JP2022016242A - Iron-based fischer-tropsch synthesis catalyst, and method for preparing the same - Google Patents

Iron-based fischer-tropsch synthesis catalyst, and method for preparing the same Download PDF

Info

Publication number
JP2022016242A
JP2022016242A JP2020183688A JP2020183688A JP2022016242A JP 2022016242 A JP2022016242 A JP 2022016242A JP 2020183688 A JP2020183688 A JP 2020183688A JP 2020183688 A JP2020183688 A JP 2020183688A JP 2022016242 A JP2022016242 A JP 2022016242A
Authority
JP
Japan
Prior art keywords
iron
tropsch synthesis
based fischer
synthesis catalyst
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020183688A
Other languages
Japanese (ja)
Inventor
鮑周艶
Zhou Yan Bao
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of JP2022016242A publication Critical patent/JP2022016242A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/30Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
    • C10G2/32Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts
    • C10G2/33Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used
    • C10G2/331Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing group VIII-metals
    • C10G2/332Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing group VIII-metals of the iron-group

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)

Abstract

To provide an iron-based Fischer-Tropsch synthesis catalyst having high catalytic activity, high selectivity of a target product, excellent sintering resistance, and high stability.SOLUTION: An iron-based Fischer-Tropsch synthesis catalyst containing 20% to 30% of metal iron and the balance carbon, in which the carbon is prepared by nano-polyacrylamide, citric acid and amino acid, and the catalyst can contain any auxiliary component in addition to active ingredient iron and carrier carbon. For example, rare earth oxide such as cerium oxide and lanthanum oxide, transition metal oxide such as manganese oxide, chromium oxide and rhenium oxide, and alkali earth metal oxide such as magnesium oxide are cited. It is preferable that the content of auxiliary component be 0.5 to 5wt% by using the total weight of catalyst as a reference.SELECTED DRAWING: Figure 1

Description

本発明は触媒の分野に属し、具体的には鉄基フィッシャー・トロプシュ合成触媒及びその調製方法に関する。 The present invention belongs to the field of catalysts, and specifically relates to an iron-based Fischer-Tropsch synthesis catalyst and a method for preparing the same.

フィッシャー・トロプシュ反応(Fischer‐Tropschsynthesis、略称FTS)はカイザー・ウィルヘルム研究所に勤務していたドイツの研究者、フランツ・フィッシャー(Franz Fischer)とハンス・トロプシュ(Hans Tropsch)によって1920年代に開発されたのが起源である。触媒としては鉄やコバルトの化合物が一般的である。この方法の主な目的は、石油の代替品となる合成油や合成燃料を作り出すことである。「フィッシャー・トロプシュ反応」や「フィッシャー・トロプシュ合成」とも呼ばれる。この反応は、石油資源が不足する現状を緩和するだけでなく、石炭や天然ガスやバイオマスなどの資源の効率的な利用が可能となる。我が国のエネルギー分布は「石炭に富み、石油に貧しく、天然ガスに貧しい」であり、石炭の採掘期は石油を遥かに超えるが、中国の大部分の石炭はそのまま燃焼して利用され、環境を深刻に汚染するSO、NO等の物質が放出される。資源利用及び環境保護の観点から見れば、石炭代替燃料及び非石油ルートを開発して高付加価値の化学工業製品を調製することは大きな市場将来性及び重要な戦略的意義を有する。 The Fischer-Tropsch synthesis (FTS) was developed in the 1920s by German researchers Franz Fisher and Hans Tropsch, who worked at the Kaiser Wilhelm Institute. Is the origin. As a catalyst, a compound of iron or cobalt is generally used. The main purpose of this method is to produce synthetic oils and fuels that are alternatives to petroleum. Also called "Fischer-Tropsch reaction" or "Fischer-Tropsch synthesis". This reaction not only alleviates the current shortage of petroleum resources, but also enables efficient use of resources such as coal, natural gas and biomass. Japan's energy distribution is "rich in coal, poor in oil, poor in natural gas", and although the mining period of coal far exceeds that of oil, most of China's coal is burned and used as it is, creating an environment. Seriously contaminated substances such as SO 2 and NO x are released. From the viewpoint of resource utilization and environmental protection, developing coal alternative fuels and non-petroleum routes to prepare high value chemical industry products has great market potential and important strategic significance.

フィッシャー・トロプシュ合成触媒は一般的に鉄基フィッシャー・トロプシュ合成触媒、コバルト系フィッシャー・トロプシュ合成触媒及びルテニウム系フィッシャー・トロプシュ合成触媒を含む。フィッシャー・トロプシュ合成反応において、選択性に影響を及ぼす重要な要素の一つは触媒の選択であり、触媒の調製方法を改善することは目標生成物の選択性を明らかに向上させることができる。 Fischer-Tropsch synthesis catalysts generally include iron-based Fischer-Tropsch synthesis catalysts, cobalt-based Fischer-Tropsch synthesis catalysts and ruthenium-based Fischer-Tropsch synthesis catalysts. In the Fischer-Tropsch synthesis reaction, one of the important factors affecting the selectivity is the selection of the catalyst, and improving the method of preparing the catalyst can clearly improve the selectivity of the target product.

CN1398669Aには、コバルト・ジルコニウムフィッシャートロプシュ合成触媒に関するものが開示されていますが、重量百分率でコバルト10.0~80.0%、酸化ジルコニウムは15.0~85.0%、金属酸化物助剤0~5.0%を含み、前記金属酸化物助剤は酸化セリウム、酸化マンガン等である。担体としてジルコニアを用い、フィッシャー・トロプシュ合成の反応条件ではコバルトとジルコニアとの間に化合物が形成されないため、触媒は安定性に優れ、失活レートが低く、高い還元度及び金属分散度を有する。しかし、この触媒は、通常の還元温度(420℃程度)で還元する必要があり、これにより、調製過程で必要なエネルギー消費を高める他、担体のセル構造を破壊しやすい。 CN1398669A discloses a cobalt-zirconium Fishertropush synthesis catalyst, which is 10.0 to 80.0% by weight of cobalt, 15.0 to 85.0% of zirconium oxide, and a metal oxide aid. The metal oxide auxiliary agent contains 0 to 5.0%, and the metal oxide auxiliary is cerium oxide, manganese oxide, or the like. Since zirconia is used as a carrier and no compound is formed between cobalt and zirconia under the reaction conditions of Fischer-Tropsch synthesis, the catalyst has excellent stability, a low deactivation rate, and a high degree of reduction and metal dispersion. However, this catalyst needs to be reduced at a normal reduction temperature (about 420 ° C.), which increases the energy consumption required in the preparation process and easily destroys the cell structure of the carrier.

US5733889Aには、Ptを助剤とし、Al2O2を担体とするコバルト系フィッシャー・トロプシュ合成触媒に関するものが開示されていますが、PtとCoの重量比が(0.00005‐0.1):1である。この触媒は、高い触媒活性を有するものの、貴金属Ptが導入されているため、触媒の生産コストが高くなっている。 US5733889A discloses a cobalt-based Fischer-Tropsch synthesis catalyst using Pt as an auxiliary agent and Al2O2 as a carrier, but the weight ratio of Pt to Co is (0.00005-0.1): 1. be. Although this catalyst has high catalytic activity, the production cost of the catalyst is high because the precious metal Pt is introduced.

中国特許出願公開第110075844号明細書Chinese Patent Application Publication No. 110075844

本発明は、上記課題を解決するために、鉄基フィッシャー・トロプシュ合成触媒及びその調製方法を提供することを目的とする。 An object of the present invention is to provide an iron-based Fischer-Tropsch synthesis catalyst and a method for preparing the same, in order to solve the above problems.

鉄基フィッシャー・トロプシュ合成触媒であって、20%~30%の金属鉄と、残部の炭素とを含む。前記炭素はナノポリアクリルアミド、クエン酸及びアミノ酸で調製される。 An iron-based Fischer-Tropsch synthesis catalyst containing 20% to 30% metallic iron and the balance of carbon. The carbon is prepared with nanopolyacrylamide, citric acid and amino acids.

本発明における鉄基フィッシャー・トロプシュ合成触媒は、活性成分鉄及び担体炭素に加えて、任意の助剤成分を含有することができる。例えば、酸化セリウム、酸化ランタン等の希土類酸化物、酸化マンガン、酸化クロム、酸化レニウム等の遷移金属酸化物、酸化マグネシウム等のアルカリ土類金属酸化物が挙げられる。助剤成分の含有量は、触媒の全重量を基準として0.5~5wt%であることが好ましい。 The iron-based Fischer-Tropsch synthesis catalyst in the present invention can contain any auxiliary component in addition to the active ingredient iron and carrier carbon. Examples thereof include rare earth oxides such as cerium oxide and lanthanum oxide, transition metal oxides such as manganese oxide, chromium oxide and renium oxide, and alkaline earth metal oxides such as magnesium oxide. The content of the auxiliary agent component is preferably 0.5 to 5 wt% based on the total weight of the catalyst.

鉄基フィッシャー・トロプシュ合成触媒の調製方法であって、ステップ1からステップ4で調製され、
前記ステップ1は、四酸化三鉄又は酸化鉄を脱イオン水に分散し、クエン酸を加え、80℃に昇温して四酸化三鉄又は酸化鉄が完全に溶解するまで撹拌し、冷却して不溶性不純物を濾過し、濾過後、濾液にアンモニア水を加えて酸塩基性を調整し、pHを3~4にし、そして85℃に昇温した後、3h撹拌を続け、クエン酸鉄錯体を形成し、使用に備える。
前記ステップ2は、ナノポリアクリルアミドを脱イオン水に分散し、アミノ酸を加え、90℃に昇温し、2h撹拌し、アミノ酸変性ナノポリアクリルアミドゲルを形成し、冷却して使用に備える。
前記ステップ3は、前記ステップ2で得られたゲルに、前記ステップ1で調製したクエン酸鉄錯体を加え、60℃に昇温し、高速で0.5h撹拌し、鉄担持ゲルを得、得られた鉄担持ゲルを真空オーブンに置いて乾燥する。
前記ステップ4は、完全に乾燥したゲルをマッフル炉に置き、窒素気流中、10℃/minの加熱速度で600~900℃で2h炭化し、Fe@C/Nナノハイブリッド、すなわち鉄基フィッシャー・トロプシュ合成触媒を得る。
A method for preparing an iron-based Fischer-Tropsch synthesis catalyst, which is prepared in steps 1 to 4.
In step 1, triiron tetroxide or iron oxide is dispersed in deionized water, citric acid is added, the temperature is raised to 80 ° C., and the mixture is stirred and cooled until the triiron tetroxide or iron oxide is completely dissolved. After filtering, insoluble impurities were filtered, and then aqueous ammonia was added to the filtrate to adjust the acid basicity, the pH was adjusted to 3 to 4, the temperature was raised to 85 ° C., and stirring was continued for 3 hours to obtain an iron citrate complex. Form and prepare for use.
In step 2, nanopolyacrylamide is dispersed in deionized water, amino acids are added, the temperature is raised to 90 ° C., and the mixture is stirred for 2 hours to form an amino acid-modified nanopolyacrylamide gel, which is cooled to prepare for use.
In step 3, the iron citrate complex prepared in step 1 is added to the gel obtained in step 2, the temperature is raised to 60 ° C., and the mixture is stirred at high speed for 0.5 h to obtain an iron-supported gel. Place the iron-supported gel in a vacuum oven to dry.
In step 4, the completely dried gel is placed in a muffle furnace, carbonized in a nitrogen stream at a heating rate of 10 ° C./min at 600 to 900 ° C. for 2 hours, and Fe @ C / N nanohybrid, that is, an iron-based Fischer. Obtain a Tropsch synthesis catalyst.

好ましくは、前記ステップ1における四酸化三鉄又は酸化鉄とクエン酸の配合比率は鉄元素とクエン酸のモル比が1:1.3‐1:1.4である。 Preferably, the compounding ratio of triiron tetroxide or iron oxide and citric acid in step 1 is a molar ratio of iron element to citric acid of 1: 1.3-1: 1.4.

好ましくは、前記ステップ2におけるナノポリアクリルアミドとアミノ酸との質量比は、1:0.1‐1:0.2であり、前記アミノ酸は、トリプトファンと、アラニンと、ロイシンとから選択される。 Preferably, the mass ratio of nanopolyacrylamide to the amino acid in step 2 is 1: 0.1-1: 0.2, and the amino acid is selected from tryptophan, alanine and leucine.

好ましくは、前記ステップ3におけるクエン酸鉄錯体とゲルとの質量比は、2‐3:7である。 Preferably, the mass ratio of the iron citrate complex to the gel in step 3 is 2-3: 7.

従来技術に比べ、本発明は下記のメリットを有する: The present invention has the following advantages over the prior art:

本発明のフィッシャー・トロプシュ合成触媒は、活性成分と担体とを含む。前記担体は、変性ゲルから調製され、クエン酸鉄を担持した後、高温焼成を経て触媒を形成する。担体中にN元素が含まれることにより、焼成中に鉄とFe‐N‐C構造を形成することができ、鉄基触媒の触媒効率を効果的に向上させることができる。また、窒素原子が塩基性を有し、担体の表面塩基性が向上するとともに、担体の構造と活性成分とが結合し、目標生成物の選択性が高く、耐焼結性能に優れ、安定性の高いフィッシャー・トロプシュ合成触媒が得られる。 The Fischer-Tropsch synthesis catalyst of the present invention contains an active ingredient and a carrier. The carrier is prepared from a modified gel, carries iron citrate, and then undergoes high-temperature firing to form a catalyst. Since the N element is contained in the carrier, an Fe—NC structure can be formed with iron during firing, and the catalytic efficiency of the iron-based catalyst can be effectively improved. In addition, the nitrogen atom has basicity, the surface basicity of the carrier is improved, and the structure of the carrier and the active ingredient are bonded to each other, so that the target product has high selectivity, excellent sintering resistance, and stability. A high Fischer-Tropsch synthesis catalyst is obtained.

実施例1で調製された触媒が反応前の透過型電子顕微鏡写真である。The catalyst prepared in Example 1 is a transmission electron micrograph before the reaction. 実施例1で調製された触媒が800h反応した後の透過型電子顕微鏡写真である。It is a transmission electron micrograph after the catalyst prepared in Example 1 reacted for 800 hours.

以下に本発明における実施例を参照して、本発明における技術的解決手段を明確に、十分に説明する。 Hereinafter, the technical solutions in the present invention will be clearly and fully described with reference to the examples in the present invention.

実施例1
鉄基フィッシャー・トロプシュ合成触媒であって、ステップ1からステップ4で調製され、
前記ステップ1は、四酸化三鉄を脱イオン水に分散し、クエン酸を加え、80℃に昇温して四酸化三鉄が完全に溶解するまで撹拌し、冷却して不溶性不純物を濾過し、濾過後、濾液にアンモニア水を加えて酸塩基性を調整し、pHを3にした後、85℃に昇温した後、3h撹拌を続け、クエン酸鉄錯体を形成し、使用に備える。
前記ステップ2は、ナノポリアクリルアミドを脱イオン水に分散し、トリプトファンを加え、90℃に昇温し、2h撹拌し、変性ナノポリアクリルアミドゲルを形成し、冷却して使用に備える。
前記ステップ3は、前記ステップ2で得られたゲルに、前記ステップ1で調製したクエン酸鉄錯体を加え、60℃に昇温し、高速で0.5h撹拌し、鉄担持ゲルを得、得られた鉄担持ゲルを120℃の真空オーブンに置いて乾燥する。
前記ステップ4は、完全に乾燥したゲルをマッフル炉に置き、窒素気流中、10℃/minの加熱速度で600℃で2h炭化し、Fe@C/Nナノハイブリッド、すなわち鉄基フィッシャー・トロプシュ合成触媒を得る。
好ましくは、前記ステップ1における四酸化三鉄とクエン酸の配合比率は鉄元素とクエン酸のモル比が1:1.3である。
好ましくは、前記ステップ2におけるナノポリアクリルアミドとトリプトファンとの質量比は、1:0.1である。
好ましくは、前記ステップ3におけるクエン酸鉄錯体とゲルとの質量比は、2:7である。
本実施例で得られた鉄基フィッシャー・トロプシュ合成触媒100mgをフィッシャー・トロプシュ合成反応器に入れ、Hを20mL/minの流量で注入し、400℃で3hインサイチュ還元し、反応器の温度を350℃に下げた後、Hの注入を停止し、合成ガスの注入を開始し、前記合成ガスはHとCO体積比が1:1の混合気であり、350℃を維持し、圧力1bar、合成ガス空間速度3000mL/(h・g)の条件でフィッシャー・トロプシュ合成反応を行う。本実施例で得られた触媒の反応前及び800h反応後の透過型電子顕微鏡写真は、図1に示すように、触媒として800hを使用したところ、触媒の表面には明確な炭素デポジットがない。
Example 1
An iron-based Fischer-Tropsch synthesis catalyst, prepared in steps 1 through 4.
In step 1, triiron tetroxide is dispersed in deionized water, citric acid is added, the temperature is raised to 80 ° C., stirring is performed until triiron tetroxide is completely dissolved, and the mixture is cooled to filter insoluble impurities. After filtration, aqueous ammonia is added to the filtrate to adjust the acid basicity, the pH is adjusted to 3, the temperature is raised to 85 ° C., and stirring is continued for 3 hours to form an iron citrate complex and prepare for use.
In step 2, nanopolyacrylamide is dispersed in deionized water, tryptophan is added, the temperature is raised to 90 ° C., and the mixture is stirred for 2 hours to form a modified nanopolyacrylamide gel, which is cooled to prepare for use.
In step 3, the iron citrate complex prepared in step 1 is added to the gel obtained in step 2, the temperature is raised to 60 ° C., and the mixture is stirred at high speed for 0.5 h to obtain an iron-supported gel. The iron-supported gel is placed in a vacuum oven at 120 ° C. and dried.
In step 4, the completely dried gel is placed in a muffle furnace, carbonized in a nitrogen stream at a heating rate of 10 ° C./min at 600 ° C. for 2 hours, and Fe @ C / N nanohybrid, that is, iron-based Fischer-Tropsch synthesis. Get a catalyst.
Preferably, the mixing ratio of triiron tetroxide and citric acid in step 1 is a molar ratio of element iron to citric acid of 1: 1.3.
Preferably, the mass ratio of nanopolyacrylamide to tryptophan in step 2 is 1: 0.1.
Preferably, the mass ratio of the iron citrate complex to the gel in step 3 is 2: 7.
100 mg of the iron-based Fischer-Tropsch synthesis catalyst obtained in this example was placed in a Fischer-Tropsch synthesis reactor, H2 was injected at a flow rate of 20 mL / min, and the temperature of the reactor was reduced by 3 hours at 400 ° C. After the temperature was lowered to 350 ° C., the injection of H 2 was stopped and the injection of the synthetic gas was started. The synthetic gas was a mixture of H 2 and a CO volume ratio of 1: 1 and maintained at 350 ° C., and the pressure was maintained. The Fischer-Tropsch synthesis reaction is carried out under the conditions of 1 bar and a syngas space velocity of 3000 mL / (h · g). In the transmission electron micrographs of the catalyst obtained in this example before and after the reaction for 800 hours, as shown in FIG. 1, when 800 h was used as the catalyst, there was no clear carbon deposit on the surface of the catalyst.

実施例2
鉄基フィッシャー・トロプシュ合成触媒であって、ステップ1からステップ4で調製され、
前記ステップ1は、四酸化三鉄を脱イオン水に分散し、クエン酸を加え、80℃に昇温して四酸化三鉄が完全に溶解するまで撹拌し、冷却して不溶性不純物を濾過し、濾過後、濾液にアンモニア水を加えて酸塩基性を調整し、pHを3.5にした後、85℃に昇温した後、3h撹拌を続け、クエン酸鉄錯体を形成し、使用に備える。
前記ステップ2は、ナノポリアクリルアミドを脱イオン水に分散し、アラニンを加え、90℃に昇温し、2h撹拌し、変性ナノポリアクリルアミドゲルを形成し、冷却して使用に備える。
前記ステップ3は、前記ステップ2で得られたゲルに、前記ステップ1で調製したクエン酸鉄錯体を加え、60℃に昇温し、高速で0.5h撹拌し、鉄担持ゲルを得、得られた鉄担持ゲルを120℃の真空オーブンに置いて乾燥する。
前記ステップ4は、完全に乾燥したゲルをマッフル炉に置き、窒素気流中、10℃/minの加熱速度で700℃で2h炭化し、Fe@C/Nナノハイブリッド、すなわち鉄基フィッシャー・トロプシュ合成触媒を得る。
好ましくは、前記ステップ1における四酸化三鉄とクエン酸の配合比率は鉄元素とクエン酸のモル比が1:1.35である。
好ましくは、前記ステップ2におけるナノポリアクリルアミドとアラニンとの質量比は、1:0.15である。
好ましくは、前記ステップ3におけるクエン酸鉄錯体とゲルとの質量比は、2.5:7である。
Example 2
An iron-based Fischer-Tropsch synthesis catalyst, prepared in steps 1 through 4.
In step 1, triiron tetroxide is dispersed in deionized water, citric acid is added, the temperature is raised to 80 ° C., stirring is performed until triiron tetroxide is completely dissolved, and the mixture is cooled to filter insoluble impurities. After filtration, add aqueous ammonia to the filtrate to adjust the acid basicity, adjust the pH to 3.5, raise the temperature to 85 ° C, and continue stirring for 3 hours to form an iron citrate complex for use. Be prepared.
In step 2, nanopolyacrylamide is dispersed in deionized water, alanine is added, the temperature is raised to 90 ° C., and the mixture is stirred for 2 hours to form a modified nanopolyacrylamide gel, which is cooled to prepare for use.
In step 3, the iron citrate complex prepared in step 1 is added to the gel obtained in step 2, the temperature is raised to 60 ° C., and the mixture is stirred at high speed for 0.5 h to obtain an iron-supported gel. The iron-supported gel is placed in a vacuum oven at 120 ° C. and dried.
In step 4, the completely dried gel is placed in a muffle furnace, carbonized at 700 ° C. at a heating rate of 10 ° C./min for 2 hours in a nitrogen stream, and Fe @ C / N nanohybrid, that is, iron-based Fischer-Tropsch synthesis. Get a catalyst.
Preferably, the compounding ratio of triiron tetroxide and citric acid in step 1 is a molar ratio of element iron to citric acid of 1: 1.35.
Preferably, the mass ratio of nanopolyacrylamide to alanine in step 2 is 1: 0.15.
Preferably, the mass ratio of the iron citrate complex to the gel in step 3 is 2.5: 7.

実施例3
鉄基フィッシャー・トロプシュ合成触媒であって、ステップ1からステップ4で調製され、
前記ステップ1は、酸化鉄を脱イオン水に分散し、クエン酸を加え、80℃に昇温して四酸化三鉄が完全に溶解するまで撹拌し、冷却して不溶性不純物を濾過し、濾過後、濾液にアンモニア水を加えて酸塩基性を調整し、pHを4にした後、85℃に昇温した後、3h撹拌を続け、クエン酸鉄錯体を形成し、使用に備える。
前記ステップ2は、ナノポリアクリルアミドを脱イオン水に分散し、ロイシンを加え、90℃に昇温し、2h撹拌し、変性ナノポリアクリルアミドゲルを形成し、冷却して使用に備える。
前記ステップ3は、前記ステップ2で得られたゲルに、前記ステップ1で調製したクエン酸鉄錯体を加え、60℃に昇温し、高速で0.5h撹拌し、鉄担持ゲルを得、得られた鉄担持ゲルを120℃の真空オーブンに置いて乾燥する。
前記ステップ4は、完全に乾燥したゲルをマッフル炉に置き、窒素気流中、10℃/minの加熱速度で800℃で2h炭化し、Fe@C/Nナノハイブリッド、すなわち鉄基フィッシャー・トロプシュ合成触媒を得る。
好ましくは、前記ステップ1における酸化鉄とクエン酸の配合比率は鉄元素とクエン酸のモル比が1:1.3である。
好ましくは、前記ステップ2におけるナノポリアクリルアミドとロイシンとの質量比は、1:0.2である。
好ましくは、前記ステップ3におけるクエン酸鉄錯体とゲルとの質量比は、2.5:7である。
Example 3
An iron-based Fischer-Tropsch synthesis catalyst, prepared in steps 1 through 4.
In step 1, iron oxide is dispersed in deionized water, citric acid is added, the temperature is raised to 80 ° C., stirring is performed until triiron tetroxide is completely dissolved, and the mixture is cooled to filter insoluble impurities and filtered. After that, aqueous ammonia was added to the filtrate to adjust the acid basicity, the pH was adjusted to 4, the temperature was raised to 85 ° C., and stirring was continued for 3 hours to form an iron citrate complex and prepare for use.
In step 2, nanopolyacrylamide is dispersed in deionized water, leucine is added, the temperature is raised to 90 ° C., and the mixture is stirred for 2 hours to form a modified nanopolyacrylamide gel, which is cooled to prepare for use.
In step 3, the iron citrate complex prepared in step 1 is added to the gel obtained in step 2, the temperature is raised to 60 ° C., and the mixture is stirred at high speed for 0.5 h to obtain an iron-supported gel. The iron-supported gel is placed in a vacuum oven at 120 ° C. and dried.
In step 4, the completely dried gel is placed in a muffle furnace, carbonized at 800 ° C. at a heating rate of 10 ° C./min for 2 hours in a nitrogen stream, and Fe @ C / N nanohybrid, that is, iron-based Fischer-Tropsch synthesis. Get a catalyst.
Preferably, the compounding ratio of iron oxide and citric acid in step 1 is a molar ratio of iron element to citric acid of 1: 1.3.
Preferably, the mass ratio of nanopolyacrylamide to leucine in step 2 is 1: 0.2.
Preferably, the mass ratio of the iron citrate complex to the gel in step 3 is 2.5: 7.

実施例4
鉄基フィッシャー・トロプシュ合成触媒であって、ステップ1からステップ4で調製され、
前記ステップ1は、四酸化三鉄を脱イオン水に分散し、クエン酸を加え、80℃に昇温して四酸化三鉄が完全に溶解するまで撹拌し、冷却して不溶性不純物を濾過し、濾過後、濾液にアンモニア水を加えて酸塩基性を調整し、pHを4にした後、85℃に昇温した後、3h撹拌を続け、クエン酸鉄錯体を形成し、使用に備える。
前記ステップ2は、ナノポリアクリルアミドを脱イオン水に分散し、ロイシンを加え、90℃に昇温し、2h撹拌し、変性ナノポリアクリルアミドゲルを形成し、冷却して使用に備える。
前記ステップ3は、前記ステップ2で得られたゲルに、前記ステップ1で調製したクエン酸鉄錯体を加え、60℃に昇温し、高速で0.5h撹拌し、鉄担持ゲルを得、得られた鉄担持ゲルを120℃の真空オーブンに置いて乾燥する。
前記ステップ4は、完全に乾燥したゲルをマッフル炉に置き、窒素気流中、10℃/minの加熱速度で900℃で2h炭化し、Fe@C/Nナノハイブリッド、すなわち鉄基フィッシャー・トロプシュ合成触媒を得る。
好ましくは、前記ステップ1における四酸化三鉄とクエン酸の配合比率は鉄元素とクエン酸のモル比が1:1.4である。
好ましくは、前記ステップ2におけるナノポリアクリルアミドとロイシンとの質量比は、1:0.2である。
好ましくは、前記ステップ3におけるクエン酸鉄錯体とゲルとの質量比は、3:7である。
Example 4
An iron-based Fischer-Tropsch synthesis catalyst, prepared in steps 1 through 4.
In step 1, triiron tetroxide is dispersed in deionized water, citric acid is added, the temperature is raised to 80 ° C., stirring is performed until triiron tetroxide is completely dissolved, and the mixture is cooled to filter insoluble impurities. After filtration, aqueous ammonia is added to the filtrate to adjust the acid basicity, the pH is adjusted to 4, the temperature is raised to 85 ° C., and stirring is continued for 3 hours to form an iron citrate complex and prepare for use.
In step 2, nanopolyacrylamide is dispersed in deionized water, leucine is added, the temperature is raised to 90 ° C., and the mixture is stirred for 2 hours to form a modified nanopolyacrylamide gel, which is cooled to prepare for use.
In step 3, the iron citrate complex prepared in step 1 is added to the gel obtained in step 2, the temperature is raised to 60 ° C., and the mixture is stirred at high speed for 0.5 h to obtain an iron-supported gel. The iron-supported gel is placed in a vacuum oven at 120 ° C. and dried.
In step 4, the completely dried gel is placed in a muffle furnace, carbonized at 900 ° C. at a heating rate of 10 ° C./min for 2 hours in a nitrogen stream, and Fe @ C / N nanohybrid, that is, iron-based Fischer-Tropsch synthesis. Get a catalyst.
Preferably, the mixing ratio of triiron tetroxide and citric acid in step 1 is 1: 1.4 in the molar ratio of element iron and citric acid.
Preferably, the mass ratio of nanopolyacrylamide to leucine in step 2 is 1: 0.2.
Preferably, the mass ratio of the iron citrate complex to the gel in step 3 is 3: 7.

比較例1
市販されている四酸化三鉄を触媒とする。(純度99.5%、上海泰坦科技)
Comparative Example 1
The catalyst is commercially available triiron tetroxide. (Purity 99.5%, Shanghai Taitan Technology)

比較例2
四酸化三鉄を脱イオン水に分散し、クエン酸を加え、80℃に昇温して四酸化三鉄が完全に溶解するまで撹拌し、冷却して不溶性不純物を濾過し、濾過後、濾液にアンモニア水を加えて酸塩基性を調整し、pHを3にした後、85℃に昇温した後、3h撹拌を続け、クエン酸鉄錯体を形成し、使用に備え、クエン酸鉄錯体の120℃の真空オーブンに放置して乾燥し、完全に乾燥したクエン酸鉄錯体をマッフル炉に置き、窒素気流中、10℃/minの加熱速度で600℃で2h炭化し、鉄基フィッシャー・トロプシュ合成触媒を得る。
Comparative Example 2
Disperse triiron tetroxide in deionized water, add citric acid, heat to 80 ° C., stir until triiron tetroxide is completely dissolved, cool to filter insoluble impurities, filter and then filtrate. After adjusting the acid basicity by adding aqueous ammonia to adjust the pH to 3, the temperature was raised to 85 ° C., and then stirring was continued for 3 hours to form an iron citrate complex, and the iron citrate complex was prepared for use. It was left to dry in a vacuum oven at 120 ° C., and the completely dried iron citrate complex was placed in a muffle furnace and carbonized in a nitrogen stream at a heating rate of 10 ° C./min at 600 ° C. for 2 hours. Obtain a synthetic catalyst.

比較例3
特許CN102911694Bにおける実施例1の方法で調製された触媒。
Comparative Example 3
The catalyst prepared by the method of Example 1 in patent CN102911694B.

触媒性能試験
実施例1‐4、比較例1‐2で得られた触媒の触媒性能をそれぞれ試験したところ、試験結果を表1に示す。寿命とは、触媒の活性と選択性がほぼ変わらない場合に触媒を連続して使用できる時間を意味する。
上記触媒10gを固定床反応器にとり反応させ、具体的な条件は、210℃、1.5Mpa、1000h‐1(V/V)、H/CO(mol)=2とした。
表1 触媒性能試験結果

Figure 2022016242000002
表1から明らかなように、本発明により調製された触媒は、CO転化率がより高い、C5+アルカン類選択性がより低く、メタン選択性がより低い。 Catalyst performance test The catalyst performance of the catalysts obtained in Example 1-4 and Comparative Example 1-2 was tested, and the test results are shown in Table 1. The lifetime means the time during which the catalyst can be used continuously when the activity and selectivity of the catalyst are not substantially different.
10 g of the above catalyst was reacted in a fixed bed reactor, and the specific conditions were 210 ° C., 1.5 Mpa, 1000 h -1 (V / V), H 2 / CO (mol) = 2.
Table 1 Catalyst performance test results
Figure 2022016242000002
As is clear from Table 1, the catalysts prepared by the present invention have higher CO conversion, lower C5 + alkanes selectivity, and lower methane selectivity.

Claims (5)

鉄基フィッシャー・トロプシュ合成触媒であって、
20%~30%の金属鉄と、残部の炭素とを含み、
前記炭素はナノポリアクリルアミド、クエン酸及びアミノ酸で調製される、
ことを特徴とする鉄基フィッシャー・トロプシュ合成触媒。
An iron-based Fischer-Tropsch synthesis catalyst
Contains 20% to 30% metallic iron and the balance of carbon
The carbon is prepared with nanopolyacrylamide, citric acid and amino acids.
An iron-based Fischer-Tropsch synthesis catalyst characterized by this.
前記鉄基フィッシャー・トロプシュ合成触媒の調製方法であって、ステップ1からステップ4で調製され、
前記ステップ1は、四酸化三鉄又は酸化鉄を脱イオン水に分散し、クエン酸を加え、80℃に昇温して四酸化三鉄又は酸化鉄が完全に溶解するまで撹拌し、冷却して不溶性不純物を濾過し、濾過後、濾液にアンモニア水を加えて酸塩基性を調整し、pHを3~4にし、そして85℃に昇温した後、3h撹拌を続け、クエン酸鉄錯体を形成し、
前記ステップ2は、ナノポリアクリルアミドを脱イオン水に分散し、アミノ酸を加え、90℃に昇温し、2h撹拌し、アミノ酸変性ナノポリアクリルアミドゲルを形成し、冷却して使用に備える。
前記ステップ3は、前記ステップ2で得られたゲルに、前記ステップ1で調製したクエン酸鉄錯体を加え、60℃に昇温し、高速で0.5h撹拌し、鉄担持ゲルを得、得られた鉄担持ゲルを真空オーブンに置いて乾燥し、
前記ステップ4は、完全に乾燥したゲルをマッフル炉に置き、窒素気流中、10℃/minの加熱速度で600~900℃で2h炭化し、Fe@C/Nナノハイブリッド、すなわち鉄基フィッシャー・トロプシュ合成触媒を得る、
ことを特徴とする請求項1に記載の鉄基フィッシャー・トロプシュ合成触媒の調製方法。
The method for preparing an iron-based Fischer-Tropsch synthesis catalyst, which is prepared in steps 1 to 4.
In step 1, triiron tetroxide or iron oxide is dispersed in deionized water, citric acid is added, the temperature is raised to 80 ° C., and the mixture is stirred and cooled until the triiron tetroxide or iron oxide is completely dissolved. After filtering, insoluble impurities were filtered, and then aqueous ammonia was added to the filtrate to adjust the acid basicity, the pH was adjusted to 3 to 4, the temperature was raised to 85 ° C., and stirring was continued for 3 hours to obtain an iron citrate complex. Form and
In step 2, nanopolyacrylamide is dispersed in deionized water, amino acids are added, the temperature is raised to 90 ° C., and the mixture is stirred for 2 hours to form an amino acid-modified nanopolyacrylamide gel, which is cooled to prepare for use.
In step 3, the iron citrate complex prepared in step 1 is added to the gel obtained in step 2, the temperature is raised to 60 ° C., and the mixture is stirred at high speed for 0.5 h to obtain an iron-supported gel. Place the iron-supported gel in a vacuum oven to dry and
In step 4, the completely dried gel is placed in a muffle furnace, carbonized in a nitrogen stream at a heating rate of 10 ° C./min at 600 to 900 ° C. for 2 hours, and Fe @ C / N nanohybrid, that is, an iron-based Fischer. Obtain a Tropsch synthesis catalyst,
The method for preparing an iron-based Fischer-Tropsch synthesis catalyst according to claim 1.
前記ステップ1における四酸化三鉄又は酸化鉄とクエン酸の配合比率は鉄元素とクエン酸のモル比が1:1.3‐1:1.4である、
ことを特徴とする請求項2に記載の鉄基フィッシャー・トロプシュ合成触媒。
The compounding ratio of triiron tetroxide or iron oxide and citric acid in step 1 is such that the molar ratio of element iron to citric acid is 1: 1.3-1: 1.4.
The iron-based Fischer-Tropsch synthesis catalyst according to claim 2.
前記ステップ2におけるナノポリアクリルアミドとアミノ酸との質量比は、1:0.1‐1:0.2であり、前記アミノ酸は、トリプトファンと、アラニンと、ロイシンとから選択される、
ことを特徴とする請求項2に記載の鉄基フィッシャー・トロプシュ合成触媒。
The mass ratio of nanopolyacrylamide to the amino acid in step 2 is 1: 0.1-1: 0.2, and the amino acid is selected from tryptophan, alanine, and leucine.
The iron-based Fischer-Tropsch synthesis catalyst according to claim 2.
前記ステップ3におけるクエン酸鉄錯体とゲルとの質量比は、2‐3:7である、
ことを特徴とする請求項2に記載の鉄基フィッシャー・トロプシュ合成触媒。
The mass ratio of the iron citrate complex to the gel in step 3 is 2-3: 7.
The iron-based Fischer-Tropsch synthesis catalyst according to claim 2.
JP2020183688A 2020-07-09 2020-11-02 Iron-based fischer-tropsch synthesis catalyst, and method for preparing the same Pending JP2022016242A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010655698.6A CN111659448A (en) 2020-07-09 2020-07-09 Iron-based Fischer-Tropsch synthesis catalyst and preparation method thereof
CN202010655698.6 2020-07-09

Publications (1)

Publication Number Publication Date
JP2022016242A true JP2022016242A (en) 2022-01-21

Family

ID=72391971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020183688A Pending JP2022016242A (en) 2020-07-09 2020-11-02 Iron-based fischer-tropsch synthesis catalyst, and method for preparing the same

Country Status (2)

Country Link
JP (1) JP2022016242A (en)
CN (1) CN111659448A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105195205A (en) * 2015-10-29 2015-12-30 江南大学 Preparation and application of N-doped Fe-based catalyst for Fischer-Tropsch reaction
CN108479834A (en) * 2018-03-19 2018-09-04 南京大学 A kind of fischer-tropsch synthetic catalyst and preparation method thereof
CN110773214A (en) * 2019-11-13 2020-02-11 广东工业大学 Carbon layer embedded iron carbide, preparation method thereof and application of carbon layer embedded iron carbide as Fischer-Tropsch synthesis catalyst

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105195205A (en) * 2015-10-29 2015-12-30 江南大学 Preparation and application of N-doped Fe-based catalyst for Fischer-Tropsch reaction
CN108479834A (en) * 2018-03-19 2018-09-04 南京大学 A kind of fischer-tropsch synthetic catalyst and preparation method thereof
CN110773214A (en) * 2019-11-13 2020-02-11 广东工业大学 Carbon layer embedded iron carbide, preparation method thereof and application of carbon layer embedded iron carbide as Fischer-Tropsch synthesis catalyst

Also Published As

Publication number Publication date
CN111659448A (en) 2020-09-15

Similar Documents

Publication Publication Date Title
CN102872874B (en) Loaded type nickel-based catalyst used for slurry bed methanation, and preparation method and application thereof
CN111229215B (en) Metal high-dispersion supported catalyst based on carbon quantum dot induction and preparation method and application thereof
CN106268852B (en) A kind of catalyst and the preparation method and application thereof for one-step method from syngas coproduction mixed alcohol and alpha-olefin
CN108855109A (en) A kind of chemical chain partial oxidation methane preparing synthetic gas carrier of oxygen and its preparation method and application
CN102600860B (en) Catalyst suitable for complete methanation of middle-low-temperature synthetic gas and preparation method thereof
CN108499564A (en) Catalyst in a kind of building-up process of methyl glycollate and preparation method thereof, application
CN100556538C (en) A kind of slurried catalyst and preparation method thereof
CN107890870A (en) A kind of carbon dioxide and water methanation catalyst and its preparation method and application
CN113634257A (en) Application of bifunctional catalyst to CO in flue gas2Integration of capture and methanation
JP2021520992A (en) A method for producing a catalyst used when synthesizing aviation kerosene from syngas, a catalyst obtained by the method, and its use.
CN114887625B (en) Fe-based metal organic framework material derivative catalyst and preparation method and application thereof
CN114272950A (en) CH (physical channel)4、CO2Catalyst for reforming preparation of synthesis gas and preparation method and application thereof
CN114029063B (en) Catalyst for preparing methanol by carbon dioxide hydrogenation and preparation method thereof
CN102908957A (en) Method for Fischer-Tropsch synthesis
CN101920199A (en) Fischer-Tropsch synthesis cobalt-based catalyst using modified silica gel as carrier and preparation method thereof
JP2022016242A (en) Iron-based fischer-tropsch synthesis catalyst, and method for preparing the same
CN108043421A (en) A kind of preparation method of the nanometer cobalt-manganese catalyst of synthesis gas conversion preparing low carbon hydrocarbons
CN105642289B (en) A kind of preparation method of synthesis gas full methanation catalyst
CN105727954B (en) A kind of preparation method of synthesis gas preparing natural gas catalyst
CN107915563A (en) The method of decarboxylation of fatty acids
CN115193433A (en) Preparation method of defect-rich alumina supported monoatomic carbonyl sulfide hydrolysis catalyst
CN113731429A (en) Copper-based catalyst for hydrogen production by methanol steam reforming, and preparation method and application thereof
CN113292519A (en) Magnetic gold-cobalt composite catalyst and preparation method and application thereof
CN114984952A (en) Carbon-coated copper material and preparation method and application thereof
CN112517019A (en) By TiO2Methanation catalyst with aerogel as carrier and preparation method and application thereof

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20201116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20201117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210525

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210803

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220802

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230307