JP2022019106A - Force converter - Google Patents

Force converter Download PDF

Info

Publication number
JP2022019106A
JP2022019106A JP2020122699A JP2020122699A JP2022019106A JP 2022019106 A JP2022019106 A JP 2022019106A JP 2020122699 A JP2020122699 A JP 2020122699A JP 2020122699 A JP2020122699 A JP 2020122699A JP 2022019106 A JP2022019106 A JP 2022019106A
Authority
JP
Japan
Prior art keywords
force
strain
resistance thermometer
resistance
causing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020122699A
Other languages
Japanese (ja)
Other versions
JP2022019106A5 (en
Inventor
璋好 小林
Akiyoshi Kobayashi
優 名原
Yu Nahara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unipulse Corp
Original Assignee
Unipulse Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unipulse Corp filed Critical Unipulse Corp
Priority to JP2020122699A priority Critical patent/JP2022019106A/en
Publication of JP2022019106A publication Critical patent/JP2022019106A/en
Publication of JP2022019106A5 publication Critical patent/JP2022019106A5/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

To provide a small force converter which is less affected by the position on which a force is applied.SOLUTION: The force converter includes: a force point 50 on which a force is applied; a supporting unit 3 for supporting in reception of the force; a columnar strain unit 4 elastically deformable between the force point 50 and the supporting unit 3; a strain sensitive resistor attached to the strain unit 4; and a Wheatstone bridge circuit including the strain sensitive resistor, and the force converter converts force into an electric signal. The strain sensitive resistor is attached while having the largest sensitivity in a direction in which the bending moment generated in the strain unit 4 by the force is cancelled out.SELECTED DRAWING: Figure 3

Description

本発明は、力を測定して電気信号に変換する力変換器に関するものである。 The present invention relates to a force transducer that measures force and converts it into an electrical signal.

従来から、力変換器の例として、印加された力を3次元方向XYZにて検出する3分力変換器が公知である。 Conventionally, as an example of a force transducer, a three-component force converter that detects an applied force in a three-dimensional direction XYZ has been known.

特開2020-071189号公報Japanese Unexamined Patent Publication No. 2020-071189

このような力変換器は、例えば図10に示すように、力点部51に力Fxが印加されると、起歪部4に歪みが生じ、起歪部4の薄肉部の凹部4b内に添着された複数の感歪抵抗体G1~G4が、剪断歪みを検出する構成を有していた。すなわち、感歪抵抗体G1の最大感度方向が起歪部の中心軸AXに対してプラス45度の角度のp方向、感歪抵抗体G2の最大感度方向が起歪部の中心軸AXに対してマイナス45度の角度のq方向、となるように添着されているのが一般的である。しかしながら、測定対象の形状等によって力点部51がz方向に短い力点部52に変更されて力変換器1が使用される場合がある。すなわちこの力変換器1の使用者は力点部と支持部との距離を変更している。この時、力Fxの印加によって感歪抵抗体G1,G2は、起歪部4に発生するせん断歪みを検出するのであるが、感歪抵抗体の位置ずれ等による影響で曲げモーメントの成分を同時に検出することが生じていた。 In such a force transducer, for example, as shown in FIG. 10, when a force Fx is applied to the force point portion 51, the strain-causing portion 4 is distorted and is attached to the recess 4b of the thin-walled portion of the strain-causing portion 4. The plurality of resistance temperature detectors G1 to G4 provided have a configuration for detecting shear strain. That is, the maximum sensitivity direction of the resistance thermometer G1 is the p direction at an angle of +45 degrees with respect to the central axis AX of the strain-causing portion, and the maximum sensitivity direction of the resistance thermometer G2 is the central axis AX of the strain-causing portion. It is generally attached so as to be in the q direction at an angle of minus 45 degrees. However, depending on the shape of the measurement target or the like, the force point portion 51 may be changed to the force point portion 52 short in the z direction, and the force transducer 1 may be used. That is, the user of this force transducer 1 changes the distance between the force point portion and the support portion. At this time, the resistance thermometers G1 and G2 detect the shear strain generated in the strain-causing portion 4 by applying the force Fx, but at the same time, the components of the bending moment are simultaneously affected by the position shift of the resistance thermometer. It was happening to detect.

したがって、感歪抵抗体G1、G2から力点部51までの長さと、感歪抵抗体G1、G2から力点部52までの長さとの違いによって曲げモーメントが異なるため検出する力に差が生じてしまうという課題があった。これを解決する方法として、例えば特許文献1の発明が開示されている。 Therefore, the bending moment differs depending on the difference between the length from the resistance thermometers G1 and G2 to the force point portion 51 and the length from the resistance thermometers G1 and G2 to the force point portion 52, so that the detected force differs. There was a problem. As a method for solving this, for example, the invention of Patent Document 1 is disclosed.

しかしながら、特許文献1の発明では、起歪部には図10で示すZ方向に感歪抵抗体を並べて配置する必要があってそのスペースを確保する必要があるため、非常に小型化を要求される力変換器への適用は難しいという課題があった。 However, in the invention of Patent Document 1, it is necessary to arrange strain-sensitive resistors side by side in the Z direction shown in FIG. 10 in the strain-causing portion, and it is necessary to secure the space, so that extremely miniaturization is required. There was a problem that it was difficult to apply it to a force converter.

このような問題に鑑みて、本発明は、力が加わる位置の影響を低減した小型の力変換器を提供することを目的としている。 In view of such problems, it is an object of the present invention to provide a compact force transducer in which the influence of the position where a force is applied is reduced.

本発明の一態様に係る力変換器は、上記の目的を達成するために、
力が加えられる力点部と、
力を受けて支持する支持部と、
力点部及び支持部の中間で弾性変形する柱形状の起歪部と、
起歪部に添着された感歪抵抗体と、
感歪抵抗体を含むホイートストンブリッジ回路と、を備えて力を電気信号に変換する力変換器であって、
感歪抵抗体は、力によって起歪部に生じる曲げモーメントの歪みを打ち消す方向に最大感度を有して添着される。
The force transducer according to one aspect of the present invention is used to achieve the above object.
The force point part where force is applied and
A support part that receives and supports force,
A column-shaped strain-causing part that elastically deforms between the force point part and the support part,
The resistance temperature detector attached to the strain-causing part,
A Wheatstone bridge circuit that includes a resistance thermometer and a force transducer that converts force into an electrical signal.
The strain-sensitive resistor is attached with maximum sensitivity in the direction of canceling the distortion of the bending moment generated in the strain-causing portion by the force.

本発明によれば、起歪部に発生する曲げモーメントによる影響をキャンセルさせる感歪抵抗体の最大感度方向と配置により、力の加わる位置の影響を低減した小型の力変換器を提供できる。 According to the present invention, it is possible to provide a compact force transducer in which the influence of the position where a force is applied is reduced by the maximum sensitivity direction and arrangement of the resistance thermometer that cancels the influence of the bending moment generated in the strain-causing portion.

本発明の実施形態に係る力変換器の斜視外観図である。It is a perspective view of the force transducer which concerns on embodiment of this invention. 本発明の実施形態に係る力変換器の斜視分解図である。It is a perspective exploded view of the force transducer which concerns on embodiment of this invention. 本発明の実施形態に係る力変換器の起歪部及び力点部の図である。It is a figure of the strain | strain part and the force point part of the force converter which concerns on embodiment of this invention. 本発明の実施形態に係る力変換器の起歪部の変形の概念摸式図である。It is a conceptual diagram of the deformation of the strain-causing portion of the force converter according to the embodiment of the present invention. 本発明の実施形態に係る力変換器の起歪部及び力点部の図である。It is a figure of the strain | strain part and the force point part of the force converter which concerns on embodiment of this invention. 本発明の実施形態に係る力変換器の起歪部及び力点部の図である。It is a figure of the strain | strain part and the force point part of the force converter which concerns on embodiment of this invention. 本発明の実施形態に係る力変換器の起歪部及び力点部の図である。It is a figure of the strain | strain part and the force point part of the force converter which concerns on embodiment of this invention. 本発明の実施形態に係る力変換器の起歪部及び力点部の断面図である。It is sectional drawing of the strain | strain part and the force point part of the force converter which concerns on embodiment of this invention. 本発明の実施形態に係る力変換器の感歪抵抗体を含むホイートストンブリッジ回路を含む回路図である。It is a circuit diagram which includes the Wheatstone bridge circuit which includes the resistance temperature detector of the force converter which concerns on embodiment of this invention. 従来の力変換器の起歪部及び力点部の図である。It is a figure of the strain raising part and the force point part of the conventional force converter.

以下、本発明の実施形態に係る力変換器について、図面を基に詳細な説明を行う。図1は本発明の実施形態に係る力変換器1の斜視外観図である。図2は本発明の実施形態に係る力変換器1の斜視分解図である。 Hereinafter, the force transducer according to the embodiment of the present invention will be described in detail with reference to the drawings. FIG. 1 is a perspective external view of the force transducer 1 according to the embodiment of the present invention. FIG. 2 is a perspective exploded view of the force transducer 1 according to the embodiment of the present invention.

力変換器1は、ハウジング3と、起歪部4と、取り付け板6、力点部50とを備えている。ハウジング3は、固定構造部材などのベース2にボルト7で固定され、起歪部4を覆って外部環境から保護している。起歪部4は、柱形状であって、剛性が高くて容易に変形しないフランジ4a及びフランジ4fとの中間にあり、これらフランジよりも剛性が低く、力が加わることで弾性変形する薄肉部の凹部4b~4eを有している。本実施形態ではこれらフランジ間の起歪部4の形状は直方体であるがこれに限るものではなく、円柱形状であってもよい。またフランジ4aは本実施形態では丸型フランジであるが角型フランジであっても良く、一方フランジ4fも本実施形態では角型フランジであるが丸型フランジであっても良い。本実施形態ではフランジ4a、起歪部4、フランジ4fは一体で構成されているがこれに限るものではない。そしてフランジ4aは、固定構造部材に固定されているハウジング3とボルト8にて締結されていて、ハウジング3と共に起歪部4等を支持する支持部である。 The force transducer 1 includes a housing 3, a strain generating portion 4, a mounting plate 6, and a force point portion 50. The housing 3 is fixed to a base 2 such as a fixed structural member with bolts 7 and covers the strain generating portion 4 to protect it from the external environment. The strain-causing portion 4 has a columnar shape and is located between the flange 4a and the flange 4f, which have high rigidity and are not easily deformed. It has recesses 4b to 4e. In the present embodiment, the shape of the strain-causing portion 4 between the flanges is a rectangular parallelepiped, but the shape is not limited to this, and may be a cylindrical shape. Further, the flange 4a may be a round flange in the present embodiment but may be a square flange, while the flange 4f may also be a square flange in the present embodiment but may be a round flange. In the present embodiment, the flange 4a, the strain generating portion 4, and the flange 4f are integrally configured, but the present invention is not limited to this. The flange 4a is a support portion that is fastened to the housing 3 fixed to the fixed structural member with bolts 8 and supports the strain generating portion 4 and the like together with the housing 3.

取り付け板6は例えば角型の平板形状であって、フランジ4fとボルト9にて締結されている。取り付け板6の中央部には力点部51、52が取り付けられている。 The mounting plate 6 has, for example, a square flat plate shape, and is fastened to the flange 4f with bolts 9. Power point portions 51 and 52 are attached to the central portion of the mounting plate 6.

力点部51、52は、円柱形状の部材の一端部に一部が球状の部分を有している。力点部51、52は、他端部に取り付け板6と締結される、圧入部若しくはネジ部を有する。力点部51、52は、この球状の部分にて点接触で力を受ける。そして力点部51、52は測定対象の力を受けて容易に変形しないものである。なお力点部51、52と取り付け板6とは、この形状に限るものではなく、また一体の部材で構成されても良い。また力変換器1の使用者は、力点部51、52の一部が球状の部分の形状はこれに限らず、被測定物に合わせた最適な形状を選択して使用することができる。そして力変換器1の使用者は、力点部と取り付け板6とを一体化したもの、若しくは力点部を交換することで、測定対象に合わせた力変換器を構成することができる。 The force point portions 51 and 52 have a partially spherical portion at one end of a cylindrical member. The force point portions 51 and 52 have a press-fitting portion or a screw portion to be fastened to the mounting plate 6 at the other end. The force point portions 51 and 52 receive a force by point contact at this spherical portion. The force point portions 51 and 52 are not easily deformed by the force of the measurement target. The force point portions 51 and 52 and the mounting plate 6 are not limited to this shape, and may be formed of an integral member. Further, the user of the force transducer 1 is not limited to the shape of the portion of the force point portions 51 and 52 having a spherical shape, and can select and use the optimum shape according to the object to be measured. The user of the force transducer 1 can configure the force transducer by integrating the force point portion and the mounting plate 6 or by exchanging the force point portion.

起歪部4を構成する凹部4b~4eには、感歪抵抗体が添着されている。したがって力点部50が受ける力のx方向及びy方向の成分をそれぞれ感歪抵抗体が歪み量として検出する。したがって力変換器1は力点部50に加わる力を電気信号に変換することができる。 A strain-sensitive resistor is attached to the recesses 4b to 4e constituting the strain-causing portion 4. Therefore, the resistance temperature detector detects the components of the force received by the force point portion 50 in the x-direction and the y-direction as the strain amount. Therefore, the force converter 1 can convert the force applied to the force point portion 50 into an electric signal.

また本実施形態では、感歪抵抗体は凹部の底面に添着されているがこれに限定されるものではなく、検出する力の大きさによっては起歪部4には凹部がなくて起歪部4の柱側面に配置されているなどの変形であっても良い。 Further, in the present embodiment, the strain-sensitive resistor is attached to the bottom surface of the recess, but the present invention is not limited to this, and the strain-causing portion 4 has no recess depending on the magnitude of the detected force. It may be a deformation such as being arranged on the side surface of the pillar of 4.

図3(i)は本発明の実施形態に係る力変換器の起歪部4及び力点部51を図2のy軸の負の方向(図2の平面視)にて見た模式図であって、図3(ii)は本発明の実施形態に係る力変換器の起歪部4及び力点部52を同じy軸の負の方向にて見た模式図である。図3(i)及び図3(ii)において、感歪抵抗体Gxa及び感歪抵抗体Gxbはこれらの大きさを誇張して表している。この感歪抵抗体を誇張した表記方法は図5~図7、図10においても同様である。 FIG. 3 (i) is a schematic view of the strain-causing portion 4 and the force point portion 51 of the force converter according to the embodiment of the present invention as viewed in the negative direction of the y-axis of FIG. 2 (plan view of FIG. 2). FIG. 3 (ii) is a schematic view of the strain-causing portion 4 and the force point portion 52 of the force converter according to the embodiment of the present invention as viewed in the same negative direction of the y-axis. In FIGS. 3 (i) and 3 (ii), the strain-sensitive resistor Gxa and the resistance thermometer Gxb exaggerate their sizes. The notation method for exaggerating the resistance temperature detector is the same in FIGS. 5 to 7 and 10.

図3(i)及び図3(ii)における構成の相違点は力点部51及び力点部52のz方向の長さである。力点部51及び力点部52のどちらもx軸で負の方向に力Fxを受けている。起歪部4はフランジ4aにてハウジング3を介してベース2に固定されていることから、起歪部4には、図3(i)においては曲げモーメントMx1、図3(ii)においては曲げモーメントMx2が生じる。 The difference between the configurations in FIGS. 3 (i) and 3 (ii) is the length of the force point portion 51 and the force point portion 52 in the z direction. Both the force point portion 51 and the force point portion 52 receive the force Fx in the negative direction on the x-axis. Since the strain-causing portion 4 is fixed to the base 2 via the housing 3 by the flange 4a, the strain-causing portion 4 has a bending moment Mx1 in FIG. 3 (i) and bending in FIG. 3 (ii). Moment Mx2 is generated.

ここでまず従来の力変換器について説明する。図10(i)、図10(ii)は従来の力変換器であって、フランジ4a寄りに設けられた凹部4bの底面に感歪抵抗体G1、G2がz方向に並んで添着されている。そして例えば感歪抵抗体G1は凹部4bのz方向の中心より左側で、最大感度方向が中心軸AXに対してプラス45度のp方向になるように配置されている。一方感歪抵抗体G2は凹部4bのz方向の中心より右側で、最大感度方向が中心軸AXに対してマイナス45度のq方向になるように配置されている。この感歪抵抗体G1、G2の配置は起歪部4に生ずる歪みを検出する通常の手法であって、力点部が力Fxを受けると感歪抵抗体G1はせん断応力による圧縮歪みを検出し、感歪抵抗体G2はせん断応力による引張歪みを検出して、力変換器1はこれらをもとに力Fxを演算して出力する。 Here, the conventional force transducer will be described first. 10 (i) and 10 (ii) are conventional force transducers, in which the resistance temperature detectors G1 and G2 are attached side by side in the z direction to the bottom surface of the recess 4b provided near the flange 4a. .. Then, for example, the resistance thermometer G1 is arranged on the left side of the center of the recess 4b in the z direction so that the maximum sensitivity direction is the p direction of plus 45 degrees with respect to the central axis AX. On the other hand, the resistance thermometer G2 is arranged on the right side of the center of the recess 4b in the z direction so that the maximum sensitivity direction is minus 45 degrees in the q direction with respect to the central axis AX. The arrangement of the strain-sensitive resistors G1 and G2 is a normal method for detecting the strain generated in the strain-causing portion 4, and when the force point portion receives the force Fx, the strain-sensitive resistor G1 detects the compression strain due to the shear stress. , The strain-sensitive resistor G2 detects the tensile strain due to the shear stress, and the force converter 1 calculates and outputs the force Fx based on these.

もし力変換器1の使用者が、図10(i)に示す力点部51を図10(ii)に示す力点部52に変更しても、同じ大きさの力Fxが加わっている場合には、力変換器1が検出する力は同じものになるはずである。しかしながらこの感歪抵抗体G1、G2の従来の配置では力変換器は同じ力の値を出力しない現象が起きていた。これは起歪部4に生ずる曲げモーメントMx1、Mx2よる歪みの成分を、この感歪抵抗体G1、G2が検出していることが原因であると発明者は見出した。通常では、z方向に平行な中立面(線)に感歪抵抗体G1、G2の中心を合わせて配置されることで、この曲げモーメントの影響が排除される。しかし起歪部の加工精度、感歪抵抗体の感度分布、感歪抵抗体の位置ずれ等によってこの曲げモーメントの影響を完全に排除することは難しい。従来一般的には感歪抵抗体の添着し直しや起歪部の一部を除去加工するなどの試行錯誤を行っていたが、様々な距離の力点部に対応することは困難であった。 If the user of the force transducer 1 changes the force point portion 51 shown in FIG. 10 (i) to the force point portion 52 shown in FIG. 10 (ii), a force Fx of the same magnitude is applied. , The forces detected by the force transducer 1 should be the same. However, in the conventional arrangement of the resistance thermometers G1 and G2, the phenomenon that the force transducer does not output the same force value has occurred. The inventor has found that this is because the strain resistance thermometers G1 and G2 detect the strain component due to the bending moments Mx1 and Mx2 generated in the strain-causing portion 4. Normally, the influence of this bending moment is eliminated by arranging the strain sensitive resistors G1 and G2 so as to be aligned with the neutral plane (line) parallel to the z direction. However, it is difficult to completely eliminate the influence of this bending moment due to the processing accuracy of the strain-sensitive portion, the sensitivity distribution of the resistance temperature detector, the positional deviation of the resistance temperature detector, and the like. Conventionally, in general, trial and error has been performed such as reattaching the resistance thermometer and removing a part of the strain-causing portion, but it has been difficult to deal with the force point portion at various distances.

この従来の感歪抵抗体の配置に対して、本発明では図3(i)及び図3(ii)に示すように、フランジ4a寄りに設けられた凹部4bの底面に感歪抵抗体Gxaと感歪抵抗体Gxbとが検出したい力Fxの方向であるx方向に直列で配置されている。そして感歪抵抗体Gxaはq方向に最大感度を有して起歪部4に添着される。一方感歪抵抗体Gxbはp方向に最大感度を有して起歪部4に添着される。このp方向及びq方向の角度についての詳細は後述する。 In contrast to this conventional arrangement of the resistance thermometer, in the present invention, as shown in FIGS. 3 (i) and 3 (ii), the resistance thermometer Gxa is formed on the bottom surface of the recess 4b provided near the flange 4a. The resistance thermometer Gxb is arranged in series in the x direction, which is the direction of the force Fx to be detected. Then, the strain-sensitive resistor Gxa has the maximum sensitivity in the q direction and is attached to the strain-causing portion 4. On the other hand, the strain-sensitive resistor Gxb has the maximum sensitivity in the p direction and is attached to the strain-causing portion 4. The details of the angles in the p direction and the q direction will be described later.

ここで力点部51、力点部52いずれにおいても、同じ大きさの力Fxが加わっている場合に、同じ力を検出することができる理由について図4(i)~図4(vi)を用いて説明する。図4(i)は起歪部4の変形を概念的に示したものである。力の印加が無い場合には点O、点U、点H、点Iを角に有する一点鎖線で表された正方形の仮想領域を元とし、力の印加によって生じるせん断応力τによる変形状態を誇張して模式的に示している。すなわち点Oに対向する点Uは、せん断応力τによって点Vのように変形する。この線分OUと中心軸AXとのなす角が45度にてせん断の引張歪みが最大になるため、線分OUの方向が最大感度となるように、感歪抵抗体(G2、図10(i)参照)が起歪部4に添着されるのが従前よく知られた方法である。 Here, using FIGS. 4 (i) to 4 (vi), the reason why the same force can be detected when a force Fx of the same magnitude is applied to both the force point portion 51 and the force point portion 52 is used. explain. FIG. 4 (i) conceptually shows the deformation of the strain-causing portion 4. When no force is applied, the deformation state due to the shear stress τ generated by the application of force is exaggerated based on the virtual region of the square represented by the alternate long and short dash line having points O, U, H, and I at the corners. It is shown schematically. That is, the point U facing the point O is deformed like the point V by the shear stress τ. Since the tensile strain of shear is maximized when the angle formed by the line segment OU and the central axis AX is 45 degrees, the strain-sensitive resistor (G2, FIG. 10 (G2, FIG. 10) so that the direction of the line segment OU has the maximum sensitivity. It is a well-known method in the past that i)) is attached to the strain-causing portion 4.

しかしながら一方図4(ii)に示すように、本実施形態の起歪部4では曲げモーメントも発生してその引張応力Tによって、頂点Uは頂点Wのように変形する。したがって従来の感歪抵抗体の最大感度の向きではこの曲げモーメントによる起歪部4の歪み成分も混じって検出されることになる。 However, on the other hand, as shown in FIG. 4 (ii), in the strain-causing portion 4 of the present embodiment, a bending moment is also generated, and the apex U is deformed like the apex W by the tensile stress T. Therefore, in the direction of the maximum sensitivity of the conventional resistance temperature detector, the strain component of the strain-causing portion 4 due to this bending moment is also detected.

そこで本実施形態では、図4(iii)、図4(iv)において、曲げモーメントの引張によって変形する線分JW上にある点Qと点Oを結んだ仮想線分OQの長さL1と、線分HU上にある点Pと点Oを結んだ仮想線分OPの長さL2とが等しくなる角度θに感歪抵抗体の最大感度方向が向くように感歪抵抗体を配置している。すなわち長さL1=長さL2であれば、感歪抵抗体の歪みの量は同じであるから、この曲げモーメントによる引張の伸びの影響を受けないようにできる。角度θは以下のようにして求めることができる。 Therefore, in the present embodiment, in FIGS. 4 (iii) and 4 (iv), the length L1 of the virtual line segment OQ connecting the points Q and the points O on the line segment JW deformed by the tension of the bending moment is used. The strain-sensitive resistor is arranged so that the maximum sensitivity direction of the strain-sensitive resistor faces at an angle θ where the length L2 of the virtual line segment OP connecting the point P and the point O on the line segment HU becomes equal. .. That is, if the length L1 = the length L2, the amount of strain of the resistance temperature detector is the same, so that it can be prevented from being affected by the tensile elongation due to this bending moment. The angle θ can be obtained as follows.

長さzは角度θを定める未知の長さである。長さaは力の印加前の定めた仮想領域の長さである。νは起歪部4のポアソン比、kは図の縦方向(ここではx軸方向)の伸び率である。 The length z is an unknown length that determines the angle θ. The length a is the length of the defined virtual area before the force is applied. ν is the Poisson's ratio of the strain-causing portion 4, and k is the elongation rate in the vertical direction (here, the x-axis direction) in the figure.

仮想線分OQの長さL1は次式で表される。

Figure 2022019106000002
The length L1 of the virtual line segment OQ is expressed by the following equation.
Figure 2022019106000002

一方仮想線分OPの長さL2は次式で表される。

Figure 2022019106000003
On the other hand, the length L2 of the virtual line segment OP is expressed by the following equation.
Figure 2022019106000003

次いで(L1)=(L2)となるzを求める。

Figure 2022019106000004
Next, z such that (L1) 2 = (L2) 2 is obtained.
Figure 2022019106000004

zについて整理すると以下の式となる。

Figure 2022019106000005
The following formula can be obtained by arranging z.
Figure 2022019106000005

tanθ=z/a であることから、θは次式で表される。

Figure 2022019106000006
Since tan θ = z / a, θ is expressed by the following equation.
Figure 2022019106000006

ここで、例えば伸び率kは非常に微小なのでk→0とすると、次式で表される。

Figure 2022019106000007
Here, for example, since the elongation rate k is very small, if k → 0, it is expressed by the following equation.
Figure 2022019106000007

ゆえに起歪部4のポアソン比ν=0.3とすると、θ=28.7度となる。なおこの時感歪抵抗体が検出できるせん断の歪みはモール円においてτsin2θ分であるので、実際のせん断歪みのおおよそ78.5%が検出されるため、制御部13にて検出値にこの逆数を乗算して演算することで本来の力の値を得れば良い。 Therefore, if the Poisson's ratio ν = 0.3 of the strain-causing portion 4, then θ = 28.7 degrees. Since the shear strain that can be detected by the resistance thermometer at this time is τsin2θ in the Mohr's circle, about 78.5% of the actual shear strain is detected, so the control unit 13 inputs this reciprocal to the detected value. The original force value may be obtained by multiplying and calculating.

図4(v)と図4(vi)は、それぞれ図4(iii)と図4(iv)に対応した感歪抵抗体Gxa、Gxbの配置の一例を示している。なお感歪抵抗体Gxa、Gxbは独立していても良いし、一体の基材でパターニングされたものであっても良い。 4 (v) and 4 (vi) show an example of the arrangement of the resistance temperature detectors Gxa and Gxb corresponding to FIGS. 4 (iii) and 4 (iv), respectively. The resistance temperature detectors Gxa and Gxb may be independent or may be patterned with an integral base material.

図5(i)は本発明の実施形態に係る力変換器の起歪部4及び力点部51の模式図であって、図3(i)の模式図の反対方向すなわちy軸の正の方向にて見た図である。図5(ii)は本発明の実施形態に係る力変換器の起歪部4及び力点部52の模式図であって、図3(ii)の模式図の反対方向すなわちy軸の正の方向にて見た図である。すなわち図5(i)及び図5(ii)は、図3(i)及び図3(ii)の裏側をそれぞれ示したものである。したがってp方向、q方向は、図5(i)及び図5(ii)では図3(i)及び図3(ii)の逆向きとなって表されている。感歪抵抗体Gxcと感歪抵抗体Gxdが、フランジ4a寄りに設けられた凹部4cの底面にx方向に並んで直列に配置されている。そして凹部4cは凹部4bと背中合わせに設けられている。 FIG. 5 (i) is a schematic view of the strain-causing portion 4 and the force point portion 51 of the force transducer according to the embodiment of the present invention, in the opposite direction of the schematic diagram of FIG. 3 (i), that is, in the positive direction of the y-axis. It is a figure seen in. FIG. 5 (ii) is a schematic diagram of the strain-causing portion 4 and the force point portion 52 of the force transducer according to the embodiment of the present invention, in the opposite direction of the schematic diagram of FIG. 3 (ii), that is, in the positive direction of the y-axis. It is a figure seen in. That is, FIGS. 5 (i) and 5 (ii) show the back sides of FIGS. 3 (i) and 3 (ii), respectively. Therefore, the p direction and the q direction are represented in FIGS. 5 (i) and 5 (ii) in the opposite directions of FIGS. 3 (i) and 3 (ii). The resistance thermometer Gxc and the resistance thermometer Gxd are arranged in series in the x-direction on the bottom surface of the recess 4c provided near the flange 4a. The recess 4c is provided back to back with the recess 4b.

感歪抵抗体Gxcは、q方向に最大感度を有して起歪部4に添着される。一方感歪抵抗体Gxdは、p方向に最大感度を有して起歪部4に添着される。 The strain-sensitive resistor Gxc has maximum sensitivity in the q direction and is attached to the strain-causing portion 4. On the other hand, the strain-sensitive resistor Gxd has the maximum sensitivity in the p direction and is attached to the strain-causing portion 4.

力点部51、力点部52いずれにおいても、同じ大きさの力Fxが加わっている場合に、同じ力を検出することができる理由は図4(i)~図4(vi)を用いて説明した通りである。 The reason why the same force can be detected when a force Fx of the same magnitude is applied to both the force point portion 51 and the force point portion 52 has been described with reference to FIGS. 4 (i) to 4 (vi). It's a street.

図6(i)は本発明の実施形態に係る力変換器の起歪部4及び力点部51を図2のx軸の正の方向にて見た模式図であって、図6(ii)は本発明の実施形態に係る力変換器の起歪部4及び力点部52を同じx軸の正の方向にて見た模式図である。図6(i)及び図6(ii)において、力点部51及び力点部52はどちらもy軸で正の方向に力Fyを受けている。起歪部4はフランジ4aにてハウジング3を介してベース2に固定されていることから、起歪部4には、図6(i)においては曲げモーメントMy1、図6(ii)においては曲げモーメントMy2が生じる。 FIG. 6 (i) is a schematic view of the strain-causing portion 4 and the force point portion 51 of the force converter according to the embodiment of the present invention as viewed in the positive direction of the x-axis of FIG. 2, FIG. 6 (ii). Is a schematic view of the strain generating portion 4 and the force point portion 52 of the force converter according to the embodiment of the present invention as viewed in the positive direction of the same x-axis. In FIGS. 6 (i) and 6 (ii), the force point portion 51 and the force point portion 52 both receive the force Fy in the positive direction on the y-axis. Since the strain-causing portion 4 is fixed to the base 2 via the housing 3 by the flange 4a, the strain-causing portion 4 has a bending moment My1 in FIG. 6 (i) and bending in FIG. 6 (ii). Moment My2 is generated.

図6(i)及び図6(ii)に示すように、フランジ4f寄りに設けられた凹部4dの底面に感歪抵抗体Gyaと感歪抵抗体Gybがy方向に並んで配置されている。感歪抵抗体Gyaは、r方向に最大感度を有して起歪部4に添着される。一方感歪抵抗体Gybは、s方向に最大感度を有して起歪部4に添着される。 As shown in FIGS. 6 (i) and 6 (ii), the resistance thermometer Gya and the resistance thermometer Gyb are arranged side by side in the y direction on the bottom surface of the recess 4d provided near the flange 4f. The strain-sensitive resistor Gya has maximum sensitivity in the r direction and is attached to the strain-causing portion 4. On the other hand, the strain-sensitive resistor Gyb has the maximum sensitivity in the s direction and is attached to the strain-causing portion 4.

図7(i)は本発明の実施形態に係る力変換器の起歪部4及び力点部51を図2のx軸の負の方向にて見た模式図であって、図7(ii)は本発明の実施形態に係る力変換器の起歪部4及び力点部52を同じx軸の負の方向にて見た模式図である。すなわち図7(i)及び図7(ii)は、図6(i)及び図6(ii)の裏側をそれぞれ示したものである。したがってr方向、s方向は、図7(i)及び図7(ii)では図6(i)及び図6(ii)の逆向きとなって表されている。フランジ4f寄りに設けられた凹部4eの底面に感歪抵抗体Gycと感歪抵抗体Gydがy方向に並んで直列に配置されている。そして凹部4eは凹部4dと背中合わせに設けられている。 FIG. 7 (i) is a schematic view of the strain-causing portion 4 and the force point portion 51 of the force converter according to the embodiment of the present invention as viewed in the negative direction of the x-axis of FIG. 2, FIG. 7 (ii). Is a schematic view of the strain generating portion 4 and the force point portion 52 of the force converter according to the embodiment of the present invention as viewed in the same negative direction of the x-axis. That is, FIGS. 7 (i) and 7 (ii) show the back sides of FIGS. 6 (i) and 6 (ii), respectively. Therefore, the r direction and the s direction are represented in FIGS. 7 (i) and 7 (ii) in the opposite directions of FIGS. 6 (i) and 6 (ii). The strain-sensitive resistor Gyc and the resistance thermometer Gyd are arranged in series in the y-direction on the bottom surface of the recess 4e provided near the flange 4f. The recess 4e is provided back to back with the recess 4d.

感歪抵抗体Gycは、r方向に最大感度を有して起歪部4に添着される。一方感歪抵抗体Gydは、s方向に最大感度を有して起歪部4に添着される。 The strain-sensitive resistor Gyc has maximum sensitivity in the r direction and is attached to the strain-causing portion 4. On the other hand, the strain-sensitive resistor Gyd has the maximum sensitivity in the s direction and is attached to the strain-causing portion 4.

もちろん力点部51、力点部52いずれにおいても、同じ大きさの力Fxが加わっている場合に、同じ力を検出することができる理由は図4(i)~図4(vi)において説明した通りである。 Of course, the reason why the same force can be detected in both the force point portion 51 and the force point portion 52 when a force Fx of the same magnitude is applied is as described in FIGS. 4 (i) to 4 (vi). Is.

図8(i)は本発明の実施形態に係る力変換器の断面図である。図8(i)は、図2において中心軸AXを通るyz平面で力変換器1を切断した図である。 図8(ii)は本発明の実施形態に係る力変換器の断面図である。図8(ii)は、図2において中心軸AXを通るxz平面で力変換器1を切断した図である。 FIG. 8 (i) is a cross-sectional view of the force transducer according to the embodiment of the present invention. FIG. 8 (i) is a diagram in which the force transducer 1 is cut in the yz plane passing through the central axis AX in FIG. FIG. 8 (ii) is a cross-sectional view of the force transducer according to the embodiment of the present invention. FIG. 8 (ii) is a diagram in which the force transducer 1 is cut in the xz plane passing through the central axis AX in FIG.

起歪部4とフランジ4fの中間に鍔4gが設けられていて、鍔4gにはOリング10が嵌め込まれている。Oリング10は起歪部4とハウジング3との気密を保って、感歪抵抗体Gxa~Gxd、Gya~Gydを外部環境から保護している。またハウジング3には穴3aが設けられて、例えば感歪抵抗体Gxa~Gxd、Gya~Gydからの配線を外部に引き出す密閉型のコネクタが穴3aに配置される。 A flange 4g is provided between the strain generating portion 4 and the flange 4f, and an O-ring 10 is fitted in the flange 4g. The O-ring 10 maintains the airtightness between the strain-causing portion 4 and the housing 3, and protects the strain-sensitive resistors Gxa to Gxd and Gya to Gyd from the external environment. Further, the housing 3 is provided with a hole 3a, and for example, a sealed connector for drawing out wiring from the resistance thermometers Gxa to Gxd and Gya to Gyd to the outside is arranged in the hole 3a.

起歪部4にフランジ4a寄りにて設けられた凹部4bと凹部4cは背中合わせで、凹部4bの底面には感歪抵抗体GxaとGxbが、凹部4cの底面には感歪抵抗体GxcとGxdが、それぞれ添着されている。起歪部4にフランジ4f寄りにて設けられた凹部4dと凹部4eは背中合わせで、凹部4dの底面には感歪抵抗体GyaとGybが、凹部4eの底面には感歪抵抗体GycとGydが、それぞれ添着されている。 The recesses 4b and the recesses 4c provided in the strain raising portion 4 near the flange 4a are back-to-back, the strain-sensitive resistors Gxa and Gxb are on the bottom surface of the recesses 4b, and the resistance thermometers Gxc and Gxd are on the bottom surface of the recesses 4c. However, each is attached. The recesses 4d and the recesses 4e provided in the strain-causing portion 4 near the flange 4f are back-to-back, the strain-sensitive resistors Gya and Gyb are on the bottom surface of the recesses 4d, and the strain-sensitive resistors Gyc and Gyd are on the bottom surface of the recesses 4e. However, each is attached.

図9は本発明の実施形態に係る力変換器の感歪抵抗体を含むホイートストンブリッジ回路を有する回路図である。ホイートストンブリッジ回路は、電源E、増幅器11a、11b、A/D変換器12a、12b、制御部13、表示器14を有している。 FIG. 9 is a circuit diagram having a Wheatstone bridge circuit including a resistance temperature detector of the force transducer according to the embodiment of the present invention. The Wheatstone bridge circuit includes a power supply E, amplifiers 11a and 11b, A / D converters 12a and 12b, a control unit 13, and a display 14.

電源Eは感歪抵抗体Gxa~Gxd、Gya~Gydへ給電するものである。増幅器11aはホイートストンブリッジ回路からの結合端子Tx2及びTx4から出力された信号を増幅する。増幅器11bはホイートストンブリッジからの結合端子Ty2及びTy4から出力された信号を増幅する。A/D変換器12a、12bは、アナログ信号をデジタル信号に変換する変換器であって、増幅器11a及び増幅器11bにて増幅されたアナログ信号をそれぞれデジタル信号に変換する。制御部13は中央演算処理装置CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)、その他の記憶装置及び入出力装置を含んでいる。制御部13は、A/D変換器12a、12bから出力されたデジタル信号を基に演算して、その結果を表示器14に表示させる。 The power supply E supplies power to the resistance thermometers Gxa to Gxd and Gya to Gyd. The amplifier 11a amplifies the signals output from the coupling terminals Tx2 and Tx4 from the Wheatstone bridge circuit. The amplifier 11b amplifies the signals output from the coupling terminals Ty2 and Ty4 from the Wheatstone bridge. The A / D converters 12a and 12b are converters that convert analog signals into digital signals, and convert the analog signals amplified by the amplifier 11a and the amplifier 11b into digital signals, respectively. The control unit 13 includes a central processing unit CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and other storage devices and input / output devices. The control unit 13 calculates based on the digital signals output from the A / D converters 12a and 12b, and displays the result on the display 14.

次いでホイートストンブリッジ回路での各感歪抵抗体の配置について説明する。感歪抵抗体Gxa~Gxdを含むホイートストンブリッジ回路は、感歪抵抗体Gxdと感歪抵抗体Gxaが隣り合う辺にあって、その結合端子Tx1が電源Eに接続されている。そして感歪抵抗体Gxbと感歪抵抗体Gxcが隣り合う辺にあって、その結合端子Tx3が電源Eに接続されている。さらに感歪抵抗体Gxaと感歪抵抗体Gxcとが、感歪抵抗体Gxbと感歪抵抗体Gxdとが、それぞれ向かい合う辺にある。そして感歪抵抗体Gxaと感歪抵抗体Gxbとの結合端子Tx2と、感歪抵抗体Gxcと感歪抵抗体Gxdとの結合端子Tx4と、がホイートストンブリッジ回路の出力となる。 Next, the arrangement of each resistance temperature detector in the Wheatstone bridge circuit will be described. In the Wheatstone bridge circuit including the resistance thermometers Gxa to Gxd, the resistance thermometer Gxd and the resistance thermometer Gxa are adjacent to each other, and the coupling terminal Tx1 thereof is connected to the power supply E. The resistance thermometer Gxb and the resistance thermometer Gxc are on adjacent sides, and the coupling terminal Tx3 is connected to the power supply E. Further, the resistance thermometer Gxa and the resistance thermometer Gxc are on opposite sides of each other, and the resistance thermometer Gxb and the resistance thermometer Gxd are on opposite sides. Then, the coupling terminal Tx2 between the resistance thermometer Gxa and the resistance thermometer Gxb and the coupling terminal Tx4 between the resistance thermometer Gxc and the resistance thermometer Gxd are the outputs of the Wheatstone bridge circuit.

感歪抵抗体Gya~Gydを含むホイートストンブリッジ回路も同様に、感歪抵抗体Gydと感歪抵抗体Gyaが隣り合う辺にあって、その結合端子Ty1が電源Eに接続されている。そして感歪抵抗体Gybと感歪抵抗体Gycが隣り合う辺にあって、その結合端子Ty3が電源Eに接続されている。さらに感歪抵抗体Gyaと感歪抵抗体Gycとが、感歪抵抗体Gybと感歪抵抗体Gydとが、それぞれ向かい合う辺にある。そして感歪抵抗体Gyaと感歪抵抗体Gybとの結合端子Ty2と、感歪抵抗体Gycと感歪抵抗体Gydとの結合端子Ty4と、がホイートストンブリッジ回路の出力となる。 Similarly, in the Wheatstone bridge circuit including the resistance thermometers Gya to Gyd, the resistance thermometer Gyd and the resistance thermometer Gya are on adjacent sides, and the coupling terminal Ty1 thereof is connected to the power supply E. The resistance thermometer Gyb and the resistance thermometer Gyc are adjacent to each other, and the coupling terminal Ty3 is connected to the power supply E. Further, the resistance thermometer Gya and the resistance thermometer Gyc are on opposite sides of each other, and the resistance thermometer Gyb and the resistance thermometer Gyd are on opposite sides. Then, the coupling terminal Ty2 between the resistance thermometer Gya and the resistance thermometer Gyb and the coupling terminal Ty4 between the resistance thermometer Gyc and the resistance thermometer Gyd are the outputs of the Wheatstone bridge circuit.

この構成で、図3(i)、図3(ii)、図5(i)、図5(ii)に示すような力Fxが力点部51、52に加わると、感歪抵抗体Gxaはせん断応力では引張側となる。そして感歪抵抗体Gxbはせん断応力では圧縮側となる。一方で、感歪抵抗体Gxcはせん断応力では引張側となる。そして感歪抵抗体Gxdはせん断応力では圧縮側となる。 With this configuration, when the force Fx as shown in FIGS. 3 (i), 3 (ii), 5 (i), and 5 (ii) is applied to the force points 51 and 52, the resistance temperature detector Gxa shears. In stress, it is on the tension side. The resistance temperature detector Gxb is on the compression side under shear stress. On the other hand, the resistance thermometer Gxc is on the tensile side under shear stress. The resistance temperature detector Gxd is on the compression side under shear stress.

感歪抵抗体Gya~Gydを含むホイートストンブリッジ回路も同様である。すなわち図6(i)、図6(ii)、図7(i)、図7(ii)に示すような力Fyが力点部51、52に加わると、感歪抵抗体Gyaはせん断応力では引張側となる。そして感歪抵抗体Gybはせん断応力では圧縮側となる。一方で、感歪抵抗体Gycはせん断応力では引張側となる。そして感歪抵抗体Gydはせん断応力では圧縮側となる。 The same applies to the Wheatstone bridge circuit including the resistance thermometers Gya to Gyd. That is, when the force Fy as shown in FIGS. 6 (i), 6 (ii), 7 (i), and 7 (ii) is applied to the force points 51 and 52, the resistance thermometer Gya is tensioned by shear stress. Be on the side. The resistance temperature detector Gyb is on the compression side under shear stress. On the other hand, the resistance thermometer Gyc is on the tensile side under shear stress. The resistance thermometer Gyd is on the compression side under shear stress.

本実施形態では、各ホイートストンブリッジ回路に4つのアクティブな感歪抵抗体を設けたもので示したが、2つのアクティブな感歪抵抗体で構成しても良い。例えば図9において、感歪抵抗体Gxaと感歪抵抗体Gxbだけがアクティブな感歪抵抗体であって、他の辺の感歪抵抗体Gxcと感歪抵抗体Gxdが固定の抵抗体であっても良い。本発明ではホイートストンブリッジ回路の各辺で曲げモーメントの影響をキャンセルしているためである。 In the present embodiment, each Wheatstone bridge circuit is provided with four active resistance temperature detectors, but two active resistance temperature detectors may be provided. For example, in FIG. 9, only the resistance thermometer Gxa and the resistance thermometer Gxb are active resistance thermometers, and the resistance thermometers Gxc and the resistance thermometer Gxd on the other side are fixed resistance thermometers. May be. This is because in the present invention, the influence of the bending moment is canceled at each side of the Wheatstone bridge circuit.

以上、本発明を好ましい実施形態に基づいて説明したが、本発明は上述した実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々の変更が可能である。 Although the present invention has been described above based on the preferred embodiment, the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the gist thereof.

本発明の活用例として、多分力計など力を測定する装置への適用が可能である。 As an example of utilization of the present invention, it can be applied to a device for measuring force such as a force meter.

1 :力変換器
2 :ベース
3 :ハウジング(支持部)
3a :穴
4 :起歪部
4a :フランジ
4b,4c,4d,4e :凹部
4f :フランジ
4g :鍔
6 :取り付け板
7 :ボルト
8 :ボルト
9 :ボルト
10 :Oリング
11a、11b :増幅器
12a、12b :A/D変換器
13 :制御部
14 :表示器
50、51、52 :力点部
Gxa、Gxb、Gxc、Gxd :感歪抵抗体
Gya、Gyb、Gyc、Gyd :感歪抵抗体
1: Force transducer 2: Base 3: Housing (support)
3a: Hole 4: Distortion part 4a: Flange 4b, 4c, 4d, 4e: Recess 4f: Flange 4g: Flange 6: Mounting plate 7: Bolt 8: Bolt 9: Bolt 10: O-ring 11a, 11b: Amplifier 12a, 12b: A / D converter 13: Control unit 14: Display 50, 51, 52: Power point unit Gxa, Gxb, Gxc, Gxd: Resistance thermometer Gya, Gyb, Gyc, Gyd: Resistance temperature detector

Claims (3)

力が加えられる力点部と、
前記力を受けて支持する支持部と、
前記力点部及び前記支持部の中間で弾性変形する柱形状の起歪部と、
前記起歪部に添着された感歪抵抗体と、
前記感歪抵抗体を含むホイートストンブリッジ回路と、を備えて前記力を電気信号に変換する力変換器であって、
前記感歪抵抗体は、前記力によって前記起歪部に生じる曲げモーメントの歪みを打ち消す方向に最大感度を有して添着される力変換器。
The force point part where force is applied and
A support part that receives and supports the force and
A column-shaped strain-causing portion that elastically deforms between the force point portion and the support portion,
The resistance thermometer attached to the strain-causing portion and
A force transducer comprising a Wheatstone bridge circuit including the resistance thermometer and converting the force into an electrical signal.
The resistance thermometer is a force transducer that is attached with maximum sensitivity in a direction that cancels the distortion of the bending moment generated in the strain-causing portion by the force.
前記感歪抵抗体の最大感度の方向が、前記起歪部のポアソン比から定められる請求項1に記載の力変換器。 The force transducer according to claim 1, wherein the direction of the maximum sensitivity of the strain-sensitive resistor is determined from the Poisson's ratio of the strain-causing portion. 前記感歪抵抗体は、検出する前記力の方向に複数で直列に並んで前記起歪部に添着されている請求項1又は2に記載の力変換器。

The force transducer according to claim 1 or 2, wherein the resistance thermometers are arranged in series in the direction of the force to be detected and attached to the strain-causing portion.

JP2020122699A 2020-07-17 2020-07-17 Force converter Pending JP2022019106A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020122699A JP2022019106A (en) 2020-07-17 2020-07-17 Force converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020122699A JP2022019106A (en) 2020-07-17 2020-07-17 Force converter

Publications (2)

Publication Number Publication Date
JP2022019106A true JP2022019106A (en) 2022-01-27
JP2022019106A5 JP2022019106A5 (en) 2023-07-18

Family

ID=80203545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020122699A Pending JP2022019106A (en) 2020-07-17 2020-07-17 Force converter

Country Status (1)

Country Link
JP (1) JP2022019106A (en)

Similar Documents

Publication Publication Date Title
KR101115418B1 (en) 6-axis sensor structure using force sensor and method of measuring force and moment therewith
US8966996B2 (en) Force sensor
US6915709B2 (en) Force detection device
US5402684A (en) Multicomponent force and moment measuring arrangement
US6253626B1 (en) Three-axis transducer body and strain gage arrangement therefor
EP0461265A1 (en) Acceleration sensors
US9395256B2 (en) Low profile multi-axis load cell
JPH08122178A (en) Six-axial force sensor using plurality of shearing strain gages
KR101169940B1 (en) 3-axis sensor structure using force sensor and method of measuring force and moment therewith
KR20170102802A (en) Pressure sensor chip and pressure sensor
EP3722765B1 (en) Load cell
JP4249735B2 (en) Force sensor
US5365059A (en) Parallel beam force measurement apparatus having an optical light sensor means
JP2022019106A (en) Force converter
JP7260095B2 (en) load transducer
US20240167896A1 (en) Device for measuring deformations, stresses, forces and/or torques in a plurality of axes
EP2419695B1 (en) Displacement sensor
JP2023534575A (en) torque and force transducer
JP2013234975A (en) Force sensor
US20200141762A1 (en) Low cost precision displacement sensor
JPH0461289B2 (en)
RU2251670C2 (en) Multicomponent power action detector
CN117433685B (en) Overload-prevention graded weighing six-dimensional force sensor
JPH0450970B2 (en)
Kumar et al. Design and Development of Low-Cost Three Degree of Freedom Force Sensor

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230707

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230707

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240424