JP2022017948A - Metal oxide fiber aggregate and manufacturing method thereof and catalyst constituted of the metal oxide fiber aggregate - Google Patents

Metal oxide fiber aggregate and manufacturing method thereof and catalyst constituted of the metal oxide fiber aggregate Download PDF

Info

Publication number
JP2022017948A
JP2022017948A JP2020120819A JP2020120819A JP2022017948A JP 2022017948 A JP2022017948 A JP 2022017948A JP 2020120819 A JP2020120819 A JP 2020120819A JP 2020120819 A JP2020120819 A JP 2020120819A JP 2022017948 A JP2022017948 A JP 2022017948A
Authority
JP
Japan
Prior art keywords
metal oxide
oxide fiber
fiber aggregate
spinning
aggregate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020120819A
Other languages
Japanese (ja)
Inventor
克洋 高橋
Katsuhiro Takahashi
祐輔 小坂
Yusuke Kosaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Vilene Co Ltd
Original Assignee
Japan Vilene Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Vilene Co Ltd filed Critical Japan Vilene Co Ltd
Priority to JP2020120819A priority Critical patent/JP2022017948A/en
Publication of JP2022017948A publication Critical patent/JP2022017948A/en
Pending legal-status Critical Current

Links

Abstract

To provide a metal oxide fiber aggregate which is not easy to lose its shape.SOLUTION: A metal oxide fiber aggregate includes a metal oxide fiber A containing silica with relatively high hardness as its main body, hence a metal oxide fiber aggregate which is not easy to lose its shape is achieved as compared to a metal oxide fiber aggregate constituted of only a metal oxide fiber B containing a metal oxide other than silica as its main body. A catalyst constituted of the metal oxide fiber aggregate is a catalyst which is not easy to lose its shape as it includes the metal oxide fiber aggregate which is not easy to lose its shape.SELECTED DRAWING: None

Description

本発明は、少なくとも2種類の金属酸化物繊維を含む、金属酸化物繊維集合体及びその製造方法並びに前記金属酸化物繊維集合体から構成された触媒に関する。 The present invention relates to a metal oxide fiber aggregate containing at least two types of metal oxide fibers, a method for producing the same, and a catalyst composed of the metal oxide fiber aggregate.

金属酸化物繊維は、繊維形状であることで高い比表面積を有することから、触媒やフィルタなどを構成する材料として好適に使用できることが知られている。 It is known that the metal oxide fiber can be suitably used as a material constituting a catalyst, a filter, or the like because it has a high specific surface area due to its fiber shape.

このような金属酸化物繊維は、例えば、特開2014-80700号公報(特許文献1)に開示されている。また、非特許文献1には、メタンからエチレンやプロピレンを合成する触媒用途に用いることができる酸化ランタンと酸化セリウムから構成された金属酸化物繊維が開示されている。 Such metal oxide fibers are disclosed in, for example, Japanese Patent Application Laid-Open No. 2014-80700 (Patent Document 1). Further, Non-Patent Document 1 discloses a metal oxide fiber composed of lanthanum oxide and cerium oxide, which can be used as a catalyst for synthesizing ethylene or propylene from methane.

しかしながら、特許文献1、及び非特許文献1に開示されている金属酸化物繊維など、金属酸化物繊維の多くは柔軟性に劣る、及び/又は、脆いという問題を抱えており、そのため、金属酸化物繊維の強度が低く、金属酸化物繊維から構成された金属酸化物繊維集合体の形状が崩れる形崩れを起こすことがあった。 However, many metal oxide fibers such as the metal oxide fibers disclosed in Patent Document 1 and Non-Patent Document 1 have a problem of inferior flexibility and / or brittleness, and therefore, metal oxidation The strength of the physical fibers was low, and the shape of the metal oxide fiber aggregate composed of the metal oxide fibers was sometimes deformed.

特開2014-80700号公報Japanese Unexamined Patent Publication No. 2014-80700

ChemCatChem communications,2013,5,p.146-149ChemCatChemcommunications, 2013, 5, p. 146-149

本発明はこのような状況下においてなされたものであり、形崩れを起こしにくい金属酸化物繊維集合体を提供することを目的とする。 The present invention has been made under such circumstances, and an object of the present invention is to provide a metal oxide fiber aggregate that does not easily lose its shape.

本発明の請求項1に係る発明は、「シリカを主体とする金属酸化物繊維Aと、シリカ以外の金属酸化物を主体とする金属酸化物繊維Bを含む、金属酸化物繊維集合体。」である。 The invention according to claim 1 of the present invention is "a metal oxide fiber aggregate containing a metal oxide fiber A mainly composed of silica and a metal oxide fiber B mainly composed of a metal oxide other than silica." Is.

本発明の請求項2に係る発明は、「金属酸化物繊維Aと金属酸化物繊維Bの合計量に対する金属酸化物繊維Aの質量比が、10mass%以上(100mass%を除く)である、請求項1に記載の金属酸化物繊維集合体。」である。 According to the second aspect of the present invention, "the mass ratio of the metal oxide fiber A to the total amount of the metal oxide fiber A and the metal oxide fiber B is 10 mass% or more (excluding 100 mass%). Item 1. The metal oxide fiber aggregate according to Item 1. ”.

本発明の請求項3に係る発明は、「金属酸化物繊維Bが、酸化ランタン、酸化セリウム、アルミナ、チタニア、ガドリニウムとセリウムの複合酸化物、リチウムとバナジウムの複合酸化物のうち少なくとも1つを含む、請求項1又は2に記載の金属酸化物繊維集合体。」である。 In the invention according to claim 3 of the present invention, "the metal oxide fiber B contains at least one of lanthanum oxide, cerium oxide, alumina, titania, a composite oxide of gadrinium and cerium, and a composite oxide of lithium and vanadium. The metal oxide fiber aggregate according to claim 1 or 2. ”.

本発明の請求項4に係る発明は、「請求項3に記載の金属酸化物繊維集合体を含む、触媒。」である。 The invention according to claim 4 of the present invention is "a catalyst containing the metal oxide fiber aggregate according to claim 3.".

本発明の請求項5に係る発明は、「(i)ケイ素を含む物質を含む紡糸液aと、ケイ素以外の金属を含む物質を含む紡糸液bを調製する工程、(ii)紡糸液aを紡糸し焼成することで、シリカを主体とする金属酸化物繊維Aを調製する工程、(iii)紡糸液bを紡糸し焼成することで、シリカ以外の金属酸化物を主体とする金属酸化物繊維Bを調製する工程、(iv)金属酸化物繊維Aと金属酸化物繊維Bを混合し、金属酸化物繊維集合体を調製する工程、を含む、請求項1~3のいずれか1項に記載の金属酸化物繊維集合体の製造方法。」である。 The invention according to claim 5 of the present invention describes "(i) a step of preparing a spinning liquid a containing a substance containing silicon and a spinning liquid b containing a substance other than a metal other than silicon, (ii) a spinning liquid a. A step of preparing a metal oxide fiber A mainly composed of silica by spinning and firing, and (iii) a metal oxide fiber mainly composed of a metal oxide other than silica by spinning and firing the spinning liquid b. The step according to any one of claims 1 to 3, further comprising a step of preparing B, and (iv) a step of mixing the metal oxide fiber A and the metal oxide fiber B to prepare a metal oxide fiber aggregate. A method for producing an aggregate of metal oxide fibers. ”.

本発明の請求項1に係る金属酸化物繊維集合体は、強度が比較的高いシリカを主体とする金属酸化物繊維Aを含んでいることにより、シリカ以外の金属酸化物を主体とする金属酸化物繊維Bのみから構成された金属酸化物繊維集合体と比べて、形崩れを起こしにくい金属酸化物繊維集合体を実現できる。 The metal oxide fiber aggregate according to claim 1 of the present invention contains a metal oxide fiber A mainly composed of silica having a relatively high strength, and thus metal oxidation mainly composed of a metal oxide other than silica. It is possible to realize a metal oxide fiber aggregate that is less likely to lose its shape as compared with a metal oxide fiber aggregate composed of only the material fiber B.

本発明の請求項2に係る金属酸化物繊維集合体は、金属酸化物繊維Aと金属酸化物繊維Bの合計量に対する金属酸化物繊維Aの質量比が、10mass%以上(100mass%を除く)であることにより、形崩れを起こしにくい金属酸化物繊維集合体を実現できる。 In the metal oxide fiber aggregate according to claim 2 of the present invention, the mass ratio of the metal oxide fiber A to the total amount of the metal oxide fiber A and the metal oxide fiber B is 10 mass% or more (excluding 100 mass%). Therefore, it is possible to realize a metal oxide fiber aggregate that does not easily lose its shape.

本発明の請求項3に係る金属酸化物繊維集合体は、金属酸化物繊維Bが、触媒作用を示す金属酸化物を含むことから、触媒用途に適した金属酸化物繊維集合体である。 The metal oxide fiber aggregate according to claim 3 of the present invention is a metal oxide fiber aggregate suitable for catalytic use because the metal oxide fiber B contains a metal oxide exhibiting a catalytic action.

本発明の請求項4に係る触媒は、形崩れを起こしにくい金属酸化物繊維集合体を含むことから、形崩れを起こしにくい触媒である。 The catalyst according to claim 4 of the present invention is a catalyst that does not easily lose its shape because it contains a metal oxide fiber aggregate that does not easily lose its shape.

本発明の請求項5に係る金属酸化物繊維集合体の製造方法は、強度が比較的高いシリカを主体とする金属酸化物Aを混合することにより、形崩れを起こしにくい金属酸化物繊維集合体を製造できる方法である。 The method for producing a metal oxide fiber aggregate according to claim 5 of the present invention is a metal oxide fiber aggregate that does not easily lose its shape by mixing a metal oxide A mainly composed of silica having a relatively high strength. Is a method that can be manufactured.

本発明の金属酸化物繊維集合体は、シリカを主体とする金属酸化物繊維Aを含む。なお、本発明における「主体とする」とは、50mass%以上のことをいう。金属酸化物繊維Aに含まれるシリカの割合は、大きければ大きいほど、より金属酸化物繊維Aの強度が高くなり、また、より金属酸化物繊維集合体の強度が高くなることから、金属酸化物繊維Aに含まれるシリカの割合は、80mass%以上がより好ましく、90mass%以上が更に好ましく、100mass%が最も好ましい。なお、金属酸化物繊維Aには、シリカの他に、染料などの有機成分や、ヒドロキシアパタイトやシリカ以外の金属酸化物などの無機成分を含有することができる。 The metal oxide fiber aggregate of the present invention contains the metal oxide fiber A mainly composed of silica. The term "mainly" in the present invention means 50 mass% or more. The larger the proportion of silica contained in the metal oxide fiber A, the higher the strength of the metal oxide fiber A and the higher the strength of the metal oxide fiber aggregate. Therefore, the metal oxide The ratio of silica contained in the fiber A is more preferably 80 mass% or more, further preferably 90 mass% or more, and most preferably 100 mass%. In addition to silica, the metal oxide fiber A can contain an organic component such as a dye and an inorganic component such as a metal oxide other than hydroxyapatite or silica.

金属酸化物繊維Aの平均繊維径は、細ければ細いほど、厚さが薄く、近年の軽薄短小化の要望に合う金属酸化物繊維集合体を提供しやすいため、平均繊維径は10μm以下であるのが好ましく、3μm以下であるのがより好ましく、2μm以下であるのが更に好ましい。一方、平均繊維径が細すぎると、金属酸化物繊維集合体の機械的強度が低下するおそれがあることから、0.1μm以上が適当である。なお、「平均繊維径」は、金属酸化物繊維50点における繊維径の算術平均値をいい、「繊維径」は、金属酸化物繊維の断面を撮影した50~5000倍の電子顕微鏡写真を基に測定した、金属酸化物繊維の直径をいう。金属酸化物繊維Aは繊維断面が円形でない異形断面であってもよく、異形断面の金属酸化物繊維Aの繊維径の測定方法は、異形断面の断面積を計測し、その断面積を有する円の直径を繊維径とみなす。異形断面の金属酸化物繊維Aの断面形状は、例えば、三角形形状などの多角形形状、楕円形状、Y字形状などのアルファベット文字型形状、不定形形状、多葉形状、アスタリスク形状などの記号型形状、あるいはこれらの形状が複数結合した形状などであることができる。 The finer the average fiber diameter of the metal oxide fiber A, the thinner the thickness, and it is easy to provide a metal oxide fiber aggregate that meets the recent demands for lightness, thinness, and shortening. Therefore, the average fiber diameter is 10 μm or less. It is preferably present, more preferably 3 μm or less, and even more preferably 2 μm or less. On the other hand, if the average fiber diameter is too small, the mechanical strength of the metal oxide fiber aggregate may decrease, so 0.1 μm or more is appropriate. The "average fiber diameter" refers to the arithmetic average value of the fiber diameter at 50 points of the metal oxide fiber, and the "fiber diameter" is based on a 50-5000 times electron micrograph of a cross section of the metal oxide fiber. Refers to the diameter of the metal oxide fiber measured in. The metal oxide fiber A may have a deformed cross section in which the fiber cross section is not circular, and the method for measuring the fiber diameter of the metal oxide fiber A in the deformed cross section is to measure the cross section of the deformed cross section and have a circle having the cross section. The diameter of is regarded as the fiber diameter. The cross-sectional shape of the metal oxide fiber A having an irregular cross section is, for example, a polygonal shape such as a triangular shape, an alphabetic character shape such as an elliptical shape or a Y-shape, an irregular shape, a multi-leaf shape, or a symbol type such as an asterisk shape. It can be a shape, or a shape in which a plurality of these shapes are combined.

また、本発明の金属酸化物繊維Aの平均繊維長は、特に限定するものではない。なお、本発明における「平均繊維長」は、50本の金属酸化物繊維における各繊維長の算術平均値をいい、「繊維長」は、金属酸化物繊維を撮影した50~5000倍の電子顕微鏡写真を基に測定した、金属酸化物繊維の長軸方向における長さをいう。 Further, the average fiber length of the metal oxide fiber A of the present invention is not particularly limited. The "average fiber length" in the present invention refers to the arithmetic average value of each fiber length in 50 metal oxide fibers, and the "fiber length" is a 50 to 5000 times electron microscope in which the metal oxide fibers are photographed. The length in the long axis direction of the metal oxide fiber measured based on the photograph.

本発明の金属酸化物繊維集合体は、シリカを主体とする金属酸化物繊維Aの他に、シリカ以外の金属酸化物を主体とする金属酸化物繊維Bを含む。金属酸化物繊維Bの主成分であるシリカ以外の金属酸化物としては、例えば、リチウム、ベリリウム、ホウ素、ナトリウム、マグネシウム、アルミニウム、リン、硫黄、カリウム、カルシウム、スカンジウム、チタン、バナジウム、クロム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛、ガリウム、ゲルマニウム、ヒ素、セレン、ルビジウム、ストロンチウム、イットリウム、ジルコニウム、ニオブ、モリブデン、カドミウム、インジウム、スズ、アンチモン、テルル、セシウム、バリウム、ランタン、ハフニウム、タンタル、タングステン、水銀、タリウム、鉛、ビスマス、セリウム、プラセオジム、ネオジム、プロメチウム、サマリウム、ユウロピウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、エルビウム、ツリウム、イッテルビウム、又はルテチウムなどの金属酸化物が挙げられる。なお、シリカ以外の金属酸化物は金属を1種類のみ含んでいても、2種類以上含んでいてもよい。前記シリカ以外の金属酸化物が2種類以上の金属を含む場合、複合酸化物であっても、2種類以上の金属酸化物が複合せず混在した状態にあってもよい。これらの金属酸化物の中でも、金属酸化物繊維集合体を触媒用途に用いた時に有用である、酸化ランタン、酸化セリウム、アルミニウムの酸化物であるアルミナ、チタンの酸化物であるチタニア、ガドリニウムとセリウムの複合酸化物、リチウムとバナジウムの複合酸化物の少なくとも一つの金属酸化物であるのが好ましく、酸化ランタンと酸化セリウムの少なくとも一方を含んでいるのがより好ましい。 The metal oxide fiber aggregate of the present invention contains a metal oxide fiber B mainly composed of a metal oxide other than silica, in addition to the metal oxide fiber A mainly composed of silica. Examples of metal oxides other than silica, which is the main component of the metal oxide fiber B, include lithium, beryllium, boron, sodium, magnesium, aluminum, phosphorus, sulfur, potassium, calcium, scandium, titanium, vanadium, chromium, and manganese. , Iron, cobalt, nickel, copper, zinc, gallium, germanium, arsenic, selenium, rubidium, strontium, ittrium, zirconium, niobium, molybdenum, cadmium, indium, tin, antimony, tellurium, cesium, barium, lantern, hafnium, tantalum , Tungsten, mercury, tarium, lead, bismuth, cerium, placeodim, neodym, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, turium, itterbium, or metal oxides such as lutetium. The metal oxide other than silica may contain only one type of metal or may contain two or more types of metal. When the metal oxide other than silica contains two or more kinds of metals, the composite oxide may be a composite oxide, or the two or more kinds of metal oxides may be in a mixed state without being composited. Among these metal oxides, lanthanum oxide, cerium oxide, alumina, which is an oxide of aluminum, titania, which is an oxide of titanium, gadrinium and cerium, which are useful when the metal oxide fiber aggregate is used as a catalyst. The composite oxide of the above, at least one metal oxide of the composite oxide of lithium and vanadium is preferable, and it is more preferable to contain at least one of lanthanum oxide and cerium oxide.

金属酸化物繊維Bに含まれるシリカ以外の金属酸化物の割合は、大きければ大きいほど、より金属酸化物繊維Bに含まれる金属酸化物による作用効果(触媒作用等)が効率よく得られることから、金属酸化物繊維Bに含まれるシリカ以外の金属酸化物の割合は、80mass%以上がより好ましく、90mass%以上が更に好ましく、100mass%が最も好ましい。なお、金属酸化物繊維Bには、シリカ以外の金属酸化物の他に、金属酸化物繊維Aに含有することができる、染料などの有機成分や、ヒドロキシアパタイトやシリカ以外の金属酸化物などの無機成分を含有することができる。 The larger the proportion of the metal oxide other than silica contained in the metal oxide fiber B, the more efficiently the action and effect (catalytic action, etc.) of the metal oxide contained in the metal oxide fiber B can be obtained. The ratio of the metal oxide other than silica contained in the metal oxide fiber B is more preferably 80 mass% or more, further preferably 90 mass% or more, and most preferably 100 mass%. The metal oxide fiber B includes, in addition to metal oxides other than silica, organic components such as dyes that can be contained in the metal oxide fiber A, and metal oxides other than hydroxyapatite and silica. It can contain inorganic components.

金属酸化物繊維Bの平均繊維径は、細ければ細いほど、金属酸化物繊維Bの表面積が大きくなり、触媒などの用途に金属酸化物繊維集合体を用いる際に好ましいこと、また、厚さが薄く、近年の軽薄短小化の要望に合う金属酸化物繊維集合体を提供しやすいため、平均繊維径は10μm以下であるのが好ましく、3μm以下であるのがより好ましく、2μm以下であるのが更に好ましい。一方、平均繊維径が細すぎると、金属酸化物繊維集合体の機械的強度が低下するおそれがあることから、0.01μm以上が適当である。なお、金属酸化物繊維Bは金属酸化物繊維Aと同様に繊維断面が円形でない異形断面であってもよい。また、本発明の金属酸化物繊維Bの平均繊維長は、特に限定するものではない。 The finer the average fiber diameter of the metal oxide fiber B, the larger the surface area of the metal oxide fiber B, which is preferable when the metal oxide fiber aggregate is used for applications such as catalysts, and the thickness. The average fiber diameter is preferably 10 μm or less, more preferably 3 μm or less, and more preferably 2 μm or less, because it is thin and it is easy to provide a metal oxide fiber aggregate that meets the recent demands for lightness, thinness, and shortening. Is more preferable. On the other hand, if the average fiber diameter is too small, the mechanical strength of the metal oxide fiber aggregate may decrease, so 0.01 μm or more is appropriate. As with the metal oxide fiber A, the metal oxide fiber B may have a deformed cross section in which the fiber cross section is not circular. Further, the average fiber length of the metal oxide fiber B of the present invention is not particularly limited.

本発明の金属酸化物繊維集合体における、シリカを主体とする金属酸化物繊維A及びシリカ以外の金属酸化物繊維Bの合計量の割合は、より金属酸化物繊維集合体の強度が高くなるように、70mass%以上が好ましく、80mass%以上がより好ましく、90mass%以上が更に好ましい。なお、本発明の金属酸化物繊維集合体には、金属酸化物繊維A及びBの他に、例えば、金属酸化物繊維を接着する有機成分や無機成分を含んでいてもよい。 The ratio of the total amount of the metal oxide fiber A mainly composed of silica and the metal oxide fiber B other than silica in the metal oxide fiber aggregate of the present invention is such that the strength of the metal oxide fiber aggregate becomes higher. In addition, 70 mass% or more is preferable, 80 mass% or more is more preferable, and 90 mass% or more is further preferable. In addition to the metal oxide fibers A and B, the metal oxide fiber aggregate of the present invention may contain, for example, an organic component or an inorganic component for adhering the metal oxide fiber.

また、本発明の金属酸化物繊維Aと金属酸化物繊維Bの合計量に対する金属酸化物繊維Aの質量比は、金属酸化物繊維Aの割合が低すぎると、金属酸化物繊維集合体の強度が低下するおそれがあることから、10mass%以上(100mass%を除く)が好ましく、20mass%以上(100mass%を除く)がより好ましく、30mass%以上(100mass%を除く)が更に好ましい。金属酸化物繊維集合体を触媒用途に用いる場合、金属酸化物繊維Aと金属酸化物繊維Bの合計量に対する金属酸化物繊維Aの質量比の上限については、金属酸化物繊維集合体を触媒に用いた際に金属酸化物繊維Bによる触媒活性が充分であるように、99mass%以下が好ましく、95mass%以下がより好ましく、90mass%以下が更に好ましい。 Further, the mass ratio of the metal oxide fiber A to the total amount of the metal oxide fiber A and the metal oxide fiber B of the present invention is such that if the ratio of the metal oxide fiber A is too low, the strength of the metal oxide fiber aggregate is obtained. 10 mass% or more (excluding 100 mass%) is preferable, 20 mass% or more (excluding 100 mass%) is more preferable, and 30 mass% or more (excluding 100 mass%) is further preferable. When the metal oxide fiber aggregate is used as a catalyst, the upper limit of the mass ratio of the metal oxide fiber A to the total amount of the metal oxide fiber A and the metal oxide fiber B is set by using the metal oxide fiber aggregate as a catalyst. 99 mass% or less is preferable, 95 mass% or less is more preferable, and 90 mass% or less is further preferable, so that the catalytic activity by the metal oxide fiber B is sufficient when used.

金属酸化物繊維集合体の形状は、特に限定するものではないが、例えば、直方体や立方体、円筒形や球状、シート状などであることができる。 The shape of the metal oxide fiber aggregate is not particularly limited, but may be, for example, a rectangular parallelepiped, a cube, a cylinder, a sphere, or a sheet.

次に、本発明の金属酸化物繊維集合体の製造方法の一例について説明する。 Next, an example of the method for producing the metal oxide fiber aggregate of the present invention will be described.

まず、(i)ケイ素を含む物質を含む紡糸液aと、ケイ素以外の金属を含む物質を含む紡糸液bを調製する工程、について説明する。 First, (i) a step of preparing a spinning liquid a containing a substance containing silicon and a spinning liquid b containing a substance containing a metal other than silicon will be described.

紡糸液aは、後述の通り紡糸液aからシリカを主体とする金属酸化物繊維Aを紡糸することから、シリカ、またはケイ素塩やケイ素アルコキシドなどのケイ素を含む物質、溶媒または分散媒、必要に応じて粘度を調整するための高分子、あるいは、ケイ素塩を用いている場合はケイ素イオンと配位結合可能な高分子、及び触媒を準備する。 Since the spinning liquid a spins a metal oxide fiber A mainly composed of silica from the spinning liquid a as described later, it is necessary to use silica, a substance containing silicon such as a silicon salt or silicon alkoxide, a solvent or a dispersion medium. A polymer for adjusting the viscosity, or a polymer capable of coordinating with silicon ions when a silicon salt is used, and a catalyst are prepared accordingly.

ケイ素を含む物質のうち、ケイ素塩は、例えば、ケイ素を含むハロゲン化物、硝酸塩、硫酸塩、酢酸塩、シュウ酸塩等を1種類以上用いることができる。 Among the substances containing silicon, for example, one or more kinds of halides containing silicon, nitrates, sulfates, acetates, oxalates and the like can be used as the silicon salt.

また、溶媒または分散媒は特に限定するものではないが、例えば、アルコール類(例えば、メタノール、エタノール、プロパノールなど)、ジメチルホルムアミド、ジメチルアセトアミド、ケトン類(例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、ジイソブチルケトン、シクロヘキサノン、ジアセトンアルコールなど)、水などを挙げることができる。 The solvent or dispersion medium is not particularly limited, but for example, alcohols (eg, methanol, ethanol, propanol, etc.), dimethylformamide, dimethylacetamide, ketones (eg, acetone, methylethylketone, methylisobutylketone, diisobutyl). Ketone, cyclohexanone, diacetone alcohol, etc.), water, etc. can be mentioned.

更に、粘度を調整するための高分子についても特に限定するものではなく、例えば、ポリビニルアルコール、ポリビニルピロリドンなどが挙げられる。 Further, the polymer for adjusting the viscosity is not particularly limited, and examples thereof include polyvinyl alcohol and polyvinylpyrrolidone.

更に、ケイ素イオンと配位結合可能な高分子についても特に限定するものではないが、例えば、ポリビニルアルコール、ポリビニルピロリドン、無水マレイン酸系ポリマー、カルボン酸系ポリマー、アミノアルコール系ポリマー、ポルフィリンアレイ、チオシアン酸系ポリマー、エチレンジアミン系ポリマーなどが挙げられる。 Further, the polymer capable of coordinating with silicon ions is not particularly limited, and for example, polyvinyl alcohol, polyvinylpyrrolidone, maleic anhydride-based polymer, carboxylic acid-based polymer, amino alcohol-based polymer, porphyrin array, and thiocyan. Examples thereof include acid-based polymers and ethylenediamine-based polymers.

紡糸液aの粘度は、紡糸後焼成してシリカを主体とする金属酸化物繊維Aを形成することができれば特に限定するものではないが、100~10000mPa・sであることができる。 The viscosity of the spinning liquid a is not particularly limited as long as it can form the metal oxide fiber A mainly composed of silica by firing after spinning, but it can be 100 to 10,000 mPa · s.

また、紡糸液bは、後述の通り紡糸液bからシリカ以外の金属酸化物を主体とする金属酸化物繊維Bを紡糸することから、上述のシリカ以外の金属酸化物、あるいはケイ素以外の塩や金属アルコキシドなどの金属を含む物質、溶媒または分散媒、必要に応じて粘度を調整するための、あるいは、金属塩を用いている場合は金属イオンと配位結合可能な高分子、及び触媒を準備する。ケイ素以外の塩は、ケイ素塩と同様に、例えば、ハロゲン化物、硝酸塩、硫酸塩、酢酸塩、シュウ酸塩等を1種類以上用いることができる。また、紡糸液bに用いる溶媒または分散媒は、紡糸液aの溶媒または分散媒と同様の物を用いることができる。更に、粘度を調整するための高分子、金属イオンと配位結合可能な高分子についても、紡糸液aと同様の物を用いることができる。 Further, since the spinning liquid b spins the metal oxide fiber B mainly composed of a metal oxide other than silica from the spinning liquid b as described later, the above-mentioned metal oxide other than silica or a salt other than silicon can be used. Prepare a metal-containing substance such as a metal alkoxide, a solvent or dispersion medium, a polymer for adjusting the viscosity if necessary, or a polymer that can coordinate with metal ions when using a metal salt, and a catalyst. do. As the salt other than silicon, for example, one or more kinds of halides, nitrates, sulfates, acetates, oxalates and the like can be used in the same manner as the silicon salt. Further, as the solvent or dispersion medium used for the spinning liquid b, the same solvent or dispersion medium as that of the spinning liquid a can be used. Further, as a polymer for adjusting the viscosity and a polymer capable of coordinating and bonding with metal ions, the same one as the spinning solution a can be used.

紡糸液bの粘度は、紡糸液bに含まれる金属によって適した粘度が異なることから、特に限定するものではない。 The viscosity of the spinning liquid b is not particularly limited because the suitable viscosity differs depending on the metal contained in the spinning liquid b.

次に、(ii)紡糸液aを紡糸し焼成することで、シリカを主体とする金属酸化物繊維Aを調製する工程、について説明する。紡糸液aの紡糸方法は、紡糸後焼成してシリカを主体とする金属酸化物繊維Aを形成することができる限り、特に限定するものではないが、例えば、常法の乾式紡糸法、静電紡糸法、特開2005-264374号公報に開示されているような、静電紡糸の際に繊維とは反対極性のイオンを照射する紡糸方法、特開2009-287138号公報に開示されているような、ガスの剪断作用により紡糸する方法、或いは特開2012-154009号公報に開示されているような、電界の作用に加えてガスの剪断力を作用させて紡糸する方法、を挙げることができる。これらの中でも、静電紡糸法によれば、繊維径が小さく、比表面積の大きい金属酸化物繊維を紡糸することができるため好適である。なお、紡糸液の導電率が高いなど、静電紡糸法により安定して紡糸できない場合には、電界の作用に加えてガスの剪断作用を併用することにより、又は、ガスの剪断作用により紡糸する方法によれば、安定して紡糸することができる。 Next, (ii) a step of preparing the metal oxide fiber A mainly composed of silica by spinning and firing the spinning liquid a will be described. The spinning method of the spinning liquid a is not particularly limited as long as it can form the metal oxide fiber A mainly composed of silica by firing after spinning, but for example, a conventional dry spinning method or electrostatic. Spinning method, a spinning method for irradiating ions having a polarity opposite to that of a fiber during electrostatic spinning, as disclosed in JP-A-2005-264374, as disclosed in JP-A-2009-287138. Examples thereof include a method of spinning by a gas shearing action, and a method of spinning by applying a gas shearing force in addition to the action of an electric field as disclosed in Japanese Patent Application Laid-Open No. 2012-15409. .. Among these, the electrostatic spinning method is suitable because it can spin metal oxide fibers having a small fiber diameter and a large specific surface area. If the spinning solution cannot be stably spun by the electrostatic spinning method due to high conductivity, the spinning is performed by using the gas shearing action in addition to the electric field action, or by the gas shearing action. According to the method, the spinning can be performed stably.

また、紡糸液aを紡糸した後、紡糸液に含まれる金属成分の酸化や、紡糸液に含まれるポリマーの除去を目的とした焼成を行う。なお、焼成は、例えば、オーブン、焼結炉などの装置を用いて実施することができ、その温度は、100~1500℃が好ましく、200~1200℃がより好ましく、400~1000℃が更に好ましい。また、焼成時間は1時間以上が好ましい。 Further, after the spinning liquid a is spun, firing is performed for the purpose of oxidizing the metal component contained in the spinning liquid and removing the polymer contained in the spinning liquid. The firing can be carried out using, for example, an apparatus such as an oven or a sintering furnace, and the temperature thereof is preferably 100 to 1500 ° C, more preferably 200 to 1200 ° C, still more preferably 400 to 1000 ° C. .. The firing time is preferably 1 hour or more.

次に、(iii)紡糸液bを紡糸し焼成することで、シリカ以外の金属酸化物を主体とする金属酸化物繊維Bを調製する工程、について説明する。紡糸液bの紡糸方法は、紡糸液aの紡糸方法と同様の方法を採用することができる。また、焼成に用いる装置も紡糸液aと同様の装置を採用することができる。焼成温度及び焼成時間については、紡糸液bに含まれる金属によって適した焼成温度及び焼成時間が異なるため、特に限定するものではない。 Next, (iii) a step of preparing a metal oxide fiber B mainly composed of a metal oxide other than silica by spinning and firing the spinning liquid b will be described. As the spinning method of the spinning liquid b, the same method as the spinning method of the spinning liquid a can be adopted. Further, as the apparatus used for firing, the same apparatus as the spinning liquid a can be adopted. The firing temperature and firing time are not particularly limited because the suitable firing temperature and firing time differ depending on the metal contained in the spinning liquid b.

次に、(iv)金属酸化物繊維Aと金属酸化物繊維Bを混合し、金属酸化物繊維集合体を調製する工程、について説明する。 Next, (iv) a step of mixing the metal oxide fiber A and the metal oxide fiber B to prepare a metal oxide fiber aggregate will be described.

金属酸化物繊維Aと金属酸化物繊維Bを混合する方法としては、特に限定するものではないが、例えば、金属酸化物繊維A及びBを、液体分散媒に分散させ、濾過することで混合する方法(分散媒は、前述の紡糸液に用いることができると例示したような溶媒又は分散媒を用いることができる)や、金属酸化物繊維A及びBを粉砕し混ぜ合わせるなど、気体中で混合する方法が挙げられる。なお、効率よく金属酸化物繊維Aと金属酸化物繊維Bを混合して金属酸化物繊維集合体を調製するため、混合する前に金属酸化物繊維AあるいはBを乳鉢やプレス機など公知の方法で粉砕し、繊維長を短くしてもよい。また、金属酸化物繊維集合体の強度向上のため、金属酸化物繊維Aと金属酸化物繊維Bを混合する際、または、混合した後に金属酸化物繊維A、Bを接着する有機成分や無機成分を付与し、金属酸化物繊維集合体を調製してもよい。 The method for mixing the metal oxide fiber A and the metal oxide fiber B is not particularly limited, but for example, the metal oxide fibers A and B are dispersed in a liquid dispersion medium and mixed by filtering. The method (the dispersion medium can be a solvent or a dispersion medium as exemplified as that it can be used for the above-mentioned spinning solution) or the metal oxide fibers A and B are crushed and mixed in a gas. There is a way to do it. In order to efficiently mix the metal oxide fiber A and the metal oxide fiber B to prepare the metal oxide fiber aggregate, a known method such as a dairy pot or a press machine is used to mix the metal oxide fiber A or B before mixing. May be crushed with to shorten the fiber length. Further, in order to improve the strength of the metal oxide fiber aggregate, an organic component or an inorganic component that adheres the metal oxide fibers A and B when or after the metal oxide fiber A and the metal oxide fiber B are mixed. May be applied to prepare a metal oxide fiber aggregate.

本発明の金属酸化物繊維集合体は、形崩れを起こしにくく取り扱い性に優れるため、触媒や、熱伝導性部材など様々な用途に用いることができる。特に、金属酸化物繊維集合体に酸化ランタン、酸化セリウム、アルミニウムの酸化物であるアルミナ、チタンの酸化物であるチタニア、ガドリニウムとセリウムの複合酸化物、リチウムとバナジウムの複合酸化物といった触媒作用を示す金属酸化物が含まれている場合、触媒用途に好適に用いることができる。 Since the metal oxide fiber aggregate of the present invention does not easily lose its shape and is excellent in handleability, it can be used for various purposes such as a catalyst and a heat conductive member. In particular, the metal oxide fiber aggregate has catalytic action such as lanthanum oxide, cerium oxide, alumina which is an oxide of aluminum, titania which is an oxide of titanium, a composite oxide of gadrinium and cerium, and a composite oxide of lithium and vanadium. When the indicated metal oxide is contained, it can be suitably used for catalytic applications.

以下に、本発明の実施例を記載するが、本発明は以下の実施例に限定されるものではない。 Examples of the present invention will be described below, but the present invention is not limited to the following examples.

(実施例1)
(金属酸化物繊維Aの調製)
まず、テトラエトキシシラン、エタノール、水、1mol/Lの塩酸を1:5:2:0.003のモル比で混合し、温度80℃で15時間の還流操作を行い、次いで、溶媒をロータリーエバポレーターにより除去して濃縮した後、温度80℃に加熱して、粘度が1000mPa・sのゾル溶液である紡糸液aを調製した。次に、得られた紡糸液aを、特開2005-264374号公報に開示されているような、静電紡糸の際に繊維とは反対極性のイオンを照射する紡糸方法により紡糸しコンベアに集積させ、金属酸化物繊維A前駆体を形成した。
なお、前記紡糸方法は、特開2005-264374号公報の実施例8と同じ紡糸条件で実施した。詳細を以下に示す。
紡糸液aの吐出量:0.5g/時間
紡糸ノズル:内径0.4mmの金属製注射針(先端カット)
紡糸ノズルと対向電極との距離:20cm
対向電極及びイオン発生電極(両電極を兼ねる):ステンレス板(誘起電極)上に厚さ1mmのアルミナ膜(誘電体基板)を溶射し、その上に直径30μmのタングステンワイヤ(放電電極)を10mmの等間隔で張った沿面放電素子(タングステンワイヤ面を紡糸ノズルと対向させると共に接地し、ステンレス板とタングステンワイヤ間に交流高電圧電源により50Hzの交流高電圧を印加)
第1高電圧電源:+10kV
第2高電圧電源:±5kV(交流沿面のピーク電圧:5kV、50Hz)
紡糸室内の雰囲気:温度25℃、湿度40%RH
次に、得られた金属酸化物繊維A前駆体を空気雰囲気下、温度800℃で2時間焼成して熱処理し、プレス機で粉砕(5MPa、10秒間)し、シリカから構成された金属酸化物繊維A(平均繊維径:1μm、平均繊維長:200μm)を得た。
(Example 1)
(Preparation of metal oxide fiber A)
First, tetraethoxysilane, ethanol, water, and 1 mol / L hydrochloric acid are mixed at a molar ratio of 1: 5: 2: 0.003, and a reflux operation is performed at a temperature of 80 ° C. for 15 hours, and then the solvent is used as a rotary evaporator. After removing and concentrating the mixture, the mixture was heated to a temperature of 80 ° C. to prepare a spinning solution a which is a sol solution having a viscosity of 1000 mPa · s. Next, the obtained spinning liquid a is spun by a spinning method of irradiating ions having a polarity opposite to that of the fiber during electrostatic spinning as disclosed in Japanese Patent Application Laid-Open No. 2005-264374, and accumulated in a conveyor. The metal oxide fiber A precursor was formed.
The spinning method was carried out under the same spinning conditions as in Example 8 of JP-A-2005-264374. Details are shown below.
Discharge amount of spinning liquid a: 0.5 g / hour Spinning nozzle: Metal injection needle with inner diameter 0.4 mm (tip cut)
Distance between spinning nozzle and counter electrode: 20 cm
Opposite electrode and ion generating electrode (also serving as both electrodes): A 1 mm thick alumina film (dielectric substrate) is sprayed onto a stainless steel plate (induced electrode), and a tungsten wire (discharge electrode) with a diameter of 30 μm is placed on it by 10 mm. Creeping discharge element stretched at equal intervals (Tungsten wire surface faces the spinning nozzle and is grounded, and 50Hz AC high voltage is applied between the stainless plate and the tungsten wire by AC high voltage power supply)
1st high voltage power supply: + 10kV
Second high voltage power supply: ± 5 kV (peak voltage along the AC surface: 5 kV, 50 Hz)
Atmosphere in the spinning room: temperature 25 ° C, humidity 40% RH
Next, the obtained metal oxide fiber A precursor was calcined in an air atmosphere at a temperature of 800 ° C. for 2 hours to be heat-treated, and pulverized with a press machine (5 MPa, 10 seconds) to obtain a metal oxide composed of silica. Fiber A (average fiber diameter: 1 μm, average fiber length: 200 μm) was obtained.

(金属酸化物繊維Bの調製)
硝酸ランタン六水和物(6.9mmol)、硝酸セリウム六水和物(0.46mmol)、及びアセト酢酸エチル(7.36mmol)をエタノール(100mmol)に加えて1時間撹拌を行い、金属塩を溶解させて、溶液を得た。次いで、前記溶液1.67g、無水マレイン酸ポリマー1.5g、N,N-ジメチルホルムアミド6.83gとなるように混合して、紡糸液b1を調製した。
次に、得られた紡糸液b1を、ガスのせん断作用と電界の作用によって紡糸する方法により紡糸して、集積させ、金属酸化物繊維B1前駆体を形成した。
なお、ガスのせん断作用と電界の作用によって紡糸する方法は、特開2012-154009号公報の実施例1と同じ紡糸条件で実施した。詳細を以下に示す。
紡糸液b1の吐出量:1.5g/時間
ガス吐出ノズルからの空気吐出圧力:0.5MPa
ガス吐出ノズルからの吐出空気温度:25℃
液吐出ノズル(紡糸ノズル)への印加電圧:10kV
紡糸室内の雰囲気:温度25℃、湿度40%RH
次に、得られた金属酸化物繊維B1前駆体を空気雰囲気下、温度800℃で2時間焼成して熱処理し、酸化ランタンと酸化セリウムが混在し、前記2種類の金属酸化物から構成された金属酸化物繊維B1(平均繊維径:100nm、平均繊維長:30μm)を得た。
(Preparation of metal oxide fiber B)
Lanthanum nitrate hexahydrate (6.9 mmol), cerium nitrate hexahydrate (0.46 mmol), and ethyl acetoacetate (7.36 mmol) were added to ethanol (100 mmol), and the mixture was stirred for 1 hour to remove a metal salt. It was dissolved to obtain a solution. Then, 1.67 g of the solution, 1.5 g of maleic anhydride polymer, and 6.83 g of N, N-dimethylformamide were mixed to prepare a spinning solution b1.
Next, the obtained spinning liquid b1 was spun by a method of spinning by the action of a gas shearing action and an electric field and accumulated to form a metal oxide fiber B1 precursor.
The method of spinning by the action of the shearing action of the gas and the action of the electric field was carried out under the same spinning conditions as in Example 1 of JP2012-15409A. Details are shown below.
Discharge amount of spinning liquid b1: 1.5 g / hour Air discharge pressure from gas discharge nozzle: 0.5 MPa
Discharge air temperature from gas discharge nozzle: 25 ° C
Voltage applied to the liquid discharge nozzle (spinning nozzle): 10 kV
Atmosphere in the spinning room: temperature 25 ° C, humidity 40% RH
Next, the obtained metal oxide fiber B1 precursor was heat-treated by firing at a temperature of 800 ° C. for 2 hours in an air atmosphere, and lanthanum oxide and cerium oxide were mixed and composed of the above two types of metal oxides. Metal oxide fiber B1 (average fiber diameter: 100 nm, average fiber length: 30 μm) was obtained.

(金属酸化物繊維集合体の調製)
まず、テトラエトキシシラン、エタノール、水、1mol/Lの硝酸を1:7.2:11:0.0003のモル比で混合し、25℃で15時間攪拌を行ったゾル溶液を用意し、シリカ固形分が0.1%となるようにエタノールを加えた、シリカ系バインダを調製した。
次に、金属酸化物繊維Aと金属酸化物繊維B1を質量比99:1でエタノールに混合し分散させ、金属酸化物繊維A及びB1が分散された分散液を桐山ロートで吸引濾過し、円筒形の金属酸化物繊維集合体前駆体を調製した。
次に、シリカ系バインダを金属酸化物繊維集合体前駆体に塗布して、桐山ロートで吸引濾過し、得られたものを空気雰囲気下、温度800℃で2時間焼成して熱処理し、円筒形の金属酸化物繊維集合体を得た。この金属酸化物繊維集合体は、円筒形の形状を保っており、金属酸化物繊維集合体をピンセットで持ち上げたときに、金属酸化物繊維集合体が形崩れを起こさなかった。
(Preparation of metal oxide fiber aggregate)
First, a sol solution was prepared by mixing tetraethoxysilane, ethanol, water and 1 mol / L nitric acid at a molar ratio of 1: 7.2: 11: 0.0003 and stirring at 25 ° C. for 15 hours to prepare silica. A silica-based binder was prepared by adding ethanol so that the solid content was 0.1%.
Next, the metal oxide fiber A and the metal oxide fiber B1 are mixed and dispersed in ethanol at a mass ratio of 99: 1, and the dispersion liquid in which the metal oxide fibers A and B1 are dispersed is suction-filtered by a Kiriyama funnel and cylindrical. A metal oxide fiber aggregate precursor in the form was prepared.
Next, a silica-based binder was applied to the metal oxide fiber aggregate precursor, suction-filtered with a Kiriyama funnel, and the obtained product was fired at a temperature of 800 ° C. for 2 hours in an air atmosphere to heat-treat it into a cylindrical shape. The metal oxide fiber aggregate of the above was obtained. The metal oxide fiber aggregate maintained a cylindrical shape, and when the metal oxide fiber aggregate was lifted with tweezers, the metal oxide fiber aggregate did not lose its shape.

(実施例2)
金属酸化物繊維Aと金属酸化物繊維B1を質量比30:70でエタノールに混合し分散させ、金属酸化物繊維A及びB1が分散された分散液を桐山ロートで吸引濾過して円筒形の金属酸化物繊維集合体前駆体を調製したことを除いては、実施例1と同様にして、円筒形の金属酸化物繊維集合体を調製した。この金属酸化物繊維集合体は、円筒形の形状を保っており、金属酸化物繊維集合体をピンセットで持ち上げたときに、金属酸化物繊維集合体が形崩れを起こさなかった。
(Example 2)
The metal oxide fiber A and the metal oxide fiber B1 are mixed and dispersed in ethanol at a mass ratio of 30:70, and the dispersion liquid in which the metal oxide fibers A and B1 are dispersed is suction-filtered by a Kiriyama funnel to form a cylindrical metal. A cylindrical metal oxide fiber aggregate was prepared in the same manner as in Example 1 except that the oxide fiber aggregate precursor was prepared. The metal oxide fiber aggregate maintained a cylindrical shape, and when the metal oxide fiber aggregate was lifted with tweezers, the metal oxide fiber aggregate did not lose its shape.

(実施例3)
金属酸化物繊維Aと金属酸化物繊維B1を質量比20:80でエタノールに混合し分散させ、金属酸化物繊維A及びB1が分散された分散液を桐山ロートで吸引濾過して円筒形の金属酸化物繊維集合体前駆体を調製したことを除いては、実施例1と同様にして、円筒形の金属酸化物繊維集合体を調製した。この金属酸化物繊維集合体は、円筒形の形状を保っており、金属酸化物繊維集合体をピンセットで持ち上げたときに、金属酸化物繊維集合体が形崩れを起こさなかった。
(Example 3)
The metal oxide fiber A and the metal oxide fiber B1 are mixed and dispersed in ethanol at a mass ratio of 20:80, and the dispersion liquid in which the metal oxide fibers A and B1 are dispersed is suction-filtered by a Kiriyama funnel to form a cylindrical metal. A cylindrical metal oxide fiber aggregate was prepared in the same manner as in Example 1 except that the oxide fiber aggregate precursor was prepared. The metal oxide fiber aggregate maintained a cylindrical shape, and when the metal oxide fiber aggregate was lifted with tweezers, the metal oxide fiber aggregate did not lose its shape.

(実施例4)
金属酸化物繊維Aと金属酸化物繊維B1を質量比10:90でエタノールに混合し分散させ、金属酸化物繊維A及びB1が分散された分散液を桐山ロートで吸引濾過して円筒形の金属酸化物繊維集合体前駆体を調製したことを除いては、実施例1と同様にして、円筒形の金属酸化物繊維集合体を調製した。この金属酸化物繊維集合体は、円筒形の形状を保っており、金属酸化物繊維集合体をピンセットで持ち上げたときに、金属酸化物繊維集合体が形崩れを起こさなかった。
(Example 4)
The metal oxide fiber A and the metal oxide fiber B1 are mixed and dispersed in ethanol at a mass ratio of 10:90, and the dispersion liquid in which the metal oxide fibers A and B1 are dispersed is suction-filtered by a Kiriyama funnel to form a cylindrical metal. A cylindrical metal oxide fiber aggregate was prepared in the same manner as in Example 1 except that the oxide fiber aggregate precursor was prepared. The metal oxide fiber aggregate maintained a cylindrical shape, and when the metal oxide fiber aggregate was lifted with tweezers, the metal oxide fiber aggregate did not lose its shape.

(実施例5)
(金属酸化物繊維Aの調製)
実施例1と同様の方法で、金属酸化物繊維Aを調製した。
(Example 5)
(Preparation of metal oxide fiber A)
The metal oxide fiber A was prepared in the same manner as in Example 1.

(金属酸化物繊維Bの調製)
硝酸ランタン六水和物(6.54mmol)、硝酸セリウム六水和物(0.81mmol)、及びアセト酢酸エチル(7.36mmol)をエタノール(100mmol)に加えて1時間撹拌を行い、金属塩を溶解させて、溶液を得た。次いで、前記溶液1.67g、無水マレイン酸ポリマー1.5g、N,N-ジメチルホルムアミド6.83gとなるように混合して、紡糸液b2を調製した。
次に、得られた紡糸液b2を、ガスのせん断作用と電界の作用によって紡糸する方法により紡糸して、集積させ、金属酸化物繊維B2前駆体を形成した。
なお、ガスのせん断作用と電界の作用によって紡糸する方法は、特開2012-154009号公報の実施例1と同じ紡糸条件で実施した。詳細を以下に示す。
紡糸液b2の吐出量:1.5g/時間
ガス吐出ノズルからの空気吐出圧力:0.5MPa
ガス吐出ノズルからの吐出空気温度:25℃
液吐出ノズル(紡糸ノズル)への印加電圧:10kV
紡糸室内の雰囲気:温度25℃、湿度40%RH
次に、得られた金属酸化物繊維B2前駆体を空気雰囲気下、温度800℃で2時間焼成して熱処理し、酸化ランタンと酸化セリウムが混在し、前記2種類の金属酸化物から構成された金属酸化物繊維B2(平均繊維径:100nm、平均繊維長:30μm)を得た。
(Preparation of metal oxide fiber B)
Lanthanum nitrate hexahydrate (6.54 mmol), cerium nitrate hexahydrate (0.81 mmol), and ethyl acetoacetate (7.36 mmol) were added to ethanol (100 mmol), and the mixture was stirred for 1 hour to remove a metal salt. It was dissolved to obtain a solution. Then, 1.67 g of the solution, 1.5 g of maleic anhydride polymer, and 6.83 g of N, N-dimethylformamide were mixed to prepare a spinning solution b2.
Next, the obtained spinning liquid b2 was spun by a method of spinning by the shearing action of gas and the action of an electric field and accumulated to form a metal oxide fiber B2 precursor.
The method of spinning by the action of the shearing action of the gas and the action of the electric field was carried out under the same spinning conditions as in Example 1 of JP2012-15409A. Details are shown below.
Discharge amount of spinning liquid b2: 1.5 g / hour Air discharge pressure from gas discharge nozzle: 0.5 MPa
Discharge air temperature from gas discharge nozzle: 25 ° C
Voltage applied to the liquid discharge nozzle (spinning nozzle): 10 kV
Atmosphere in the spinning room: temperature 25 ° C, humidity 40% RH
Next, the obtained metal oxide fiber B2 precursor was heat-treated by firing at a temperature of 800 ° C. for 2 hours in an air atmosphere, and lanthanum oxide and cerium oxide were mixed and composed of the above two types of metal oxides. Metal oxide fiber B2 (average fiber diameter: 100 nm, average fiber length: 30 μm) was obtained.

(金属酸化物繊維集合体の調製)
まず、実施例1と同じシリカ系バインダを調製した。次に、金属酸化物繊維Aと金属酸化物繊維B2を質量比99:1でエタノールに混合し分散させ、金属酸化物繊維A及びB2が分散された分散液を桐山ロートで吸引濾過し、金属酸化物繊維集合体前駆体を調製した。
次に、シリカ系バインダを金属酸化物繊維集合体前駆体に塗布して、桐山ロートで吸引濾過し、得られたものを空気雰囲気下、温度800℃で2時間焼成して熱処理し、円筒形の金属酸化物繊維集合体を得た。この金属酸化物繊維集合体は、形崩れを起こさず成型性を有するものであった。
次に、シリカ系バインダを金属酸化物繊維集合体前駆体に塗布して、桐山ロートで吸引濾過し、得られたものを空気雰囲気下、温度800℃で2時間焼成して熱処理し、円筒形の金属酸化物繊維集合体を得た。この金属酸化物繊維集合体は、円筒形の形状を保っており、金属酸化物繊維集合体をピンセットで持ち上げたときに、金属酸化物繊維集合体が形崩れを起こさなかった。
(Preparation of metal oxide fiber aggregate)
First, the same silica-based binder as in Example 1 was prepared. Next, the metal oxide fiber A and the metal oxide fiber B2 are mixed and dispersed in ethanol at a mass ratio of 99: 1, and the dispersion liquid in which the metal oxide fibers A and B2 are dispersed is suction-filtered by a Kiriyama funnel to metal. Oxide fiber aggregate precursors were prepared.
Next, a silica-based binder was applied to the metal oxide fiber aggregate precursor, suction-filtered with a Kiriyama funnel, and the obtained product was fired at a temperature of 800 ° C. for 2 hours in an air atmosphere to heat-treat it into a cylindrical shape. The metal oxide fiber aggregate of the above was obtained. This metal oxide fiber aggregate did not lose its shape and had moldability.
Next, a silica-based binder was applied to the metal oxide fiber aggregate precursor, suction-filtered with a Kiriyama funnel, and the obtained product was fired at a temperature of 800 ° C. for 2 hours in an air atmosphere to heat-treat it into a cylindrical shape. The metal oxide fiber aggregate of the above was obtained. The metal oxide fiber aggregate maintained a cylindrical shape, and when the metal oxide fiber aggregate was lifted with tweezers, the metal oxide fiber aggregate did not lose its shape.

(実施例6)
(金属酸化物繊維Aの調製)
実施例1と同様の方法で、金属酸化物繊維Aを調製した。
(Example 6)
(Preparation of metal oxide fiber A)
The metal oxide fiber A was prepared in the same manner as in Example 1.

(金属酸化物繊維Bの調製)
硝酸ランタン六水和物(3.68mmol)、硝酸セリウム六水和物(3.68mmol)、及びアセト酢酸エチル(7.36mmol)をエタノール(100mmol)に加えて1時間撹拌を行い、金属塩を溶解させて、溶液を得た。次いで、前記溶液1.67g、無水マレイン酸ポリマー1.5g、N,N-ジメチルホルムアミド6.83gとなるように混合して、紡糸液b3を調製した。
次に、得られた紡糸液b3を、ガスのせん断作用と電界の作用によって紡糸する方法により紡糸して、集積させ、金属酸化物繊維B3前駆体を形成した。なお、ガスのせん断作用と電界の作用によって紡糸する方法は、特開2012-154009号公報の実施例1と同じ紡糸条件で実施した。詳細を以下に示す。
紡糸液b3の吐出量:1.5g/時間
ガス吐出ノズルからの空気吐出圧力:0.5MPa
ガス吐出ノズルからの吐出空気温度:25℃
液吐出ノズル(紡糸ノズル)への印加電圧:10kV
紡糸室内の雰囲気:温度25℃、湿度40%RH
次に、得られた金属酸化物繊維B3前駆体を空気雰囲気下、温度800℃で2時間焼成して熱処理し、酸化ランタンと酸化セリウムが混在し、前記2種類の金属酸化物から構成された金属酸化物繊維B3(平均繊維径:100nm、平均繊維長:30μm)を得た。
(Preparation of metal oxide fiber B)
Lanthanum nitrate hexahydrate (3.68 mmol), cerium nitrate hexahydrate (3.68 mmol), and ethyl acetoacetate (7.36 mmol) were added to ethanol (100 mmol), and the mixture was stirred for 1 hour to remove a metal salt. It was dissolved to obtain a solution. Then, 1.67 g of the solution, 1.5 g of maleic anhydride polymer, and 6.83 g of N, N-dimethylformamide were mixed to prepare a spinning solution b3.
Next, the obtained spinning liquid b3 was spun by a method of spinning by the action of a gas shearing action and an electric field and accumulated to form a metal oxide fiber B3 precursor. The method of spinning by the action of the shearing action of the gas and the action of the electric field was carried out under the same spinning conditions as in Example 1 of JP2012-15409A. Details are shown below.
Discharge amount of spinning liquid b3: 1.5 g / hour Air discharge pressure from gas discharge nozzle: 0.5 MPa
Discharge air temperature from gas discharge nozzle: 25 ° C
Voltage applied to the liquid discharge nozzle (spinning nozzle): 10 kV
Atmosphere in the spinning room: temperature 25 ° C, humidity 40% RH
Next, the obtained metal oxide fiber B3 precursor was heat-treated by firing at a temperature of 800 ° C. for 2 hours in an air atmosphere, and lanthanum oxide and cerium oxide were mixed and composed of the above two types of metal oxides. Metal oxide fiber B3 (average fiber diameter: 100 nm, average fiber length: 30 μm) was obtained.

(金属酸化物繊維集合体の調製)
まず、実施例1と同じシリカ系バインダを調製した。次に、金属酸化物繊維Aと金属酸化物繊維B3を質量比99:1でエタノールに混合し分散させ、金属酸化物繊維A及びB3が分散された分散液を桐山ロートで吸引濾過し、円筒形の金属酸化物繊維集合体前駆体を調製した。
次に、シリカ系バインダを金属酸化物繊維集合体前駆体に塗布して、桐山ロートで吸引濾過し、得られたものを空気雰囲気下、温度800℃で2時間焼成して熱処理し、円筒形の金属酸化物繊維集合体を得た。この金属酸化物繊維集合体は、円筒形の形状を保っており、金属酸化物繊維集合体をピンセットで持ち上げたときに、金属酸化物繊維集合体が形崩れを起こさなかった。
(Preparation of metal oxide fiber aggregate)
First, the same silica-based binder as in Example 1 was prepared. Next, the metal oxide fiber A and the metal oxide fiber B3 are mixed and dispersed in ethanol at a mass ratio of 99: 1, and the dispersion liquid in which the metal oxide fibers A and B3 are dispersed is suction-filtered by a Kiriyama funnel to form a cylinder. A metal oxide fiber aggregate precursor in the form was prepared.
Next, a silica-based binder was applied to the metal oxide fiber aggregate precursor, suction-filtered with a Kiriyama funnel, and the obtained product was fired at a temperature of 800 ° C. for 2 hours in an air atmosphere to heat-treat it into a cylindrical shape. The metal oxide fiber aggregate of the above was obtained. The metal oxide fiber aggregate maintained a cylindrical shape, and when the metal oxide fiber aggregate was lifted with tweezers, the metal oxide fiber aggregate did not lose its shape.

(実施例7)
(金属酸化物繊維Aの調製)
実施例1と同様の方法で、金属酸化物繊維Aを調製した。
(Example 7)
(Preparation of metal oxide fiber A)
The metal oxide fiber A was prepared in the same manner as in Example 1.

(金属酸化物繊維Bの調製)
まず、アルミニウムsec-ブトキシド、乳酸エチル、テトラブチルアンモニウムヒドロキシド、水、2-プロパノールを1:5:0.0025:1:5のモル比で混合し、温度70℃で15時間加熱撹拌し、縮重合させた。そして、エバポレータにより濃縮した後、粘度が2000~3000mPa・sになるまで増粘させて、紡糸液b4を得た。
次に、得られた紡糸液b4を、静電紡糸法により紡糸するとともに、アースされたドラムに繊維を集積させ、金属酸化物繊維B4前駆体を形成した。詳細を以下に示す。
紡糸液b4の吐出量:0.5g/時間
ノズル先端とドラム捕集体との距離:10cm
紡糸容器内の温湿度:25℃、30%RH
ノズルへの印加電圧:+10kV
次に、得られた金属酸化物繊維B4前駆体を空気雰囲気下、温度1200℃で2時間焼成して熱処理し、プレス機で粉砕(20MPa、3秒間)し、アルミナから構成された金属酸化物繊維B4(平均繊維径:0.7μm、平均繊維長:50μm)を得た。
(Preparation of metal oxide fiber B)
First, aluminum sec-butoxide, ethyl lactate, tetrabutylammonium hydroxide, water, and 2-propanol were mixed at a molar ratio of 1: 5: 0.0025: 1: 5, heated and stirred at a temperature of 70 ° C. for 15 hours. It was polycondensed. Then, after concentrating with an evaporator, the viscosity was increased to 2000 to 3000 mPa · s to obtain a spinning liquid b4.
Next, the obtained spinning liquid b4 was spun by an electrostatic spinning method, and the fibers were accumulated on a grounded drum to form a metal oxide fiber B4 precursor. Details are shown below.
Discharge amount of spinning liquid b4: 0.5 g / hour Distance between nozzle tip and drum collector: 10 cm
Temperature and humidity in the spinning container: 25 ° C, 30% RH
Voltage applied to the nozzle: + 10kV
Next, the obtained metal oxide fiber B4 precursor was calcined in an air atmosphere at a temperature of 1200 ° C. for 2 hours to be heat-treated, and pulverized with a press machine (20 MPa, 3 seconds) to obtain a metal oxide composed of alumina. Fiber B4 (average fiber diameter: 0.7 μm, average fiber length: 50 μm) was obtained.

(金属酸化物繊維集合体の調製)
まず、実施例1と同様のシリカ系バインダを調製した。次に、金属酸化物繊維A及びB4を質量比99:1でエタノールに混合し分散させ、分散された分散液を桐山ロートで吸引濾過し、金属酸化物繊維集合体前駆体を調製した。
次に、シリカ系バインダを金属酸化物繊維集合体前駆体に塗布して、桐山ロートで吸引濾過し、得られたものを空気雰囲気下、温度800℃で2時間焼成して熱処理し、円筒形の金属酸化物繊維集合体を得た。この金属酸化物繊維集合体は、円筒形の形状を保っており、金属酸化物繊維集合体をピンセットで持ち上げたときに、金属酸化物繊維集合体が形崩れを起こさなかった。
(Preparation of metal oxide fiber aggregate)
First, a silica-based binder similar to that in Example 1 was prepared. Next, the metal oxide fibers A and B4 were mixed and dispersed in ethanol at a mass ratio of 99: 1, and the dispersed dispersion was suction-filtered with a Kiriyama funnel to prepare a metal oxide fiber aggregate precursor.
Next, a silica-based binder was applied to the metal oxide fiber aggregate precursor, suction-filtered with a Kiriyama funnel, and the obtained product was fired at a temperature of 800 ° C. for 2 hours in an air atmosphere to heat-treat it into a cylindrical shape. The metal oxide fiber aggregate of the above was obtained. The metal oxide fiber aggregate maintained a cylindrical shape, and when the metal oxide fiber aggregate was lifted with tweezers, the metal oxide fiber aggregate did not lose its shape.

(実施例8)
(金属酸化物繊維Aの調製)
実施例1と同様の方法で、金属酸化物繊維Aを調製した。
(Example 8)
(Preparation of metal oxide fiber A)
The metal oxide fiber A was prepared in the same manner as in Example 1.

(金属酸化物繊維Bの調製)
チタンテトラノルマルブトキシド1質量部に、酢酸1.3質量部を添加混合することにより、均一な溶液を調製した。この溶液に対して、イオン交換水1質量部を攪拌しながら添加し、透明な溶液を得た。
次いで、透明な溶液とポリビニルピロリドン溶液(平均分子量:630000、固形分濃度:20mass% 、溶媒:N,N-ジメチルホルムアミド)とを、質量比で3:2となるように混合して、紡糸液b5を調製した。
次に、得られた紡糸液b5を、静電紡糸法により紡糸するとともに、アースされたドラムに繊維を集積させ、金属酸化物繊維B5前駆体を形成した。詳細を以下に示す。
紡糸液b5の吐出量:0.5g/時間
ノズル先端とドラム捕集体との距離:10cm
紡糸容器内の温湿度:25℃、30%RH
ノズルへの印加電圧:+10kV
次に、得られた金属酸化物繊維B5前駆体を空気雰囲気下、温度600℃で2時間焼成して熱処理し、プレス機で粉砕(10MPa、3秒間)し、チタニアから構成された金属酸化物繊維B5(平均繊維径:0.5μm、平均繊維長:60μm)を得た。
(金属酸化物繊維集合体の調製)
まず、実施例1と同様のシリカ系バインダを調製した。次に、金属酸化物繊維A及びB5を質量比99:1の割合でエタノールに混合し分散させ、分散された分散液を桐山ロートで吸引濾過し、円筒形の金属酸化物繊維集合体前駆体を調製した。
(Preparation of metal oxide fiber B)
A uniform solution was prepared by adding and mixing 1.3 parts by mass of acetic acid to 1 part by mass of titanium tetranormalbutoxide. To this solution, 1 part by mass of ion-exchanged water was added with stirring to obtain a transparent solution.
Next, a transparent solution and a polyvinylpyrrolidone solution (average molecular weight: 630000, solid content concentration: 20 mass%, solvent: N, N-dimethylformamide) are mixed so as to have a mass ratio of 3: 2, and the spinning solution is used. b5 was prepared.
Next, the obtained spinning liquid b5 was spun by an electrostatic spinning method, and the fibers were accumulated on a grounded drum to form a metal oxide fiber B5 precursor. Details are shown below.
Discharge amount of spinning liquid b5: 0.5 g / hour Distance between nozzle tip and drum collector: 10 cm
Temperature and humidity in the spinning container: 25 ° C, 30% RH
Voltage applied to the nozzle: + 10kV
Next, the obtained metal oxide fiber B5 precursor was calcined in an air atmosphere at a temperature of 600 ° C. for 2 hours to be heat-treated, and pulverized with a press machine (10 MPa, 3 seconds) to obtain a metal oxide composed of titania. Fiber B5 (average fiber diameter: 0.5 μm, average fiber length: 60 μm) was obtained.
(Preparation of metal oxide fiber aggregate)
First, a silica-based binder similar to that in Example 1 was prepared. Next, the metal oxide fibers A and B5 were mixed and dispersed in ethanol at a mass ratio of 99: 1, and the dispersed dispersion was suction-filtered with a Kiriyama funnel to form a cylindrical metal oxide fiber aggregate precursor. Was prepared.

次に、シリカ系バインダを金属酸化物繊維集合体前駆体に塗布して、桐山ロートで吸引濾過し、得られたものを空気雰囲気下、温度600℃で2時間焼成して熱処理し、円筒形の金属酸化物繊維集合体を得た。この金属酸化物繊維集合体は、円筒形の形状を保っており、金属酸化物繊維集合体をピンセットで持ち上げたときに、金属酸化物繊維集合体が形崩れを起こさなかった。 Next, a silica-based binder was applied to the metal oxide fiber aggregate precursor, suction-filtered with a Kiriyama funnel, and the obtained product was fired at a temperature of 600 ° C. for 2 hours in an air atmosphere to heat-treat it into a cylindrical shape. The metal oxide fiber aggregate of the above was obtained. The metal oxide fiber aggregate maintained a cylindrical shape, and when the metal oxide fiber aggregate was lifted with tweezers, the metal oxide fiber aggregate did not lose its shape.

(実施例9)
(金属酸化物繊維Aの調製)
実施例1と同様の方法で、金属酸化物繊維Aを調製した。
(Example 9)
(Preparation of metal oxide fiber A)
The metal oxide fiber A was prepared in the same manner as in Example 1.

(金属酸化物繊維Bの調製)
硝酸ガドリニウム六水和物(10mmol)、硝酸セリウム六水和物(90mmol)に2-プロパノール100gを加えた後、温度80℃で1時間加熱撹拌を行い、金属塩を溶解させて、溶液を得た。前記溶液をエバポレータにより、後述する焼成によりGd .1Ce .9とした時にGd0.1Ce0.9が溶液中に30mass%含まれる量となるまで濃縮して、濃縮溶液を得た。前記濃縮溶液に、メトキシエチレン無水マレイン酸コポリマーを、焼成によりGd0.1Ce0.9とした時のGd0.1Ce0.9質量とメトキシエチレン無水マレイン酸コポリマー質量とを、前記濃縮溶解液に、メトキシエチレン無水マレイン酸コポリマーを、焼成によりGd0.1Ce0.9とした時のGd0.1Ce0.9重量とメトキシエチレン無水マレイン酸コポリマー重量とが1:3の割合となるように溶解させ質量比で1:3となるように混合して、紡糸液b6を調製した。
次に、得られた紡糸液b6を、静電紡糸法により紡糸するとともに、アースされたドラムに繊維を集積させ、金属酸化物繊維B6前駆体を形成した。詳細を以下に示す。
紡糸液b6の吐出量:0.5g/時間
ノズル先端とドラム捕集体との距離:10cm
紡糸容器内の温湿度:25℃、25%RH
ノズルへの印加電圧:+7.5kV
次に、得られた金属酸化物繊維B6前駆体を空気雰囲気下、温度600℃で2時間焼成して熱処理し、適宜粉砕して、Gd .1Ce .9から構成された金属酸化物繊維B6(平均繊維径:0.2μm、平均繊維長:30μm)を得た。
(Preparation of metal oxide fiber B)
After adding 100 g of 2-propanol to gadolinium nitrate hexahydrate (10 mmol) and cerium nitrate hexahydrate (90 mmol), the mixture is heated and stirred at a temperature of 80 ° C. for 1 hour to dissolve the metal salt to obtain a solution. rice field. The solution was subjected to Gd 0. By firing described later with an evaporator . 1 Ce 0 . When it was 9 O 2 , it was concentrated until Gd 0.1 Ce 0.9 O 2 was contained in the solution in an amount of 30 mass% to obtain a concentrated solution. In the concentrated solution, the mass of Gd 0.1 Ce 0.9 O 2 and the mass of the methoxyethylene maleic anhydride copolymer when the methoxyethylene maleic anhydride copolymer was added to Gd 0.1 Ce 0.9 O 2 by firing were added. The weight of Gd 0.1 Ce 0.9 O 2 and the weight of the methoxyethylene maleic anhydride copolymer when the methoxyethylene maleic anhydride copolymer was added to the concentrated solution to Gd 0.1 Ce 0.9 O 2 by firing. And was dissolved so as to have a ratio of 1: 3, and mixed so as to have a mass ratio of 1: 3 to prepare a spinning solution b6.
Next, the obtained spinning liquid b6 was spun by an electrostatic spinning method, and the fibers were accumulated on a grounded drum to form a metal oxide fiber B6 precursor. Details are shown below.
Discharge amount of spinning liquid b6: 0.5 g / hour Distance between nozzle tip and drum collector: 10 cm
Temperature and humidity in the spinning container: 25 ° C, 25% RH
Voltage applied to the nozzle: +7.5 kV
Next, the obtained metal oxide fiber B6 precursor was fired in an air atmosphere at a temperature of 600 ° C. for 2 hours to be heat-treated, and appropriately pulverized to obtain Gd 0 . 1 Ce 0 . A metal oxide fiber B6 (average fiber diameter: 0.2 μm, average fiber length: 30 μm) composed of 9 O 2 was obtained.

(金属酸化物繊維集合体の調製)
まず、実施例1と同様のシリカ系バインダを調製した。次に、金属酸化物繊維A及びB6を質量比99:1でエタノールに混合し分散させ、分散された分散液を桐山ロートで吸引濾過し、円筒形の金属酸化物繊維集合体前駆体を調製した。
次に、シリカ系バインダを金属酸化物繊維集合体前駆体に塗布して、桐山ロートで吸引濾過し、得られたものを空気雰囲気下、温度600℃で2時間焼成して熱処理し、円筒形の金属酸化物繊維集合体を得た。この金属酸化物繊維集合体は、円筒形の形状を保っており、金属酸化物繊維集合体をピンセットで持ち上げたときに、金属酸化物繊維集合体が形崩れを起こさなかった。
(Preparation of metal oxide fiber aggregate)
First, a silica-based binder similar to that in Example 1 was prepared. Next, the metal oxide fibers A and B6 were mixed and dispersed in ethanol at a mass ratio of 99: 1, and the dispersed dispersion was suction-filtered with a Kiriyama funnel to prepare a cylindrical metal oxide fiber aggregate precursor. did.
Next, a silica-based binder was applied to the metal oxide fiber aggregate precursor, suction-filtered with a Kiriyama funnel, and the obtained product was fired at a temperature of 600 ° C. for 2 hours in an air atmosphere to heat-treat it into a cylindrical shape. The metal oxide fiber aggregate of the above was obtained. The metal oxide fiber aggregate maintained a cylindrical shape, and when the metal oxide fiber aggregate was lifted with tweezers, the metal oxide fiber aggregate did not lose its shape.

(実施例10)
(金属酸化物繊維Aの調製)
実施例1と同様の方法で金属酸化物繊維Aを調製した。
(Example 10)
(Preparation of metal oxide fiber A)
The metal oxide fiber A was prepared in the same manner as in Example 1.

(金属酸化物繊維Bの調製)
メタバナジン(V)酸アンモニウム(60mmol)、及び酢酸リチウム(20mmol)を水350mlに加えた後、温度80℃で2時間加熱撹拌を行い、金属塩を溶解させて、溶液を得た。前記溶液に、40%クエン酸溶液を、溶液のpHが3になるまで加えた後、温度80℃で2時間加熱撹拌を行い、酸性溶液を得た。前記酸性溶液にアンモニア水を、pHが7になるまで加え、中性溶液を得た。前記中性溶液をエバポレータにより、焼成によりLi1.5とした時にLi1.5が中性溶液中に10mass%含まれる量となるまで濃縮して、濃縮溶液を得た。前記濃縮溶液に、メトキシエチレン無水マレイン酸コポリマーを、焼成によりLi1.5とした時のLi1.5質量とメトキシエチレン無水マレイン酸コポリマー質量とが1:3の割合となるように溶解させ、紡糸液b7を調製した。
次に、得られた紡糸液b7を、ガスのせん断作用と電界の作用によって紡糸する方法により紡糸して、集積させ、金属酸化物繊維B7前駆体を形成した。
なお、ガスのせん断作用と電界の作用によって紡糸する方法は、特開2012-154009号公報の実施例1と同じ紡糸条件で実施した。詳細を以下に示す。
紡糸液b7の吐出量:0.5g/時間
ガス吐出ノズルからの空気吐出圧力:0.3MPa
ガス吐出ノズルからの吐出空気温度:25℃
液吐出ノズル(紡糸ノズル)への印加電圧:8kV
紡糸室内の雰囲気:温度25℃、湿度25%RH
次に、得られた金属酸化物繊維B7前駆体を空気雰囲気下、温度450℃で2時間焼成して熱処理し、適宜粉砕して、Li1.5から構成された金属酸化物繊維B7(平均繊維径:0.5μm、平均繊維長:30μm)を得た。
(Preparation of metal oxide fiber B)
Ammonium metavanazine (V) (60 mmol) and lithium acetate (20 mmol) were added to 350 ml of water, and the mixture was heated and stirred at a temperature of 80 ° C. for 2 hours to dissolve the metal salt to obtain a solution. A 40% citric acid solution was added to the solution until the pH of the solution reached 3, and then heating and stirring were performed at a temperature of 80 ° C. for 2 hours to obtain an acidic solution. Ammonia water was added to the acidic solution until the pH reached 7, to obtain a neutral solution. When the neutral solution is calcined to Li 1.5 V 3 O 8 by an evaporator , the neutral solution is concentrated to an amount of 10 mass% contained in the neutral solution, and the concentrated solution is prepared. Obtained. When the methoxyethylene maleic anhydride copolymer was added to the concentrated solution to Li 1.5 V 3 O 8 by firing, the mass of Li 1.5 V 3 O 8 and the mass of the methoxyethylene maleic anhydride copolymer were 1: 3. The spinning solution b7 was prepared by dissolving the mixture in a ratio.
Next, the obtained spinning liquid b7 was spun by a method of spinning by the shearing action of gas and the action of an electric field and accumulated to form a metal oxide fiber B7 precursor.
The method of spinning by the action of the shearing action of the gas and the action of the electric field was carried out under the same spinning conditions as in Example 1 of JP2012-15409A. Details are shown below.
Discharge amount of spinning liquid b7: 0.5 g / hour Air discharge pressure from gas discharge nozzle: 0.3 MPa
Discharge air temperature from gas discharge nozzle: 25 ° C
Voltage applied to the liquid discharge nozzle (spinning nozzle): 8 kV
Atmosphere in the spinning room: temperature 25 ° C, humidity 25% RH
Next, the obtained metal oxide fiber B7 precursor was fired at a temperature of 450 ° C. for 2 hours in an air atmosphere, heat-treated, and appropriately pulverized to form a metal oxide composed of Li 1.5 V 3 O 8 . Fiber B7 (average fiber diameter: 0.5 μm, average fiber length: 30 μm) was obtained.

(金属酸化物繊維集合体の調製)
まず、実施例1と同様のシリカ系バインダを調製した。次に、金属酸化物繊維A及びB7を質量比99:1の割合でエタノールに混合し分散させ、分散された分散液を桐山ロートで吸引濾過し、円筒形の金属酸化物繊維集合体前駆体を調製した。
(Preparation of metal oxide fiber aggregate)
First, a silica-based binder similar to that in Example 1 was prepared. Next, the metal oxide fibers A and B7 were mixed and dispersed in ethanol at a mass ratio of 99: 1, and the dispersed dispersion was suction-filtered with a Kiriyama funnel to form a cylindrical metal oxide fiber aggregate precursor. Was prepared.

次に、シリカ系バインダを金属酸化物繊維集合体前駆体に塗布して、桐山ロートで吸引濾過し、得られたものを空気雰囲気下、温度450℃で2時間焼成して熱処理し、円筒形の金属酸化物繊維集合体を得た。この金属酸化物繊維集合体は、円筒形の形状を保っており、金属酸化物繊維集合体をピンセットで持ち上げたときに、金属酸化物繊維集合体が形崩れを起こさなかった。 Next, a silica-based binder was applied to the metal oxide fiber aggregate precursor, suction-filtered with a Kiriyama funnel, and the obtained product was fired at a temperature of 450 ° C. for 2 hours in an air atmosphere to heat-treat it into a cylindrical shape. The metal oxide fiber aggregate of the above was obtained. The metal oxide fiber aggregate maintained a cylindrical shape, and when the metal oxide fiber aggregate was lifted with tweezers, the metal oxide fiber aggregate did not lose its shape.

(比較例1)
(金属酸化物繊維Bの調製)
実施例1と同様の方法で、金属酸化物繊維B1を調製した。
(Comparative Example 1)
(Preparation of metal oxide fiber B)
The metal oxide fiber B1 was prepared in the same manner as in Example 1.

(金属酸化物繊維集合体の調製)
まず、実施例1と同様のシリカ系バインダを調製した。次に、金属酸化物繊維B1のみをエタノールに混合し分散させ、金属酸化物繊維B1が分散された分散液を桐山ロートで吸引濾過し、円筒形の金属酸化物繊維集合体前駆体を調製した。
次に、シリカ系バインダを金属酸化物繊維集合体前駆体に塗布して、桐山ロートで吸引濾過し、得られたものを空気雰囲気下、温度800℃で2時間焼成して熱処理し、金属酸化物繊維集合体を得た。しかし、得られた金属酸化物繊維集合体は円筒形状を維持しておらず、また、ピンセットで持ち上げるときに形崩れを起こすものであった。
(Preparation of metal oxide fiber aggregate)
First, a silica-based binder similar to that in Example 1 was prepared. Next, only the metal oxide fiber B1 was mixed and dispersed in ethanol, and the dispersion liquid in which the metal oxide fiber B1 was dispersed was suction-filtered with a Kiriyama funnel to prepare a cylindrical metal oxide fiber aggregate precursor. ..
Next, a silica-based binder was applied to the metal oxide fiber aggregate precursor, suction-filtered with a Kiriyama funnel, and the obtained product was calcined at a temperature of 800 ° C. for 2 hours in an air atmosphere to heat-treat the metal oxidation. An aggregate of material fibers was obtained. However, the obtained metal oxide fiber aggregate did not maintain a cylindrical shape, and was deformed when lifted with tweezers.

(比較例2)
(金属酸化物繊維Bの調製)
実施例7と同様の方法で、金属酸化物繊維B4を調製した。
(Comparative Example 2)
(Preparation of metal oxide fiber B)
The metal oxide fiber B4 was prepared in the same manner as in Example 7.

(金属酸化物繊維集合体の調製)
まず、実施例1と同様のシリカ系バインダを調製した。次に、金属酸化物繊維B4をエタノールに混合し分散させ、金属酸化物繊維B4が分散された分散液を桐山ロートで吸引濾過し、円筒形の金属酸化物繊維集合体前駆体を調製した。
次に、シリカ系バインダを金属酸化物繊維集合体前駆体に塗布して、桐山ロートで吸引濾過し、得られたものを空気雰囲気下、温度800℃で2時間焼成して熱処理し、金属酸化物繊維集合体を得た。しかし、得られた金属酸化物繊維集合体は円筒形状を維持しておらず、また、ピンセットで持ち上げるときに形崩れを起こすものであった。
(Preparation of metal oxide fiber aggregate)
First, a silica-based binder similar to that in Example 1 was prepared. Next, the metal oxide fiber B4 was mixed with ethanol and dispersed, and the dispersion liquid in which the metal oxide fiber B4 was dispersed was suction-filtered with a Kiriyama funnel to prepare a cylindrical metal oxide fiber aggregate precursor.
Next, a silica-based binder was applied to the metal oxide fiber aggregate precursor, suction-filtered with a Kiriyama funnel, and the obtained product was calcined at a temperature of 800 ° C. for 2 hours in an air atmosphere to heat-treat the metal oxidation. An aggregate of material fibers was obtained. However, the obtained metal oxide fiber aggregate did not maintain a cylindrical shape, and was deformed when lifted with tweezers.

(比較例3)
(金属酸化物繊維Bの調製)
実施例8と同様の方法で、金属酸化物繊維B5を調製した。
(Comparative Example 3)
(Preparation of metal oxide fiber B)
The metal oxide fiber B5 was prepared in the same manner as in Example 8.

(金属酸化物繊維集合体の調製)
まず、実施例1と同様のシリカ系バインダを調製した。次に、金属酸化物繊維B5をエタノールに混合し分散させ、金属酸化物繊維B5が分散された分散液を桐山ロートで吸引濾過し、円筒形の金属酸化物繊維集合体前駆体を調製した。
次に、シリカ系バインダを金属酸化物繊維集合体前駆体に塗布して、桐山ロートで吸引濾過し、得られたものを空気雰囲気下、温度600℃で2時間焼成して熱処理し、金属酸化物繊維集合体を得た。しかし、得られた金属酸化物繊維集合体は円筒形状を維持しておらず、また、ピンセットで持ち上げるときに形崩れを起こすものであった。
(Preparation of metal oxide fiber aggregate)
First, a silica-based binder similar to that in Example 1 was prepared. Next, the metal oxide fiber B5 was mixed with ethanol and dispersed, and the dispersion liquid in which the metal oxide fiber B5 was dispersed was suction-filtered with a Kiriyama funnel to prepare a cylindrical metal oxide fiber aggregate precursor.
Next, a silica-based binder was applied to the metal oxide fiber aggregate precursor, suction-filtered with a Kiriyama funnel, and the obtained product was calcined at a temperature of 600 ° C. for 2 hours in an air atmosphere to heat-treat the metal oxidation. An aggregate of material fibers was obtained. However, the obtained metal oxide fiber aggregate did not maintain a cylindrical shape, and was deformed when lifted with tweezers.

(比較例4)
(金属酸化物繊維Bの調製)
実施例9と同様の方法で、金属酸化物繊維B6を調製した。
(Comparative Example 4)
(Preparation of metal oxide fiber B)
The metal oxide fiber B6 was prepared in the same manner as in Example 9.

(金属酸化物繊維集合体の調製)
まず、実施例1と同様のシリカ系バインダを調製した。次に、金属酸化物繊維B6をエタノールに混合し分散させ、金属酸化物繊維B6が分散された分散液を桐山ロートで吸引濾過し、円筒形の金属酸化物繊維集合体前駆体を調製した。
次に、シリカ系バインダを金属酸化物繊維集合体前駆体に塗布して、桐山ロートで吸引濾過し、得られたものを空気雰囲気下、温度600℃で2時間焼成して熱処理し、金属酸化物繊維集合体を得た。しかし、得られた金属酸化物繊維集合体は円筒形状を維持しておらず、また、ピンセットで持ち上げるときに形崩れを起こすものであった。
(Preparation of metal oxide fiber aggregate)
First, a silica-based binder similar to that in Example 1 was prepared. Next, the metal oxide fiber B6 was mixed with ethanol and dispersed, and the dispersion liquid in which the metal oxide fiber B6 was dispersed was suction-filtered with a Kiriyama funnel to prepare a cylindrical metal oxide fiber aggregate precursor.
Next, a silica-based binder was applied to the metal oxide fiber aggregate precursor, suction-filtered with a Kiriyama funnel, and the obtained product was calcined at a temperature of 600 ° C. for 2 hours in an air atmosphere to heat-treat the metal oxidation. An aggregate of material fibers was obtained. However, the obtained metal oxide fiber aggregate did not maintain a cylindrical shape, and was deformed when lifted with tweezers.

(比較例5)
(金属酸化物繊維Bの調製)
実施例10と同様の方法で、金属酸化物繊維B7を調製した。
(Comparative Example 5)
(Preparation of metal oxide fiber B)
The metal oxide fiber B7 was prepared in the same manner as in Example 10.

(金属酸化物繊維集合体の調製)
まず、実施例1と同様のシリカ系バインダを調製した。次に、金属酸化物繊維B7をエタノールに混合し分散させ、金属酸化物繊維B7が分散された分散液を桐山ロートで吸引濾過し、円筒形の金属酸化物繊維集合体前駆体を調製した。
次に、シリカ系バインダを金属酸化物繊維集合体前駆体に塗布して、桐山ロートで吸引濾過し、得られたものを空気雰囲気下、温度450℃で2時間焼成して熱処理し、金属酸化物繊維集合体を得た。しかし、得られた金属酸化物繊維集合体は円筒形状を維持しておらず、また、ピンセットで持ち上げるときに形崩れを起こすものであった。
(Preparation of metal oxide fiber aggregate)
First, a silica-based binder similar to that in Example 1 was prepared. Next, the metal oxide fiber B7 was mixed with ethanol and dispersed, and the dispersion liquid in which the metal oxide fiber B7 was dispersed was suction-filtered with a Kiriyama funnel to prepare a cylindrical metal oxide fiber aggregate precursor.
Next, a silica-based binder was applied to the metal oxide fiber aggregate precursor, suction-filtered with a Kiriyama funnel, and the obtained product was calcined at a temperature of 450 ° C. for 2 hours in an air atmosphere to heat-treat the metal oxidation. An aggregate of material fibers was obtained. However, the obtained metal oxide fiber aggregate did not maintain a cylindrical shape, and was deformed when lifted with tweezers.

以上のことから、実施例の構成を満たす、金属酸化物繊維A及び金属酸化物繊維Bを有する金属酸化物繊維集合体は、ピンセットで持ち上げても形崩れを起こさない金属酸化物繊維集合体であった。 From the above, the metal oxide fiber aggregate having the metal oxide fiber A and the metal oxide fiber B satisfying the constitution of the embodiment is a metal oxide fiber aggregate that does not lose its shape even when lifted with tweezers. there were.

本発明の金属酸化物繊維集合体は、形崩れを起こさず取り扱い性に優れるため、触媒や、熱伝導性部材など様々な用途に用いることができる。 Since the metal oxide fiber aggregate of the present invention does not lose its shape and is excellent in handleability, it can be used for various purposes such as a catalyst and a heat conductive member.

Claims (5)

シリカを主体とする金属酸化物繊維Aと、
シリカ以外の金属酸化物を主体とする金属酸化物繊維Bを含む、
金属酸化物繊維集合体。
Metal oxide fiber A mainly composed of silica and
Containing metal oxide fiber B mainly composed of metal oxides other than silica,
Metal oxide fiber aggregate.
金属酸化物繊維Aと金属酸化物繊維Bの合計量に対する金属酸化物繊維Aの質量比が、10mass%以上(100mass%を除く)である、請求項1に記載の金属酸化物繊維集合体。 The metal oxide fiber aggregate according to claim 1, wherein the mass ratio of the metal oxide fiber A to the total amount of the metal oxide fiber A and the metal oxide fiber B is 10 mass% or more (excluding 100 mass%). 金属酸化物繊維Bが、酸化ランタン、酸化セリウム、アルミナ、チタニア、ガドリニウムとセリウムの複合酸化物、リチウムとバナジウムの複合酸化物のうち少なくとも1つを含む、請求項1又は2に記載の金属酸化物繊維集合体。 The metal oxidation according to claim 1 or 2, wherein the metal oxide fiber B contains at least one of lanthanum oxide, cerium oxide, alumina, titania, a composite oxide of gadolinium and cerium, and a composite oxide of lithium and vanadium. Body fiber aggregate. 請求項3の金属酸化物繊維集合体を含む、触媒。 A catalyst comprising the metal oxide fiber aggregate of claim 3. (i)ケイ素を含む物質を含む紡糸液aと、ケイ素以外の金属を含む物質を含む紡糸液bを調製する工程、
(ii)紡糸液aを紡糸し焼成することで、シリカを主体とする金属酸化物繊維Aを調製する工程、
(iii)紡糸液bを紡糸し焼成することで、シリカ以外の金属酸化物を主体とする金属酸化物繊維Bを調製する工程、
(iv)金属酸化物繊維Aと金属酸化物繊維Bを混合し、金属酸化物繊維集合体を調製する工程、
を含む、請求項1~3のいずれか1項に記載の金属酸化物繊維集合体の製造方法。
(I) A step of preparing a spinning liquid a containing a substance containing silicon and a spinning liquid b containing a substance containing a metal other than silicon.
(Ii) A step of preparing a metal oxide fiber A mainly composed of silica by spinning and firing a spinning liquid a.
(Iii) A step of preparing a metal oxide fiber B mainly composed of a metal oxide other than silica by spinning and firing the spinning liquid b.
(Iv) A step of mixing a metal oxide fiber A and a metal oxide fiber B to prepare a metal oxide fiber aggregate.
The method for producing a metal oxide fiber aggregate according to any one of claims 1 to 3, which comprises.
JP2020120819A 2020-07-14 2020-07-14 Metal oxide fiber aggregate and manufacturing method thereof and catalyst constituted of the metal oxide fiber aggregate Pending JP2022017948A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020120819A JP2022017948A (en) 2020-07-14 2020-07-14 Metal oxide fiber aggregate and manufacturing method thereof and catalyst constituted of the metal oxide fiber aggregate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020120819A JP2022017948A (en) 2020-07-14 2020-07-14 Metal oxide fiber aggregate and manufacturing method thereof and catalyst constituted of the metal oxide fiber aggregate

Publications (1)

Publication Number Publication Date
JP2022017948A true JP2022017948A (en) 2022-01-26

Family

ID=80186109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020120819A Pending JP2022017948A (en) 2020-07-14 2020-07-14 Metal oxide fiber aggregate and manufacturing method thereof and catalyst constituted of the metal oxide fiber aggregate

Country Status (1)

Country Link
JP (1) JP2022017948A (en)

Similar Documents

Publication Publication Date Title
JP6442574B2 (en) Nanoparticle aggregate, nanoparticle fired product, and production method thereof
KR20090107415A (en) Process for manufacturing organic fibers containing inorganic component and nonwoven fabric containing the same
JP2006036576A (en) Zirconia-based porous body and its production method
WO2013162029A1 (en) Iron oxide-zirconia composite oxide and method for producing same, and exhaust gas purification catalyst
KR20060014360A (en) 47 59 ELECTRICALLY CONDUCTIVE FIBERS OF Ti4O7 AND Ti5O9
JP2010168720A (en) Method for producing inorganic nanofiber
George et al. Sol-gel electrospinning of diverse ceramic nanofibers and their potential applications
CN112533885A (en) Composite oxide ceramic, method for producing same, and article
WO2007123114A1 (en) Titania fiber and method for producing titania fiber
JP6076225B2 (en) Filler-dispersed organic resin composite
JPH11116327A (en) Barium titanate-based semiconductor ceramic
WO2009157546A1 (en) Composite ceramic powder, process for production of same and solid oxide fuel cell
JP2022017948A (en) Metal oxide fiber aggregate and manufacturing method thereof and catalyst constituted of the metal oxide fiber aggregate
JP4008339B2 (en) Inorganic fiber sheet and method for producing inorganic fiber sheet
JP5990060B2 (en) INORGANIC FIBER AND PROCESS FOR PRODUCING THE SAME
JP5658295B2 (en) Method for producing barium titanyl oxalate and method for producing barium titanate
JP2008038314A (en) Titania fiber and method for producing titania fiber
JP5323537B2 (en) Method for producing barium titanyl oxalate and method for producing barium titanate
JP4185760B2 (en) Inorganic short fiber and method for producing the same
CN1281549C (en) Barium titanate based multilayer ceramic capacitor nanopowder for nickel electrode and production method thereof
JPS62168544A (en) Zirconia carrier and its preparation
JP6058969B2 (en) Method for producing metal oxide fiber
RU2690852C2 (en) Catalyst compositions without noble metals
JP2014173214A (en) Method of producing inorganic composite nanofiber
JP5375063B2 (en) Composite ceramic powder, method for producing the same, and solid oxide fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240207