric 201 of the plasma actuator (reference numeral 403 in FIG. 4) is 2 mm, and the flat plate is brought into contact with the opening 106 of the housing 107. At that time, the distance between the ultraviolet light source and the surface of the flat plate on the side facing the ultraviolet light source (reference numeral 401 in FIG. 4) was 3 mm. In this way, the active hydrogen supply device (treatment device using active oxygen) according to this example was produced.

この活性酸素供給装置101における活性酸素の供給口となる開口部106の位置に照度計(商品名:分光放射照度計USR-45D、ウシオ電機社製)を置いて紫外線の照度を測定した。スペクトルの積分値から、1370μW/cmであった。このとき、プラズマアクチュエータから発生するオゾンによる紫外線の遮蔽の影響を受けないように、プラズマアクチュエータには電源を入れなかった。被処理物は例えば、該開口部106の位置に置かれることから、かかる条件で測定された紫外線の照度を、被処理物の表面における紫外線の照度とみなした。 An illuminance meter (trade name: spectral irradiance meter USR-45D, manufactured by Ushio Denki Co., Ltd.) was placed at the position of the opening 106 which is the supply port of active oxygen in the active oxygen supply device 101, and the illuminance of ultraviolet rays was measured. From the integrated value of the spectrum, it was 1370 μW / cm 2 . At this time, the power was not turned on to the plasma actuator so as not to be affected by the shielding of ultraviolet rays by ozone generated from the plasma actuator. Since the object to be treated is placed, for example, at the position of the opening 106, the illuminance of ultraviolet rays measured under such conditions was regarded as the illuminance of ultraviolet rays on the surface of the object to be treated.

続いて、プラズマアクチュエータ103から発生するオゾン量を算出するため、活性酸素供給装置101を、容積が1リットルの密閉容器(不図示)に入れた。該密閉容器にはゴム栓で封止可能な孔部が設けられており、該孔部から注射器で内部の気体を吸引できるようにした。そして、プラズマアクチュエータ103に振幅2.4kV、周波数80kHzのサイン波形を有する電圧を印加して1分後に、密閉容器内の気体を100ml採取した。採取した気体をオゾン検知管(商品名:182SB、光明理化学工業社製)に吸引させ、プラズマアクチュエータ103からの誘起流に含まれる測定オゾン濃度(PPM)を測定した。測定されオゾン濃度の値を用いて、次式により、単位時間あたりのオゾン発生量を求めた。 Subsequently, in order to calculate the amount of ozone generated from the plasma actuator 103, the active oxygen supply device 101 was placed in a closed container (not shown) having a volume of 1 liter. The closed container is provided with a hole that can be sealed with a rubber stopper so that the gas inside can be sucked from the hole with a syringe. Then, 100 ml of gas in the closed container was sampled 1 minute after applying a voltage having a sine waveform having an amplitude of 2.4 kV and a frequency of 80 kHz to the plasma actuator 103. The collected gas was sucked into an ozone detector tube (trade name: 182SB, manufactured by Komei Rikagaku Kogyo Co., Ltd.), and the measured ozone concentration (PPM) contained in the induced flow from the plasma actuator 103 was measured. Using the measured ozone concentration value, the amount of ozone generated per unit time was calculated by the following formula.

Figure 2022020554000002
Figure 2022020554000002

その結果、単位時間あたりのオゾン発生量は39μg/分であった。このとき、紫外線光源から照射される紫外線によるオゾンの分解の影響を受けないように、紫外線光源には電源を入れなかった。
最後に、プラズマアクチュエータ103と紫外線ランプ102の両方ともが稼働している場合のオゾン発生量を測定した。プラズマアクチュエータ103の稼働条件は、プラズマアクチュエータ103のみを稼働した場合に39μg/分のオゾンを発生する条件である。また、紫外線ランプ102の稼働条件は、紫外線ランプ102のみを稼働した場合に1370μW/cmの照度になる条件である。その結果、プラズマアクチュエータ103と紫外線ランプ102の両方ともが稼働している場合のオゾン発生量は、8μg/分であった。39μg/分からの減少分の31μg/分が、活性酸素に変化したオゾンの量であると考えられる。
As a result, the amount of ozone generated per unit time was 39 μg / min. At this time, the power was not turned on to the ultraviolet light source so as not to be affected by the decomposition of ozone by the ultraviolet rays emitted from the ultraviolet light source.
Finally, the amount of ozone generated when both the plasma actuator 103 and the ultraviolet lamp 102 were in operation was measured. The operating condition of the plasma actuator 103 is a condition for generating ozone of 39 μg / min when only the plasma actuator 103 is operated. Further, the operating condition of the ultraviolet lamp 102 is a condition that the illuminance becomes 1370 μW / cm 2 when only the ultraviolet lamp 102 is operated. As a result, the amount of ozone generated when both the plasma actuator 103 and the ultraviolet lamp 102 were operating was 8 μg / min. It is considered that 31 μg / min, which is a decrease from 39 μg / min, is the amount of ozone converted into active oxygen.

2-1.処理(親水化)試験
ポリプロピレン樹脂製試験片(TP技研社製)を縦15mm、横15mmの正方形に切断したものを被処理物104として用意した。該被処理物を、上記1で作製した活性酸素供給装置101の開口部106に、図4における距離405が3mmとなるように配置した。次いで、プラズマアクチュエータに振幅2.4kV、周波数80kHzのサイン波形を有する電圧を印加するとともに、1時間紫外線を照射して、被処理物の表面処理を行った(処理時間1時間)。その後、該ポリプロピレン樹脂板の誘起流で処理した面の水に対
する接触角を測定し、処理前の接触角と比較した。接触角の測定は、23℃、50%RHにて、測定器として自動接触角計(商品名:DMo-602、共和界面化学社製)を用い、液滴は0.5μLの水を用い、滴下500m秒後の角度を測定し、5点を平均した値を採用した。なお、当該ポリプロピレン樹脂板の表面の処理前の接触角は102°であった。
2-1. Treatment (hydrophilization) test A polypropylene resin test piece (manufactured by TP Giken Co., Ltd.) cut into a square with a length of 15 mm and a width of 15 mm was prepared as an object to be treated 104. The object to be treated was placed in the opening 106 of the active oxygen supply device 101 produced in 1 above so that the distance 405 in FIG. 4 was 3 mm. Next, a voltage having a sine waveform having an amplitude of 2.4 kV and a frequency of 80 kHz was applied to the plasma actuator, and ultraviolet rays were irradiated for 1 hour to perform surface treatment of the object to be treated (treatment time: 1 hour). Then, the contact angle of the surface treated with the induced flow of the polypropylene resin plate with respect to water was measured and compared with the contact angle before the treatment. The contact angle was measured at 23 ° C. and 50% RH using an automatic contact angle meter (trade name: DMo-602, manufactured by Kyowa Surface Chemical Co., Ltd.) as a measuring instrument, and 0.5 μL of water was used as the droplet. The angle after 500 msec of dropping was measured, and the value obtained by averaging 5 points was adopted. The contact angle of the surface of the polypropylene resin plate before treatment was 102 °.

2-2.処理(除菌)試験
(1)除菌試験用試料の調製
除菌性能の検証試験に用いるための試料を以下の方法により3個用意した。
不特定多数の人間が出入りしている、水、アルコール等による清拭が1週間にわたり実施されていないドアのノブに、スタンプ培地(商品名:ぺたんチェック25 PT1025 栄研化成社製)を25g/cmの圧力で10秒間押し当てたのち、当該スタンプ培地を温度37℃の環境下に12時間置いた。当該スタンプ培地に発育したコロニーを、滅菌綿棒を用いて採取し、蒸留水に分散させた菌液を調製した。この菌液を蒸留水で10倍に希釈した希釈菌液0.1mlを新たなスタンプ培地(ぺたんチェック25 PT1025、栄研化成社製)に塗抹し、温度37℃の環境に12時間置いた。その結果、200CFU/ml~300CFU/mlの菌の発育が観察された。そこで、上記希釈菌液0.1mlを、濃度70%のアルコールで表面を清浄化したガラス板(縦15mm、横15mm、厚さ2mm)の当該表面全面に塗抹した。その後、温度37℃の環境に1時間置き、水分を除去した。こうして、計3個の除菌試験用の試料を調製した。
2-2. Treatment (sterilization) test (1) Preparation of samples for sterilization test Three samples for use in the verification test of sterilization performance were prepared by the following method.
25 g / g of stamp medium (trade name: Petan Check 25 PT1025 Eiken Kasei Co., Ltd.) on the door knob that has not been cleaned with water, alcohol, etc. for a week, where an unspecified number of people come and go. After pressing at a pressure of cm 2 for 10 seconds, the stamp medium was placed in an environment with a temperature of 37 ° C. for 12 hours. The colonies grown on the stamp medium were collected using a sterile cotton swab, and a bacterial solution dispersed in distilled water was prepared. 0.1 ml of the diluted bacterial solution obtained by diluting this bacterial solution 10-fold with distilled water was smeared on a new stamp medium (Petancheck 25 PT1025, manufactured by Eiken Kasei Co., Ltd.) and left in an environment at a temperature of 37 ° C. for 12 hours. As a result, the growth of bacteria of 200 CFU / ml to 300 CFU / ml was observed. Therefore, 0.1 ml of the diluted bacterial solution was smeared on the entire surface of a glass plate (length 15 mm, width 15 mm, thickness 2 mm) whose surface was cleaned with alcohol having a concentration of 70%. Then, it was left in an environment of 37 ° C. for 1 hour to remove water. In this way, a total of three samples for sterilization test were prepared.

(2)除菌試験
各試料の被処理面上に、活性酸素供給装置101を、図4における距離405が3mmとなるように配置した。また、試料104の幅方向(図4における左右方向)の中心位置は、開口部106の幅方向の中心位置と一致させ、また、試料104の奥行方向(図4における紙面奥行方向)の中心位置と開口部106の奥行方向の中心位置とも一致させた。次いで、プラズマアクチュエータ103に振幅2.4kV、周波数80kHzのサイン波形を有する電圧を印加するとともに、プラズマアクチュエータ103のガラス板201の紫外線ランプに対向する側の表面における照度が1370μW/cmとなるように紫外線ランプを点灯させ、誘起流及び被処理面に10秒間紫外線を照射し、開口部106から、活性酸素を含む誘起流を流出させて、被処理面104-1を処理した(処理時間10秒)。次に、試料の被処理面にスタンプ培地(商品名:ぺたんチェック25 PT1025
栄研化成社製)を25g/cmの圧力で10秒間押し当てたのち、当該スタンプ培地を温度37℃の環境下に12時間置いた。そして、該スタンプ培地上に発育したコロニー数から生残菌数を算出した。各試料から得られた生残菌数の平均値を10倍したものを、本実施例に係る除菌試験におけるコロニー数とした。得られたコロニー数から、以下の基準(Ten Cateの判定表示方法)で除菌性能を評価した。
-:発育無し
±:コロニー数<10個
+:コロニー数10個~29個
++:コロニー数30個~100個
+++:コロニー数>100個
++++:コロニー数無数
(2) Sterilization test An active oxygen supply device 101 was placed on the surface to be treated of each sample so that the distance 405 in FIG. 4 was 3 mm. Further, the center position in the width direction (left-right direction in FIG. 4) of the sample 104 coincides with the center position in the width direction of the opening 106, and the center position in the depth direction (paper surface depth direction in FIG. 4) of the sample 104. And the center position of the opening 106 in the depth direction. Next, a voltage having a sine waveform having an amplitude of 2.4 kV and a frequency of 80 kHz is applied to the plasma actuator 103, and the illuminance on the surface of the glass plate 201 of the plasma actuator 103 facing the ultraviolet lamp is 1370 μW / cm 2 . The UV lamp was turned on, the induced flow and the surface to be treated were irradiated with ultraviolet rays for 10 seconds, and the induced flow containing active oxygen was discharged from the opening 106 to treat the surface to be treated 104-1 (treatment time 10). Seconds). Next, stamp medium (trade name: Petancheck 25 PT1025) on the surface to be treated of the sample.
Eiken Kasei Co., Ltd.) was pressed at a pressure of 25 g / cm 2 for 10 seconds, and then the stamp medium was placed in an environment at a temperature of 37 ° C. for 12 hours. Then, the number of surviving bacteria was calculated from the number of colonies that grew on the stamp medium. The number of colonies in the sterilization test according to this example was obtained by multiplying the average number of surviving bacteria obtained from each sample by 10. From the number of colonies obtained, the sterilization performance was evaluated according to the following criteria (Ten Cate determination display method).
-: No growth ±: Number of colonies <10 +: Number of colonies 10 to 29 ++: Number of colonies 30 to 100 +++: Number of colonies> 100 +++: Number of colonies innumerable

2-3.処理(漂白)試験
(1)漂白試験用試料の調製
チリソース(商品名:ペッパーソース、タバスコ社製)を長繊維不織布(商品名:ベンコットM-3II、旭化成社製)でろ過して固形分を除去した。得られた液体中に、紙ワイパー(商品名:キムワイプS-200、日本製紙クレシア社製)を10分間浸した。続いて、紙ワイパーを取り出し、水洗した。水洗は、洗液が目視にて着色しなくなるまで繰
り返した。その後、乾燥させた。次いで、該チリソースによって赤色に染められた紙ワイパーから、縦15mm、横15mmの試料を3つ切り出した。
2-3. Treatment (bleaching) test (1) Preparation of sample for bleaching test Chili sauce (trade name: Pepper sauce, manufactured by Tabasco) is filtered through a long fiber non-woven fabric (trade name: Bencot M-3II, manufactured by Asahi Kasei) to remove solid content. Removed. A paper wiper (trade name: Kimwipe S-200, manufactured by Nippon Paper Crecia) was immersed in the obtained liquid for 10 minutes. Then, the paper wiper was taken out and washed with water. Washing with water was repeated until the washing liquid was not visually colored. Then it was dried. Next, three samples having a length of 15 mm and a width of 15 mm were cut out from the paper wiper dyed in red by the chili sauce.

(2)漂白試験
得られた漂白試験用試料の被処理面上に、活性酸素供給装置101を、図4における距離405が3mmとなるように配置した。試料104の幅方向の中心位置は、開口部106の幅方向中心位置と一致させ、また、試料104の奥行き方向の中心位置と開口部106の長手方向中心位置とも一致させた。次いで、プラズマアクチュエータ103に振幅2.4kV、周波数80kHzのサイン波形を有する電圧を印加するとともに、プラズマアクチュエータ103のガラス板201の紫外線ランプに対向する側の表面における照度が1370μW/cmとなるように紫外線ランプを点灯させ、誘起流及び被処理面に10分間紫外線を照射して、被処理面104-1の一部に活性酸素を含む誘起流を供給した(処理時間10分)。次いで、被処理面上から活性酸素供給装置101を取り除き、処理前の試料と比較して、どの程度脱色されたかを目視で観察し、以下の基準で評価した。
A:完全に漂白された。
B:チリソースの赤色がわずかに残っていた。
C:チリソースの赤色が多少残っていた。
D:活性酸素が供給されなかった部分の色と差がなかった。
(2) Bleaching test An active oxygen supply device 101 was placed on the surface to be treated of the obtained bleaching test sample so that the distance 405 in FIG. 4 was 3 mm. The center position in the width direction of the sample 104 coincided with the center position in the width direction of the opening 106, and also coincided with the center position in the depth direction of the sample 104 and the center position in the longitudinal direction of the opening 106. Next, a voltage having a sine waveform having an amplitude of 2.4 kV and a frequency of 80 kHz is applied to the plasma actuator 103, and the illuminance on the surface of the glass plate 201 of the plasma actuator 103 facing the ultraviolet lamp is 1370 μW / cm 2 . The ultraviolet lamp was turned on, and the induced flow and the surface to be treated were irradiated with ultraviolet rays for 10 minutes to supply an induced flow containing active oxygen to a part of the surface to be treated 104-1 (treatment time: 10 minutes). Next, the active oxygen supply device 101 was removed from the surface to be treated, and the degree of decolorization was visually observed in comparison with the sample before treatment, and the evaluation was made according to the following criteria.
A: It was completely bleached.
B: A little red color of chili sauce remained.
C: Some red color of chili sauce remained.
D: There was no difference from the color of the part to which active oxygen was not supplied.

2-4.処理(消臭)試験
(1)消臭試験用試料の調製
ファブリックミスト(商品名:ファブリックミスト リネン、サボン社製)に、紙ワイパー(キムワイプS-200、日本製紙クレシア製)を10分間浸漬した後、取り出し、6時間自然乾燥させた。次いで、紙ワイパーを縦10mm、横10mmのサイズに切り取り、消臭試験用試料を得た。
2-4. Treatment (deodorant) test (1) Preparation of deodorant test sample A paper wiper (Kimwipe S-200, manufactured by Nippon Paper Crecia) was immersed in a fabric mist (trade name: fabric mist linen, manufactured by Savon) for 10 minutes. After that, it was taken out and naturally dried for 6 hours. Next, the paper wiper was cut into a size of 10 mm in length and 10 mm in width to obtain a sample for deodorization test.

(2)消臭試験
各試料の被処理面上に、活性酸素供給装置101を、図4における距離405が3mmとなるように配置した。試料の幅方向の中心位置は、開口部の幅方向中心位置と一致させ、また、試料の奥行き方向の中心位置と開口部の長手方向中心位置とも一致させた。次いで、プラズマアクチュエータに振幅2.4kV、周波数80kHzのサイン波形を有する電圧を印加するとともに、プラズマアクチュエータ103のガラス板201の紫外線ランプに対向する側の表面における照度が1370μW/cmとなるように紫外線ランプを点灯させ、誘起流及び被処理面に10秒間紫外線を照射して、被処理面の一部に活性酸素を含む誘起流を供給した(処理時間10秒)。次いで、被処理面上から活性酸素供給装置を取り除いた。そして、処理された試料の臭気が、活性酸素による処理を行っていない試料との対比においてどの程度残存しているかを下記の強度基準で評価した。なお、評価は5人の被験者に対して行い、少なくとも3名が選択した強度基準を採用した。
A:無臭。
B:やっと検知できる臭い(検知閾値)。
C:ファブリックミストの臭いであるとわかる弱い臭い(認知閾値)。
D:未処理の試料と差異がない。
(2) Deodorization test An active oxygen supply device 101 was placed on the surface to be treated of each sample so that the distance 405 in FIG. 4 was 3 mm. The center position in the width direction of the sample coincided with the center position in the width direction of the opening, and also coincided with the center position in the depth direction of the sample and the center position in the longitudinal direction of the opening. Next, a voltage having a sine waveform with an amplitude of 2.4 kV and a frequency of 80 kHz is applied to the plasma actuator, and the illuminance on the surface of the glass plate 201 of the plasma actuator 103 facing the ultraviolet lamp is 1370 μW / cm 2 . The ultraviolet lamp was turned on, and the induced flow and the surface to be treated were irradiated with ultraviolet rays for 10 seconds to supply an induced flow containing active oxygen to a part of the surface to be treated (treatment time: 10 seconds). Then, the active oxygen supply device was removed from the surface to be treated. Then, how much the odor of the treated sample remained in comparison with the sample not treated with active oxygen was evaluated by the following intensity criteria. The evaluation was performed on 5 subjects, and the intensity criteria selected by at least 3 subjects were adopted.
A: Odorless.
B: An odor that can finally be detected (detection threshold).
C: A weak odor (cognitive threshold) that can be recognized as a fabric mist odor.
D: No difference from the untreated sample.

<実施例2>
実施例1の紫外線ランプ102の電圧を24Vから12Vに低下させ、照度を低下させた以外は実施例1と同様にして活性酸素供給装置を作製し、評価した。
<Example 2>
An active oxygen supply device was produced and evaluated in the same manner as in Example 1 except that the voltage of the ultraviolet lamp 102 of Example 1 was lowered from 24 V to 12 V and the illuminance was lowered.

<実施例3~6>
紫外線光源の波長ならびにプラズマアクチュエータの誘電体の厚みおよび材質を表1に示すように変更した以外は実施例1と同様にして活性酸素供給装置を作製し、評価した。
なお、実施例6では紫外線光源として紫外LED(ピーク波長280nm)を用いた。
<Examples 3 to 6>
An active oxygen supply device was produced and evaluated in the same manner as in Example 1 except that the wavelength of the ultraviolet light source and the thickness and material of the dielectric of the plasma actuator were changed as shown in Table 1.
In Example 6, an ultraviolet LED (peak wavelength 280 nm) was used as an ultraviolet light source.

<比較例1~3>
比較例1~3は各々以下のような構成とした以外は実施例1と同様の条件とした。
比較例1:プラズマアクチュエータに電圧を印加せず、紫外線を照射しなかった。
比較例2:プラズマアクチュエータに電圧を印加し、紫外線を照射しなかった。
比較例3:プラズマアクチュエータに電圧を印加せず、紫外線を照射した。
<Comparative Examples 1 to 3>
Comparative Examples 1 to 3 had the same conditions as those of Example 1 except that they had the following configurations.
Comparative Example 1: No voltage was applied to the plasma actuator, and no ultraviolet light was applied.
Comparative Example 2: A voltage was applied to the plasma actuator and no ultraviolet light was applied.
Comparative Example 3: No voltage was applied to the plasma actuator, and ultraviolet rays were irradiated.

<実施例7>
1.活性酸素による処理装置の作製、及び特性評価
まず、図6に示す活性酸素供給装置600の筐体601を用意した。図5は、図6に係る活性酸素供給装置の、筐体601の開口部605を有する面の側からみた平面図である。筐体のサイズは、開口部605が鉛直下方を向くように置いたときに、高さが20mm、奥行きが150mm、幅が20mmであった。また、開口部605は、幅が7mm、長さが15mmであった。なお、開口部605は、図5に示すようにその長手方向が、該筐体の奥行方向と一致するように設けられていた。
また、実施例1と同様にプラズマアクチュエータ103を作製した。次いで、該プラズマアクチュエータ103を、図6に示すように、筐体601の内壁に固定した。具体的には、プラズマアクチュエータ103の第1の電極203の一端が、紫外線ランプ102の中心と水平方向で一致する位置であって、かつ、該プラズマアクチュエータ103からの誘起流105が開口部605から流出するように固定した。ここで、プラズマアクチュエータ103の紫外線光源に対向する側の面と、紫外線ランプ102との距離(図7中の符号607)を2mm、プラズマアクチュエータ103の下端から開口部605の下端(筐体の外側)までの距離(図7中の符号609)を1mmとした。紫外線ランプ102としては、実施例1と同様に、冷陰極管紫外線ランプ(商品名:UW/9F89/9、スタンレー電気社製、ピーク波長=254nm)を用いた。
こうして得られた活性酸素供給装置600について、プラズマアクチュエータ103のガラス板201の紫外線ランプに対向する側の表面に照度計(商品名:分光放射照度計USR-45D、ウシオ電機社製)を置いて紫外線の照度を測定した。スペクトルの積分値から、1370μW/cmであった。また、照度計を開口部605に接して配置したと
きの紫外線の照度は、0.3μW/cmであった。このことから、開口部からの紫外線
の漏洩は実質的にないことを確認した。
<Example 7>
1. 1. Fabrication of processing device using active oxygen and evaluation of characteristics First, the housing 601 of the active oxygen supply device 600 shown in FIG. 6 was prepared. FIG. 5 is a plan view of the active oxygen supply device according to FIG. 6 as viewed from the side of the surface of the housing 601 having the opening 605. The size of the housing was 20 mm in height, 150 mm in depth, and 20 mm in width when the opening 605 was placed so as to face vertically downward. The opening 605 had a width of 7 mm and a length of 15 mm. As shown in FIG. 5, the opening 605 is provided so that the longitudinal direction thereof coincides with the depth direction of the housing.
Moreover, the plasma actuator 103 was manufactured in the same manner as in Example 1. Next, the plasma actuator 103 was fixed to the inner wall of the housing 601 as shown in FIG. Specifically, one end of the first electrode 203 of the plasma actuator 103 is at a position horizontally aligned with the center of the ultraviolet lamp 102, and the induced flow 105 from the plasma actuator 103 is from the opening 605. Fixed to flow out. Here, the distance between the surface of the plasma actuator 103 facing the ultraviolet light source and the ultraviolet lamp 102 (reference numeral 607 in FIG. 7) is 2 mm, and the lower end of the plasma actuator 103 to the lower end of the opening 605 (outside the housing). ) (Reference numeral 609 in FIG. 7) was set to 1 mm. As the ultraviolet lamp 102, a cold cathode fluorescent lamp (trade name: UW / 9F89 / 9, manufactured by Stanley Electric Co., Ltd., peak wavelength = 254 nm) was used as in Example 1.
Regarding the active oxygen supply device 600 thus obtained, an illuminance meter (trade name: spectroscopic radiation illuminance meter USR-45D, manufactured by Ushio Denki Co., Ltd.) is placed on the surface of the glass plate 201 of the plasma actuator 103 facing the ultraviolet lamp. The illuminance of ultraviolet rays was measured. From the integrated value of the spectrum, it was 1370 μW / cm 2 . Further, the illuminance of the ultraviolet rays when the illuminometer was placed in contact with the opening 605 was 0.3 μW / cm 2 . From this, it was confirmed that there was virtually no leakage of ultraviolet rays from the opening.

次に、紫外線によるオゾンの分解の影響を受けないように、紫外線ランプの電源を入れずに、プラズマアクチュエータ103の両電極間に振幅2.4kV、周波数80kHzのサイン波形を有する電圧を印加して5分後に、開口部から流出する誘起流を50ml採取した。採取した気体をオゾン検知管(商品名:182SB、光明理化学工業社製)に吸引させ、プラズマアクチュエータからの誘起流に含まれるオゾン濃度を測定したところ70ppmであった(読取値×2)。
次いで、プラズマアクチュエータの両電極間に振幅2.4kV、周波数80kHzのサイン波形を有する電圧を印加し、また、紫外線ランプを、プラズマアクチュエータ103のガラス板201の紫外線ランプに対向する側の表面における照度が1370μW/cmとなるように紫外線ランプを点灯させた。そして、このときの開口部から流出する誘起流中のオゾン濃度を上記と同様にして測定した。その結果、18ppmであった。これらの結果から、この誘起流中には、52ppmのオゾンが紫外線によって分解された活性酸素が含まれていると考えられる。
Next, in order not to be affected by the decomposition of ozone by ultraviolet rays, a voltage having a sine waveform with an amplitude of 2.4 kV and a frequency of 80 kHz is applied between both electrodes of the plasma actuator 103 without turning on the power of the ultraviolet lamp. After 5 minutes, 50 ml of induced flow flowing out of the opening was sampled. The collected gas was sucked into an ozone detector tube (trade name: 182SB, manufactured by Komei Rikagaku Kogyo Co., Ltd.), and the ozone concentration contained in the induced flow from the plasma actuator was measured and found to be 70 ppm (reading value × 2).
Next, a voltage having a sine waveform with an amplitude of 2.4 kV and a frequency of 80 kHz is applied between both electrodes of the plasma actuator, and the ultraviolet lamp is illuminated on the surface of the glass plate 201 of the plasma actuator 103 facing the ultraviolet lamp. The ultraviolet lamp was turned on so that the voltage was 1370 μW / cm 2 . Then, the ozone concentration in the induced flow flowing out from the opening at this time was measured in the same manner as described above. As a result, it was 18 ppm. From these results, it is considered that this induced flow contains active oxygen in which 52 ppm of ozone is decomposed by ultraviolet rays.

2.処理試験
上記1で作製した活性酸素供給装置を用いて、実施例1に記載の処理(表面改質、除菌、消臭、漂白)試験と同様にして処理試験を行った。
2. 2. Treatment test Using the active oxygen supply device produced in 1 above, a treatment test was performed in the same manner as the treatment (surface modification, sterilization, deodorization, bleaching) test described in Example 1.

2-1.表面改質(親水化処理)試験
各試料の被処理面上に、本実施例に係る活性酸素供給装置を、筐体の開口部を有する外表面と該被処理面との距離(図7中の符号611)が2mmとなるように設置した。このとき、試料の幅方向(図7における左右方向)の中心位置は、開口部の幅方向中心位置と一致させ、また、試料の奥行き方向(図7における紙面奥行方向)の中心位置と開口部の長手方向中心位置とも一致させた。それ以外は、実施例1に記載の親水化処理試験と同様にして親水化処理試験を行った。
2-1. Surface modification (hydrophilization treatment) test On the surface to be treated of each sample, the active oxygen supply device according to this embodiment is installed, and the distance between the outer surface having the opening of the housing and the surface to be treated (in FIG. 7). The reference numeral 611) was set to be 2 mm. At this time, the center position in the width direction of the sample (horizontal direction in FIG. 7) coincides with the center position in the width direction of the opening, and the center position and the opening in the depth direction of the sample (paper depth direction in FIG. 7). It was also matched with the longitudinal center position of. Other than that, the hydrophilization treatment test was performed in the same manner as in the hydrophilization treatment test described in Example 1.

2-2.除菌試験
各試料の被処理面上に、本実施例に係る活性酸素供給装置を、筐体の開口部を有する外表面と該被処理面との距離(図7中の符号611)が2mmとなるように設置した。このとき、試料の幅方向(図7における左右方向)の中心位置は、開口部の幅方向中心位置と一致させ、また、試料の奥行き方向(図7における紙面奥行方向)の中心位置と開口部の長手方向中心位置とも一致させた。また、誘起流に対する紫外線の照射時間を30秒(処理時間30秒)とした。それら以外は、実施例1に記載の除菌試験と同様にして除菌試験を行った。
2-2. Sterilization test On the surface to be treated of each sample, the active oxygen supply device according to this embodiment has a distance (reference numeral 611 in FIG. 7) of 2 mm between the outer surface having the opening of the housing and the surface to be treated. It was installed so as to be. At this time, the center position in the width direction of the sample (horizontal direction in FIG. 7) coincides with the center position in the width direction of the opening, and the center position and the opening in the depth direction of the sample (paper depth direction in FIG. 7). It was also matched with the longitudinal center position of. Further, the irradiation time of ultraviolet rays for the induced flow was set to 30 seconds (treatment time: 30 seconds). Other than these, the sterilization test was carried out in the same manner as the sterilization test described in Example 1.

2-3.漂白試験
各試料上に、活性酸素供給装置を、筐体の開口部を有する外表面と該被処理面との距離(図7中の符号611)が2mmとなるように設置し、誘起流に対する紫外線の照射時間を20分(処理時間20分)とした以外は実施例1に記載の漂白試験と同様にして漂白試験を行った。
2-3. Bleaching test On each sample, an active oxygen supply device was installed so that the distance between the outer surface having the opening of the housing and the surface to be treated (reference numeral 611 in FIG. 7) was 2 mm, and the bleaching test was applied to the induced flow. The bleaching test was carried out in the same manner as the bleaching test described in Example 1 except that the irradiation time of ultraviolet rays was 20 minutes (treatment time was 20 minutes).

2-4.消臭試験
各試料の被処理面上に、活性酸素供給装置を、その開口部の下端と該被処理面との距離が2mmとなるように設置した。このとき、試料の幅方向(図7における左右方向)の中心位置は、開口部の幅方向中心位置と一致させ、また、試料の奥行き方向(図7における紙面奥行方向)の中心位置と開口部の長手方向中心位置とも一致させた。また、誘起流に対する紫外線の照射時間を20秒(処理時間20秒)とした。それら以外は、実施例1に記載の消臭試験と同様にして消臭試験を行った。
2-4. Deodorization test An active oxygen supply device was installed on the surface to be treated of each sample so that the distance between the lower end of the opening and the surface to be treated was 2 mm. At this time, the center position in the width direction of the sample (horizontal direction in FIG. 7) coincides with the center position in the width direction of the opening, and the center position and the opening in the depth direction of the sample (paper depth direction in FIG. 7). It was also matched with the longitudinal center position of. Further, the irradiation time of ultraviolet rays for the induced flow was set to 20 seconds (treatment time 20 seconds). Other than these, the deodorization test was carried out in the same manner as the deodorization test described in Example 1.

Figure 2022020554000003

表中、PAはプラズマアクチュエータを表し、UVは紫外線を表す。また、オゾン濃度は、紫外線光源に電源を入れなかった場合のオゾン濃度を示す。
Figure 2022020554000003

In the table, PA represents a plasma actuator and UV represents ultraviolet rays. Further, the ozone concentration indicates the ozone concentration when the power is not turned on to the ultraviolet light source.

実施例1~7、比較例1~3の活性酸素供給装置の装置条件、プラズマアクチュエータのみを稼働した場合のオゾン濃度、UV冷陰極管のみを稼働した場合の紫外線の照度、接触角の低下、除菌/消臭/漂白の各処理の評価結果を表1に示す。 Device conditions of the active oxygen supply device of Examples 1 to 7 and Comparative Examples 1 to 3, ozone concentration when only the plasma actuator is operated, ultraviolet illuminance when only the UV cold cathode fluorescent lamp is operated, reduction of contact angle, Table 1 shows the evaluation results of each treatment of sterilization / deodorization / bleaching.

接触角の低下は、比較例3のように紫外線では起こらなかった。また、比較例2のようにオゾンの発生している場合には接触角が低下した。さらに、オゾンの発生と紫外線の照射を両方行っている場合には、活性酸素の反応性の高さによりさらに接触角が低下した。
比較例1では、プラズマアクチュエータも活性酸素も稼働していないため、紫外線、オゾン、活性酸素による除菌、消臭、漂白の効果がなかった。比較例2では、オゾンによる除菌、消臭、漂白の効果が多少見られたが、実施例1~7には及ばなかった。比較例3では、紫外線による除菌の効果が多少見られたが、消臭、漂白の効果は見られなかった。
The decrease in the contact angle did not occur with ultraviolet rays as in Comparative Example 3. Further, when ozone is generated as in Comparative Example 2, the contact angle is lowered. Furthermore, when both ozone generation and ultraviolet irradiation were performed, the contact angle was further lowered due to the high reactivity of active oxygen.
In Comparative Example 1, since neither the plasma actuator nor the active oxygen was in operation, there was no effect of sterilization, deodorization, and bleaching by ultraviolet rays, ozone, and active oxygen. In Comparative Example 2, some effects of sterilization, deodorization, and bleaching by ozone were observed, but they were not as good as those of Examples 1 to 7. In Comparative Example 3, some effects of sterilization by ultraviolet rays were observed, but no effects of deodorization and bleaching were observed.

<実施例8>
実施例1で作製した活性酸素供給装置を用いて、以下の手順にて大腸菌の除菌試験を実施した。なお、本除菌試験に用いる器具は全て、オートクレーブを用いた高圧蒸気滅菌を行ったものを用いた。また、本除菌試験はクリーンベンチ内で行った。
まず、LB培地(トリプトン2g、イーストエクストラクト1g、塩化ナトリウム1gに蒸留水を入れ200mlにしたもの)の入った三角フラスコに、大腸菌(商品名「KWIK-STIK(大腸菌(Escherichia coli)ATCC8739)、Microbiologics社製)を入れ、温度37℃で48時間、80rpmで振とう培養した。培養後の大腸菌の菌液は9.2×10(CFU/ml)であった。
この培養後の菌液0.010mlを縦3cm、横1cm、厚さ1mmのスライドガラス(松波硝子、型番:S2441)上にマイクロピペットを用いて滴下し、当該マイクロピペットの先端で菌液をスライドガラスの一方の面の全面に塗布して試料No.8-1を作製した。また、同様にして、試料No.8-2~8-3を作製した。
<Example 8>
Using the active oxygen supply device prepared in Example 1, a sterilization test of Escherichia coli was carried out according to the following procedure. All the instruments used in this sterilization test were those subjected to high-pressure steam sterilization using an autoclave. In addition, this sterilization test was conducted in a clean bench.
First, in an Erlenmeyer flask containing LB medium (2 g of tryptone, 1 g of yeast extract, 1 g of sodium chloride and 200 ml of distilled water), Escherichia coli (trade name "KWIK-STIK (Escherichia coli) ATCC8739), (Manufactured by Microbiologicals) was added and cultured at a temperature of 37 ° C. for 48 hours at 80 rpm. The bacterial solution of Escherichia coli after culturing was 9.2 × 109 (CFU / ml).
0.010 ml of this cultured bacterial solution is dropped onto a slide glass (Matsunami glass, model number: S2441) having a length of 3 cm, a width of 1 cm, and a thickness of 1 mm using a micropipette, and the bacterial solution is slid with the tip of the micropipette. Apply to the entire surface of one side of the glass and sample No. 8-1 was produced. Further, in the same manner, the sample No. 8-2 to 8-3 were prepared.

次に、試料No.8-1を、10mlの緩衝液(商品名「Gibco PBS」、 Thermo Fisher Scientific社)を入れた試験管に1時間浸漬した。なお、スライドガラス上の菌液が乾かないように、菌液のスライドガラスへの滴下から、緩衝液への浸漬までの時間を60秒とした。
次に、試料No.8-1を浸漬後の緩衝液(以降、「1/1液」ともいう)1mlを9mlの緩衝液が入った試験管に入れて希釈液(以降、「1/10希釈液」)を調製した。緩衝液での希釈倍率を変更したこと以外は同様にして、1/100希釈液、1/1000希釈液、及び、1/10000希釈液を調製した。
次いで、1/1液から0.050mlを採取し、スタンプ培地(ぺたんチェック25 PT1025 栄研化成社製)に塗抹した。この操作を繰り返して、1/1液が塗抹されたスタンプ培地を2つ作成した。2つのスタンプ培地を恒温槽(商品名:IS600;ヤマト科学社製)に入れ、温度37℃で24時間培養した。2つのスタンプ培地上に発生したコロニー数をカウントし、その平均値を算出した。
1/10希釈液、1/100希釈液、1/1000希釈液及び1/10000希釈液についても上記と同様にして、希釈液毎に2つの塗抹済スタンプ培地を作成し、培養した。そして、各希釈液に係るスタンプ培地毎に発生したコロニー数をカウントし、平均値を算出した。その結果を表2に示す。
Next, the sample No. 8-1 was immersed in a test tube containing 10 ml of a buffer solution (trade name "Gibco PBS", Thermo Fisher Scientific) for 1 hour. In order to prevent the bacterial solution on the slide glass from drying, the time from the dropping of the bacterial solution onto the slide glass to the immersion in the buffer solution was set to 60 seconds.
Next, the sample No. Prepare a diluted solution (hereinafter, "1/10 diluted solution") by putting 1 ml of the buffer solution (hereinafter, also referred to as "1/1 solution") after immersing 8-1 in a test tube containing 9 ml of the buffer solution. bottom. A 1/100 diluted solution, a 1/1000 diluted solution, and a 1/10000 diluted solution were prepared in the same manner except that the dilution ratio with the buffer solution was changed.
Next, 0.050 ml was collected from the 1/1 solution and smeared on a stamp medium (Petancheck 25 PT1025 manufactured by Eiken Kasei Co., Ltd.). By repeating this operation, two stamp media smeared with 1/1 liquid were prepared. The two stamp media were placed in a constant temperature bath (trade name: IS600; manufactured by Yamato Scientific Co., Ltd.) and cultured at a temperature of 37 ° C. for 24 hours. The number of colonies generated on the two stamp media was counted, and the average value was calculated.
For the 1/10 diluted solution, the 1/100 diluted solution, the 1/1000 diluted solution, and the 1/10000 diluted solution, two smeared stamp media were prepared for each diluted solution and cultured. Then, the number of colonies generated for each stamp medium related to each diluted solution was counted, and the average value was calculated. The results are shown in Table 2.

Figure 2022020554000004
Figure 2022020554000004

上記表2に示した結果から、1/10000希釈液を培養したときのコロニー数が21であること、従って、試料No.8-1に係る1/1液の0.050ml中に存在する菌数は、21×10=210000(CFU)であることが分かった。 From the results shown in Table 2 above, the number of colonies when the 1/10000 diluted solution was cultured was 21, and therefore, the sample No. It was found that the number of bacteria present in 0.050 ml of the 1/1 liquid according to 8-1 was 21 × 10 4 = 210000 (CFU).

次に、試料No.8-2~8-3について、以下の操作を行った。
縦30cm、横30cm、厚さ5mmのプラスチック平板の中央に、縦3.5cm、横1.5cm、深さ2mmの凹部を設け、該凹部内に、各試料のスライドガラスの菌液塗布面とは反対側の面が該凹部の底面と接するように上記スライドガラスを設置した。そして、該プラスチック板の上面に、活性酸素供給装置を、その開口の長手方向の中心が、該凹部の長手方向中心と一致し、かつ、その開口の幅方向の中心が該凹部の短手方向の中心と一致するように置いた。凹部の深さが2mmであり、スライドガラスの厚みが1mmであるため、各試料の菌液付着面と、活性酸素供給装置の開口とは直接接触しなかった。
次いで、活性酸素供給装置を作動させ、該スライドガラスの菌液塗布面を、活性酸素を含む誘起流で処理した。処理時間は、試料No.8-2は2秒、試料No.8-3は10秒とした。また、活性酸素供給装置を用いた処理過程で、スライドガラス上の菌液が乾かないように、菌液のスライドガラスへの滴下から、緩衝液への浸漬までの時間を60秒とした。
Next, the sample No. The following operations were performed for 8-2 to 8-3.
A recess of 3.5 cm in length, 1.5 cm in width and 2 mm in depth is provided in the center of a plastic flat plate having a length of 30 cm, a width of 30 cm and a thickness of 5 mm. The slide glass was installed so that the opposite surface was in contact with the bottom surface of the recess. Then, on the upper surface of the plastic plate, an active oxygen supply device is provided so that the center in the longitudinal direction of the opening coincides with the center in the longitudinal direction of the recess and the center in the width direction of the recess is in the lateral direction of the recess. I placed it so that it coincided with the center of. Since the depth of the recess is 2 mm and the thickness of the slide glass is 1 mm, the bacterial solution adhering surface of each sample did not come into direct contact with the opening of the active oxygen supply device.
Next, the active oxygen supply device was operated, and the bacterial solution-coated surface of the slide glass was treated with an induced flow containing active oxygen. The processing time is the sample No. 8-2 is 2 seconds, sample No. 8-3 was set to 10 seconds. Further, in the treatment process using the active oxygen supply device, the time from the dropping of the bacterial solution onto the slide glass to the immersion in the buffer solution was set to 60 seconds so that the bacterial solution on the slide glass would not dry out.

処理を終えた試料No.8-2~8-3の各々を、10mlの緩衝液(商品名「Gibco PBS」、 Thermo Fisher Scientific社)を入れた試験管に1時間浸漬した。次いで、各試料を浸漬後の緩衝液(以降、「1/1液」)1mlを9mlの緩衝液が入った試験管に入れて希釈液(1/10希釈液)を調製した。緩衝液での希釈倍率を変更したこと以外は同様にして、1/100希釈液、1/1000希釈液、及び、1/10000希釈液を調製した。
次いで、各試料の1/1液から0.050mlを採取し、スタンプ培地(商品名:ぺたんチェック25 PT1025、栄研化成社製)に塗抹した。この操作を繰り返して、各試料について、1/1液が塗抹されたスタンプ培地を2つ作成した。合計4つのスタンプ培地を恒温槽(商品名:IS600;ヤマト科学社製)に入れ、温度37℃で24時間培養した。各試料についての1/1液に係るスタンプ培地毎に発生したコロニー数をカウントし、平均値を算出した。
1/10希釈液、1/100希釈液、1/1000希釈液及び1/10000希釈液についても上記と同様にして、希釈液毎に2つの塗抹済スタンプ培地を作成し、培養した。そして、各試料についての各希釈液に係るスタンプ培地毎に発生したコロニー数をカウントし、平均値を算出した。結果を表3に示す。
Finished sample No. Each of 8-2 to 8-3 was immersed in a test tube containing 10 ml of a buffer solution (trade name "Gibco PBS", Thermo Fisher Scientific) for 1 hour. Next, 1 ml of the buffer solution (hereinafter, "1/1 solution") after immersing each sample was placed in a test tube containing 9 ml of the buffer solution to prepare a diluted solution (1/10 diluted solution). A 1/100 diluted solution, a 1/1000 diluted solution, and a 1/10000 diluted solution were prepared in the same manner except that the dilution ratio with the buffer solution was changed.
Next, 0.050 ml was collected from 1/1 solution of each sample and smeared on a stamp medium (trade name: Petancheck 25 PT1025, manufactured by Eiken Kasei Co., Ltd.). By repeating this operation, two stamp media smeared with 1/1 solution were prepared for each sample. A total of four stamp media were placed in a constant temperature bath (trade name: IS600; manufactured by Yamato Scientific Co., Ltd.) and cultured at a temperature of 37 ° C. for 24 hours. The number of colonies generated for each stamp medium related to the 1/1 solution for each sample was counted, and the average value was calculated.
For the 1/10 diluted solution, the 1/100 diluted solution, the 1/1000 diluted solution, and the 1/10000 diluted solution, two smeared stamp media were prepared for each diluted solution and cultured. Then, the number of colonies generated for each stamp medium related to each diluted solution for each sample was counted, and the average value was calculated. The results are shown in Table 3.

Figure 2022020554000005
Figure 2022020554000005

前記した通り、試料No.8-1に係る1/1液の0.050ml中の菌数は210000(CFU)であった。そして、除菌処理後の試料No.8-2および8-3に係る1/1液の菌数はいずれも0(CFU)であった。このことから、本実施例に係る活性酸素供給装置は、処理時間2秒の場合であっても99.999%((210000-1)/210000×100)以上の高効率で大腸菌を除菌できたことが分かった。 As described above, the sample No. The number of bacteria in 0.050 ml of the 1/1 solution according to 8-1 was 210000 (CFU). Then, the sample No. after the sterilization treatment. The number of bacteria in the 1/1 solution according to 8-2 and 8-3 was 0 (CFU). From this, the active oxygen supply device according to this embodiment can sterilize Escherichia coli with a high efficiency of 99.999% ((210,000-1) / 210000 × 100) or more even when the treatment time is 2 seconds. I found out.

<比較例4>
実施例8に記載した試料No.8-1の調製方法と同様にして、試料No.C4-1~C4-2を作製した。この試料No.C4-1~C4-2について、活性酸素供給装置のプラズマアクチュエータに電圧を印加しなかった以外は、実施例8と同様にして処理を行った。処理時間は、試料No.C4-1は2秒、試料No.C4-2は10秒とした。処理を終えた試料No.C4-1~C4-2について、実施例8の試料No.8-1と同様にして緩衝液への浸漬を行った。そして、各試料の1/1液について、塗抹済スタンプ培地を作製し、培養した。各試料についての1/1液に係るスタンプ培地毎に発生したコロニー数をカウントして平均値を算出した。その結果を表4に示す。
<Comparative Example 4>
Sample No. 8 described in Example 8. In the same manner as in the preparation method of 8-1, the sample No. C4-1 to C4-2 were prepared. This sample No. C4-1 to C4-2 were treated in the same manner as in Example 8 except that no voltage was applied to the plasma actuator of the active oxygen supply device. The processing time is the sample No. C4-1 is 2 seconds, sample No. C4-2 was set to 10 seconds. Finished sample No. For C4-1 to C4-2, the sample No. of Example 8 was used. Immersion in the buffer solution was carried out in the same manner as in 8-1. Then, a smeared stamp medium was prepared and cultured for 1/1 liquid of each sample. The average value was calculated by counting the number of colonies generated for each stamp medium related to the 1/1 solution for each sample. The results are shown in Table 4.

Figure 2022020554000006
Figure 2022020554000006

処理後の試料No.C4-1の1/1液の培養結果から、処理後の試料No.C4-1に係る1/1液の0.050ml中に存在する菌数は、52(CFU)であった。一方、試料No.C4-2に係る1/1液の0.050ml中に存在する菌数は0(CFU)であった。従って、本比較例においては、処理時間が2秒の場合の大腸菌の除菌率は、99.98%(=(210000-52)/210000×100)であった。
実施例8では、前記した通り、処理時間2秒の場合の除菌率が、99.999%以上であったことから、紫外線のみによる処理は、紫外線照射と活性酸素とを併用した処理と比較して除菌効率が劣ることが確認された。
Sample No. after treatment. From the culture result of 1/1 solution of C4-1, the sample No. after the treatment was obtained. The number of bacteria present in 0.050 ml of the 1/1 solution according to C4-1 was 52 (CFU). On the other hand, sample No. The number of bacteria present in 0.050 ml of the 1/1 solution according to C4-2 was 0 (CFU). Therefore, in this comparative example, the sterilization rate of Escherichia coli when the treatment time was 2 seconds was 99.98% (= (210000-52) / 210000 × 100).
In Example 8, as described above, the sterilization rate when the treatment time was 2 seconds was 99.999% or more, so that the treatment with only ultraviolet rays was compared with the treatment in which ultraviolet irradiation and active oxygen were used in combination. It was confirmed that the sterilization efficiency was inferior.

<比較例5>
実施例8に記載した試料No.8-1の調製方法と同様にして、試料No.C5-1~C5-2を作製した。この試料No.C5-1~C5-2について、活性酸素供給装置の紫外線ランプを点灯させなかった以外は、実施例8と同様にして処理を行った。従って、試料No.C5-1及びC5-2は、誘起流中のオゾンによって処理がなされたことになる。処理時間は、試料No.C5-1は2秒、試料No.C5-2は10秒とした。処理を終えた試料No.C5-1~C5-2について、実施例8の試料No.8-1と同様にして緩衝液への浸漬、希釈を行った。次いで、実施例8の試料No.8-1と同様にして各試料に係る1/1液、1/10希釈液、1/100希釈液、1/1000希釈液及び1/10000希釈液の各々について、2つの塗抹済スタンプ培地を作製し、培養した。そ
して、各試料についての1/1液及び各希釈液に係るスタンプ培地毎に発生したコロニー数をカウントし、平均値を算出した。その結果を表5に示す。
<Comparative Example 5>
Sample No. 8 described in Example 8. In the same manner as in the preparation method of 8-1, the sample No. C5-1 to C5-2 were prepared. This sample No. C5-1 to C5-2 were treated in the same manner as in Example 8 except that the ultraviolet lamp of the active oxygen supply device was not turned on. Therefore, the sample No. C5-1 and C5-2 were treated with ozone in the induced flow. The processing time is the sample No. C5-1 is 2 seconds, sample No. C5-2 was set to 10 seconds. Finished sample No. For C5-1 to C5-2, the sample No. of Example 8 was used. Immersion and dilution in the buffer solution were carried out in the same manner as in 8-1. Next, the sample No. of Example 8 was used. In the same manner as in 8-1, two smeared stamp media were applied to each of the 1/1 solution, 1/10 diluted solution, 1/100 diluted solution, 1/1000 diluted solution and 1/10000 diluted solution for each sample. It was prepared and cultured. Then, the number of colonies generated for each stamp medium related to the 1/1 solution and each diluted solution for each sample was counted, and the average value was calculated. The results are shown in Table 5.

Figure 2022020554000007
Figure 2022020554000007

上記の結果のうち、処理後の試料No.C5-1の1/10000希釈液の培養結果から、処理後の試料No.C5-1に係る1/1液の0.050ml中に存在する菌数は、19×10=190000(CFU)であることが分かった。従って、試料No.C5-1を用いた実験例においては、大腸菌の除菌率は、9.5%(=(210000-190000)/210000×100)であった。
また、処理後の試料No.C5-2の1/10000希釈液の培養結果から、処理後の試料No.C5-2に係る1/1液の0.050ml中に存在する菌数は、8×10=80000(CFU)とであることが分かった。このことから、試料No.C5-2を用いた実験例においては、大腸菌の除菌率は、61.9%(=(210000-80000)/210000×100)であった。
Among the above results, the treated sample No. From the culture results of the 1/10000 diluted solution of C5-1, the sample No. after the treatment was determined. It was found that the number of bacteria present in 0.050 ml of the 1/1 solution according to C5-1 was 19 × 10 4 = 190000 (CFU). Therefore, the sample No. In the experimental example using C5-1, the sterilization rate of Escherichia coli was 9.5% (= (210000-190000) / 210000 × 100).
In addition, the sample No. after the treatment. From the culture results of the 1/10000 diluted solution of C5-2, the sample No. after the treatment was determined. It was found that the number of bacteria present in 0.050 ml of the 1/1 solution according to C5-2 was 8 × 10 4 = 80000 (CFU). From this, the sample No. In the experimental example using C5-2, the sterilization rate of Escherichia coli was 61.9% (= (210000-80000) / 210000 × 100).

実施例8では、処理時間2秒の場合であっても除菌率が99.999%以上であったことから、オゾンのみによる処理は、紫外線照射と活性酸素とを併用した処理と比較して除菌効率が大幅に劣ることが確認された。 In Example 8, the sterilization rate was 99.999% or more even when the treatment time was 2 seconds. Therefore, the treatment with ozone alone was compared with the treatment using UV irradiation and active oxygen in combination. It was confirmed that the sterilization efficiency was significantly inferior.

<実施例9>
実施例8における試料No.8-1の調製において、スライドガラスを縦3cm、横1cmの定性濾紙(品番:No.5C、アドバンテック社製)に変更した。また、菌液を、濾紙の一方の面に滴下したのみとした。これら以外は試料No.8-1と同様にして試料No.9-1を調製した。
次に試料No.9-1について以下の操作を行った。
縦30cm、横30cm、厚さ5mmのプラスチック平板の中央に、縦3.5cm、横1.5cm、深さ2mmの凹部を設けた。該凹部内に、縦3.5cm、横1.5cmのろ紙を敷いた。この濾紙上に試料No.9-1を、その菌液滴下面が、凹部の底部に敷いた濾紙と対向するように設置した。そして、該プラスチック板の上面に、活性酸素供給装置を、その開口の長手方向の中心が、該凹部の長手方向中心と一致し、かつ、その開口の幅方向の中心が該凹部の短手方向の中心と一致するように置いた。凹部の深さが2mmであり、濾紙の厚みは1mm以下であるため、各試料の菌液付着面と、活性酸素供給装置の開口とは直接接触しなかった。次いで、活性酸素供給装置を作動させ、該濾紙の菌液滴下面を、活性酸素を含む誘起流で処理した。処理時間は10秒とした。また、活性酸素供給装置を用いた処理過程で、菌液を滴下した濾紙が乾かないように、菌液の濾紙への滴下から、緩衝液への浸漬までの時間を60秒とした。
<Example 9>
Sample No. in Example 8. In the preparation of 8-1, the slide glass was changed to a qualitative filter paper (product number: No. 5C, manufactured by Advantech) having a length of 3 cm and a width of 1 cm. Further, the bacterial solution was only dropped on one surface of the filter paper. Other than these, sample No. Sample No. 8-1 in the same manner. 9-1 was prepared.
Next, sample No. The following operations were performed for 9-1.
A recess of 3.5 cm in length, 1.5 cm in width and 2 mm in depth was provided in the center of a plastic flat plate having a length of 30 cm, a width of 30 cm and a thickness of 5 mm. A filter paper having a length of 3.5 cm and a width of 1.5 cm was laid in the recess. On this filter paper, the sample No. 9-1 was installed so that the lower surface of the fungal droplet faced the filter paper laid at the bottom of the recess. Then, on the upper surface of the plastic plate, an active oxygen supply device is provided so that the center in the longitudinal direction of the opening coincides with the center in the longitudinal direction of the recess and the center in the width direction of the recess is in the lateral direction of the recess. I placed it so that it coincided with the center of. Since the depth of the recess is 2 mm and the thickness of the filter paper is 1 mm or less, the bacterial solution adhering surface of each sample did not come into direct contact with the opening of the active oxygen supply device. Next, the active oxygen supply device was operated, and the lower surface of the fungal droplets of the filter paper was treated with an induced flow containing active oxygen. The processing time was 10 seconds. Further, in the treatment process using the active oxygen supply device, the time from the dropping of the bacterial solution to the filter paper to the immersion in the buffer solution was set to 60 seconds so that the filter paper on which the bacterial solution was dropped did not dry.

処理を終えた試料No.9-1を、凹部の底部に敷いた濾紙と共に10mlの緩衝液(商品名「Gibco PBS」、Thermo Fisher Scientific社)を入れた試験管に1時間浸漬した。次いで、浸漬後の緩衝液(以降、「1/1液」)1mlを9mlの緩衝液が入った試験管に入れて希釈液(1/10希釈液)を調製した。緩
衝液での希釈倍率を変更したこと以外は同様にして、1/100希釈液、1/1000希釈液、及び、1/10000希釈液を調製した。
次いで、1/1液から0.050mlを採取し、スタンプ培地(商品名:ぺたんチェック25 PT1025 栄研化成社製)に塗抹した。この操作を繰り返して、1/1液が塗抹されたスタンプ培地を2つ作成した。合計2つのスタンプ培地を恒温槽(商品名:IS600;ヤマト科学社製)に入れ、温度37℃で24時間培養した。1/1液に係るスタンプ培地毎に発生したコロニー数をカウントし、平均値を算出した。
1/10希釈液、1/100希釈液、1/1000希釈液及び1/10000希釈液についても上記と同様にして、希釈液毎に2つの塗抹済スタンプ培地を作成し、培養した。そして、各希釈液に係るスタンプ培地毎に発生したコロニー数をカウントし、平均値を算出した。
Finished sample No. 9-1 was immersed in a test tube containing 10 ml of a buffer solution (trade name "Gibco PBS", Thermo Fisher Scientific) together with a filter paper laid at the bottom of the recess for 1 hour. Then, 1 ml of the buffer solution after immersion (hereinafter referred to as "1/1 solution") was placed in a test tube containing 9 ml of the buffer solution to prepare a diluted solution (1/10 diluted solution). A 1/100 diluted solution, a 1/1000 diluted solution, and a 1/10000 diluted solution were prepared in the same manner except that the dilution ratio with the buffer solution was changed.
Next, 0.050 ml was collected from the 1/1 solution and smeared on a stamp medium (trade name: Petancheck 25 PT1025 manufactured by Eiken Kasei Co., Ltd.). By repeating this operation, two stamp media smeared with 1/1 liquid were prepared. A total of two stamp media were placed in a constant temperature bath (trade name: IS600; manufactured by Yamato Scientific Co., Ltd.) and cultured at a temperature of 37 ° C. for 24 hours. The number of colonies generated for each stamp medium related to the 1/1 liquid was counted, and the average value was calculated.
For the 1/10 diluted solution, the 1/100 diluted solution, the 1/1000 diluted solution, and the 1/10000 diluted solution, two smeared stamp media were prepared for each diluted solution and cultured. Then, the number of colonies generated for each stamp medium related to each diluted solution was counted, and the average value was calculated.

<比較例6>
試料No.9-1と同様にして試料No.C9を調製した。
この試料No.C9について、活性酸素供給装置のプラズマアクチュエータに電圧を印加しなかった以外は、実施例9と同様にして処理を行った。すなわち、試料No.C9にはUV光のみを照射した。処理時間は10秒とした。処理を終えた試料No.C9について、実施例9の試料No.9と同様にして緩衝液に浸漬した。得られた浸漬後の緩衝液を用いた以外は実施例9と同様にして、1/1液、1/10~1/10000希釈液を調製した。調製した1/1液及び1/10~1/10000希釈液を用いた以外は実施例9と同様にしてスタンプ培地の作成、培養を行い、1/1液及び各希釈液に係るスタンプ培地毎に発生したコロニー数をカウントし、平均値を算出した。
<Comparative Example 6>
Sample No. Sample No. 9-1 in the same manner. C9 was prepared.
This sample No. C9 was treated in the same manner as in Example 9 except that no voltage was applied to the plasma actuator of the active oxygen supply device. That is, the sample No. Only UV light was applied to C9. The processing time was 10 seconds. Finished sample No. Regarding C9, the sample No. of Example 9 was used. It was immersed in the buffer solution in the same manner as in 9. A 1/1 solution and a 1/10 to 1/10000 diluted solution were prepared in the same manner as in Example 9 except that the obtained buffer solution after immersion was used. A stamp medium was prepared and cultured in the same manner as in Example 9 except that the prepared 1/1 solution and 1/10 to 1/10000 diluted solution were used, and each stamp medium related to the 1/1 solution and each diluted solution was prepared. The number of colonies that occurred in was counted, and the average value was calculated.

<参考例1>
試料No.9-1と同様にして試料No.R1を調製した。
未処理の試料No.R1を10mlの緩衝液(商品名「Gibco PBS」、Thermo Fisher Scientific社)を入れた試験管に1時間浸漬した。次いで、浸漬後の緩衝液(以降、「1/1液」)1mlを9mlの緩衝液が入った試験管に入れて希釈液(1/10希釈液)を調製した。緩衝液での希釈倍率を変更したこと以外は同様にして、1/100希釈液、1/1000希釈液、及び、1/10000希釈液を調製した。
次いで、1/1液から0.050mlを採取し、スタンプ培地(ぺたんチェック25 PT1025 栄研化成社製)に塗抹した。この操作を繰り返して、1/1液が塗抹されたスタンプ培地を2つ作成した。合計2つのスタンプ培地を恒温槽(商品名:IS600;ヤマト科学社製)に入れ、温度37℃で24時間培養した。試料No.R1についての1/1液に係るスタンプ培地毎に発生したコロニー数をカウントし、平均値を算出した。
1/10希釈液、1/100希釈液、1/1000希釈液及び1/10000希釈液についても上記と同様にして、希釈液毎に2つの塗抹済スタンプ培地を作成し、培養した。そして、各希釈液に係るスタンプ培地毎に発生したコロニー数をカウントし、平均値を算出した。
<Reference example 1>
Sample No. Sample No. 9-1 in the same manner. R1 was prepared.
Untreated sample No. R1 was immersed in a test tube containing 10 ml of a buffer solution (trade name "Gibco PBS", Thermo Fisher Scientific) for 1 hour. Then, 1 ml of the buffer solution after immersion (hereinafter referred to as "1/1 solution") was placed in a test tube containing 9 ml of the buffer solution to prepare a diluted solution (1/10 diluted solution). A 1/100 diluted solution, a 1/1000 diluted solution, and a 1/10000 diluted solution were prepared in the same manner except that the dilution ratio with the buffer solution was changed.
Next, 0.050 ml was collected from the 1/1 solution and smeared on a stamp medium (Petancheck 25 PT1025 manufactured by Eiken Kasei Co., Ltd.). By repeating this operation, two stamp media smeared with 1/1 liquid were prepared. A total of two stamp media were placed in a constant temperature bath (trade name: IS600; manufactured by Yamato Scientific Co., Ltd.) and cultured at a temperature of 37 ° C. for 24 hours. Sample No. The number of colonies generated for each stamp medium related to the 1/1 liquid for R1 was counted, and the average value was calculated.
For the 1/10 diluted solution, the 1/100 diluted solution, the 1/1000 diluted solution, and the 1/10000 diluted solution, two smeared stamp media were prepared for each diluted solution and cultured. Then, the number of colonies generated for each stamp medium related to each diluted solution was counted, and the average value was calculated.

実施例9、比較例6及び参考例1の結果を表6に示す。

Figure 2022020554000008
The results of Example 9, Comparative Example 6 and Reference Example 1 are shown in Table 6.
Figure 2022020554000008

参考例1の1/1000希釈液の培養結果から、試料No.R1の1/1液の0.050ml中に存在する菌数は、5×10=5000(CFU)であることが分かった。また、実施例9に係る処理後の1/1液の0.050ml中の菌数は0(CFU)であった。このことから、実施例9における大腸菌の除菌率は、99.98%((5000-1/5000)×100)以上であることが分かった。一方、比較例6に係る1/1000希釈液の培養結果から、処理後の試料No.C6に係る1/1液の0.050ml中に存在する菌数は、2×10=2000(CFU)であった。従って、比較例6における大腸菌の除菌率は、60%((5000-2000)/5000)×100)であることが分かった。
ここで、試料No.9-1に対する活性酸素の処理は、試料No.9-1に係る濾紙の菌液滴下面とは反対側の面に対して行った。実施例9及び比較例6の結果から、活性酸素を能動的に被処理物に対して供給することによる除菌処理は、濾紙の表面に存在する大腸菌だけでなく、濾紙の内部に存在する大腸菌をより確実に除菌し得ることが分かった。この点において、本開示に係る除菌方法は、UV光の照射面しか除菌されないUV光のみを用いる除菌方法に対して優位性を有するものである。
From the culture results of the 1/1000 diluted solution of Reference Example 1, the sample No. It was found that the number of bacteria present in 0.050 ml of the 1/1 solution of R1 was 5 × 10 3 = 5000 (CFU). In addition, the number of bacteria in 0.050 ml of the 1/1 liquid after the treatment according to Example 9 was 0 (CFU). From this, it was found that the sterilization rate of Escherichia coli in Example 9 was 99.98% ((5000-1 / 5000) × 100) or more. On the other hand, from the culture results of the 1/1000 diluted solution according to Comparative Example 6, the sample No. after the treatment was obtained. The number of bacteria present in 0.050 ml of the 1/1 solution according to C6 was 2 × 10 3 = 2000 (CFU). Therefore, it was found that the sterilization rate of Escherichia coli in Comparative Example 6 was 60% ((5000-2000) / 5000) × 100).
Here, the sample No. The treatment of active oxygen for 9-1 was carried out in Sample No. This was performed on the surface of the filter paper according to 9-1 opposite to the lower surface of the fungal droplet. From the results of Example 9 and Comparative Example 6, the sterilization treatment by actively supplying active oxygen to the object to be treated is not only the Escherichia coli existing on the surface of the filter paper but also the Escherichia coli existing inside the filter paper. It was found that the bacteria can be eradicated more reliably. In this respect, the sterilization method according to the present disclosure is superior to the sterilization method using only UV light in which only the irradiation surface of UV light is sterilized.

101:活性酸素供給装置(活性酸素による処理装置)、102:紫外線光源(紫外線ランプ)、103:プラズマ発生装置(プラズマアクチュエータ)、104:被処理物、104-1:被処理物の処理表面、105:誘起流、106:開口部、107:筐体 101: Active oxygen supply device (processing device using active oxygen), 102: Ultraviolet light source (ultraviolet lamp), 103: Plasma generator (plasma actuator), 104: Processed object, 104-1: Processed surface of the object to be processed, 105: induced flow, 106: opening, 107: housing

本開示の少なくとも一つの様態によれば、少なくとも一つの開口部を有する筐体と、該筐体の内にプラズマ発生装置と紫外線光源とを具備し、該プラズマ発生装置は、誘電体を挟んで第1の電極と第2の電極を設け、両電極間に電圧を印加することによりオゾンを含む誘起流を生じさせるプラズマアクチュエータであり、該プラズマアクチュエータは、該誘起流が該開口部から該筐体外に流出するように配置されており、該紫外線光源は、紫外線を該誘起流に照射し、該誘起流中に活性酸素を発生させる活性酸素供給装置が提供される。
According to at least one aspect of the present disclosure, a housing having at least one opening, a plasma generator and an ultraviolet light source are provided in the housing, and the plasma generator sandwiches a dielectric. A plasma actuator in which a first electrode and a second electrode are provided and a voltage is applied between the two electrodes to generate an induced flow containing ultraviolet rays, the plasma actuator is such that the induced flow flows from the opening to the casing. The ultraviolet light source is arranged so as to flow out of the body, and the ultraviolet light source provides an active oxygen supply device that irradiates the induced flow with ultraviolet rays and generates active oxygen in the induced flow.

また、本開示の少なくとも一つの様態によれば、被処理物の表面を活性酸素で処理する処理装置であって、少なくとも一つの開口部を有する筐体と、該筐体の内にプラズマ発生装置と紫外線光源とを具備し、該プラズマ発生装置は、誘電体を挟んで第1の電極と第2の電極を設け、両電極間に電圧を印加することによりオゾンを含む誘起流を生じさせるプラズマアクチュエータであり、該プラズマアクチュエータは、該誘起流が該開口部から該筐体外に流出するように配置されており、該紫外線光源は、紫外線を該誘起流に照射し、該誘起流中に活性酸素を発生させる活性酸素による処理装置が提供される。
Further, according to at least one aspect of the present disclosure, a processing device for treating the surface of the object to be treated with active oxygen, a housing having at least one opening, and a plasma generating device inside the housing. And an ultraviolet light source, the plasma generator is provided with a first electrode and a second electrode with a dielectric sandwiched between them, and a voltage is applied between the two electrodes to generate an induced flow containing ozone. The plasma actuator is an actuator, and the plasma actuator is arranged so that the induced flow flows out of the housing through the opening, and the ultraviolet light source irradiates the induced flow with ultraviolet rays and is in the induced flow. Provided is a treatment device using active oxygen to generate active oxygen.

さらに、本開示の少なくとも一つの態様によれば、被処理物の表面を活性酸素で処理する処理方法であって、
少なくとも一つの開口部を有する筐体と、該筐体の内にプラズマ発生装置と紫外線光源とを具備し、該プラズマ発生装置は、誘電体を挟んで第1の電極と第2の電極を設け、両電極間に電圧を印加することによりオゾンを含む誘起流を生じさせるプラズマアクチュエータであり、該プラズマアクチュエータは、該誘起流が該開口部から該筐体外に流出するように配置されており、該紫外線光源は、紫外線を該誘起流に照射し、該誘起流中に活性酸素を発生させる活性酸素による処理装置を用意する工程と、該活性酸素による処理装置と、該被処理物とを、該開口部から該誘起流を流出させたときに該被処理物の表面が曝される相対的な位置に置く工程と、該開口部から該誘起流を流出させて、該被処理物の表面を活性酸素で処理する工程と、を有する活性酸素による処理方法が提供される。

Further, according to at least one aspect of the present disclosure, it is a treatment method for treating the surface of the object to be treated with active oxygen.
A housing having at least one opening, a plasma generator and an ultraviolet light source are provided in the housing, and the plasma generator is provided with a first electrode and a second electrode with a dielectric interposed therebetween. , A plasma actuator that generates an induced flow containing ozone by applying a voltage between both electrodes, and the plasma actuator is arranged so that the induced flow flows out of the housing through the opening. The ultraviolet light source has a step of irradiating the induced flow with ultraviolet rays to prepare a processing device using active oxygen to generate active oxygen in the induced flow, a processing device using the active oxygen, and the object to be treated. Is placed at a relative position where the surface of the object to be treated is exposed when the induced flow is discharged from the opening, and the induced flow is discharged from the opening to allow the object to be treated. A step of treating the surface of the above with active oxygen and a method of treating with active oxygen are provided.

Claims (11)

少なくとも一つの開口部を有する筐体内にプラズマ発生装置と紫外線光源とを具備し、
該プラズマ発生装置は、誘電体を挟んで第1の電極と第2の電極を設け、両電極間に電圧を印加することによりオゾンを含む誘起流を生じさせるプラズマアクチュエータであり、
該プラズマアクチュエータは、該誘起流が該開口部から該筐体外に流出するように配置されており、
該紫外線光源は、紫外線を該誘起流に照射し、該誘起流中に活性酸素を発生させる
ことを特徴とする、活性酸素供給装置。
A plasma generator and an ultraviolet light source are provided in a housing having at least one opening.
The plasma generator is a plasma actuator in which a first electrode and a second electrode are provided with a dielectric interposed therebetween, and an induced flow containing ozone is generated by applying a voltage between the two electrodes.
The plasma actuator is arranged so that the induced flow flows out of the housing through the opening.
The ultraviolet light source is an active oxygen supply device, which irradiates the induced flow with ultraviolet rays to generate active oxygen in the induced flow.
前記紫外線光源が発する紫外線のピーク波長が、220nm~310nmである、請求項1に記載の活性酸素供給装置。 The active oxygen supply device according to claim 1, wherein the peak wavelength of ultraviolet rays emitted by the ultraviolet light source is 220 nm to 310 nm. 前記開口部における紫外線の照度が、40μW/cm以上である、請求項1または2に記載の活性酸素供給装置。 The active oxygen supply device according to claim 1 or 2, wherein the illuminance of ultraviolet rays in the opening is 40 μW / cm 2 or more. 前記プラズマアクチュエータにおける、前記誘起流に前記紫外線を照射しない状態での単位時間あたりのオゾン発生量が、15μg/分以上である、請求項1~3のいずれか1項に記載の活性酸素供給装置。 The active oxygen supply device according to any one of claims 1 to 3, wherein the amount of ozone generated per unit time in the plasma actuator in a state where the induced flow is not irradiated with the ultraviolet rays is 15 μg / min or more. .. 前記活性酸素供給装置の前記開口部を鉛直下方に向けた場合において、前記プラズマアクチュエータの前記第1の電極の縁部から前記誘電体の前記第1の電極で被覆されていない部分に沿う方向の延長線と水平面とのなす狭角θが、0°~90°である、請求項1~4のいずれか1項に記載の活性酸素供給装置。 When the opening of the active oxygen supply device is directed vertically downward, the direction is from the edge of the first electrode of the plasma actuator along the portion of the dielectric not covered by the first electrode. The active oxygen supply device according to any one of claims 1 to 4, wherein the narrow angle θ formed by the extension line and the horizontal plane is 0 ° to 90 °. 前記紫外線光源と前記プラズマ発生装置との距離が、10mm以下である、請求項1~5のいずれか1項に記載の活性酸素供給装置。 The active oxygen supply device according to any one of claims 1 to 5, wherein the distance between the ultraviolet light source and the plasma generator is 10 mm or less. 前記紫外線光源が、前記開口部を介して前記筐体外に置かれた被処理物を照射可能に配置されている、請求項1~6のいずれか1項に記載の活性酸素供給装置。 The active oxygen supply device according to any one of claims 1 to 6, wherein the ultraviolet light source is arranged so as to be able to irradiate an object to be processed placed outside the housing through the opening. 被処理物の表面を活性酸素で処理する処理装置であって、
少なくとも一つの開口部を有する筐体内にプラズマ発生装置と紫外線光源とを具備し、
該プラズマ発生装置は、誘電体を挟んで第1の電極と第2の電極を設け、両電極間に電圧を印加することによりオゾンを含む誘起流を生じさせるプラズマアクチュエータであり、
該プラズマアクチュエータは、該誘起流が該開口部から該筐体外に流出するように配置されており、
該紫外線光源は、紫外線を該誘起流に照射し、該誘起流中に活性酸素を発生させる
ことを特徴とする、活性酸素による処理装置。
A treatment device that treats the surface of the object to be treated with active oxygen.
A plasma generator and an ultraviolet light source are provided in a housing having at least one opening.
The plasma generator is a plasma actuator in which a first electrode and a second electrode are provided with a dielectric interposed therebetween, and an induced flow containing ozone is generated by applying a voltage between the two electrodes.
The plasma actuator is arranged so that the induced flow flows out of the housing through the opening.
The ultraviolet light source is a treatment device using active oxygen, which comprises irradiating the induced flow with ultraviolet rays to generate active oxygen in the induced flow.
前記紫外線光源は、前記被処理物の表面を照射可能に配置されている、請求項8に記載の活性酸素による処理装置。 The treatment device using active oxygen according to claim 8, wherein the ultraviolet light source is arranged so that the surface of the object to be treated can be irradiated. 被処理物の表面を活性酸素で処理する処理方法であって、
少なくとも一つの開口部を有する筐体内にプラズマ発生装置と紫外線光源とを具備し、
該プラズマ発生装置は、誘電体を挟んで第1の電極と第2の電極を設け、両電極間に電圧を印加することによりオゾンを含む誘起流を生じさせるプラズマアクチュエータであり、該プラズマアクチュエータは、該誘起流が該開口部から該筐体外に流出するように配置
されており、該紫外線光源は、紫外線を該誘起流に照射し、該誘起流中に活性酸素を発生させる活性酸素による処理装置を用意する工程と、
該活性酸素による処理装置と、該被処理物とを、該開口部から該誘起流を流出させたときに該被処理物の表面が曝される相対的な位置に置く工程と、
該開口部から該誘起流を流出させて、該被処理物の表面を活性酸素で処理する工程と、を有することを特徴とする、活性酸素による処理方法。
It is a treatment method that treats the surface of the object to be treated with active oxygen.
A plasma generator and an ultraviolet light source are provided in a housing having at least one opening.
The plasma generator is a plasma actuator in which a first electrode and a second electrode are provided with a dielectric sandwiched between them, and an induced flow containing ozone is generated by applying a voltage between the two electrodes. The plasma actuator is a plasma actuator. The induced flow is arranged so as to flow out of the housing through the opening, and the ultraviolet light source irradiates the induced flow with ultraviolet rays to generate active oxygen in the induced flow. The process of preparing the equipment and
A step of placing the treatment device using active oxygen and the object to be treated at a relative position where the surface of the object to be treated is exposed when the induced flow is discharged from the opening.
A method for treating with active oxygen, which comprises a step of allowing the induced flow to flow out from the opening and treating the surface of the object to be treated with active oxygen.
前記紫外線光源と前記被処理物の表面との距離が、10mm以下である、請求項10に記載の活性酸素による処理方法。 The treatment method using active oxygen according to claim 10, wherein the distance between the ultraviolet light source and the surface of the object to be treated is 10 mm or less.
JP2021094894A 2020-06-30 2021-06-07 Apparatus for supplying active oxygen, apparatus for treatment using active oxygen, and method for treatment using active oxygen Active JP7140885B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN202180046623.0A CN115997482A (en) 2020-06-30 2021-06-30 Active oxygen supply device, active oxygen-utilizing treatment device, and active oxygen-utilizing treatment method
PCT/JP2021/024688 WO2022004771A1 (en) 2020-06-30 2021-06-30 Active oxygen supply device, device for conducting treatment by active oxygen, and method for conducting treatment by active oxygen
KR1020227044636A KR20230013108A (en) 2020-06-30 2021-06-30 Active oxygen supply device, active oxygen treatment device, and active oxygen treatment method
EP21832011.7A EP4174019A1 (en) 2020-06-30 2021-06-30 Active oxygen supply device, device for conducting treatment by active oxygen, and method for conducting treatment by active oxygen
JP2021168766A JP2022023131A (en) 2020-06-30 2021-10-14 Active oxygen supply device, processing device using active oxygen and processing method using active oxygen
US18/090,700 US20230146111A1 (en) 2020-06-30 2022-12-29 Active oxygen supply device, device for conducting treatment by active oxygen, and method for conducting treatment by active oxygen

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2020113518 2020-06-30
JP2020113518 2020-06-30
JP2020176934 2020-10-21
JP2020176934 2020-10-21
JP2021074076 2021-04-26
JP2021074076 2021-04-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2021168766A Division JP2022023131A (en) 2020-06-30 2021-10-14 Active oxygen supply device, processing device using active oxygen and processing method using active oxygen

Publications (2)

Publication Number Publication Date
JP2022020554A true JP2022020554A (en) 2022-02-01
JP7140885B2 JP7140885B2 (en) 2022-09-21

Family

ID=80216282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021094894A Active JP7140885B2 (en) 2020-06-30 2021-06-07 Apparatus for supplying active oxygen, apparatus for treatment using active oxygen, and method for treatment using active oxygen

Country Status (1)

Country Link
JP (1) JP7140885B2 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009517175A (en) * 2005-11-30 2009-04-30 エアロケアー,インコーポレーテッド Air and indoor hygiene apparatus and method
WO2010032765A1 (en) * 2008-09-16 2010-03-25 財団法人北九州産業学術推進機構 Water that expresses pathogen-resistance genes (pr gene clusters) to encode plant immunoproteins, a method of preventing plant diseases using the water, and a device for producing the water
JP2012521240A (en) * 2009-03-24 2012-09-13 トゥリ−エアー ディベロップメンツ リミテッド Improved air decontamination apparatus and method
JP2013154145A (en) * 2012-02-01 2013-08-15 Panasonic Corp Air cleaner
JP2013158706A (en) * 2012-02-06 2013-08-19 Panasonic Corp Water purification apparatus
JP2014061418A (en) * 2007-08-07 2014-04-10 Lee Antimicrobial Solutions Llc Uv light air treatment method and device
JP2014516013A (en) * 2011-05-09 2014-07-07 オゾニカ リミテッド Sterilization of packaged goods
JP2015085297A (en) * 2013-11-01 2015-05-07 国立大学法人東京工業大学 Liquid treatment apparatus and produced water treatment method
WO2015198608A1 (en) * 2014-06-27 2015-12-30 国立大学法人九州工業大学 Method for manufacturing reaction product in which phase interface reaction is employed, phase interface reactor, and method for manufacturing secondary reaction product
JP2017518948A (en) * 2014-05-05 2017-07-13 シネクシス・リミテッド・ライアビリティ・カンパニーSynexis LLC Purified hydrogen peroxide gas generation method and device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009517175A (en) * 2005-11-30 2009-04-30 エアロケアー,インコーポレーテッド Air and indoor hygiene apparatus and method
JP2014061418A (en) * 2007-08-07 2014-04-10 Lee Antimicrobial Solutions Llc Uv light air treatment method and device
WO2010032765A1 (en) * 2008-09-16 2010-03-25 財団法人北九州産業学術推進機構 Water that expresses pathogen-resistance genes (pr gene clusters) to encode plant immunoproteins, a method of preventing plant diseases using the water, and a device for producing the water
JP2012521240A (en) * 2009-03-24 2012-09-13 トゥリ−エアー ディベロップメンツ リミテッド Improved air decontamination apparatus and method
JP2014516013A (en) * 2011-05-09 2014-07-07 オゾニカ リミテッド Sterilization of packaged goods
JP2013154145A (en) * 2012-02-01 2013-08-15 Panasonic Corp Air cleaner
JP2013158706A (en) * 2012-02-06 2013-08-19 Panasonic Corp Water purification apparatus
JP2015085297A (en) * 2013-11-01 2015-05-07 国立大学法人東京工業大学 Liquid treatment apparatus and produced water treatment method
JP2017518948A (en) * 2014-05-05 2017-07-13 シネクシス・リミテッド・ライアビリティ・カンパニーSynexis LLC Purified hydrogen peroxide gas generation method and device
WO2015198608A1 (en) * 2014-06-27 2015-12-30 国立大学法人九州工業大学 Method for manufacturing reaction product in which phase interface reaction is employed, phase interface reactor, and method for manufacturing secondary reaction product

Also Published As

Publication number Publication date
JP7140885B2 (en) 2022-09-21

Similar Documents

Publication Publication Date Title
WO2022004771A1 (en) Active oxygen supply device, device for conducting treatment by active oxygen, and method for conducting treatment by active oxygen
KR20070022238A (en) Method of sterilization and apparatus therefor
KR20040098043A (en) Method of Estimating Elimination of Microorganisms and Apparatus for Estimating Elimination of Microorganisms
JP2012217761A (en) Plasma sterilization apparatus
US20230139536A1 (en) Sterilization device, sterilization method, active oxygen supply device, and device for treatment with active oxygen
JP7140885B2 (en) Apparatus for supplying active oxygen, apparatus for treatment using active oxygen, and method for treatment using active oxygen
JP2022013730A (en) Sterilization device, sterilization method, active oxygen supply device and processing unit by active oxygen
WO2023127833A1 (en) Active oxygen supply device, device for performing treatment with active oxygen, and method for performing treatment with active oxygen
WO2023127823A1 (en) Reactive oxygen supply apparatus, treatment apparatus using reactive oxygen, and treatment method using reactive oxygen
WO2023008316A1 (en) Device for treatment with activated oxygen and method for treatment with activated oxygen
WO2023127831A1 (en) Device for treatment with activated oxygen and method for treatment with activated oxygen
JP2023098676A (en) Active oxygen feed device, treatment device by active oxygen and treatment method by active oxygen
WO2023008421A1 (en) Active oxygen supply device and method for treatment with active oxygen
Du et al. A portable plasma sterilizer
WO2023127822A1 (en) Gas treatment apparatus and gas treatment method
Shrestha et al. Experimental Study of Atmospheric Pressure Argon Plasma Jet− Induced Strand Breakage in Large DNA Molecules
WO2023127838A1 (en) Active oxygen supply device
WO2023127839A1 (en) Treatment apparatus using reactive oxygen and treatment method using reactive oxygen
JP2023020953A (en) Processing apparatus by active oxygen, and processing method by active oxygen
WO2023127832A1 (en) Reactive oxygen supply apparatus, treatment apparatus using reactive oxygen, and treatment method using reactive oxygen
WO2023127836A1 (en) Gas treatment device and gas treatment method
US20230262867A1 (en) Low-temperature dielectric barrier discharge devices
JP2023098664A (en) Active oxygen feed device
WO2023127837A1 (en) Active oxygen supply device, device for conducting treatment with active oxygen, and method for conducting treatment with active oxygen
JP2023020950A (en) Active oxygen-feeding apparatus, and processing method by active oxygen

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211012

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20211012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220809

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220908

R151 Written notification of patent or utility model registration

Ref document number: 7140885

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151