JP2022017658A - Compound - Google Patents

Compound Download PDF

Info

Publication number
JP2022017658A
JP2022017658A JP2020120338A JP2020120338A JP2022017658A JP 2022017658 A JP2022017658 A JP 2022017658A JP 2020120338 A JP2020120338 A JP 2020120338A JP 2020120338 A JP2020120338 A JP 2020120338A JP 2022017658 A JP2022017658 A JP 2022017658A
Authority
JP
Japan
Prior art keywords
compound
ring
group
substituent
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020120338A
Other languages
Japanese (ja)
Inventor
誠治 秋山
Seiji Akiyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2020120338A priority Critical patent/JP2022017658A/en
Publication of JP2022017658A publication Critical patent/JP2022017658A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

To provide a novel compound with a specific structure which has low ligand planarity, low aggregability and high sublimability, and exhibits near-infrared absorption or emission.SOLUTION: The compound is represented by formula (1) in the figure. [In formula (1), A and B each independently represent an optionally substituted aromatic hydrocarbon ring or aromatic heterocycle; X represents an acceptor-type substituent; M represents Ir, Os or Pt; L represents an n-valent ligand; and m and n each independently represent an integer from 1 to 3.]SELECTED DRAWING: Figure 1

Description

本発明は、新規の化合物に関するものである。本発明の化合物は、近赤外域以上に吸収
・発光特性を有するものであり、例えば近赤外発光マーカー、インジケーター、バイオイ
メーシ゛ンク゛、センサー、波長変換フィルム、発光トランジスター、OLED、電気化
学発光セル、フォトダイナミックセラピー、光美容、ナイトビジョンディスプレイ、セキ
ュリティー、偽造防止用途等の部材として好適に用いることができる。
The present invention relates to novel compounds. The compound of the present invention has absorption / emission characteristics higher than those in the near-infrared region, and is, for example, a near-infrared emission marker, indicator, bioimaging, sensor, wavelength conversion film, emission transistor, OLED, electrochemical emission cell, photo. It can be suitably used as a member for dynamic therapy, optical beauty, night vision display, security, anti-counterfeiting, and the like.

これまで目視による選別、認識等が主流であったが、科学技術の発展とともに、高齢化や
少子化に伴う労働力の減少も相重なって、ロボットを利用した選別・認識へとシフトしつ
つある。目視による選別・認識では可視光を利用するしか出来ないが、ロボットを利用し
た場合には目視では捉えられない近赤外発光も利用することが可能となり、選別・識別精
度の向上が期待できる。さらに近赤外光は細胞を透過するので、バイオイメーシ゛ンク゛
やバイオセンサー、医療診断薬、PDTなどへの展開も期待できる。なかでもIr、Pt
、Osなどの金属錯体は燐光発光を示すことから、特に注目を集めている。
例えば、特許文献1にはキナゾリン骨格を配位子に有するイリジウム錯体は近赤外に発光
を示し、OLED用途として利用できることが報告されている。また、非特許文献1には
キノゾリン骨格の配位子を有するカチオン性イリジウム錯体が、電気化学セルとして利用
できることが示されている。
しかしながら、実用化にはさらなる性能向上が求められている。
Until now, visual selection and recognition have been the mainstream, but with the development of science and technology, the labor force is decreasing due to the aging population and declining birthrate, and there is a shift to robot-based selection and recognition. .. Visible light can only be used for visual sorting and recognition, but near-infrared light emission that cannot be visually captured can also be used when using a robot, and improvement in sorting and identification accuracy can be expected. Furthermore, since near-infrared light passes through cells, it can be expected to be applied to bioimaging, biosensors, medical diagnostic agents, PDT, and the like. Among them, Ir and Pt
, Os and the like exhibit phosphorescence, and are therefore attracting particular attention.
For example, Patent Document 1 reports that an iridium complex having a quinazoline skeleton as a ligand emits light in the near infrared and can be used for OLED applications. Further, Non-Patent Document 1 shows that a cationic iridium complex having a ligand of a quinosoline skeleton can be used as an electrochemical cell.
However, further performance improvement is required for practical use.

米国公開2019/0062357号公報Published in the United States 2019/0062357

Chem. Eur. J. 2019, 25, 5489 - 5497(Cationic IrIII Emitters with Near-Infrared Emission Beyond 800 nmand Their Use in Light-Emitting Electrochemical Cells)Chem. Eur. J. 2019, 25, 5489 --5497 (Cationic IrIII Emitters with Near-Infrared Emission Beyond 800 nmand Their Use in Light-Emitting Electrochemical Cells)

上記特許文献1及び非特許文献1で開示された化合物では、配位子の平面性が高く、凝
集しやすく、昇華性も低いと考えられる。
In the compounds disclosed in Patent Document 1 and Non-Patent Document 1, it is considered that the flatness of the ligand is high, the ligand is easily aggregated, and the sublimation property is low.

本発明者は、上記課題を解決すべく検討を重ねた結果、キナゾリン骨格に電子吸引性基
を導入することにより、上記課題を解決することを見出した。本発明は、このような知見
に基づいて達成されたものであり、以下を要旨とする。
[1]式(1)で表される化合物。
As a result of repeated studies to solve the above problems, the present inventor has found that the above problems can be solved by introducing an electron-withdrawing group into the quinazoline skeleton. The present invention has been achieved based on such findings, and the gist thereof is as follows.
[1] A compound represented by the formula (1).

Figure 2022017658000002
Figure 2022017658000002

[式(1)において、
A及びBはそれぞれ独立に、置換基を有していてもよい、芳香族炭化水素環又は芳香族複
素環を表し、
Zはアクセプター性置換基を表し、
MはIr、Os又はPtを表し、
Lはn価の配位子を表し、
m及びnはそれぞれ独立に、1~3の整数を表す。]
[2] Lが下記式(2)で表されるものである、請求項1に記載の化合物。
[In equation (1)
A and B each independently represent an aromatic hydrocarbon ring or an aromatic heterocycle which may have a substituent.
Z represents an acceptor substituent
M represents Ir, Os or Pt and represents
L represents an n-valent ligand
m and n each independently represent an integer of 1 to 3. ]
[2] The compound according to claim 1, wherein L is represented by the following formula (2).

Figure 2022017658000003
Figure 2022017658000003

[式(2)において、
X及びYはそれぞれ独立に、C原子、N原子またはO原子を表す。]
[In equation (2)
X and Y independently represent C, N or O atoms, respectively. ]

本発明は、近赤外吸収又は発光を有する特定構造の新規化合物を提供するものである。 The present invention provides a novel compound having a specific structure having near-infrared absorption or light emission.

実施例1で得られた化合物の吸収スペクトルを表す。The absorption spectrum of the compound obtained in Example 1 is represented. 実施例1で得られた化合物の発光スペクトルを表す。The emission spectrum of the compound obtained in Example 1 is represented. 実施例2で得られた化合物の吸収スペクトルを表す。The absorption spectrum of the compound obtained in Example 2 is represented. 実施例2で得られた化合物の発光スペクトルを表す。The emission spectrum of the compound obtained in Example 2 is represented. 実施例3で得られた化合物の吸収スペクトルを表す。The absorption spectrum of the compound obtained in Example 3 is represented. 実施例3で得られた化合物の発光スペクトルを表す。The emission spectrum of the compound obtained in Example 3 is represented. 比較例1で得られた化合物の吸収スペクトルを表す。The absorption spectrum of the compound obtained in Comparative Example 1 is represented. 比較例1で得られた化合物の発光スペクトルを表す。The emission spectrum of the compound obtained in Comparative Example 1 is represented.

以下に、本発明の実施の形態を詳細に説明するが、本発明は以下の実施の形態に限定さ
れるものではなく、その要旨の範囲内で種々に変形して実施することができる。
Hereinafter, embodiments of the present invention will be described in detail, but the present invention is not limited to the following embodiments, and can be variously modified and implemented within the scope of the gist thereof.

本発明の新規の化合物は下記式(1)で表される。 The novel compound of the present invention is represented by the following formula (1).

Figure 2022017658000004
Figure 2022017658000004

[式(1)において、
A及びBはそれぞれ独立に、置換基を有していてもよい、芳香族炭化水素環又は芳香族複
素環を表し、
Zはアクセプター性置換基を表し、
MはIr、Os又はPtを表し、
Lはn価の配位子を表し、
m及びnはそれぞれ独立に、1~3の整数を表す。]
[In equation (1)
A and B each independently represent an aromatic hydrocarbon ring or an aromatic heterocycle which may have a substituent.
Z represents an acceptor substituent
M represents Ir, Os or Pt and represents
L represents an n-valent ligand
m and n each independently represent an integer of 1 to 3. ]

式(1)で表される化合物が本願発明の効果を奏する理由は定かではないが、以下が考
えられる。式(1)のXが、結合を介してAおよびMに配位するN原子に電子的効果を誘
発し、配位結合を安定化する。そのため、MLCT(電荷移動 Metal to Ligand Charge
Transfer)のエネルギーが小さくなり、長波長発光を誘発する。また、Zが空間を介して
Aと相互作用することにより、式(1)で表される化合物を安定化することが考えられる
The reason why the compound represented by the formula (1) exerts the effect of the present invention is not clear, but the following can be considered. X in formula (1) induces an electronic effect on the N atoms coordinated to A and M via the bond, stabilizing the coordinate bond. Therefore, MLCT (Charge Transfer Metal to Ligand Charge)
The energy of Transfer) becomes small and induces long wavelength emission. Further, it is conceivable that Z interacts with A via space to stabilize the compound represented by the formula (1).

(A及びB)
A及びBはそれぞれ独立に、置換基を有していてもよい、芳香族炭化水素環又は芳香族
複素環を表す。これらの環は単一又は複数の置換基を有していてもよい。
芳香族炭化水素環としては、ベンゼン環、ナフタレン環、アントラセン環、フェナント
レン環等が挙げられる。
芳香族複素環としては、ベンゾチオフェン環、ジベンゾチオフェン環、ジベンゾフラン
環、ベンゾフラン環、カルバゾール環、チオフェン環、ピリジン環、ピリミジン環、ピラ
ジン環、ピリダジン環、チアゾール環、チアジアゾール環、オキサゾール環、オキサジア
ゾール環等が挙げられる。
これらの中でも、Aは電子供与性の環が好ましく、なかでもベンゼン環、ナフタレン環
、チオフェン環、ベンゾチオフェン環、ジベンゾチオフェン環、ジベンゾフラン環、カル
バゾール環が好ましい。また、Bはベンゼン環、ナフタレン環、ピリジン環、ピリミジン
環、ピラジン環、ピリダジン環、チアゾール環、チアジアゾール環、オキサゾール環、オ
キサジアゾール環等が好ましい。これらの環であることで配位子のバンドギャップが小さ
くなり、近赤外発光が得られる傾向にある。
(A and B)
A and B each independently represent an aromatic hydrocarbon ring or an aromatic heterocycle which may have a substituent. These rings may have a single or multiple substituents.
Examples of the aromatic hydrocarbon ring include a benzene ring, a naphthalene ring, an anthracene ring, and a phenanthrene ring.
Examples of the aromatic heterocycle include benzothiophene ring, dibenzothiophene ring, dibenzofuran ring, benzofuran ring, carbazole ring, thiophene ring, pyridine ring, pyrimidine ring, pyrazine ring, pyridazine ring, thiazole ring, thiadiazole ring, oxazole ring, and oxadi. Examples include the azole ring.
Among these, A is preferably an electron-donating ring, and among them, a benzene ring, a naphthalene ring, a thiophene ring, a benzothiophene ring, a dibenzothiophene ring, a dibenzofuran ring, and a carbazole ring are preferable. Further, B is preferably a benzene ring, a naphthalene ring, a pyridine ring, a pyrimidine ring, a pyrazine ring, a pyridazine ring, a thiazole ring, a thiadiazole ring, an oxazole ring, an oxadiazole ring and the like. With these rings, the bandgap of the ligand becomes small, and near-infrared emission tends to be obtained.

A及びBが有してもよい置換基は、それぞれ独立であり、特に限定されない。具体的に
は、水素原子、重水素原子、置換基を有していてもよいアルキル基、置換基を有していて
もよいアルコキシル基、置換基を有していてもよいアミノ基、ハロゲン、シアノ基、置換
基を有していてもよいアリール基、置換基を有していてもよいヘテロアリール基、置換基
を有していてもよいシクロアルキル基、置換基を有していてもよいアルケニル基、置換基
を有していてもよいアルキニル基等が挙げられる。これらの中でも水素原子、重水素原子
、置換基を有していてもよいアルキル基、置換基を有していてもよいアルコキシル基、置
換基を有していてもよいアミノ基、ハロゲン及びシアノ基が、立体障害が小さくなるため
好ましい。
置換基の数及び位置は特に限定されないが、M(中心金属)に対して反対方向に置換す
る方が、式(1)で表される化合物の安定性が向上する傾向にあるため好ましい。
The substituents that A and B may have are independent of each other and are not particularly limited. Specifically, a hydrogen atom, a heavy hydrogen atom, an alkyl group which may have a substituent, an alkoxyl group which may have a substituent, an amino group which may have a substituent, a halogen, and the like. It may have a cyano group, an aryl group which may have a substituent, a heteroaryl group which may have a substituent, a cycloalkyl group which may have a substituent, and a substituent. Examples thereof include an alkenyl group and an alkynyl group which may have a substituent. Among these, a hydrogen atom, a heavy hydrogen atom, an alkyl group which may have a substituent, an alkoxyl group which may have a substituent, an amino group which may have a substituent, a halogen and a cyano group. However, it is preferable because the steric obstacle is reduced.
The number and position of the substituents are not particularly limited, but substitution in the direction opposite to M (central metal) is preferable because the stability of the compound represented by the formula (1) tends to be improved.

(Z)
Zはアクセプター性置換基を表す。本発明においてアクセプター性置換基とは、共鳴効
果の寄与が少なく、ハメット則による置換基定数(σ値)が0より大きいものを表す。こ
れらの中でも、長波長化の観点から、σ値が0.1以上であることが好ましく、0.3以
上であることがより好ましい。また上限は特に限定されないが、2.0以下であることが
好ましく、1.5以下であることがより好ましい。
アクセプター性置換基は具体的には、ハロゲン、シアノ基、トリフルオロメチル基、カ
ルボニル基、アルキルカルボニル基、アルキルオキシカルボニル基、イミノ基等が挙げら
れる。
また、前記AとZは結合して環を形成していてもよい。
(Z)
Z represents an acceptor substituent. In the present invention, the acceptable substituent means that the contribution of the resonance effect is small and the substituent constant (σ value) according to Hammett's rule is larger than 0. Among these, from the viewpoint of lengthening the wavelength, the σ value is preferably 0.1 or more, and more preferably 0.3 or more. The upper limit is not particularly limited, but is preferably 2.0 or less, and more preferably 1.5 or less.
Specific examples of the accepting substituent include a halogen, a cyano group, a trifluoromethyl group, a carbonyl group, an alkylcarbonyl group, an alkyloxycarbonyl group, an imino group and the like.
Further, the A and Z may be combined to form a ring.

[L]
Lはn価の配位子を表し、本発明の特性を損なわない限り特に制限は無い。同一分子内
にLが複数ある場合は同一であっても異なっていてもよい。
Lとしては.下記式(2)で表されるものが好ましい。
[L]
L represents an n-valent ligand, and is not particularly limited as long as the characteristics of the present invention are not impaired. When there are a plurality of Ls in the same molecule, they may be the same or different.
As L, those represented by the following formula (2) are preferable.

Figure 2022017658000005
Figure 2022017658000005

式(2)において、X及びYはそれぞれ独立に、C原子、N原子またはO原子を表す。
C原子、N原子及びO原子は環又は基の一部であり、X及びYをそれぞれ含む環又は基が
、結合しているものである。C原子、N原子及びO原子を含む環又は基は特に限定されな
いが、安定性の観点からM、X及びYを含む環が5員環又は6員環であることが好ましい
。具体的には、下記の構造が挙げられる。
In formula (2), X and Y independently represent C, N or O atoms, respectively.
The C atom, N atom and O atom are a part of a ring or a group, and the ring or the group containing X and Y, respectively, is bonded. The ring or group containing a C atom, an N atom and an O atom is not particularly limited, but from the viewpoint of stability, the ring containing M, X and Y is preferably a 5-membered ring or a 6-membered ring. Specifically, the following structure can be mentioned.

Figure 2022017658000006
Figure 2022017658000006

Lの好ましい構造を以下の式(2A)~(2F)に例示するが、この限りではない。こ
れらはその構造を保ち得る限りにおいて骨格の炭素原子が窒素原子など他の原子に置き換
わっていてもよいし、さらに置換基を有していてもよい。
Lが置換基を有する場合、その置換基としては、-F、-CN、-CF、炭素数1以
上30以下の、直鎖、分岐もしくは環状アルキル基、炭素数5以上40以下のアリールオ
キシ基、炭素数5以上40以下のアリールチオ基、炭素数10以上40以下のジアリール
アミノ基、炭素数5以上60以下のアラルキル基、炭素数5以上60以下の芳香族基また
炭素数5以上60以下の複素芳香族基等が挙げられる。好ましくは、-F、-CN、-C
、アルキル基、アラルキル基、芳香族基又は複素芳香族基が挙げられ、-F、-CN
、-CF、アルキル基、芳香族基、複素芳香族基がより好ましい。
The preferable structure of L is exemplified in the following formulas (2A) to (2F), but the present invention is not limited to this. As long as the structure can be maintained, the carbon atom of the skeleton may be replaced with another atom such as a nitrogen atom, or the carbon atom may further have a substituent.
When L has a substituent, the substituents include -F, -CN, -CF 3 , a linear, branched or cyclic alkyl group having 1 or more and 30 or less carbon atoms, and an aryloxy having 5 or more and 40 or less carbon atoms. Group, arylthio group with 5 or more and 40 or less carbon atoms, diarylamino group with 10 or more and 40 or less carbon atoms, aralkyl group with 5 or more and 60 or less carbon atoms, aromatic group with 5 or more and 60 or less carbon atoms, and 5 or more and 60 or less carbon atoms. Examples include the complex aromatic group of. Preferably -F, -CN, -C
Examples include F 3 , alkyl group, aralkyl group, aromatic group or complex aromatic group, -F, -CN.
, -CF 3 , alkyl groups, aromatic groups, complex aromatic groups are more preferred.

Figure 2022017658000007
Figure 2022017658000007

本発明の式(1)で表される化合物のMとLとの結合様式には特に制限はなく、目的に
応じて適宜選択することができる。例えば、Lの窒素原子及び炭素原子で結合する様式、
Lの2つの窒素原子で結合する様式、Lの2つの炭素原子で結合する様式、Lの炭素原子
及び酸素原子で結合する様式、Lの2つの酸素原子で結合する様式などが挙げられる。
上記のなかでも(2A)又は(2F)が式(1)で表される化合物の安定性が向上する
ことから好ましい。
The bonding mode between M and L of the compound represented by the formula (1) of the present invention is not particularly limited and may be appropriately selected depending on the intended purpose. For example, a mode of bonding with a nitrogen atom and a carbon atom of L,
Examples include a mode in which L is bonded with two nitrogen atoms, a mode in which L is bonded with two carbon atoms, a mode in which L is bonded with a carbon atom and an oxygen atom, and a mode in which L is bonded with two oxygen atoms.
Among the above, (2A) or (2F) is preferable because the stability of the compound represented by the formula (1) is improved.

(m及びn)
m及びnはそれぞれ独立に、1~3の整数を表す。MがIr又はOsの場合n+m=3
であり、MがPtの場合n+m=2である。
(M and n)
m and n each independently represent an integer of 1 to 3. When M is Ir or Os, n + m = 3
When M is Pt, n + m = 2.

[式(1)で表される化合物の製造方法]
上述した式(1)で表される化合物の製造方法は特に限定されないが、例えば以下スキ
ームが挙げられる。
[Method for producing a compound represented by the formula (1)]
The method for producing the compound represented by the above-mentioned formula (1) is not particularly limited, and examples thereof include the following schemes.

Figure 2022017658000008
Figure 2022017658000008

上記M*としてはIrCl3/xH2O、Ir(acac)3、[Ir(COD)2]2Cl、PtCl2等が挙げられる。 Examples of the above M * include IrCl 3 / xH 2 O, Ir (acac) 3 , [Ir (COD) 2 ] 2 Cl, PtCl 2 , and the like.

[式(1)で表される化合物の物性]
化合物の重量減少極大温度は特に限定されないが、化合物が熱分解しやすいことから4
45℃以下であることが好ましく、440℃以下であることがより好ましい。重量減少極
大温度が上記範囲であることで、昇華性が高く、昇華精製により高純度化できる傾向にあ
り、真空蒸着等のデバイスへの適合性が向上する。
[Physical characteristics of the compound represented by the formula (1)]
Weight reduction of the compound The maximum temperature is not particularly limited, but since the compound is easily thermally decomposed, 4
It is preferably 45 ° C. or lower, and more preferably 440 ° C. or lower. When the maximum weight reduction temperature is in the above range, the sublimation property is high, the purity tends to be high by sublimation purification, and the compatibility with devices such as vacuum vapor deposition is improved.

[式(1)で表される化合物の具体例]
以下に、式(1)で表される化合物の具体例を示すが、これに限定されるものではない
[Specific example of the compound represented by the formula (1)]
Specific examples of the compound represented by the formula (1) are shown below, but the present invention is not limited thereto.

Figure 2022017658000009
Figure 2022017658000009

Figure 2022017658000010
Figure 2022017658000010

Figure 2022017658000011
Figure 2022017658000011

Figure 2022017658000012
Figure 2022017658000012

Figure 2022017658000013
Figure 2022017658000013

Figure 2022017658000014
Figure 2022017658000014

[部材]
本発明の式(1)で表される化合物は、近赤外域以上に吸収・発光特性を有するもので
あり、例えば近赤外発光マーカー、インジケーター、バイオイメーシ゛ンク゛、センサー
、波長変換フィルム、発光トランジスター、OLED、電気化学発光セル、フォトダイナ
ミックセラピー、光美容、ナイトビジョンディスプレイ、セキュリティー、偽造防止用途
等の部材として好適に用いることができる。
[Element]
The compound represented by the formula (1) of the present invention has absorption / emission characteristics in the near infrared region or higher, and is, for example, a near infrared emission marker, an indicator, a bioimage, a sensor, a wavelength conversion film, a light emitting transistor, and the like. It can be suitably used as a member for OLED, light-emitting cell, photodynamic therapy, photobeauty, night vision display, security, anti-counterfeiting application and the like.

[合成例1] [Synthesis Example 1]

Figure 2022017658000015
Figure 2022017658000015

Chemistry of Heterocyclic Compounds 2015, 51(3), 259-268の処方を基に合成を行い
、目的物を得た。
[化合物1の合成]
Synthesis was performed based on the formulation of Chemistry of Heterocyclic Compounds 2015, 51 (3), 259-268 to obtain the desired product.
[Synthesis of compound 1]

Figure 2022017658000016
Figure 2022017658000016

窒素雰囲気下、Ethyl trifluoropyruvate (7.85g、46.14mmol)のエタノ
ール(80mL)溶液に、o-phenylenediamine(4.99g、1.0equiv.)を添加し、4時
間還流下撹拌した。
減圧下に溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル/ヘ
キサン=1/4) で精製し、化合物1(黄色粉体、7.62g、収率 77.1%)を得た。
O-phenylenediamine (4.99 g, 1.0 equiv.) Was added to a solution of Ethyl trifluoropyruvate (7.85 g, 46.14 mmol) in ethanol (80 mL) under a nitrogen atmosphere, and the mixture was stirred under reflux for 4 hours.
The solvent was distilled off under reduced pressure, and the residue was purified by silica gel column chromatography (ethyl acetate / hexane = 1/4) to obtain Compound 1 (yellow powder, 7.62 g, yield 77.1%). ..

[化合物2の合成] [Synthesis of compound 2]

Figure 2022017658000017
Figure 2022017658000017

窒素雰囲気下、化合物1(7.50g、35.02mmol)をオキシ塩化燐(75mL)
に室温で加え、8時間還流させると溶解して反応が進行した。
室温へ冷却後、減圧下溶媒を留去し残渣を、撹拌した氷水(200mL)へ滴下し暫く撹
拌した。
得られた沈殿を濾取、精製水(100mL)、ジエチルエーテル(100mL)で順次洗
浄後、風乾、真空減圧下乾燥し、化合物2 (淡褐色粉体、7,27g、収率 89.2%)
を得た。
In a nitrogen atmosphere, compound 1 (7.50 g, 35.02 mmol) was added to phosphorus oxychloride (75 mL).
Was added at room temperature and refluxed for 8 hours to dissolve and the reaction proceeded.
After cooling to room temperature, the solvent was distilled off under reduced pressure, and the residue was added dropwise to the stirred ice water (200 mL) and stirred for a while.
The obtained precipitate was collected by filtration, washed successively with purified water (100 mL) and diethyl ether (100 mL), air-dried, and dried under vacuum under reduced pressure. Compound 2 (light brown powder, 7,27 g, yield 89.2%). )
Got

[化合物3の合成] [Synthesis of compound 3]

Figure 2022017658000018
Figure 2022017658000018

窒素雰囲気下、化合物2(3.70g、15.48mmol)、フェニルボロン酸(2.
45g、1.3equiv.)、DME (40mL)、2Mリン酸三カリウム水溶液(19.3m
L、2.5equiv.)を仕込み、室温にて20分間窒素バブリングした後、Pd(pph3)4 (89
4mg、5mol%)を加え、9時間還流撹拌した。
室温へ冷却後、トルエン(50mL×2 回)抽出を行った。有機層を合わせ、精製水(5
0mL)で1回洗浄後、無水芒硝乾燥、濾過、濾液を濃縮した。
得られた残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル/ヘキサン=1/4)
で精製し、化合物3(黄色粉体、3.88g、収率 91.4%)を得た。
Compound 2 (3.70 g, 15.48 mmol), phenylboronic acid (2.
45g, 1.3equiv.), DME (40mL), 2M tripotassium phosphate aqueous solution (19.3m)
L, 2.5 equiv.) Was charged, nitrogen bubbling was performed at room temperature for 20 minutes, and then Pd (pph 3 ) 4 (89).
4 mg, 5 mol%) was added, and the mixture was stirred under reflux for 9 hours.
After cooling to room temperature, toluene (50 mL x 2 times) was extracted. Combine the organic layers and purified water (5)
After washing once with 0 mL), anhydrous sodium sulfate was dried, filtered, and the filtrate was concentrated.
The obtained residue is subjected to silica gel column chromatography (ethyl acetate / hexane = 1/4).
The compound 3 (yellow powder, 3.88 g, yield 91.4%) was obtained.

Figure 2022017658000019
Figure 2022017658000019

窒素雰囲気下、塩化イリジウム-3.64水和物(127mg、0.3473mmol)
を精製水(1mL)で溶解し、diglyme(4mL)と化合物3 (200mg、2.1equiv.)を
加え、油浴50℃設定にし、30分間窒素バブリングした。その後、N,N-diisopropyleth
ylamine(94mg、2.1equiv.)を加え、120℃まで昇温しながら3時間撹拌し、次
いで昇温し、19時間還流撹拌した。
室温へ放冷後、ジクロロメタン(40mL)と精製水(10mL)を加え抽出し、無水芒硝
乾燥、濾過、濾液を濃縮後、残渣をメタノール(5mL)で懸洗、濾取し、黒色粉体の化合
物4(159mg)を得た。
Iridium chloride-3.64 hydrate (127 mg, 0.3473 mmol) under nitrogen atmosphere
Was dissolved in purified water (1 mL), diglyme (4 mL) and compound 3 (200 mg, 2.1equiv.) Were added, the oil bath was set at 50 ° C., and nitrogen bubbling was performed for 30 minutes. Then N, N-diisopropyleth
ylamine (94 mg, 2.1equiv.) Was added, and the mixture was stirred while raising the temperature to 120 ° C. for 3 hours, then the temperature was raised, and the mixture was reflux-stirred for 19 hours.
After allowing to cool to room temperature, dichloromethane (40 mL) and purified water (10 mL) are added for extraction, anhydrous syrup is dried, filtered, and the filtrate is concentrated. Compound 4 (159 mg) was obtained.

窒素雰囲気下、化合物4(150mg、0.1938mmol)、アセチルアセトン(2
5mg、1.3equiv.)、2-ethoxyethanol(3mL)を室温撹拌し、t-BuOK (28mg、1
.3equiv.)を投入した。得られた混合物を40℃にて2時間撹拌した。
氷冷した後、精製水(4mL)でquenchし、ジクロロメタン(20mL×2回)抽出した。
有機層を合わせ、精製水(5mL)で1回洗浄後、無水芒硝乾燥、濾過を行い、濾液を濃縮
した。得られた残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル/ジクロロメタ
ン:1/19)で精製し、NIR-1(黒褐色粉体、115mg、収率70.9%、LC純
度 99.4%)を得た。
また、得られたNIR-1の吸収スペクトル、発光スペクトルを測定した。なお、吸収
スペクトルは、日立製作所のU3900分光光度計を用い、10-5mol/Lの脱気し
た塩化メチレン溶液を調液し、測定した。発光スペクトルは、日本分光株式会社の紫外可
視近赤外分光光度計V-7200を用い、10-5mol/Lの脱気した塩化メチレン溶
液を調液し、測定した。測定結果を図1及び2に示す。
Compound 4 (150 mg, 0.1938 mmol), acetylacetone (2) under a nitrogen atmosphere.
Stir 5 mg, 1.3 equiv.), 2-ethoxyethanol (3 mL) at room temperature and t-BuOK (28 mg, 1
.. 3 equiv.) Was introduced. The resulting mixture was stirred at 40 ° C. for 2 hours.
After cooling with ice, it was quenched with purified water (4 mL) and extracted with dichloromethane (20 mL × 2 times).
The organic layers were combined, washed once with purified water (5 mL), dried over anhydrous Glauber's salt and filtered, and the filtrate was concentrated. The obtained residue was purified by silica gel column chromatography (ethyl acetate / dichloromethane: 1/19) to obtain NIR-1 (blackish brown powder, 115 mg, yield 70.9%, LC purity 99.4%). ..
Moreover, the absorption spectrum and the emission spectrum of the obtained NIR-1 were measured. The absorption spectrum was measured by preparing a degassed methylene chloride solution of 10-5 mol / L using a U3900 spectrophotometer manufactured by Hitachi, Ltd. The emission spectrum was measured by preparing a degassed methylene chloride solution of 10-5 mol / L using an ultraviolet-visible near-infrared spectrophotometer V-7200 manufactured by JASCO Corporation. The measurement results are shown in FIGS. 1 and 2.

Figure 2022017658000020
Figure 2022017658000020

Figure 2022017658000021
Figure 2022017658000021

Ethyl trifluoropyruvate(5.00g、29.40mmol)と2,3-diaminonaphthalen
e(4.65g、1eq.) を用いて、化合物1と同様の合成を行うことにより、化合物5(6
.46g、収率83.2%)を得た。
Ethyl trifluoropyruvate (5.00 g, 29.40 mmol) and 2,3-diaminonaphthalen
By performing the same synthesis as that of compound 1 using e (4.65 g, 1eq.), Compound 5 (6)
.. 46 g, yield 83.2%) was obtained.

Figure 2022017658000022
Figure 2022017658000022

化合物5(6.42g、24.30mmol)を用いて、化合物2と同様の合成を行うこ
とにより、化合物6(6.66g、収率97.0%)を得た。
Compound 6 (6.66 g, yield 97.0%) was obtained by performing the same synthesis as compound 2 using compound 5 (6.42 g, 24.30 mmol).

Figure 2022017658000023
Figure 2022017658000023

化合物6(6.61g、23.39mmol)を用いて、化合物4と同様の合成を行うこ
とにより、化合物7(5.67g、収率74.8%)を得た。
Compound 7 (5.61 g, yield 74.8%) was obtained by performing the same synthesis as compound 4 using compound 6 (6.61 g, 23.39 mmol).

Figure 2022017658000024
Figure 2022017658000024

窒素雰囲気下、塩化イリジウム-3.64水和物(535mg、1.468mmol)を
精製水(2mL)で溶解し、diglyme(20mL)と化合物7 (1.000g、2.1equiv.)
を加え、油浴50℃設定にし、30分間窒素バブリングした。その後、triethylamine(4
30μL、2.1equiv.)を加え、120℃まで昇温しながら1時間撹拌し、次いで昇温
し、15時間還流撹拌した。
室温へ放冷後、ジクロロメタン(100mL)と精製水(20mL)を加え抽出し、無水芒
硝乾燥、濾過を行い、濾液を濃縮した。得られた残渣をメタノールで懸洗、濾取し、黒色
粉体の化合物8(286mg、収率 22.3%)を得た。
Under a nitrogen atmosphere, iridium chloride-3.64 hydrate (535 mg, 1.468 mmol) was dissolved in purified water (2 mL), diglyme (20 mL) and compound 7 (1.000 g, 2.1equiv.).
Was added, the oil bath was set at 50 ° C., and nitrogen bubbling was performed for 30 minutes. Then triethylamine (4
30 μL, 2.1equiv.) Was added, and the mixture was stirred for 1 hour while raising the temperature to 120 ° C., then raised, and reflux-stirred for 15 hours.
After allowing to cool to room temperature, dichloromethane (100 mL) and purified water (20 mL) were added for extraction, anhydrous Glauber's salt was dried and filtered, and the filtrate was concentrated. The obtained residue was washed with methanol and collected by filtration to obtain compound 8 (286 mg, yield 22.3%) as a black powder.

窒素雰囲気下、化合物8(250mg、0.2860mmol)、アセチルアセトン(3
7mg、1.3equiv.)、2-ethoxyethanol(3mL)を室温撹拌し、t-BuOK (42mg、1
.3equiv.)を投入した。得られた混合物を40℃にて2時間撹拌した。
Compound 8 (250 mg, 0.2860 mmol), acetylacetone (3) under a nitrogen atmosphere.
Stir 7 mg, 1.3 equiv.), 2-ethoxyethanol (3 mL) at room temperature and t-BuOK (42 mg, 1
.. 3 equiv.) Was introduced. The resulting mixture was stirred at 40 ° C. for 2 hours.

氷冷した後、精製水(4mL)でquench し、ジクロロメタン(20mL×2 回)抽出した
。有機層を合わせ、精製水(5mL)で1回洗浄後、無水芒硝乾燥、濾過、濾液を濃縮した

得られた残渣をシリカゲルカラムクロマトグラフィー(関東化学, シリカゲル60N、
球状中性、40-50μm、10g)を用いて、酢酸エチル/ジクロロメタン=(1/40
~1/19)で精製し、NIR-2 (黒色粉体,、239mg、収率 89.1%、LC 純
度 98.2%)を得た。
After cooling with ice, it was quenched with purified water (4 mL) and extracted with dichloromethane (20 mL × 2 times). The organic layers were combined, washed once with purified water (5 mL), dried over anhydrous Glauber's salt, filtered, and the filtrate was concentrated.
The obtained residue was subjected to silica gel column chromatography (Kanto Chemical Co., Inc., silica gel 60N,
Ethyl acetate / dichloromethane = (1/40) using spherical neutral, 40-50 μm, 10 g)
Purification was carried out in 1/19) to obtain NIR-2 (black powder, 239 mg, yield 89.1%, LC purity 98.2%).

得られたNIR-2の吸収スペクトル、発光スペクトルを実施例1と同様の方法で測定
した。測定結果を図3及び5に示す。
The absorption spectrum and emission spectrum of the obtained NIR-2 were measured by the same method as in Example 1. The measurement results are shown in FIGS. 3 and 5.

Figure 2022017658000025
Figure 2022017658000025

窒素雰囲気下、化合物9(3.500g、15.05mmol)、ナフタレン-2-イル
ボロン酸(3.36g、1.3equiv.)、DME(40mL)、2Mリン酸三カリウム水溶液
(18.8mL、2.5equiv.)を仕込み、室温にて20分間窒素バブリングした後、Pd(p
ph3)4 (894mg、5mol%)を加え、16時間還流撹拌した。
室温へ冷却後、トルエン(50mL×2回)抽出を行った。有機層を合わせ、精製水(5
0mL)で1回洗浄後、無水芒硝乾燥、濾過、濾液を濃縮した。得られた残渣をシリカゲ
ルカラムクロマトグラフィー(展開液 ジクロロメタン/ヘキサン=1/4)し、化合物10
(白色粉体、3.931g)を収率 80.6%で得た。
Under a nitrogen atmosphere, compound 9 (3.500 g, 15.05 mmol), naphthalene-2-ylboronic acid (3.36 g, 1.3equiv.), DME (40 mL), 2M tripotassium phosphate aqueous solution.
After charging (18.8 mL, 2.5 equiv.) And nitrogen bubbling at room temperature for 20 minutes, Pd (p)
ph 3 ) 4 (894 mg, 5 mol%) was added, and the mixture was stirred under reflux for 16 hours.
After cooling to room temperature, toluene (50 mL × 2 times) was extracted. Combine the organic layers and purified water (5)
After washing once with 0 mL), anhydrous sodium sulfate was dried, filtered, and the filtrate was concentrated. The obtained residue was subjected to silica gel column chromatography (developing solution dichloromethane / hexane = 1/4) to compound 10.
(White powder, 3.931 g) was obtained in a yield of 80.6%.

Figure 2022017658000026
Figure 2022017658000026

窒素雰囲気下、塩化イリジウム-3.64水和物(534mg、1.468mmol)を
精製水(5mL)で溶解し、diglyme(20mL)と化合物10(1.000g、3.084m
mol、2.1equiv.)を加え、、油浴50℃設定にし、30分間窒素バブリングした。
その後、N,N-diisopropylethylamine(399mg、2.1equiv.)を加え、120℃ま
で昇温しながら2時間撹拌し、次いで昇温し、21時間還流撹拌した。室温へ放冷後、ジ
クロロメタン(40mL)と精製水(10mL)を加え抽出し、無水芒硝乾燥、濾過、濾液を
濃縮後、残渣をメタノール(9mL)で懸洗、濾取し、黒色粉体の化合物11(424mg)
を収率33.0%で得た。
続いて、窒素雰囲気下、化合物11(401mg、0.4587mmol)、アセチルア
セトン(60mg、1.3equiv.)、2-ethoxyethanol(7mL)を室温撹拌し、t-BuOK (6
76mg、1.3equiv.)を投入した。得られた混合物を40℃にて2時間20分間撹拌
した。氷冷した後、精製水(10mL)でquench し、ジクロロメタン(30mL×2回)抽
出した。有機層を合わせ、精製水(10mL)で1回洗浄後、無水芒硝乾燥、濾過を行い、
濾液を濃縮した。
得られた残渣をシリカゲルカラムクロマトグラフィー(展開液トルエン/ヘキサン=1/
4出)で精製し、濃縮残渣をメタノールで懸洗濾取し、NIR-3(黒褐色粉体、296m
g、収率68.8%、LC純度 96.2%)を得た。
また、得られたNIR-3の吸収スペクトル、発光スペクトルを実施例1と同様に測定
した。測定結果を図5及び6に示す。
Under a nitrogen atmosphere, iridium chloride-3.64 hydrate (534 mg, 1.468 mmol) was dissolved in purified water (5 mL), and diglyme (20 mL) and compound 10 (1.000 g, 3.084 m) were dissolved.
Mol, 2.1equiv.) Was added, the oil bath was set at 50 ° C., and nitrogen bubbling was performed for 30 minutes.
Then, N, N-diisopropylethylamine (399 mg, 2.1equiv.) Was added, and the mixture was stirred while raising the temperature to 120 ° C. for 2 hours, then the temperature was raised, and the mixture was reflux-stirred for 21 hours. After allowing to cool to room temperature, dichloromethane (40 mL) and purified water (10 mL) are added for extraction, anhydrous syrup is dried, filtered, and the filtrate is concentrated. Compound 11 (424 mg)
Was obtained in a yield of 33.0%.
Subsequently, compound 11 (401 mg, 0.4587 mmol), acetylacetone (60 mg, 1.3equiv.), And 2-ethoxyethanol (7 mL) were stirred at room temperature under a nitrogen atmosphere, and t-BuOK (6).
76 mg, 1.3 equiv.) Was added. The resulting mixture was stirred at 40 ° C. for 2 hours and 20 minutes. After cooling with ice, it was quenched with purified water (10 mL) and extracted with dichloromethane (30 mL × 2 times). Combine the organic layers, wash once with purified water (10 mL), dry with anhydrous Glauber's salt, and filter.
The filtrate was concentrated.
The obtained residue is subjected to silica gel column chromatography (developing solution toluene / hexane = 1 /).
Purify with (4), wash the concentrated residue with methanol, and remove by filtration, NIR-3 (blackish brown powder, 296 m).
g, yield 68.8%, LC purity 96.2%) were obtained.
Moreover, the absorption spectrum and the emission spectrum of the obtained NIR-3 were measured in the same manner as in Example 1. The measurement results are shown in FIGS. 5 and 6.

[比較例1]
文献(J. Mater. Chem. C, 2013, 1, 6446-6454)をもとに、以下化合物Aを合成した
。化合物Aの吸収スペクトル、発光スペクトルを実施例1と同様に測定した。測定結果を
図7及び8に示す。
[Comparative Example 1]
Based on the literature (J. Mater. Chem. C, 2013, 1, 6446-6454), the following compound A was synthesized. The absorption spectrum and emission spectrum of compound A were measured in the same manner as in Example 1. The measurement results are shown in FIGS. 7 and 8.

Figure 2022017658000027
Figure 2022017658000027

実施例1~3及び比較例1で得られた各化合物について、TG-DTAにより重量現象
極大温度及び発光極大波長の測定を行った。結果を表1に示す。なお、重量現象極大温度
及び発光極大は、SII EXSTAR6000を用いて測定した。N 200mL/minにてAl容器
を使用し、40-600℃まで10℃/minで昇温し測定した。
For each of the compounds obtained in Examples 1 to 3 and Comparative Example 1, the weight phenomenon maximum temperature and the emission maximum wavelength were measured by TG-DTA. The results are shown in Table 1. The maximum temperature of the weight phenomenon and the maximum emission were measured using SII EXSTAR 6000. Using an Al container at N 2 200 mL / min, the temperature was raised to 40-600 ° C. at 10 ° C./min for measurement.

Figure 2022017658000028
Figure 2022017658000028

実施例1~3の化合物は比較例1の化合物と比較し、重量減少極大温度が低いため、昇
華性が高く、昇華精製による高純度化が期待できる。また、真空蒸着など、デバイス作製
にもより適していると推測される。
Since the compounds of Examples 1 to 3 have a lower weight loss maximum temperature than the compounds of Comparative Example 1, they have high sublimation properties and can be expected to be highly purified by sublimation purification. It is also presumed to be more suitable for device fabrication such as vacuum vapor deposition.

Claims (2)

式(1)で表される化合物。
Figure 2022017658000029
[式(1)において、
A及びBはそれぞれ独立に、置換基を有していてもよい、芳香族炭化水素環又は芳香族複
素環を表し、
Zはアクセプター性置換基を表し、
MはIr、Os又はPtを表し、
Lはn価の配位子を表し、
m及びnはそれぞれ独立に、1~3の整数を表す。]
A compound represented by the formula (1).
Figure 2022017658000029
[In equation (1)
A and B each independently represent an aromatic hydrocarbon ring or an aromatic heterocycle which may have a substituent.
Z represents an acceptor substituent
M represents Ir, Os or Pt and represents
L represents an n-valent ligand
m and n each independently represent an integer of 1 to 3. ]
Lが下記式(2)で表されるものである、請求項1に記載の化合物。
Figure 2022017658000030
[式(2)において、
X及びYはそれぞれ独立に、C原子、N原子またはO原子を表す。]
The compound according to claim 1, wherein L is represented by the following formula (2).
Figure 2022017658000030
[In equation (2)
X and Y independently represent C, N or O atoms, respectively. ]
JP2020120338A 2020-07-14 2020-07-14 Compound Pending JP2022017658A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020120338A JP2022017658A (en) 2020-07-14 2020-07-14 Compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020120338A JP2022017658A (en) 2020-07-14 2020-07-14 Compound

Publications (1)

Publication Number Publication Date
JP2022017658A true JP2022017658A (en) 2022-01-26

Family

ID=80185962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020120338A Pending JP2022017658A (en) 2020-07-14 2020-07-14 Compound

Country Status (1)

Country Link
JP (1) JP2022017658A (en)

Similar Documents

Publication Publication Date Title
WO2018071697A1 (en) Narrow band red phosphorescent tetradentate platinum (ii) complexes
KR20140144152A (en) Phosphorescent tetradentate metal complexes having modified emission spectra
Bonacorso et al. Synthesis, 11B-and 19F NMR spectroscopy, and optical and electrochemical properties of novel 9-aryl-3-(aryl/heteroaryl)-1, 1-difluoro-7-(trifluoromethyl)-1H-[1, 3, 5, 2] oxadiazaborinino [3, 4-a][1, 8] naphthyridin-11-ium-1-uide complexes
CN109593105B (en) Metal complex, organic electroluminescent device and organic electroluminescent material
Bhaumik et al. Luminescent bis-tridentate ruthenium (II) and osmium (II) complexes based on terpyridyl-imidazole ligand: synthesis, structural characterization, photophysical, electrochemical, and solvent dependence studies
CN110407710B (en) Triphenylamine derivative pure organic room temperature phosphorescent material and preparation method thereof
JP2019509977A (en) Luminescent compound
JPWO2016133218A1 (en) Phosphafluorescein compound or a salt thereof, or fluorescent dye using the same
JP5522447B2 (en) Azo-boron complex compound and method for producing the same
EP1944308A1 (en) Process for production of ortho-metallized 1:3 complex of iridium with homoligand
JP6009957B2 (en) Organometallic complex
EP1717276B1 (en) Heteropolycyclic compound and dye
TWI484020B (en) Iridium complexes containing biazolate-based ligand
JP2022017658A (en) Compound
JP7222517B2 (en) Novel compound and its manufacturing method
CN108569995B (en) Platinum complex and device thereof
Yamamoto et al. Luminescent rhenium (I)–gold (I) hetero organometallics linked by ethynylphenanthrolines
JP2014047139A (en) Naphthobisthiadiazole derivative and method of producing the same
CN107383105B (en) Iridium complex and nitrogen-containing tridentate ligand
JP6269956B2 (en) Furylthiazole compound
JP2022026256A (en) Compound
Li et al. Zinc 2-((2-(benzoimidazol-2-yl) quinolin-8-ylimino) methyl) phenolates: Synthesis, characterization and photoluminescence behavior
JP6842696B2 (en) Compounds, compound synthesis methods and organic semiconductor materials
KR20190043743A (en) Dicyanstyryl benzene derivatives and fluorescent material comprising the same
JP6687240B2 (en) Novel compound, chemical sensor, sensing device and sensing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230313

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240418

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240625