JP2022015383A - Deciding method for optimum combination of power generation and power transmission, and support system - Google Patents

Deciding method for optimum combination of power generation and power transmission, and support system Download PDF

Info

Publication number
JP2022015383A
JP2022015383A JP2020118170A JP2020118170A JP2022015383A JP 2022015383 A JP2022015383 A JP 2022015383A JP 2020118170 A JP2020118170 A JP 2020118170A JP 2020118170 A JP2020118170 A JP 2020118170A JP 2022015383 A JP2022015383 A JP 2022015383A
Authority
JP
Japan
Prior art keywords
power generation
power
consumer
electric power
cost
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020118170A
Other languages
Japanese (ja)
Inventor
晶 孫
Jing Sun
康一 中出
Koichi Nakade
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagoya Institute of Technology NUC
Original Assignee
Nagoya Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagoya Institute of Technology NUC filed Critical Nagoya Institute of Technology NUC
Priority to JP2020118170A priority Critical patent/JP2022015383A/en
Publication of JP2022015383A publication Critical patent/JP2022015383A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

To provide a decision system, a decision method, and an algorithm for optimizing the demand-supply balance in an electric power market while considering VPP City, by taking the stability, cost efficiency, environmental friendliness, and safety into consideration, and addressing a long-term demand-supply percentage planning problem in the electric power market considering a mathematical model for obtaining an optimum combination of power generation and power transmission to optimize the gain balance between an electric power company and a consumer and an environmental value of renewable power.SOLUTION: A decision making support system 1 executes: processing of setting data on elements for an electric power company 2 and a consumer 3 (Step 1); processing of deciding weighting coefficients for the electric power company and the consumer (Step 2); processing of inputting prediction of a demand amount (Step 3); processing of setting upper and lower limits of a power generation ability of each power generation method and a procurement ability of each power generation method from a supplier 4 (Step 4); processing of calculating the total cost for the electric power company (Step 5); processing of calculating the total cost for the consumer (Step 6); processing of calculating the gain-balance and the total cost for the electric power company and the consumer (Step 7); and processing of obtaining an optimum combination of a power generation amount and a power transmission amount of each power generation method, and a procurement amount and a power storage amount from the supplier 4 (Step 8).SELECTED DRAWING: Figure 5

Description

本発明は、発電と送電の最適組合せの決定方法及び支援システム、換言すれば、環境評価・安全性・安定性・電力会社と需要家の利得バランスを考慮した発電と送電の最適組合せの決定方法と支援システムに関する。 The present invention is a method and support system for determining the optimum combination of power generation and power transmission, in other words, a method for determining the optimum combination of power generation and power transmission in consideration of environmental evaluation, safety, stability, and the gain balance between the electric power company and the consumer. And about the support system.

IoTを始めとした技術革新により、電力市場における新しいビジネスの可能性が広がっている。エネルギー転換・脱炭素化に向けた次世代エネル環境社会を実現するため、再生エネルギーの普及と地産地消の推進ための電力市場の革新が迫られている。
また、現在の電力業界においては、電力自由化による電力市場での全面的な競争、再生可能エネルギーの導入拡大、及び原発再稼働&火力発電の新増設の検討などの課題に直面している.
Technological innovations such as IoT are opening up new business possibilities in the electricity market. In order to realize a next-generation energy environment society for energy conversion and decarbonization, there is an urgent need to innovate the electricity market to promote the spread of renewable energy and local production for local consumption.
In addition, the current electric power industry faces challenges such as full competition in the electric power market due to the liberalization of electric power, expansion of the introduction of renewable energy, and consideration of restarting nuclear power plants and new expansion of thermal power generation.

2014年4月に、給電の安定性・経済性・環境性・安全性を基本となる「エネルギー基本法」も策定された。一方、90年代から電力市場自由化がなされたドイツとイギリスから得られた示唆として、石炭や天然ガスの価格上昇と再エネの固定価格取引制度による費用負担の増加問題の他、火力の発電設備の閉鎖を繰り返した結果、不安定な再エネによる発電のバックアップができる施設不足の問題も挙げられる。
さらに、最近、グローバル電力市場では再生可能エネルギーの発電量の割合(GEC Green Energy Coefficient)を増加させることが必要とされるため、再生可能エネルギーを増加させる政策が急務になっている。このような電力自由化が進められている背景においては、電力価格設定問題、需要家の電力購入配分問題、電力消費問題、及び発電システム開発などの視点から様々な検討がされている。
In April 2014, the "Basic Act on Energy Policy" was enacted, which is based on the stability, economy, environment, and safety of power supply. On the other hand, as suggestions obtained from Germany and the United Kingdom, where the electricity market has been liberalized since the 1990s, there are problems of rising prices of coal and natural gas, an increase in the cost burden due to the fixed price trading system for renewable energy, and thermal power generation facilities. As a result of repeated closures, there is also the problem of a shortage of facilities that can back up power generation due to unstable renewable energy.
Furthermore, recently, since it is necessary to increase the ratio of renewable energy power generation (GEC Green Energy Coefficient) in the global electricity market, there is an urgent need for a policy to increase renewable energy. In the background of such liberalization of electric power, various studies have been made from the viewpoints of electric power price setting problem, electric power purchase allocation problem of consumers, power consumption problem, and power generation system development.

特許文献1には、電力取引を管理する電力取引管理システムであって、通信部と、コンピュータプログラムを記憶するメモリ部と、コンピュータプログラムを実行するプロセッサ部とを備え、プロセッサ部は、所定の電力取引市場における将来の電力価格を予測する電力価格予測処理と、予め設定される所定の電力商品抽出条件と予測した電力価格とに基づいて、所定の電力取引市場で売買予定の所定の電力商品についての情報を抽出する電力商品抽出処理と、所定の電力商品についての所定の取引時点における、電力消費量を調整する能力を示す電力消費量調整能力を、需要家毎に予測する調整能力予測処理と、所定の電力商品において取引予定の電力量を、電力消費量調整能力に基づいて各需要家に割り当てることで、調整計画を作成する調整計画作成処理と、所定の電力商品を所定の電力取引市場で売買するための取引計画を前記調整計画に基づいて作成する取引計画作成処理と、取引計画に基づく注文情報を市場運用管理装置へ送信する注文処理と、調整計画を各需要家へ送信する調整計画送信処理と、を実行する電力取引管理システムが記載されている。 Patent Document 1 is a power transaction management system for managing electric power transactions, which includes a communication unit, a memory unit for storing a computer program, and a processor unit for executing the computer program. About a predetermined electric power product to be bought and sold in a predetermined electric power trading market based on a power price prediction process for predicting a future electric power price in the trading market and a predetermined predetermined electric power product extraction condition and a predicted electric power price. Power product extraction processing that extracts information from , The adjustment plan creation process that creates an adjustment plan by allocating the amount of power scheduled to be traded in a predetermined power product to each consumer based on the power consumption adjustment capacity, and the predetermined power product in a predetermined power trading market. A transaction plan creation process that creates a transaction plan for buying and selling based on the adjustment plan, an order process that sends order information based on the transaction plan to the market operation management device, and an adjustment that sends the adjustment plan to each customer. The planned transmission process and the power transaction management system that executes it are described.

非特許文献1には、需給不均衡リスクを定量的に抑制する新たな分散最適電力配分の方法を提案した。具体的には、確率的モデル予測制御による定式化を行ない、出力調整可能な発電所の未来における発電量の平均値と標準偏差の最適値を求める方法、及び双対分解により分散的な求解を行ない、その双対変数の最適値として電力価格が求まる方法が記載されている。
また、非特許文献2には、市場管理者が存在する電力取引市場において電力を発電する供給家と電力を消費する需要家の電力価格の最適設定と最適電力配分に注目した。市場管理者がこの問題を解くことで社会全体の利益が最大化されることを示し、各市場参加者間の情報交換によりこの問題を解く、双対問題の双対分解に基づいたアルゴリズムを提案することが記載されている。
Non-Patent Document 1 proposes a new method of distributed optimal power allocation that quantitatively suppresses the risk of imbalance between supply and demand. Specifically, a method of formulating by probabilistic model predictive control to find the optimum value of the average value and standard deviation of the power generation amount in the future of the power plant with adjustable output, and a decentralized solution by dual decomposition are performed. , The method of obtaining the electric power price as the optimum value of the dual variable is described.
Further, in Non-Patent Document 2, attention is paid to the optimum setting and the optimum power distribution of the power price of the supplier who generates power and the consumer who consumes power in the power trading market where the market manager exists. To show that market managers can maximize the profits of society as a whole by solving this problem, and propose an algorithm based on the dual decomposition of the dual problem, which solves this problem by exchanging information between market participants. Is described.

特開2016-134939号公報Japanese Unexamined Patent Publication No. 2016-134939

余正希, 小野雅裕, Brian C. Williams, 足立修一: 確率的モデル予測制御を用いた分散最適電力配分とプライシング, 計測自動制御学会論文集, Vol.50, No.3, pp.227--235 (2014)Masaki Yo, Masahiro Ono, Brian C. Williams, Shuichi Adachi: Distributed Optimal Power Allocation and Pricing Using Probabilistic Model Predictive Control, Proceedings of the Society of Instrument and Control Engineers, Vol.50, No.3, pp.227--235 ( 2014) 加藤 佑介,滑川 徹:電力市場における反復入札による入札価格と電力配分の最適化,計測自動制御学会論文集, Vol.56, No.4, pp.249-258 (2020)Yusuke Kato, Toru Namerikawa: Optimization of bid price and power distribution by repeated bidding in the power market, Proceedings of the Society of Instrument and Control Engineers, Vol.56, No.4, pp.249-258 (2020)

しかしながら、安全性、経済性、及び再生エネルギー普及のための環境価値を考慮した電力会社と需要家の全体の最適化の視点からの動的な市場環境に合わせた最適なビジネスソリューションの考察があまりなされていない。
そこで、本発明では、安定性、経済性、環境性と安全性を考慮し、電力会社と需要家の利得バランスの最適化を目指した発電と送電の最適な組み合わせを求める数理モデル及びその算出のためのアルゴリズムの提案、再生可能エネルギーの「環境価値」を考慮した電力市場の長期的な需給確率計画問題に対処し、及びVPP Cityを考慮した電力市場の需給バランスの最適化を行うことができる決定システム、その決定方法とアルゴリズムを提供することを目的とする。
However, there is not much consideration of the optimal business solution for the dynamic market environment from the viewpoint of overall optimization of electric power companies and consumers considering the environmental value for safety, economy, and the spread of renewable energy. Not done.
Therefore, in the present invention, in consideration of stability, economy, environmental friendliness and safety, a mathematical model for obtaining the optimum combination of power generation and power transmission aiming at optimizing the profit balance between the electric power company and the consumer and its calculation are performed. It is possible to propose algorithms for The purpose is to provide a decision system, its decision method and algorithm.

上記課題を解決する本発明は以下の通りである。
(1)発電と送電の最適な組み合わせを求める発電・送電の最適組み合わせ意思決定支援システムであって、所定のコンピュータプログラムを記憶するメモリ部と、前記所定のコンピュータプログラムを実行することで所定の処理を実行するプロセッサ部を備え、前記プロセッサ部は、電力会社の収支要素に関するデータの設定及び需要家のコスト要素に関するデータの設定を行うデータ設定処理と、前記電力会社と前記需要家の利得バランスを考慮するため、前記電力会社のコストと前記需要家のコストを求める所定式における両者の重みづけの係数を決める重みづけ係数決定処理と、前記需要家の需要量を予測し、前記需要量を入力する予測入力処理と、所定式により、各発電方式の発電能力と前記各発電方式のサプライヤーからの調達能力の上限と下限を設定する上限下限設定処理と、所定式により、前記発電・送電、追加発電能力、サプライヤーからの電力買取、CO処理、事故リスク対策(安全性)、再生エネルギー環境価値及び蓄電の要素を考慮した、前記電力会社の総コストを計算する電力会社総コスト計算処理と、所定式により、電力使用量、電力量料金単価、燃料費調達単価、再生可能エネルギー発電促進賦課金単価の要素を考慮した需要家の総コストを計算する需要家総コスト計算処理と、所定式により、前記電力会社と需要家の利得バランスを考慮した、両者の総コスト計算処理と、前記発電・送電、追加発電能力、サプライヤーからの電力買取及び蓄電の電力制約、要求される再生エネルギーの割合の所定の制約を満たした、前記電力会社と前記需要家の総コストを最小化する、前記各発電方式の発電量と送電量、前記サプライヤーからの調達量及び蓄電量の最適組み合わせを求める最適組み合わせ出力処理、を実行することを特徴とする発電・送電の最適組み合わせ意思決定支援システムである。
(2)前記電力会社のコストと前記需要家のコストを求める所定式が式(3)、前記各発電方式の発電能力と前記各発電方式のサプライヤーからの調達能力の上限と下限を設定する所定式が式(8)(9)及び(11)、前記発電・送電、追加発電能力、サプライヤーからの電力買取、CO2処理、事故リスク対策(安全性)、再生エネルギー環境価値及び蓄電の要素を考慮した、前記電力会社の総コストを計算する所定式が式(1)、需要家の総コストを計算する所定式が式(2)、前記電力会社と需要家の利得バランスを考慮した両者の総コストを計算する所定式が式(3)、前記所定の制約式が式(4)~(19)で与えられることを特徴とする請求項1に記載の発電・送電の最適組み合わせ意思決定支援システムである。
(数1~3)

Figure 2022015383000002

(数4~19)
Figure 2022015383000003

(3)発電と送電の最適な組み合わせを求める発電・送電の最適組み合わせ意思決定支援システムを用いて発電・送電の最適組み合わせを意思決定する方法であって、前記最適組み合わせ意思決定支援システムは、電力会社の収支要素に関するデータの設定及び需要家のコスト要素に関するデータの設定を行うデータ設定を行い、前記電力会社と前記需要家の利得バランスを考慮するため、前記電力会社のコストと前記需要家のコストを求め、両者の重みづけの係数を決める重みづけ係数決定を行い、前記需要家の需要量を予測し前記需要量を入力する予測入力を行い、各発電方式の発電能力と前記各発電方式のサプライヤーからの調達能力の上限と下限を設定する上限下限設定を行い、前記発電・送電、追加発電能力、サプライヤーからの電力買取、CO処理、事故リスク対策(安全性)、再生エネルギー環境価値及び蓄電の要素を考慮した、前記電力会社の総コストを計算する電力会社総コスト計算を行い、電力使用量、電力量料金単価、燃料費調達単価、再生可能エネルギー発電促進賦課金単価の要素を考慮した、需要家の総コストを計算する需要家総コスト計算を行い、前記電力会社と需要家の利得バランスを考慮した、両者の総コストを計算する利得バランス総コスト計算を行い、前記発電・送電、追加発電能力、サプライヤーからの電力買取及び蓄電の電力制約、要求される再生エネルギーの割合の制約を満たした、前記電力会社と前記需要家の総コストを最小化する、前記各発電方式の発電量と送電量、前記サプライヤーからの調達量及び蓄電量の最適組み合わせを求める最適組み合わせ出力を行うことを含むことを特徴とする発電・送電の最適組み合わせ意思決定支援方法である。
(4)前記重みづけ係数決定が式(3)に、前記上限下限設定が式(8)(9)及び(11)に、前記電力会社総コスト計算が式(1)に、前記需要家総コスト計算が式(2)に、前記利得バランス総コスト計算が式(3)に、再生エネルギーの割合の制約が式(4)~(19)に、それぞれ基づくことを特徴とする(3)に記載の発電・送電の最適組み合わせ意思決定支援方法である。
(数1~3)
Figure 2022015383000004

(数4~19)
Figure 2022015383000005

The present invention that solves the above problems is as follows.
(1) Optimal combination of power generation and transmission for finding the optimum combination of power generation and transmission A decision support system for determining a decision, which is a memory unit for storing a predetermined computer program and a predetermined process by executing the predetermined computer program. The processor unit is provided with a processor unit that executes data setting processing for setting data regarding the balance element of the electric power company and setting data regarding the cost element of the consumer, and the profit balance between the electric power company and the consumer. In order to take this into consideration, the weighting coefficient determination process that determines the weighting coefficient of both in the predetermined formula for obtaining the cost of the power company and the cost of the consumer, the demand amount of the consumer is predicted, and the demand amount is input. Predictive input processing to be performed, upper and lower limit setting processing to set the upper and lower limits of the power generation capacity of each power generation method and the procuring capacity from the supplier of each power generation method according to the predetermined formula, and the power generation / transmission and addition according to the predetermined formula. Power company total cost calculation processing that calculates the total cost of the power company, considering factors such as power generation capacity, power purchase from suppliers, CO 2 processing, accident risk countermeasures (safety), renewable energy environmental value and electricity storage. The consumer total cost calculation process that calculates the total cost of the consumer considering the factors of power consumption, power charge unit price, fuel cost procurement unit price, and renewable energy power generation promotion levy unit price by the predetermined formula, and the predetermined formula , Considering the profit balance between the power company and the consumer, the total cost calculation process of both, the power generation / transmission, additional power generation capacity, the power constraint of power purchase and storage from the supplier, and the ratio of the required regenerated energy. Optimal combination output for finding the optimum combination of the amount of power generation and transmission of each power generation method, the amount of power procured from the supplier, and the amount of electricity stored, which minimizes the total cost of the electric power company and the consumer, which meets predetermined constraints. It is an optimal combination decision support system for power generation and transmission, which is characterized by executing processing.
(2) The predetermined formula for obtaining the cost of the electric power company and the cost of the consumer is the formula (3), and the predetermined formula for setting the upper limit and the lower limit of the power generation capacity of each power generation method and the procurement capacity from the supplier of each power generation method. The formula considers the factors of formulas (8) (9) and (11), the power generation / transmission, additional power generation capacity, power purchase from the supplier, CO2 treatment, accident risk countermeasures (safety), renewable energy environmental value and storage. The predetermined formula for calculating the total cost of the electric power company is the formula (1), the predetermined formula for calculating the total cost of the consumer is the formula (2), and the total of both considering the profit balance between the electric power company and the consumer. The optimal combination decision support system for power generation and power transmission according to claim 1, wherein the predetermined formula for calculating the cost is given by the formula (3), and the predetermined constraint formula is given by the formulas (4) to (19). Is.
(Numbers 1 to 3)
Figure 2022015383000002

(Numbers 4-19)
Figure 2022015383000003

(3) Finding the optimum combination of power generation and transmission This is a method of determining the optimum combination of power generation and transmission using the optimum combination decision support system for power generation and transmission, and the optimum combination decision support system is electric power. In order to set the data for setting the data related to the income and expenditure factors of the company and the data for the cost factors of the consumer, and to consider the profit balance between the electric power company and the consumer, the cost of the electric power company and the cost of the consumer are taken into consideration. Obtain the cost, determine the weighting coefficient of both, determine the weighting coefficient, predict the demand amount of the consumer, perform the prediction input to input the demand amount, and perform the power generation capacity of each power generation method and each power generation method. Set the upper and lower limits of the power generation capacity from the supplier of And, the total cost of the electric power company is calculated in consideration of the element of electricity storage, and the total cost of the electric power company is calculated. The total cost of the consumer is calculated in consideration of the total cost of the consumer, the total cost of the power company and the consumer is considered, and the total cost of both is calculated. The total cost of the power generation is calculated. For each power generation method that minimizes the total cost of the power company and the consumer, satisfying the power transmission, additional power generation capacity, power constraints of purchasing and storing power from suppliers, and the ratio of required renewable energy. It is an optimum combination decision support method for power generation and transmission, which includes performing an optimum combination output for obtaining an optimum combination of power generation amount and transmission amount, procurement amount from the supplier, and storage amount.
(4) The weighting coefficient determination is in the equation (3), the upper and lower limit settings are in the equations (8) (9) and (11), the electric power company total cost calculation is in the equation (1), and the consumer total. The cost calculation is based on the equation (2), the gain balance total cost calculation is based on the equation (3), and the restriction on the ratio of the regenerated energy is based on the equations (4) to (19), respectively. It is the optimum combination decision support method of power generation and transmission described.
(Numbers 1 to 3)
Figure 2022015383000004

(Numbers 4-19)
Figure 2022015383000005

本発明によれば、電力業者に対して経済性・環境価値・安全性・安定性及び電力会社と需要家の利得バランスを考慮した発電と送電の最適な組み合わせを提供することができる。 According to the present invention, it is possible to provide an electric power company with an optimum combination of power generation and power transmission in consideration of economic efficiency, environmental value, safety, stability, and a gain balance between an electric power company and a consumer.

本発明の一つの実施態様である、発電・送電の最適組み合わせ意思決定支援システムを利用によるlot&AIで拓く電力ビジネス-仮想発電所(VPP)ビジネスのイメージを示す図である。It is a figure which shows the image of the electric power business-virtual power plant (VPP) business which is pioneered by lot & AI by using the optimal combination decision support system of power generation and power transmission which is one embodiment of this invention. 先進国のGECの現在値と目標値を示す図である。It is a figure which shows the present value and the target value of GEC of the developed country. 本発明の一つの実施態様であるエネルギーミックスのシナリオツリーを示した図である。It is a figure which showed the scenario tree of the energy mix which is one embodiment of this invention. 電力会社と需要家のコスト要素を示す図である。It is a figure which shows the cost element of an electric power company and a consumer. 発電と送電の最適組み合わせ(総コスト)を算出するためのアルゴリズムを示す図である。It is a figure which shows the algorithm for calculating the optimum combination (total cost) of power generation and power transmission. 発電・送電の最適組み合わせ意思決定支援システムのハードウェアと機能の関係を示す説明図である。It is explanatory drawing which shows the relationship between the hardware and the function of the optimal combination decision support system of power generation and power transmission.

以下、図面を参照しつつ本発明の実施の形態について説明する。本発明は、以下の実施形態に限定されるものではなく、発明の範囲を逸脱しない限りにおいて、変更、修正、改良を加え得るものである。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present invention is not limited to the following embodiments, and changes, modifications, and improvements can be made without departing from the scope of the invention.

図1には、発電・送電の最適組み合わせ意思決定支援システム(以下「意思決定支援システム」と言う場合がある)1を利用した、lot&AIで拓く電力ビジネス-仮想発電所(VPP)ビジネス10を示した。VPPビジネス10では、水力発電、火力発電及び原子力発電と、再生可能エネルギーである例えば太陽光発電や風力発電を有する電力会社2が意思決定支援システム1を利用して需要家3に電力を供給(送電)している。ここで、電力会社2は、太陽光発電や風力発電等の再生可能エネルギーをサプライヤー(別の電力会社)4から購入する等して供給を受けることができる。なお、アグリゲーターとは、電力会社のマネジャーのことである。 FIG. 1 shows the electric power business-virtual power plant (VPP) business 10 cultivated by lot & AI using the optimal combination decision support system for power generation and transmission (hereinafter sometimes referred to as “decision support system”) 1. rice field. In the VPP business 10, the electric power company 2 having hydroelectric power generation, thermal power generation, nuclear power generation, and renewable energy such as solar power generation and wind power generation supplies power to the consumer 3 by using the decision support system 1 (the decision support system 1 is used. (Power generation). Here, the electric power company 2 can receive supply by purchasing renewable energy such as solar power generation and wind power generation from a supplier (another electric power company) 4. An aggregator is a manager of an electric power company.

図2に示した先進国のGECの現在値と目標値を示した図によって次のことが分かる。最近、グローバル電力市場では再生可能エネルギーの発電量の割合(GEC Green Energy Coefficient) を増加させることが必要とされるため、再生可能エネルギーを増加させる政策が急務になっている。 The following can be seen from the figure showing the current value and target value of GEC in developed countries shown in FIG. Recently, the global electricity market needs to increase the ratio of renewable energy generation (GEC Green Energy Coefficient), so there is an urgent need for policies to increase renewable energy.

意思決定支援システム1は、記憶装置110とCPU101を備える(図6)。「プロセッサ部」としてのCPU101は、記憶装置110に格納された所定のコンピュータプログラムを読み出して実行することで、意思決定支援システム1の動作を統括的に制御する。 The decision support system 1 includes a storage device 110 and a CPU 101 (FIG. 6). The CPU 101 as a "processor unit" comprehensively controls the operation of the decision support system 1 by reading and executing a predetermined computer program stored in the storage device 110.

入力装置102は、アグリゲーターが意思決定支援システム1に情報を入力するための装置である。入力情報には、デーや指示がある。入力装置102は、例えば、キーボード、マウス、タッチパネル、音声認識装置、動作認識装置などを用いて構成される。出力装置103は、意思決定支援システム1から外部へ情報を出力する装置である。出力装置103は、例えば、ディスプレイ、プリンタ、音声合成装置などを用いて構成される。 The input device 102 is a device for the aggregator to input information to the decision support system 1. Input information includes days and instructions. The input device 102 is configured by using, for example, a keyboard, a mouse, a touch panel, a voice recognition device, an motion recognition device, and the like. The output device 103 is a device that outputs information from the decision support system 1 to the outside. The output device 103 is configured by using, for example, a display, a printer, a voice synthesizer, or the like.

記憶装置110は、例えば、RAM(Random Access Memory)、ROM(Read Only Memory)、ハードディスク、フラッシュメモリなどの記憶媒体にデータを格納する装置である。図6では記憶装置110を一つの装置として示しているが、主記憶装置と補助記憶装置のように、複数の記憶装置から構成することもできる。 The storage device 110 is a device that stores data in a storage medium such as a RAM (Random Access Memory), a ROM (Read Only Memory), a hard disk, or a flash memory. Although the storage device 110 is shown as one device in FIG. 6, it may be composed of a plurality of storage devices such as the main storage device and the auxiliary storage device.

メモリ部としての記憶装置110は、コンピュータプログラム群112~118が格納されている。記憶装置110には、データ設定処理部111、並びに重みづけ係数決定処理部112、予測入力処理部113、上限下限設定処理部114、電力会社総コスト計算処理部115、需要家総コスト計算処理部116、電力会社と需要家利得バランス総コスト計算処理部117及び最適組み合わせ出力処理部118等の機能を実現するための所定のコンピュータプログラムを格納する。 The storage device 110 as a memory unit stores computer programs 112 to 118. The storage device 110 includes a data setting processing unit 111, a weighting coefficient determination processing unit 112, a prediction input processing unit 113, an upper and lower limit setting processing unit 114, an electric power company total cost calculation processing unit 115, and a consumer total cost calculation processing unit. It stores a predetermined computer program for realizing the functions of 116, the electric power company and the consumer gain balance total cost calculation processing unit 117, the optimum combination output processing unit 118, and the like.

詳細は以下にも記載するが、データ設定処理部111から最適組み合わせ出力処理部118までのそれぞれの機能は次のようである。データ設定処理部111の機能は、電力会社2の収支要素に関するデータの設定及び需要家3のコスト要素に関するデータの設定を行うデータ設定処理機能である。重みづけ係数決定処理部112の機能は、電力会社2と需要家3の利得バランスを考慮するため、電力会社2のコストと需要家2のコストを求める所定式における両者の重みづけの係数を決める重みづけ係数決定処理機能である。予測入力処理部113の機能は、需要家3の需要量を予測し、前記需要量を入力する予測入力処理機能である。 Details will be described below, but each function from the data setting processing unit 111 to the optimum combination output processing unit 118 is as follows. The function of the data setting processing unit 111 is a data setting processing function for setting data related to the balance element of the electric power company 2 and setting data related to the cost element of the consumer 3. The function of the weighting coefficient determination processing unit 112 determines the weighting coefficient of both in the predetermined formula for obtaining the cost of the electric power company 2 and the cost of the consumer 2 in order to consider the gain balance between the electric power company 2 and the consumer 3. It is a weighting coefficient determination processing function. The function of the prediction input processing unit 113 is a prediction input processing function that predicts the demand amount of the consumer 3 and inputs the demand amount.

上限下限設定処理部114の機能は、所定式により、各発電方式の発電能力と前記各発電方式のサプライヤー4からの調達能力の上限と下限を設定する上限下限設定処理機能である。電力会社総コスト計算処理部115の機能は、所定式により、前記発電・送電、追加発電能力、サプライヤー4からの電力買取、CO処理、事故リスク対策(安全性)、再生エネルギー環境価値及び蓄電の要素を考慮した、電力会社2の総コストを計算する電力会社総コスト計算処理機能である。需要家総コスト計算処理部116の機能は、所定式により、電力使用量、電力量料金単価、燃料費調達単価、再生可能エネルギー発電促進賦課金単価の要素を考慮した需要家3の総コストを計算する需要家総コスト計算処理機能である。 The function of the upper / lower limit setting processing unit 114 is an upper / lower limit setting processing function for setting the upper limit and the lower limit of the power generation capacity of each power generation method and the procurement capacity from the supplier 4 of each power generation method according to a predetermined formula. The functions of the electric power company total cost calculation processing unit 115 are, according to a predetermined formula, the power generation / transmission, additional power generation capacity, power purchase from supplier 4, CO 2 processing, accident risk countermeasures (safety), renewable energy environmental value and storage. It is an electric power company total cost calculation processing function that calculates the total cost of the electric power company 2 in consideration of the above factors. The function of the consumer total cost calculation processing unit 116 is to calculate the total cost of the consumer 3 in consideration of the elements of the electric energy consumption, the electric energy charge unit price, the fuel cost procurement unit price, and the renewable energy power generation promotion levy unit price by a predetermined formula. It is a consumer total cost calculation processing function to calculate.

電力会社2と需要家3利得バランス総コスト計算処理部117の機能は、所定式により、電力会社2と需要家3の利得バランスを考慮した、両者の総コストの計算処理機能である。最適組み合わせ出力処理部118の機能は、前記発電・送電、追加発電能力、サプライヤー4からの電力買取及び蓄電の電力制約、要求される再生エネルギーの割合の所定の制約を満たした、電力会社2と需要家3の総コストを最小化する、前記各発電方式の発電量と送電量、サプライヤー4からの調達量及び蓄電量の最適組み合わせを求める最適組み合わせ出力処理機能である。 The function of the electric power company 2 and the consumer 3 gain balance total cost calculation processing unit 117 is a calculation processing function of the total cost of both the electric power company 2 and the consumer 3 in consideration of the gain balance by a predetermined formula. The functions of the optimum combination output processing unit 118 are those of the electric power company 2 and the electric power company 2 that satisfy the above-mentioned power generation / transmission, additional power generation capacity, power restrictions of power purchase and storage from the supplier 4, and predetermined restrictions of the required ratio of regenerated energy. It is an optimum combination output processing function that minimizes the total cost of the consumer 3 and obtains the optimum combination of the power generation amount and the transmission amount, the procurement amount from the supplier 4, and the storage amount of each power generation method.

意思決定支援システム1は、多期間において,電力会社2と需要家3の総コスト最小化を目的とした全体最適化を行う数理モデルによって構築される。それぞれ、電力会社2と需要家3の両者のコストの重みを考慮した全体総コスト(f)を目的関数とする。電力会社2のコスト(f)の要素は発電コスト、送電コスト、CO処理コスト、事故リスク対応費用、電力過剰のペナルティコスト、発電能力追加コスト、再生可能エネルギー環境評価買取費用、サプライヤー4からの再生可能エネルギー購入コスト及び電力在庫コストがあり、収入として、電力の売り上げ、再生可能エネルギー環境評価売却費用、政府の補助金がある。一方、需要家2のコスト(fu)は、電力量料金である。要素は、電力使用料金、燃料調整料金、及び再生可能エネルギー料金である。
本発明で用いる記号とパラメータの定義を以下に示す。
The decision support system 1 is constructed by a mathematical model that performs overall optimization for the purpose of minimizing the total cost of the electric power company 2 and the consumer 3 over a multi-period period. The total cost (f), which takes into account the weights of the costs of both the electric power company 2 and the consumer 3, is used as the objective function. The elements of the cost ( fc ) of the electric power company 2 are power generation cost, transmission cost, CO 2 processing cost, accident risk response cost, power excess penalty cost, power generation capacity addition cost, renewable energy environment evaluation purchase cost, from supplier 4. There are the cost of purchasing renewable energy and the cost of stocking electricity, and the income includes the sales of electricity, the cost of evaluating and selling the renewable energy environment, and the government subsidy. On the other hand, the cost ( fu ) of the consumer 2 is the electric energy charge. The factors are electricity usage charges, fuel adjustment charges, and renewable energy charges.
The definitions of symbols and parameters used in the present invention are shown below.

<記号の定義>

Figure 2022015383000006
<Definition of symbols>
Figure 2022015383000006

<パラメータの定義>

Figure 2022015383000007

<Definition of parameters>
Figure 2022015383000007

電力会社2のコストは、各発電方式の単位当たりの発電コスト、単位発電量あたりの事故リスク対応費用、単位発電量あたりのCO処理コストの3つの要素からなる。また、送電地域ごとに送電コスト単価をβとして設定する。またPjt OSを過剰送電率、Pj0t OSを過剰送電量の下限率(送電中に損失される電力量)として設定し、その差と送電量との積をとることで実際の過剰送電量を求める。 The cost of the electric power company 2 consists of three elements: the power generation cost per unit of each power generation method, the accident risk response cost per unit power generation amount, and the CO 2 processing cost per unit power generation amount. In addition, the transmission cost unit price is set as β j for each transmission area. In addition, Pjt OS is set as the excess transmission rate, and Pj0t OS is set as the lower limit rate of the excess transmission amount (the amount of power lost during transmission), and the product of the difference and the transmission amount is taken to obtain the actual excess transmission amount. Ask for.

過剰送電量に対し、電力過剰のペナルティ単価を係数としたペナルティを計算する。また、qutを追加発電能力の単価として定義し、発電能力の追加を行った場合には追加量に応じたコストを加える。γを再生可能エネルギー環境評価に関する単価として定義し、GECレベルとの差分を売買することができ、それによる支出もしくは収入を目的関数に追加する。また、電力会社2はサプライヤー4から再生可能エネルギーを買い取ることができ、その場合は買い取った電力分のコストを追加する。さらに、電力在庫量に応じて在庫コストを目的関数に追加する。 The penalty for excess power transmission is calculated using the unit price of the penalty for excess power as a coefficient. In addition, quant is defined as the unit price of the additional power generation capacity, and when the power generation capacity is added, the cost according to the additional power generation capacity is added. Gamma can be defined as the unit price for renewable energy environmental assessment, and the difference from the GEC level can be bought and sold, and the expenditure or income from it can be added to the objective function. Further, the electric power company 2 can purchase renewable energy from the supplier 4, and in that case, the cost of the purchased electric power is added. In addition, the inventory cost is added to the objective function according to the amount of power inventory.

需要家3のコスト(fu)では、電力量料金単価、燃料費調整単価、再生可能エネルギー発電促進賦課金単価を送電量あたりの単価として設定する。ここで再生可能エネルギー発電促進賦課金単価μは、「東京電力ホールディングス: 賦課金等について(2018)」による算出方法を用いて計算する。電力会社2、需要家3のそれぞれのコストはシナリオツリーの各ノードの発生確率と乗算し、期ごとに和をとることで、各期のコストの期待値が計算される。 In the cost ( fu ) of the consumer 3, the electric energy charge unit price, the fuel cost adjustment unit price, and the renewable energy power generation promotion levy unit price are set as the unit price per transmission amount. Here, the renewable energy power generation promotion levy unit price μ is calculated using the calculation method described in “TEPCO Holdings: About levies, etc. (2018)”. The cost of each of the electric power company 2 and the consumer 3 is multiplied by the probability of occurrence of each node in the scenario tree, and the sum is taken for each period to calculate the expected value of the cost for each period.

本発明ではシナリオツリーに基づいて各期における決定をモデル化する。図3にt=1のときに2つのノードを持ち、t=2のときに4つのノードを持つシナリオツリーを示す。シナリオツリーには各期間に対応するt=0、1、2…を設定する。シナリオツリーの各ノードω(s)はt=0の場合を除き、親ノードであるaω(s)を有する。Ωをt期の各ノードω(s)の集合とし、Ω={ω(1)、ω(2)、…ω(s)}で定義され、図3の場合s=2であるpωt(s)の値は,ルートω(1)からω(s)までのすべての経路上のノードのジョイント確率であり、あるノードの発生確率と、その子ノードの発生確率の合計は等しくなる。t=0の場合はpω0(1)=1、Ω={ω(1)}である. In the present invention, the decision in each period is modeled based on the scenario tree. FIG. 3 shows a scenario tree having two nodes when t = 1 and four nodes when t = 2. In the scenario tree, t = 0, 1, 2, ... Corresponding to each period is set. Each node ω t (s) in the scenario tree has a parent node aω t (s) except when t = 0. Let Ω t be the set of each node ω t (s) in the t period, and be defined by Ω t = {ω t (1), ω t (2), ... ω t (s)}, and in the case of Fig. 3, s = The value of p ω t (s ) , which is 2 t , is the joint probability of the nodes on all the paths from the route ω 0 (1) to ω t (s), and the occurrence probability of a certain node and the occurrence of its child nodes. The sum of the probabilities is equal. When t = 0, p ω0 (1) = 1, Ω 0 = {ω 0 (1)}.

また、ある期におけるノードの発生確率の和は1となる。例えば、t=1でノードω(1)が選ばれたときt=2において、ノードω(1)となる確率はpω2(1)/pω2(2)となる.先祖ノードω(1)から末端ノードまでのある経路をそのシナリオと呼ぶ。それぞれのノードが2つのノードに分岐する場合2個の末端ノードが存在し、同じ数のシナリオが存在する。 In addition, the sum of the occurrence probabilities of nodes in a certain period is 1. For example, when node ω 1 (1) is selected at t = 1, the probability of becoming node ω 2 (1) at t = 2 is p ω 2 ( 1) / p ω 2 ( 2) . A certain route from the ancestor node ω 0 (1) to the terminal node is called the scenario. When each node branches into two nodes, there are 2 T terminal nodes and the same number of scenarios.

各ノードでは,それぞれパラメータの値が設定される.再生可能エネルギーの発電量がGECの許容下限値であるρを満たすことができなくなった場合には、電力会社2はこれを満たすように発電能力の追加、もしくはサプライヤー4からの再生可能エネルギー買い取りを行い、発電能力を追加した場合は発電能力の上限値Capmax0, uωt(s)に追加能力であるXu ωt(s)を加える。明らかに再生可能エネルギーの発電量はその発電能力によって制限されており、要求されたGECの制約ρについても考慮するため、GEC制約を満たすためには、どのノードで発電能力の追加を行いどのノードでサプライヤー4からの電力買い取りを行うことが最適であるのかがモデルによって決定され、各シナリオの各ノードにおける発電量、送電量が決定される。 Parameter values are set for each node. If the amount of renewable energy generated cannot meet the GEC permissible lower limit value ρ t , the electric power company 2 adds power generation capacity to meet this, or purchases renewable energy from the supplier 4. When the power generation capacity is added, the additional capacity X u ωt (s) is added to the upper limit values Capmax0 and uωt (s) of the power generation capacity. Obviously, the amount of power generated by renewable energy is limited by its power generation capacity, and the required GEC constraint ρ is also taken into consideration. Therefore, in order to meet the GEC constraint, which node should be added with power generation capacity and which node The model determines whether it is optimal to purchase power from the supplier 4, and the amount of power generation and transmission at each node of each scenario is determined.

また、電力会社2に利益が生まれることが条件であるため、需要家3からの収入と政府機関からの補助金の合計が電力会社のコストを上回ることを制約として考える。以上のそれぞれのコストを計算し、その和を最小化することを目的とする。各地域への送電量と各発電方式による発電量の最適な組み合わせを決定する数理モデルの定式化を以下に示す。 Further, since it is a condition that the electric power company 2 makes a profit, it is considered as a constraint that the total of the income from the consumer 3 and the subsidy from the government agency exceeds the cost of the electric power company. The purpose is to calculate each of the above costs and minimize the sum. The formulation of the mathematical model that determines the optimum combination of the amount of power transmitted to each region and the amount of power generated by each power generation method is shown below.

<決定変数>

Figure 2022015383000008
<Coefficient of determination>
Figure 2022015383000008

<目的関数>

Figure 2022015383000009
<Objective function>
Figure 2022015383000009

<制約条件>

Figure 2022015383000010
<Constraints>
Figure 2022015383000010

式(1)は、電力会社2のコストと需要家3のコストの両者のコストの重みづけを考慮した全体総コストの各ノードの和を表した目的関数である。式(2)は電力会社2のコストの式であり、発電量に応じた発電コスト、事故リスク対応費用、CO処理コストを考える。また、送電地域ごとに送電コストを考える。また、過剰送電によるペナルティコストと再生可能エネルギー環境評価価値の売買を考え、各期において発電能力の追加を行った場合にはその費用、サプライヤー4からの電力買い取りを行った場合はその費用を追加し、電力を在庫しておくための費用を追加する。 Equation (1) is an objective function expressing the sum of each node of the total total cost considering the weighting of both the cost of the electric power company 2 and the cost of the consumer 3. Equation (2) is an equation of the cost of the electric power company 2, and considers the power generation cost, the accident risk response cost, and the CO 2 processing cost according to the amount of power generation. Also, consider the transmission cost for each transmission area. In addition, considering the penalty cost due to excessive transmission and the buying and selling of the renewable energy environment evaluation value, the cost will be added if the power generation capacity is added in each period, and the cost will be added if the power is purchased from the supplier 4. And add the cost to keep the electricity in stock.

需要家3のコスト式(3)では、電力量料金単価、燃料費調整単価、再生可能エネルギー発電促進賦課金単価を考える。式(4)、(5)は各発電方式の発電量、送電量、在庫量の関係を表したものであり、各期の送電量は発電量から期末在庫量を引き、それに期首在庫量を合わせたものとなる。式(6)は各期間、各ノードの各地域への電力需要に対する送電量と過剰送電量の定義に関する制約、関係式である。つまり、式(6)を満たすように送電量が決定され、式(4)、(5)によって各発電方式による発電量が決定される。 In the cost formula (3) of the consumer 3, the electric energy charge unit price, the fuel cost adjustment unit price, and the renewable energy power generation promotion levy unit price are considered. Equations (4) and (5) express the relationship between the amount of power generation, the amount of power transmission, and the amount of inventory of each power generation method. It will be a combination. Equation (6) is a constraint and relational expression regarding the definition of the transmission amount and the excess transmission amount for the power demand of each node to each region in each period. That is, the power transmission amount is determined so as to satisfy the formula (6), and the power generation amount by each power generation method is determined by the formulas (4) and (5).

式(7)は電力会社2のコストよりも収入が上回ることで、電力会社2に利益がでることを保証するものである。式(8)、(9)は各ノードにおいて、発電能力が満たすべき制約である。また、式(10)によって各ノードで、再生可能エネルギーの発電能力に、能力を追加していくことが可能である。親ノードの発電能力に対して、追加していくことにより、再生可能エネルギーの発電能力の条件式である式(8)の発電能力の上限を増加させることができる。式(11)、(12)はそれぞれサプライヤー4からの電力購入量と在庫能力の上・下限を表すものである。 Equation (7) guarantees that the electric power company 2 is profitable because the income exceeds the cost of the electric power company 2. Equations (8) and (9) are constraints that the power generation capacity must satisfy at each node. Further, it is possible to add the capacity to the power generation capacity of the renewable energy at each node by the equation (10). By adding to the power generation capacity of the parent node, the upper limit of the power generation capacity of the equation (8), which is a conditional expression of the power generation capacity of renewable energy, can be increased. Equations (11) and (12) represent the upper and lower limits of the power purchase amount and inventory capacity from the supplier 4, respectively.

式(13)はGECに関する制約であり、電力会社2が最低でも必ず満たさなければならないGECレベルを制限するものである。式(14)はμの算出方法である。前述の永見健太郎らによる文献では、「再生可能エネルギー発電促進賦課金単価=当該年度における電力会社等への交付金への見込額の合計÷当該年度における電力会社等の想定供給量の合計」とされており、これを本モデルの記号で表現すると式(17)となる。式(15)、(16)、(17)、(18)、(19)はそれぞれの決定変数の非負制約式である。 Equation (13) is a constraint on GEC, which limits the GEC level that the electric power company 2 must meet at least. Equation (14) is a method for calculating μ. According to the above-mentioned literature by Kentaro Nagami et al., "Renewable energy power generation promotion levy unit price = total estimated amount of grants to electric power companies in the current fiscal year / total estimated supply amount of electric power companies, etc. in the current fiscal year". When this is expressed by the symbol of this model, it becomes equation (17). Equations (15), (16), (17), (18), and (19) are non-negative constraint equations for the respective decision variables.

図5に示したように、意思決定支援システム1は、以下のStep1~8を実行することによって、発電・送電の最適組み合わせを電力会社2に提供することができる。
すなわち、電力会社2の収支要素(図4)に関するデータの設定及び需要家3のコスト要素(図4)に関するデータの設定を行うデータ設定処理(Step1)と、電力会社2と需要家3の利得バランスを考慮するため、電力会社2のコストと需要家3のコストを求める式(3)における両者の重みづけの係数を決める重みづけ係数決定処理(Step2)と、需要家3の需要量を予測し、需要量を入力する予測入力処理(Step3)と、式(8)(9)及び(11)により、各発電方式の発電能力と各発電方式のサプライヤー4からの調達能力の上限と下限を設定する上限下限設定処理(Step4)と、式(1)により、発電・送電、追加発電能力、サプライヤー4からの電力買取、CO処理、事故リスク対策(安全性)、再生エネルギー環境価値及び蓄電の要素を考慮した、電力会社2の総コストを計算する電力会社総コスト計算処理(Step5)と、式(2)により、電力使用量、電力量料金単価、燃料費調達単価、再生可能エネルギー発電促進賦課金単価の要素を考慮した需要家3の総コストを計算する需要家総コスト計算処理(Step6)と、式(3)により、電力会社2と需要家3の利得バランスを考慮した、両者の総コストを計算する利得バランス総コスト計算処理(Step7)と、発電・送電、追加発電能力、サプライヤー4からの電力買取及び蓄電の電力制約、要求される再生エネルギーの割合の制約(式(4)~(19))を満たした、電力会社2と需要家3の総コストを最小化する、各発電方式の発電量と送電量、サプライヤー4からの調達量及び蓄電量の最適組み合わせを求める(Step8)、を実行する。
As shown in FIG. 5, the decision support system 1 can provide the electric power company 2 with the optimum combination of power generation and transmission by executing the following Steps 1 to 8.
That is, the data setting process (Step 1) for setting the data related to the balance element (FIG. 4) of the electric power company 2 and the data related to the cost element (FIG. 4) of the consumer 3, and the gain of the electric power company 2 and the consumer 3. In order to consider the balance, the weighting coefficient determination process (Step 2) that determines the weighting coefficient of both in the formula (3) for obtaining the cost of the electric power company 2 and the cost of the consumer 3 and the demand amount of the consumer 3 are predicted. Then, the upper and lower limits of the power generation capacity of each power generation method and the procurement capacity from the supplier 4 of each power generation method are set by the predictive input process (Step 3) for inputting the demand amount and the formulas (8), (9) and (11). Power generation / transmission, additional power generation capacity, power purchase from supplier 4, CO 2 treatment, accident risk countermeasures (safety), renewable energy environmental value and power storage by the upper and lower limit setting processing (Step 4) and formula (1) to be set. Electric power company total cost calculation process (Step 5) that calculates the total cost of the electric power company 2 and formula (2), which considers the above factors, are used for electric energy usage, electric energy charge unit price, fuel cost procurement unit price, and renewable energy power generation. Both the consumer total cost calculation process (Step 6), which calculates the total cost of the consumer 3 considering the factors of the accelerated levy unit price, and the profit balance of the electric power company 2 and the consumer 3 are considered by the formula (3). Gain balance total cost calculation processing (Step 7) to calculate the total cost of )-(19)) is satisfied, and the optimum combination of the power generation amount and transmission amount of each power generation method, the procurement amount from the supplier 4, and the storage amount is obtained, which minimizes the total cost of the electric power company 2 and the consumer 3. Step8), is executed.

以下の記載における全ての数値計算は、Intel(登録商標)CoreTMi7-8700_CPU@3.20GHz,RAMが24.0GBのPC上でC言語によってプログラムを作成し、Intel Compiler 16.0 Update 3 Intel(登録商標)64によってコンパイルを行った.また,線形計画問題を解くためにXPRESS BCLを使用した。数値結果の表において、例えば、7.80E+09は7.80×10^9を表す。 All numerical calculations in the following description are performed by creating a program in C language on a PC with Intel® Core TM i7-8700_CPU@3.20GHz, RAM of 24.0GB, and Intel Compiler 16.0 Update 3 Intel. Compiled according to (registered trademark) 64. We also used XPRESS BCL to solve the linear programming problem. In the table of numerical results, for example, 7.80E + 09 represents 7.80 × 10 ^ 9.

(多段階確率的電力需給計画モデルの数値実験)
経済産業省のデータ(表1)に基づき、パラメータを設定し、4期間における数値実験を行った.シナリオツリーは1つのノードが2つに分岐するものを考える。発電方式を風力(u1)、太陽光(u2)、地熱(u3)、バイオマス(u4)、火力(r1)、原子力(r2)、水力(r3)の7種類、電力会社2は1つ、需要家3としては2都市の場合を考える。発電能力は需要に対して十分にあるものとし、再生可能エネルギーの発電能力は追加が可能であり、能力の追加の単価はq=150とした。また,各ノードの発生確率は0.5とする。
(Numerical experiment of multi-step stochastic power supply and demand planning model)
Based on the data of the Ministry of Economy, Trade and Industry (Table 1), the parameters were set and numerical experiments were conducted in 4 periods. Consider a scenario tree in which one node branches into two. There are seven types of power generation methods: wind power (u1), solar power (u2), geothermal power (u3), biomass (u4), thermal power (r1), nuclear power (r2), hydraulic power (r3), one power company 2, demand. As house 3, consider the case of two cities. It is assumed that the power generation capacity is sufficient for the demand, the power generation capacity of renewable energy can be added, and the additional unit price of the capacity is q = 150. The probability of occurrence of each node is 0.5.

再生可能エネルギー発電については発電能力上限の初期値(=10E+06)から追加が可能であるとし、火力・原子力・水力発電能力の上限は+∞であるとした。設定したパラメータを表1、表2に示す。また、本発明での数値実験では目的関数の重みwはすべて0.5として計算している。 Regarding renewable energy power generation, it is possible to add from the initial value (= 10E + 06) of the upper limit of power generation capacity, and the upper limit of thermal power, nuclear power, and hydropower generation capacity is + ∞. The set parameters are shown in Tables 1 and 2. Further, in the numerical experiment in the present invention, the weights w of the objective functions are all calculated as 0.5.

Figure 2022015383000011
Figure 2022015383000011

Figure 2022015383000012
Figure 2022015383000012

サプライヤー4からの電力買取単価αとGECレベルρを変化させ、3つのシナリオ(表3)で数値実験を行った。 Numerical experiments were conducted in three scenarios (Table 3) by changing the power purchase unit price α from supplier 4 and the GEC level ρ.

Figure 2022015383000013
Figure 2022015383000013

シナリオ1~3の数値実験結果例を表4、5、6に示す。 Examples of numerical experiment results of scenarios 1 to 3 are shown in Tables 4, 5 and 6.

Figure 2022015383000014
Figure 2022015383000014

Figure 2022015383000015
Figure 2022015383000015

Figure 2022015383000016
Figure 2022015383000016

シナリオ1を基準として比較を行う。再生可能エネルギー発電では地熱・バイオマス発電がメインであり、従来の発電方式では原子力発電がメインであった。シナリオ2では、サプライヤー4からの購入単価を高くしたためYの総計が大幅に減少する結果となった。
シナリオ3ではρの値を大きく(0.2→0.3)した.その結果として、GECレベルを満たすために再生可能エネルギーでの発電が大幅に増えた。また、総コストが増え、電力会社2にも大きくなる結果となった。
Make a comparison based on scenario 1. Geothermal and biomass power generation was the main type of renewable energy power generation, and nuclear power generation was the main type of conventional power generation method. In scenario 2, the total purchase price from supplier 4 was increased, resulting in a significant decrease in the total of Y.
In scenario 3, the value of ρ was increased (0.2 → 0.3). As a result, power generation with renewable energy has increased significantly to meet GEC levels. In addition, the total cost has increased, resulting in an increase in the electric power company 2.

以上により、電力自由化を考慮した電力マーケティングの多期間需給確率モデルを提案し、提案したモデルを用いて、各発電方式の発電量、サプライヤー4からの調達量、在庫量の最適組み合わせを求めことができることが分かった。 Based on the above, we propose a multi-period supply-demand probability model for electric power marketing that takes into account the liberalization of electric power, and use the proposed model to find the optimum combination of the amount of power generated by each power generation method, the amount procured from supplier 4, and the amount of stock. I found that I could do it.

電力業者に対して経済性・環境価値・安全性・安定性及び電力会社と需要家の利得バランスを考慮した最適な意思決定支援システム上のソルバーとしての役割を担うことができる。 It can play a role as a solver on the optimal decision support system that considers the economic efficiency, environmental value, safety, stability, and the gain balance between the electric power company and the consumer for the electric power company.

1:意思決定支援システム
2:電力会社
3:需要家
4:サプライヤー
10:電力ビジネス-仮想発電所(VPP)ビジネス
101:CPU
102:入力装置
103:出力装置
110:記憶装置
111:データ設定処理部
112:重みづけ係数決定処理部
113:予測入力処理部
114:上限下限設定処理部
115:電力会社総コスト計算処理部
116:需要家総コスト計算処理部
117:電力会社と需要家利得バランス総コスト計算処理部
118:最適組み合わせ出力処理部

1: Decision support system 2: Electric power company 3: Consumer 4: Supplier 10: Electric power business-Virtual power plant (VPP) business 101: CPU
102: Input device 103: Output device 110: Storage device 111: Data setting processing unit 112: Weighting coefficient determination processing unit 113: Prediction input processing unit 114: Upper and lower limit setting processing unit 115: Electric power company total cost calculation processing unit 116: Consumer total cost calculation processing unit 117: Electric power company and consumer gain balance Total cost calculation processing unit 118: Optimal combination output processing unit

Claims (4)

発電と送電の最適な組み合わせを求める発電・送電の最適組み合わせ意思決定支援システムであって、所定のコンピュータプログラムを記憶するメモリ部と、前記所定のコンピュータプログラムを実行することで所定の処理を実行するプロセッサ部を備え、前記プロセッサ部は、電力会社の収支要素に関するデータの設定及び需要家のコスト要素に関するデータの設定を行うデータ設定処理と、前記電力会社と前記需要家の利得バランスを考慮するため、前記電力会社のコストと前記需要家のコストを求める所定式における両者の重みづけの係数を決める重みづけ係数決定処理と、前記需要家の需要量を予測し、前記需要量を入力する予測入力処理と、所定式により、各発電方式の発電能力と前記各発電方式のサプライヤーからの調達能力の上限と下限を設定する上限下限設定処理と、所定式により、前記発電・送電、追加発電能力、サプライヤーからの電力買取、CO処理、事故リスク対策(安全性)、再生エネルギー環境価値及び蓄電の要素を考慮した、前記電力会社の総コストを計算する電力会社総コスト計算処理と、所定式により、電力使用量、電力量料金単価、燃料費調達単価、再生可能エネルギー発電促進賦課金単価の要素を考慮した需要家の総コストを計算する需要家総コスト計算処理と、所定式により、前記電力会社と需要家の利得バランスを考慮した、両者の総コスト計算処理と、前記発電・送電、追加発電能力、サプライヤーからの電力買取及び蓄電の電力制約、要求される再生エネルギーの割合の所定の制約を満たした、前記電力会社と前記需要量の総コストを最小化する、前記各発電方式の発電量と送電量、前記サプライヤーからの調達量及び蓄電量の最適組み合わせを求める最適組み合わせ出力処理、を実行することを特徴とする発電・送電の最適組み合わせ意思決定支援システム。 An optimal combination of power generation and transmission that seeks the optimum combination of power generation and transmission. It is a decision support system that executes a predetermined process by executing a memory unit that stores a predetermined computer program and the predetermined computer program. A processor unit is provided, and the processor unit is for considering a data setting process for setting data regarding a balance element of a power company and setting data regarding a cost element of a consumer, and a profit balance between the power company and the consumer. , The weighting coefficient determination process for determining the weighting coefficient of both in the predetermined formula for obtaining the cost of the electric power company and the cost of the consumer, and the prediction input for predicting the demand amount of the consumer and inputting the demand amount. Processing, upper and lower limit setting processing to set the upper and lower limits of the power generation capacity of each power generation method and the procuring capacity from the supplier of each power generation method according to the predetermined formula, and the power generation / transmission and additional power generation capacity according to the predetermined formula. Power company total cost calculation processing that calculates the total cost of the power company, taking into consideration factors such as power purchase from suppliers, CO 2 processing, accident risk countermeasures (safety), renewable energy environmental value, and power storage, and by a predetermined formula , Electricity usage, Electricity charge unit price, Fuel cost procurement unit price, Renewable energy power generation promotion levy unit price Considering the profit balance between the company and the consumer, the total cost calculation process of both, the power generation / transmission, additional power generation capacity, the power constraint of power purchase and storage from the supplier, and the predetermined constraint of the required ratio of regenerated energy. Optimal combination output processing for obtaining the optimum combination of the power generation amount and the transmission amount of each power generation method, the amount procured from the supplier, and the storage amount, which minimizes the total cost of the power company and the demand amount. An optimal combination decision support system for power generation and transmission, which is characterized by execution. 前記電力会社のコストと前記需要家のコストを求める所定式が式(3)、前記各発電方式の発電能力と前記各発電方式のサプライヤーからの調達能力の上限と下限を設定する所定式が式(8)(9)及び(11)、前記発電・送電、追加発電能力、サプライヤーからの電力買取、CO処理、事故リスク対策(安全性)、再生エネルギー環境価値及び蓄電の要素を考慮した、前記電力会社の総コストを計算する所定式が式(1)、需要家の総コストを計算する所定式が式(2)、前記電力会社と需要家の利得バランスを考慮した両者の総コストを計算する所定式が式(3)、前記所定の制約式が式(4)~(19)で与えられることを特徴とする請求項1に記載の発電・送電の最適組み合わせ意思決定支援システム。
(数1~3)
Figure 2022015383000017

(数4~19)
Figure 2022015383000018
The formula (3) for calculating the cost of the electric power company and the cost of the consumer is the formula (3), and the formula for setting the upper limit and the lower limit of the power generation capacity of each power generation method and the procurement capacity from the supplier of each power generation method is the formula. (8) (9) and (11), considering the factors of power generation / transmission, additional power generation capacity, power purchase from supplier, CO 2 treatment, accident risk countermeasures (safety), renewable energy environmental value and electricity storage, The predetermined formula for calculating the total cost of the electric power company is the formula (1), the predetermined formula for calculating the total cost of the consumer is the formula (2), and the total cost of both the electric power company and the consumer is taken into consideration. The optimal combination decision support system for power generation and power transmission according to claim 1, wherein the predetermined formula to be calculated is given by the formula (3), and the predetermined constraint formula is given by the formulas (4) to (19).
(Numbers 1 to 3)
Figure 2022015383000017

(Numbers 4-19)
Figure 2022015383000018
発電と送電の最適な組み合わせを求める発電・送電の最適組み合わせ意思決定支援システムを用いて発電・送電の最適組み合わせを意思決定する方法であって、前記最適組み合わせ意思決定支援システムは、電力会社の収支要素に関するデータの設定及び需要家のコスト要素に関するデータの設定を行うデータ設定を行い、前記電力会社と前記需要家の利得バランスを考慮するため、前記電力会社のコストと前記需要家のコストを求め、両者の重みづけの係数を決める重みづけ係数決定を行い、前記需要家の需要量を予測し前記需要量を入力する予測入力を行い、各発電方式の発電能力と前記各発電方式のサプライヤーからの調達能力の上限と下限を設定する上限下限設定を行い、前記発電・送電、追加発電能力、サプライヤーからの電力買取、CO処理、事故リスク対策(安全性)、再生エネルギー環境価値及び蓄電の要素を考慮した、前記電力会社の総コストを計算する電力会社総コスト計算を行い、電力使用量、電力量料金単価、燃料費調達単価、再生可能エネルギー発電促進賦課金単価の要素を考慮した、需要家の総コストを計算する需要家総コスト計算を行い、前記電力会社と需要家の利得バランスを考慮した、両者の総コストを計算する利得バランス総コスト計算を行い、前記発電・送電、追加発電能力、サプライヤーからの電力買取及び蓄電の電力制約、要求される再生エネルギーの割合の制約を満たした、前記電力会社と前記需要家の総コストを最小化する、前記各発電方式の発電量と送電量、前記サプライヤーからの調達量及び蓄電量の最適組み合わせを求める最適組み合わせ出力を行うことを含むことを特徴とする発電・送電の最適組み合わせ意思決定支援方法。 It is a method to determine the optimum combination of power generation and transmission using the optimum combination decision support system for power generation and transmission, which seeks the optimum combination of power generation and transmission. The optimum combination decision support system is the balance of payments of the electric power company. Setting the data related to the element and the cost of the consumer The cost of the electric power company and the cost of the consumer are obtained in order to set the data for setting the data related to the element and to consider the profit balance between the electric power company and the consumer. , Determine the weighting coefficient of both. Perform the weighting coefficient determination, predict the demand amount of the consumer and input the demand amount, and perform the power generation capacity of each power generation method and the supplier of each power generation method. Set the upper and lower limits of the power generation capacity of the power generation / transmission, additional power generation capacity, power purchase from suppliers, CO 2 treatment, accident risk countermeasures (safety), renewable energy environmental value and electricity storage. The total cost of the electric power company is calculated in consideration of the factors, and the total cost of the electric power company is calculated, and the factors of the electric power usage amount, the electric power amount charge unit price, the fuel cost procurement unit price, and the renewable energy power generation promotion levy unit price are taken into consideration. Calculate the total cost of the consumer Calculate the total cost of the consumer, calculate the total cost of both the power company and the consumer, and calculate the total cost of the gain balance. With the amount of power generation of each power generation method that minimizes the total cost of the power company and the consumer, satisfying the power generation capacity, the power constraint of power purchase and storage from the supplier, and the limit of the required ratio of regenerated energy. An optimum combination decision support method for power generation / transmission, which comprises performing an optimum combination output for obtaining an optimum combination of a transmission amount, a procurement amount from the supplier, and a storage amount. 前記重みづけ係数決定が式(3)に、前記上限下限設定が式(8)(9)及び(11)に、前記電力会社総コスト計算が式(1)に、前記需要家総コスト計算が式(2)に、前記利得バランス総コスト計算が式(3)に、再生エネルギーの割合の制約が式(4)~(19)に、それぞれ基づくことを特徴とする請求項3に記載の発電・送電の最適組み合わせ意思決定支援方法。
(数1~3)
Figure 2022015383000019


(数4~19)
Figure 2022015383000020


The weighting coefficient determination is in the equation (3), the upper and lower limit settings are in the equations (8) (9) and (11), the electric power company total cost calculation is in the equation (1), and the consumer total cost calculation is in the equation (1). The power generation according to claim 3, wherein the gain balance total cost calculation is based on the formula (2), and the constraint of the ratio of the regenerated energy is based on the formulas (4) to (19).・ Optimal combination of power transmission Decision support method.
(Numbers 1 to 3)
Figure 2022015383000019


(Numbers 4-19)
Figure 2022015383000020


JP2020118170A 2020-07-09 2020-07-09 Deciding method for optimum combination of power generation and power transmission, and support system Pending JP2022015383A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020118170A JP2022015383A (en) 2020-07-09 2020-07-09 Deciding method for optimum combination of power generation and power transmission, and support system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020118170A JP2022015383A (en) 2020-07-09 2020-07-09 Deciding method for optimum combination of power generation and power transmission, and support system

Publications (1)

Publication Number Publication Date
JP2022015383A true JP2022015383A (en) 2022-01-21

Family

ID=80120803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020118170A Pending JP2022015383A (en) 2020-07-09 2020-07-09 Deciding method for optimum combination of power generation and power transmission, and support system

Country Status (1)

Country Link
JP (1) JP2022015383A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115660208A (en) * 2022-11-10 2023-01-31 国网冀北电力有限公司计量中心 Power grid enterprise monthly electricity purchase optimization method considering consumption responsibility weight
JP7266259B1 (en) 2022-08-16 2023-04-28 デジタルグリッド株式会社 Environmental value transaction consideration calculation device, environmental value transaction consideration calculation method, and environmental value transaction consideration calculation program
CN116882641A (en) * 2023-05-22 2023-10-13 国网湖北省电力有限公司宜昌供电公司 Synergistic carbon reduction method suitable for ground and municipal power grid company

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7266259B1 (en) 2022-08-16 2023-04-28 デジタルグリッド株式会社 Environmental value transaction consideration calculation device, environmental value transaction consideration calculation method, and environmental value transaction consideration calculation program
JP2024027042A (en) * 2022-08-16 2024-02-29 デジタルグリッド株式会社 Environmental value transaction consideration calculation device, environmental value transaction consideration calculation method, and environmental value transaction consideration calculation program
CN115660208A (en) * 2022-11-10 2023-01-31 国网冀北电力有限公司计量中心 Power grid enterprise monthly electricity purchase optimization method considering consumption responsibility weight
CN115660208B (en) * 2022-11-10 2024-06-07 国网冀北电力有限公司计量中心 Power grid enterprise monthly electricity purchasing optimization method considering responsibility weight
CN116882641A (en) * 2023-05-22 2023-10-13 国网湖北省电力有限公司宜昌供电公司 Synergistic carbon reduction method suitable for ground and municipal power grid company
CN116882641B (en) * 2023-05-22 2024-05-28 国网湖北省电力有限公司宜昌供电公司 Synergistic carbon reduction method suitable for ground and municipal power grid company

Similar Documents

Publication Publication Date Title
Mays et al. Asymmetric risk and fuel neutrality in electricity capacity markets
Valinejad et al. Generation expansion planning in electricity market considering uncertainty in load demand and presence of strategic GENCOs
Neshat et al. Cleaner power generation through market-driven generation expansion planning: an agent-based hybrid framework of game theory and particle swarm optimization
Jia et al. A bilevel model for optimal bidding and offering of flexible load aggregator in day-ahead energy and reserve markets
US20070129981A1 (en) Business solution management
Delarue et al. Effect of the accuracy of price forecasting on profit in a price based unit commitment
JP2022015383A (en) Deciding method for optimum combination of power generation and power transmission, and support system
Freire et al. A hybrid MILP and benders decomposition approach to find the nucleolus quota allocation for a renewable energy portfolio
Esmaeel Nezhad et al. Multi‐objective decision‐making framework for an electricity retailer in energy markets using lexicographic optimization and augmented epsilon‐constraint
Auger et al. The future of coal investment, trade, and stranded assets
Genc et al. An analysis of capacity and price trajectories for the Ontario electricity market using dynamic Nash equilibrium under uncertainty
Beraldi et al. A two-stage stochastic programming model for electric energy producers
Bohlayer et al. Multi-period investment pathways-Modeling approaches to design distributed energy systems under uncertainty
Strang Applied financial non-linear programming models for decision making
Alahyari et al. Managing distributed energy resources (DERs) through virtual power plant technology (VPP): A stochastic information-gap decision theory (IGDT) approach
Marousi et al. Game theoretic optimisation in process and energy systems engineering: A review
Huang et al. A portfolio theory based optimization model for steam coal purchasing strategy: A case study of Taiwan Power Company
Sastry Musti Multicriteria Decision Analysis for Sustainable Green Financing in Energy Sector
Abbas et al. Least cost generation expansion planning considering renewable energy resources using sine cosine algorithm
JP7265931B2 (en) Power plan support device, power plan support method, and power plan support program
Periçaro et al. Optimal non-anticipative scenarios for nonlinear hydro-thermal power systems
Zeinaddini-Meymand et al. Dynamic market-based generation-transmission expansion planning considering fixed series compensation allocation
Halynska et al. Combined model of optimal electricity production: Evidence from Ukraine
Tolis et al. Optimisation of electricity energy markets and assessment of CO2 trading on their structure: A stochastic analysis of the Greek Power Sector
Dos Santos et al. Seasonal energy trading portfolio based on multiobjective optimisation