JP2022015102A - Drilling system and drilling method of the ground - Google Patents

Drilling system and drilling method of the ground Download PDF

Info

Publication number
JP2022015102A
JP2022015102A JP2020117735A JP2020117735A JP2022015102A JP 2022015102 A JP2022015102 A JP 2022015102A JP 2020117735 A JP2020117735 A JP 2020117735A JP 2020117735 A JP2020117735 A JP 2020117735A JP 2022015102 A JP2022015102 A JP 2022015102A
Authority
JP
Japan
Prior art keywords
ground
excavation
drilling
stabilizing liquid
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020117735A
Other languages
Japanese (ja)
Other versions
JP7410812B2 (en
Inventor
良祐 辻
Ryosuke Tsuji
一三 小林
Kazumi Kobayashi
健一 川野
Kenichi Kawano
拓巳 中島
Takumi Nakajima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP2020117735A priority Critical patent/JP7410812B2/en
Publication of JP2022015102A publication Critical patent/JP2022015102A/en
Application granted granted Critical
Publication of JP7410812B2 publication Critical patent/JP7410812B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a drilling system and a drilling method of the ground capable of efficiently drilling the ground using stable liquid allowing adjustment of density to be easily carried out without separation.SOLUTION: A drilling system 2 including sodium polytungstate in its stable liquid 15 is provided with: a drill part 3 for drilling the ground 1: a supply pump 11b for supplying the stable liquid 15 to the ground 1 from the vicinity of the drill part 3; and a recovery pit 13 for recovering the stable liquid 15. A drilling method comprises steps of drilling a hole 23 in the ground 1 with the drill part 3 while supplying the stable liquid 15 to the ground 1 with the supply pump 11b; a step of recovering the post-drilled stable liquid 15 together with the drilled soil 17 to the recovery pit 13; and a step of separating the drilled soil 17 from the stable liquid 15.SELECTED DRAWING: Figure 2

Description

本発明は、地盤を掘削する掘削システムおよび地盤の掘削方法に関するものである。 The present invention relates to an excavation system for excavating the ground and a method for excavating the ground.

従来、掘削機を用いて地盤を削孔する際には、ベントナイト等の粘土と水とを混ぜた密度が1.10以下の泥水を安定液として使用して、孔壁に不透水性の泥壁を造成して孔壁が崩れないように保護している。安定液は、孔底やビット付近から掘りくずを除去して清浄するとともに孔内を循環して掘りくずを地上まで運搬する役割、地層を砕く際の摩擦により発生するコアビットの熱を冷却する役割、粘土分の潤滑性を利用してケーシングパイプとボーリングロッドとの接触を防ぎパイプの摩耗を防ぐ役割などを担う。 Conventionally, when drilling a hole in the ground using an excavator, muddy water having a density of 1.10 or less, which is a mixture of clay such as bentonite and water, is used as a stabilizing liquid, and impermeable mud is used on the hole wall. A wall is created to protect the hole wall from collapsing. The stabilizer removes and cleans the digging debris from the bottom of the hole and the vicinity of the bit, circulates in the hole to transport the digging debris to the ground, and cools the heat of the core bit generated by friction when crushing the formation. It plays a role of preventing the contact between the casing pipe and the boring rod and preventing the wear of the pipe by utilizing the lubricity of the clay content.

削孔する地盤の地下水圧が高い場合などには、安定液の密度を大きくして地下に存在する石油、ガス、水などの流体が噴出しないように抑える必要がある。高密度の安定液としては、磁力によって吸着できる磁性体を混入した安定液(例えば、特許文献1参照)、カオリン鉱物の使用量を増やした安定液(例えば、特許文献2参照)が提案されている。 When the groundwater pressure in the ground to be drilled is high, it is necessary to increase the density of the stabilizing liquid to prevent fluids such as oil, gas, and water existing underground from spouting. As the high-density stabilizer, a stabilizer mixed with a magnetic substance that can be adsorbed by a magnetic force (see, for example, Patent Document 1) and a stabilizer in which the amount of kaolin mineral used is increased (for example, see Patent Document 2) have been proposed. There is.

特許第5167190号公報Japanese Patent No. 5167190 特許第3932377号公報Japanese Patent No. 3932377

しかしながら、特許文献1では、安定液の粘度が大きいため削孔時に掘削機への負担が大きかった。また、磁性体を回収するためには、大がかりな設備が必要であった。また、特許文献2では、密度の調整幅が小さく、高密度化は困難であった。 However, in Patent Document 1, since the viscosity of the stabilizing liquid is high, the burden on the excavator at the time of drilling is large. In addition, large-scale equipment was required to recover the magnetic material. Further, in Patent Document 2, the adjustment range of the density is small, and it is difficult to increase the density.

また、特許文献1、2に記載された安定液は、いずれも、磁性体であるフェライトやカオリン鉱物などの固体の粒子を水に混濁させるため、分散安定性が低く、固体と水とが分離しやすいという問題点があった。固体と水とが分離しやすい場合、ボーリングロッドの継ぎ足しなどの目的で安定液の循環を一時的に停止したときに、掘りくずや添加材料が分離して泥水中のスライムが沈降し、孔壁の崩壊と同時にボーリングロッドが埋まってしまう可能性があった。また、孔壁保護のために造成された泥壁が厚すぎると、ボーリングロッドが泥壁に張り付いて掘削が不能となる場合があった。 Further, all of the stabilizing liquids described in Patent Documents 1 and 2 have low dispersion stability because solid particles such as ferrite and kaolin minerals, which are magnetic substances, are turbid in water, and the solid and water are separated. There was a problem that it was easy to do. When the solid and water are easily separated, when the circulation of the stabilizing liquid is temporarily stopped for the purpose of adding a boring rod, the digging waste and the additive material are separated and the slime in the muddy water is settled, and the hole wall There was a possibility that the bowling rod would be buried at the same time as the collapse of. In addition, if the mud wall created to protect the hole wall is too thick, the boring rod may stick to the mud wall and excavation may not be possible.

本発明は、前述した問題点に鑑みてなされたものであり、その目的とすることは、密度の調整が容易で分離しない安定液を用いて効率的に地盤を掘削できる掘削システムおよび地盤の掘削方法を提供することである。 The present invention has been made in view of the above-mentioned problems, and an object thereof is an excavation system capable of efficiently excavating the ground using a stable liquid whose density is easy to adjust and which cannot be separated, and excavation of the ground. Is to provide a method.

前述した目的を達成するために第1の発明は、地盤を掘削する掘削システムであって、地盤を掘削する掘削部と、前記掘削部の近傍から地盤へ安定液を供給するポンプと、前記安定液を回収する回収部と、を具備し、前記安定液には、ポリタングステン酸ナトリウムが含まれていることを特徴とする掘削システムである。 In order to achieve the above-mentioned object, the first invention is an excavation system for excavating the ground, the excavation part for excavating the ground, a pump for supplying a stabilizing liquid from the vicinity of the excavation part to the ground, and the stability. The excavation system includes a recovery unit for recovering the liquid, and the stable liquid contains sodium polytungstate.

第1の発明では、ポリタングステン酸ナトリウム(以下SPTとする)を用いることにより安定液の密度を容易に調整することができる。SPTは無害、無臭、不燃の固体であり、SPTを水に溶かしたSPT溶液も無害であるため、環境負荷を低減でき施工時の安全性が高い。また、固体のSPTは、SPT溶液から高い回収率で回収可能である。さらに、SPT溶液は水溶液であるため、地盤での安定液の循環を一時的に停止してもSPTと水とは分離しない。 In the first invention, the density of the stabilizing liquid can be easily adjusted by using sodium polytungstate (hereinafter referred to as SPT). SPT is a harmless, odorless, non-combustible solid, and the SPT solution in which SPT is dissolved in water is also harmless, so that the environmental load can be reduced and the safety during construction is high. In addition, solid SPT can be recovered from the SPT solution with a high recovery rate. Furthermore, since the SPT solution is an aqueous solution, the SPT and water do not separate even if the circulation of the stabilizing solution in the ground is temporarily stopped.

前記安定液の密度が1.8g/cm以上3.1g/cm以下であることが望ましい。
これにより、地下水圧が大きい環境下でも孔の壁面を安定して保護することができる。また、SPTが含まれる安定液を地盤へ供給すると、安定液の密度が大きくなるにつれて掘削部の削孔負荷が低減されるので、掘削の効率化が可能である。
It is desirable that the density of the stabilizing solution is 1.8 g / cm 3 or more and 3.1 g / cm 3 or less.
As a result, the wall surface of the hole can be stably protected even in an environment where the groundwater pressure is high. Further, when the stabilizing liquid containing SPT is supplied to the ground, the drilling load of the excavated portion is reduced as the density of the stabilizing liquid increases, so that the efficiency of excavation can be improved.

前記回収部で回収された前記安定液は、掘削土と分離された後、前記ポンプによって地盤へ循環可能であることが望ましい。
SPTは高価であるが、安定液を回収して再利用することにより施工費を低減できる。
It is desirable that the stabilizing liquid recovered by the recovery unit can be circulated to the ground by the pump after being separated from the excavated soil.
Although SPT is expensive, the construction cost can be reduced by collecting and reusing the stabilizing liquid.

回収された前記安定液から、固形のポリタングステン酸ナトリウムを抽出し、再度溶液化することで新たに前記安定液を得て、得られた前記安定液を前記ポンプによって地盤へ循環可能であってもよい。
これにより、再利用する際に安定液の密度を容易に調整することができる。
Solid sodium polytungstate is extracted from the recovered stable liquid and liquefied again to obtain a new stable liquid, and the obtained stable liquid can be circulated to the ground by the pump. May be good.
This makes it possible to easily adjust the density of the stabilizing liquid when it is reused.

第2の発明は、地盤に対して安定液をポンプで供給しつつ、掘削部で地盤の掘削を行う地盤の掘削方法であって、前記安定液には、ポリタングステン酸ナトリウムが含まれており、掘削後の前記安定液を掘削土と分離して回収することを特徴とする地盤の掘削方法である。 The second invention is a ground excavation method in which a stabilizing liquid is supplied to the ground by a pump while excavating the ground at an excavated portion, and the stabilizing liquid contains sodium polytantistate. It is a ground excavation method characterized by separating the stabilizing liquid after excavation from excavated soil and collecting it.

第2の発明では、SPTが含まれる安定液を用いることにより、重液分離の効果で掘削土を地上まで運搬しやすくなり、従来よりも掘削時の削孔負荷が低下し、掘削効率が向上する。また、安定液を掘削土と分離して回収して繰り返し再利用することにより、施工費を低減することができる。 In the second invention, by using a stabilizing liquid containing SPT, it becomes easier to transport the excavated soil to the ground due to the effect of heavy liquid separation, the drilling load during excavation is reduced, and the excavation efficiency is improved. do. In addition, the construction cost can be reduced by separating the stabilizing liquid from the excavated soil, collecting it, and reusing it repeatedly.

第2の発明では、例えば、前記地盤の掘削が、ボーリング削孔であり、前記掘削部によって前記地盤に対して略鉛直方向に削孔する。前記地盤が、水中の水底であり、前記掘削部の上方に配置した管体によって、掘削後の前記安定液と掘削土を回収してもよい。
これにより、地上や水底の地盤に略鉛直方向に孔を効率的に掘削できる。
In the second invention, for example, the excavation of the ground is a boring hole, and the excavation portion drills a hole in a substantially vertical direction with respect to the ground. The ground is the bottom of the water, and the stabilizing liquid and the excavated soil after excavation may be recovered by a pipe body arranged above the excavation portion.
As a result, holes can be efficiently excavated in the ground in the vertical direction on the ground or on the bottom of the water.

また、前記地盤の掘削が、シールド機による削孔であり、前記掘削部によって前記地盤に対して略水平方向に削孔してもよい。
これにより、地盤に略水平方向に孔を効率的に掘削できる。
Further, the excavation of the ground is drilling by a shield machine, and the excavation portion may drill holes in a substantially horizontal direction with respect to the ground.
This makes it possible to efficiently excavate holes in the ground in a substantially horizontal direction.

本発明によれば、密度の調整が容易で分離しない安定液を用いて効率的に地盤を掘削できる掘削システムおよび地盤の掘削方法を提供できる。 INDUSTRIAL APPLICABILITY According to the present invention, it is possible to provide an excavation system and a method for excavating the ground, which can efficiently excavate the ground using a stable liquid whose density can be easily adjusted and cannot be separated.

掘削システム2を用いて孔23を掘削している状態を示す図。The figure which shows the state which excavates the hole 23 using the excavation system 2. 掘削手順を示す図。The figure which shows the excavation procedure. 安定液の密度とトルク値との関係を示す図。The figure which shows the relationship between the density of a stabilizer and a torque value. 掘削システム2aを用いて孔23を掘削している状態を示す図。The figure which shows the state which excavates the hole 23 using the excavation system 2a. 掘削システム2bを用いて孔23aを掘削している状態を示す図。The figure which shows the state which excavates the hole 23a using the excavation system 2b.

以下、図面に基づいて本発明の第1の実施形態について詳細に説明する。
図1は、掘削システム2を用いて孔23を掘削している状態を示す図である。図1に示すように、掘削システム2は、地盤1上のボーリングマシン9に保持されたロッド5の先端に設けられた掘削部3、地盤1に形成された回収ピット13、調整部14に内蔵された供給ポンプ11b等からなる。第1の実施形態では、掘削システム2を用いて地盤1に略鉛直方向に孔23を掘削する。
Hereinafter, the first embodiment of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a diagram showing a state in which a hole 23 is excavated using the excavation system 2. As shown in FIG. 1, the excavation system 2 is built in an excavation portion 3 provided at the tip of a rod 5 held by a boring machine 9 on the ground 1, a recovery pit 13 formed in the ground 1, and an adjustment portion 14. It is composed of the supplied supply pump 11b and the like. In the first embodiment, the excavation system 2 is used to excavate a hole 23 in the ground 1 in a substantially vertical direction.

図2は、孔23の掘削手順を示す図である。孔23を掘削するには、まずSPTが含まれる安定液15を作製する(S101)。S101では、調整部14において、水に固形のSPTを溶解させて安定液15を作製する。SPTは、無害、無臭の不燃の固体であり、SPTを水に溶かしたSPT溶液も無害である。安定液15の密度は掘削する地盤1の条件に合わせて決定するが、1.8g/cm以上3.1g/cm以下であることが望ましく、2.7g/cm以上であることが特に望ましい。 FIG. 2 is a diagram showing an excavation procedure for the hole 23. To excavate the hole 23, first, a stabilizing liquid 15 containing SPT is prepared (S101). In S101, in the adjusting unit 14, the solid SPT is dissolved in water to prepare a stable liquid 15. SPT is a harmless, odorless, non-combustible solid, and an SPT solution in which SPT is dissolved in water is also harmless. The density of the stabilizer 15 is determined according to the conditions of the ground 1 to be excavated, but it is preferably 1.8 g / cm 3 or more and 3.1 g / cm 3 or less, and 2.7 g / cm 3 or more. Especially desirable.

次に、安定液15が所定の密度以上かを確認する(S102)。そして、所定の密度に満たなければ、S101に戻って安定液15の密度を調整する。 Next, it is confirmed whether the stabilizing liquid 15 has a predetermined density or higher (S102). Then, if the density does not reach a predetermined value, the process returns to S101 to adjust the density of the stabilizer 15.

SPT溶液が所定の密度以上であれば、安定液15を供給しつつ地盤1を掘削する(S103)。S103では、地盤1の掘削位置に設置したケーシングパイプ7の内側から、ロッド5の先端の掘削部3をボーリングマシン9で回転させつつ下降させて、地盤1に略鉛直方向の孔23を削孔していく。孔23の削孔中は、供給ポンプ11bを稼働させて、調整部14から供給管21を介して安定液15を掘削部3に送り、掘削部3の近傍から地盤1に安定液15を供給する。安定液15は、孔23の底部や掘削部3付近から掘削土17を除去して清浄するとともに、掘削土17を地上付近まで運搬する。また、孔23内に満たされて孔壁25の崩壊を防止する。 If the SPT solution has a density equal to or higher than a predetermined density, the ground 1 is excavated while supplying the stabilizing solution 15 (S103). In S103, the excavated portion 3 at the tip of the rod 5 is lowered while being rotated by the boring machine 9 from the inside of the casing pipe 7 installed at the excavated position of the ground 1, and a substantially vertical hole 23 is drilled in the ground 1. I will do it. During the drilling of the hole 23, the supply pump 11b is operated to send the stabilizing liquid 15 from the adjusting unit 14 to the excavating part 3 via the supply pipe 21, and the stabilizing liquid 15 is supplied to the ground 1 from the vicinity of the excavating part 3. do. The stabilizing liquid 15 removes and cleans the excavated soil 17 from the bottom of the hole 23 and the vicinity of the excavated portion 3, and also transports the excavated soil 17 to the vicinity of the ground. Further, the hole 23 is filled to prevent the hole wall 25 from collapsing.

SPTが含まれる安定液15はベントナイト溶液等の泥水よりも密度が大きい重液である。そのため、安定液15内では重液分離の効果により掘削土17が浮遊しやすい。掘削土17は安定液15が満たされた孔23内を上昇し、安定液15とともにケーシングパイプ7の分岐管71から回収ピット13に流れ込む。回収ピット13では、安定液15より密度の小さい掘削土17aが安定液15から分離して上方に浮遊する。安定液15より密度の大きい掘削土17bが混ざっている場合は回収ピット13の底に沈む。 The stabilizing liquid 15 containing SPT is a heavy liquid having a higher density than muddy water such as a bentonite solution. Therefore, the excavated soil 17 tends to float in the stabilizing liquid 15 due to the effect of heavy liquid separation. The excavated soil 17 rises in the hole 23 filled with the stabilizing liquid 15 and flows together with the stabilizing liquid 15 from the branch pipe 71 of the casing pipe 7 into the recovery pit 13. In the recovery pit 13, excavated soil 17a having a density lower than that of the stabilizing liquid 15 is separated from the stabilizing liquid 15 and floats upward. If excavated soil 17b having a density higher than that of the stabilizing liquid 15 is mixed, it sinks to the bottom of the recovery pit 13.

なお、図1に示す例では、ケーシングパイプ7に設けた分岐管71から回収ピット13に安定液15および掘削土17を回収したが、回収方法はこれに限らない。ポンプを用いてケーシングパイプ7内から回収ピット13に安定液15および掘削土17を回収してもよい。 In the example shown in FIG. 1, the stabilizing liquid 15 and the excavated soil 17 are recovered from the branch pipe 71 provided in the casing pipe 7 to the recovery pit 13, but the recovery method is not limited to this. The stabilizer 15 and the excavated soil 17 may be recovered from the casing pipe 7 into the recovery pit 13 using a pump.

ここで、安定液15の密度と掘削部3での削孔負荷について述べる。図3は、安定液15の密度とトルク値との関係を示す図である。図3の点線27は砂単体を直接掘削した場合のトルク値であり、点線28は一般的に用いられるベントナイト泥水と砂を混合した場合のトルク値を示す。黒丸は、SPTが含まれる安定液15と砂礫土とを混合したものについて安定液15の密度を変化させて室内ベーンせん断試験を実施したときの、安定液15の密度とベーンせん断強さから算出した削孔時のトルク値との関係を示す。 Here, the density of the stabilizer 15 and the drilling load in the excavation section 3 will be described. FIG. 3 is a diagram showing the relationship between the density of the stabilizer 15 and the torque value. The dotted line 27 in FIG. 3 is the torque value when the sand alone is directly excavated, and the dotted line 28 is the torque value when the commonly used bentonite muddy water and sand are mixed. Black circles are calculated from the density and vane shear strength of the stabilizer 15 when the indoor vane shear test was performed by changing the density of the stabilizer 15 for a mixture of the stabilizer 15 containing SPT and gravel soil. The relationship with the torque value at the time of drilling is shown.

図3から、SPTが含まれる安定液15を用いた場合、安定液15の密度が大きくなるにつれてトルク値が小さくなって削孔負荷が低減することが確認できる。安定液15の密度を上記の望ましい値である1.8g/cm以上とすれば一般的なベントナイト泥水を用いた場合よりもトルク値を低減することができる。また、特に望ましい値である2.7g/cm以上とすればトルク値を大きく低減することができる。これは密度の大きい安定液15を用いると、密度が2.7g/cm程度の砂も上方に浮遊しやすくなるためと考えられる。 From FIG. 3, it can be confirmed that when the stabilizer 15 containing SPT is used, the torque value decreases as the density of the stabilizer 15 increases, and the drilling load decreases. When the density of the stabilizing liquid 15 is set to 1.8 g / cm 3 or more, which is the above-mentioned desirable value, the torque value can be reduced as compared with the case where general bentonite muddy water is used. Further, if the value is 2.7 g / cm 3 or more, which is a particularly desirable value, the torque value can be significantly reduced. It is considered that this is because when the stabilizing liquid 15 having a high density is used, sand having a density of about 2.7 g / cm 3 tends to float upward.

S103でボーリング削孔を行ったら、安定液15を回収し掘削土17を、例えば濾過や分離装置等によって分離する(S104)。S104では、調整部14に内蔵された回収ポンプ11aを稼働させて、回収ピット13から回収管19を介して安定液15を回収する。これにより、回収ピット13内で掘削土17a、17bと分離された安定液15が調整部14に貯留される。調整部14では、安定液15から掘削土17をより確実に分離するために、回収した安定液15をさらに濾過してもよい。なお、回収ピット13内の掘削土17a、掘削土17bは適宜掬い出して処理する。 After drilling holes in S103, the stabilizing liquid 15 is recovered and the excavated soil 17 is separated by, for example, a filtration or a separation device (S104). In S104, the recovery pump 11a built in the adjusting unit 14 is operated to recover the stabilizer 15 from the recovery pit 13 via the recovery pipe 19. As a result, the stabilizing liquid 15 separated from the excavated soil 17a and 17b in the recovery pit 13 is stored in the adjusting unit 14. In the adjusting unit 14, the recovered stabilizer 15 may be further filtered in order to more reliably separate the excavated soil 17 from the stabilizer 15. The excavated soil 17a and the excavated soil 17b in the recovery pit 13 are appropriately scooped out and processed.

次に、孔23を所定の深さまで削孔したかを確認する(S105)。所定の深さまで削孔したことを確認したら、削孔を終了する。 Next, it is confirmed whether the hole 23 has been drilled to a predetermined depth (S105). After confirming that the holes have been drilled to the specified depth, the drilling is completed.

所定の深さまで削孔していない場合は、SPTが含まれる安定液15を作製する(S101)。なお、S101の前に、回収した安定液15からSPTを抽出してもよい(S106)。S106を実施する場合は、調整部14において安定液15を蒸留して固形のSPTを抽出する。 If the holes have not been drilled to a predetermined depth, a stabilizing liquid 15 containing SPT is prepared (S101). Before S101, SPT may be extracted from the recovered stabilizer 15 (S106). When carrying out S106, the stabilizing liquid 15 is distilled in the adjusting unit 14 to extract the solid SPT.

2度目以降のS101では、調整部14において、回収した安定液15から水分を蒸発させて濃縮し、新たに安定液15を作製する。あるいは、S106で抽出した固形のSPTを再度溶液化して新たに安定液15を作製してもよい。また、2度目以降は、掘削土を分離した安定液の密度調整を行うのみで、安定液15をそのまま循環させてもよい。 In the second and subsequent S101s, the adjusting unit 14 evaporates and concentrates the water content from the recovered stabilizer 15 to newly prepare the stabilizer 15. Alternatively, the solid SPT extracted in S106 may be liquefied again to prepare a new stabilizing solution 15. Further, from the second time onward, the stabilizing liquid 15 may be circulated as it is only by adjusting the density of the stabilizing liquid separated from the excavated soil.

孔23の削孔時には、図2に示す各ステップを並行して実施する。すなわち、地盤1に対して安定液15を供給しつつ掘削部3で孔23を削孔し、同時に地盤1に供給した安定液15を回収して掘削土17と分離し、安定液15の密度を再調整する。 When drilling the hole 23, each step shown in FIG. 2 is performed in parallel. That is, the hole 23 is drilled in the excavation section 3 while supplying the stabilizing liquid 15 to the ground 1, and at the same time, the stabilizing liquid 15 supplied to the ground 1 is recovered and separated from the excavated soil 17, and the density of the stabilizing liquid 15 is obtained. Readjust.

第1の実施形態では、SPTを用いることにより安定液15の密度を容易に調整することができる。SPTは高価であるが溶液からの回収効率が良いので、安定液15を掘削土17と分離して回収し再利用することにより、掘削のコストを低減することができる。また、SPTが含まれる安定液15は密度が大きいため、地下水圧が大きい環境下でも孔壁25を安定して保護することができる。さらに、SPTが含まれる安定液15を用いると、安定液15の密度が大きくなるにつれて削孔負荷が低減され、掘削の効率化が可能である。 In the first embodiment, the density of the stabilizing liquid 15 can be easily adjusted by using SPT. Although SPT is expensive, it has good recovery efficiency from the solution. Therefore, the cost of excavation can be reduced by separating the stabilizing liquid 15 from the excavated soil 17, collecting and reusing it. Further, since the stabilizing liquid 15 containing SPT has a high density, the hole wall 25 can be stably protected even in an environment where the groundwater pressure is high. Further, when the stabilizing liquid 15 containing SPT is used, the drilling load is reduced as the density of the stabilizing liquid 15 increases, and the efficiency of excavation can be improved.

安定液15は重液効果により掘削土17を浮遊させやすく、水溶性のSPTは安定液15中で水と分離しにくい。そのため、従来のように、固体を混濁させた安定液と比較して、ロッド5の継ぎ足しなどのために安定液15の循環を一時的に停止しても、安定液15中の掘削土17やSPTが沈降して孔壁25が崩壊したり掘削部3が埋まったりすることはない。また、孔壁25に厚い泥壁が造成されてロッド5が張り付いたり、掘削部3が摩耗したりすることもない。 The stabilizing liquid 15 tends to float the excavated soil 17 due to the heavy liquid effect, and the water-soluble SPT is difficult to separate from water in the stabilizing liquid 15. Therefore, as compared with the conventional stabilizer in which the solid is turbid, even if the circulation of the stabilizer 15 is temporarily stopped due to the addition of the rod 5, the excavated soil 17 in the stabilizer 15 or the like The SPT does not settle and the hole wall 25 does not collapse or the excavated portion 3 is not filled. Further, a thick mud wall is not formed on the hole wall 25 so that the rod 5 does not stick to the hole wall 25 and the excavated portion 3 does not wear.

なお、安定液15は、ベントナイト溶液などの泥水にSPTを溶解させて作製してもよい。これにより安定液15の密度を大きくする際の材料費を低減できる。 The stabilizing liquid 15 may be prepared by dissolving SPT in muddy water such as a bentonite solution. As a result, the material cost for increasing the density of the stabilizer 15 can be reduced.

また、図2に示すS102では安定液15の管理基準として密度を使用したが、密度の代わりに粘度を用いて安定液15を管理してもよい。この場合、例えばあらかじめ密度と粘度との関係を取得しておけばよい。 Further, although the density is used as the control standard of the stabilizer 15 in S102 shown in FIG. 2, the stabilizer 15 may be controlled by using the viscosity instead of the density. In this case, for example, the relationship between the density and the viscosity may be acquired in advance.

以下、本発明の別の例について、第2、第3の実施形態として説明する。各実施形態はそれまでに説明した実施形態と異なる点について説明し、同様の構成については図等で同じ符号を付すなどして説明を省略する。また、第1の実施形態も含め、各実施形態で説明する構成は必要に応じて組み合わせることができる。 Hereinafter, another example of the present invention will be described as a second and third embodiment. The differences between the embodiments and the embodiments described so far will be described, and the same configurations will be omitted with reference to the same reference numerals in the drawings and the like. Further, the configurations described in each embodiment including the first embodiment can be combined as necessary.

まず、第2の実施形態について説明する。図4は、掘削システム2aを用いて孔23を掘削している状態を示す図である。第2の実施形態は、孔23を水底の地盤1に掘削する点で第1の実施形態と主に異なる。第2の実施形態は、例えば、洋上風力発電の支持基礎(モノパイル式、ジャケット式、トライポッド式、トリパイル式)等の削孔に適用可能である。 First, the second embodiment will be described. FIG. 4 is a diagram showing a state in which the hole 23 is excavated using the excavation system 2a. The second embodiment is mainly different from the first embodiment in that the hole 23 is excavated in the ground 1 at the bottom of the water. The second embodiment can be applied to drilling holes in, for example, a support foundation (monopile type, jacket type, tripod type, tripod type) for offshore wind power generation.

掘削システム2aでは、回収ピット13および調整部14が設けられず、回収調整部16が設けられる。回収調整部16は、回収管19が接続された回収ポンプ11a、供給管21が接続された供給ポンプ11bなどが内蔵される。 In the excavation system 2a, the recovery pit 13 and the adjustment unit 14 are not provided, but the recovery adjustment unit 16 is provided. The recovery adjustment unit 16 includes a recovery pump 11a to which the recovery pipe 19 is connected, a supply pump 11b to which the supply pipe 21 is connected, and the like.

第2の実施形態においても、図2に示す手順で地盤1に孔23を掘削する。第2の実施形態では、S101で、水上の作業台37上に設置された回収調整部16において、水に固形のSPTを溶解させて安定液15を作製する。 Also in the second embodiment, the hole 23 is excavated in the ground 1 by the procedure shown in FIG. In the second embodiment, in S101, in the recovery adjustment unit 16 installed on the workbench 37 on the water, the solid SPT is dissolved in water to prepare the stable liquid 15.

S103では、ロッド5の先端の掘削部3を作業台37上のボーリングマシン9で回転させつつ下降させて、水底の地盤1に略鉛直方向に孔23を削孔していく。孔23の削孔中は、供給ポンプ11bを稼働させて、回収調整部16から供給管21を介して掘削部3に安定液15を送り、掘削部3の近傍から地盤1に安定液15を供給する。掘削土は孔23に満たされた安定液15中を上昇する。安定液15は海水等よりも密度が大きいため、孔23内の安定液15は容易に海水等と置換されることなく孔壁25を保護する。 In S103, the excavated portion 3 at the tip of the rod 5 is lowered while being rotated by the boring machine 9 on the workbench 37, and the hole 23 is drilled in the ground 1 on the bottom of the water in a substantially vertical direction. During the drilling of the hole 23, the supply pump 11b is operated to send the stabilizer 15 from the recovery adjustment unit 16 to the excavation section 3 via the supply pipe 21, and the stabilizer 15 is sent from the vicinity of the excavation section 3 to the ground 1. Supply. The excavated soil rises in the stabilizer 15 filled in the hole 23. Since the stabilizing liquid 15 has a higher density than seawater or the like, the stabilizing liquid 15 in the hole 23 protects the hole wall 25 without being easily replaced with seawater or the like.

S104では、回収ポンプ11aを稼働させて、掘削部3の上方に端部が配置された回収管19を介して、安定液15を回収調整部16に回収する。回収した安定液15は掘削土を含むので、回収調整部16において濾過するなどして安定液15から掘削土17を分離する。 In S104, the recovery pump 11a is operated to collect the stabilizer 15 to the recovery adjustment unit 16 via the recovery pipe 19 whose end is arranged above the excavation unit 3. Since the recovered stabilizer 15 contains excavated soil, the excavated soil 17 is separated from the stabilizer 15 by filtering it in the recovery adjusting unit 16.

2度目以降のS101では、回収調整部16において、回収した安定液15から水分を蒸発させて濃縮し、新たに安定液15を作製する。あるいは、S106で抽出した固形のSPTを再度溶液化して新たに安定液15を作製してもよい。また、掘削土を分離して、密度調整にのみを行ってそのまま循環させてもよい。 In the second and subsequent S101s, the recovery adjustment unit 16 evaporates and concentrates the water content from the recovered stabilizer 15 to newly prepare the stabilizer 15. Alternatively, the solid SPT extracted in S106 may be liquefied again to prepare a new stabilizing solution 15. Further, the excavated soil may be separated and circulated as it is only for density adjustment.

第2の実施形態においても、SPTを用いて安定液15を作製すること、SPTが含まれる安定液15を用いて孔23を掘削することにより、第1の実施形態と同様の効果が得られる。 Also in the second embodiment, the same effect as that of the first embodiment can be obtained by preparing the stabilizing liquid 15 using SPT and excavating the hole 23 using the stabilizing liquid 15 containing SPT. ..

なお、第2の実施形態では、回収管19の端部を孔23の深い位置(掘削部3に近い位置)に配置したが、回収管19の端部は掘削部3の上方に且つ地盤1の表層付近よりある程度深い位置に配置されればよい。このような位置に回収管19の端部を配置すれば、回収した安定液15への海水等の混入を防ぐことができる。 In the second embodiment, the end portion of the recovery pipe 19 is arranged at a deep position of the hole 23 (a position close to the excavation portion 3), but the end portion of the recovery pipe 19 is above the excavation portion 3 and the ground 1. It may be arranged at a position deeper than the vicinity of the surface layer of. If the end of the recovery pipe 19 is arranged at such a position, it is possible to prevent seawater and the like from being mixed into the recovered stabilizer 15.

次に、第3の実施形態について説明する。図5は、掘削システム2bを用いて孔23aを掘削している状態を示す図である。第3の実施形態は、孔23aを地盤1に略水平方向に掘削する点で第1の実施形態と主に異なる。 Next, a third embodiment will be described. FIG. 5 is a diagram showing a state in which the hole 23a is excavated using the excavation system 2b. The third embodiment is mainly different from the first embodiment in that the hole 23a is excavated in the ground 1 in a substantially horizontal direction.

掘削システム2bでは、回収ピット13および調整部14が設けられず、回収調整部16が設けられる。回収調整部16の回収ポンプ11aには排泥管19aが接続され、供給ポンプ11bには供給管21aが接続される。また、掘削システム2bでは、ボーリングマシン9に保持されたロッド5の先端に設けられた掘削部3が設けられず、シールド機29の先端に掘削部3aが設けられる。 In the excavation system 2b, the recovery pit 13 and the adjustment unit 14 are not provided, but the recovery adjustment unit 16 is provided. A mud drain pipe 19a is connected to the recovery pump 11a of the recovery adjustment unit 16, and a supply pipe 21a is connected to the supply pump 11b. Further, in the excavation system 2b, the excavation portion 3 provided at the tip of the rod 5 held by the boring machine 9 is not provided, and the excavation portion 3a is provided at the tip of the shield machine 29.

第3の実施形態においても、図2に示す手順で地盤1に孔23aを掘削する。第3の実施形態では、S101で、地盤1上に設置された回収調整部16において、水に固形のSPTを溶解させて安定液15を作製する。 Also in the third embodiment, the hole 23a is excavated in the ground 1 by the procedure shown in FIG. In the third embodiment, in S101, in the recovery adjustment unit 16 installed on the ground 1, the solid SPT is dissolved in water to prepare a stable liquid 15.

S103では、地盤1に構築した立坑30内からシールド機29を発進させて、シールド機29の先端の掘削部3aで地盤1に略水平方向に孔23aを削孔していく。シールド機29は、本体33内で孔23aの覆工セグメントを組み立ててシールドトンネル35を構築する。孔23aの削孔中は、供給ポンプ11bを稼働させて、回収調整部16から供給管21aを介してシールド機29のチャンバ31に安定液15を送る。チャンバ31内の安定液15は、従来使用されている泥水と同様に機能する。 In S103, the shield machine 29 is started from the inside of the shaft 30 constructed in the ground 1, and the hole 23a is drilled in the ground 1 in the substantially horizontal direction by the excavation portion 3a at the tip of the shield machine 29. The shield machine 29 assembles the lining segment of the hole 23a in the main body 33 to construct the shield tunnel 35. During the drilling of the hole 23a, the supply pump 11b is operated to send the stabilizer 15 from the recovery adjustment unit 16 to the chamber 31 of the shield machine 29 via the supply pipe 21a. The stabilizing liquid 15 in the chamber 31 functions in the same manner as the muddy water conventionally used.

S104では、回収ポンプ11aを稼働させて、チャンバ31内に端部が配置された排泥管19aを介して、安定液15と掘削土とを回収調整部16に回収する。そして、回収調整部16において濾過するなどして安定液15から掘削土を分離する。 In S104, the recovery pump 11a is operated to recover the stabilizer 15 and the excavated soil to the recovery adjustment unit 16 via the mud drain pipe 19a whose end is arranged in the chamber 31. Then, the excavated soil is separated from the stabilizer 15 by filtering in the recovery adjustment unit 16.

2度目以降のS101では、回収調整部16において、回収した安定液15から水分を蒸発させて濃縮し、新たに安定液15を作製する。あるいは、S106で抽出した固形のSPTを再度溶液化して新たに安定液15を作製してもよい。また、掘削土を分離して密度調整のみをおこなって、そのまま循環させてもよい。 In the second and subsequent S101s, the recovery adjustment unit 16 evaporates and concentrates the water content from the recovered stabilizer 15 to newly prepare the stabilizer 15. Alternatively, the solid SPT extracted in S106 may be liquefied again to prepare a new stabilizing solution 15. Further, the excavated soil may be separated and only the density is adjusted, and the soil may be circulated as it is.

第3の実施形態においても、SPTを用いて安定液15を作製することにより、第1の実施形態と同様の効果が得られる。水溶性のSPTは安定液15中で水と分離しにくいので、シールド機29の掘進を一時的に停止してもチャンバ31内で安定液15が分離することがない。 Also in the third embodiment, the same effect as that of the first embodiment can be obtained by preparing the stabilizing liquid 15 using SPT. Since the water-soluble SPT is difficult to separate from water in the stabilizing liquid 15, the stabilizing liquid 15 does not separate in the chamber 31 even if the digging of the shield machine 29 is temporarily stopped.

以上、添付図面を参照しながら、本発明に係る好適な実施形態について説明したが、本発明はかかる例に限定されない。当業者であれば、本願で開示した技術的思想の範疇内において、各種の変更例又は修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。 Although the preferred embodiment of the present invention has been described above with reference to the accompanying drawings, the present invention is not limited to such an example. It is clear that a person skilled in the art can come up with various modified examples or modified examples within the scope of the technical idea disclosed in the present application, and these also naturally belong to the technical scope of the present invention. Understood.

1………地盤
3、3a………掘削部
5………ロッド
7………ケーシングパイプ
9………ボーリングマシン
11a………回収ポンプ
11b………供給ポンプ
13………回収ピット
14………調整部
15………安定液
16………回収調整部
17、17a、17b………掘削土
19………回収管
19a………排泥管
21、21a………供給管
23、23a………孔
25………孔壁
27、28………点線
29………シールド機
30………立坑
31………チャンバ
33………本体
35………シールドトンネル
37………作業台
71………分岐管
1 ………… Ground 3, 3a ………… Excavation part 5 ………… Rod 7 ………… Casing pipe 9 ………… Boring machine 11a ………… Recovery pump 11b ………… Supply pump 13 ………… Recovery pit 14… …… Adjustment part 15 ………… Stabilizer 16 ………… Recovery adjustment part 17, 17a, 17b ………… Excavated soil 19 ………… Recovery pipe 19a ………… Mud drain pipe 21, 21a ………… Supply pipe 23, 23a ………… Hole 25 ………… Hole wall 27, 28 ………… Dotted line 29 ………… Shielding machine 30 ………… Vertical shaft 31 ………… Chamber 33 ………… Main body 35 ………… Shield tunnel 37 ………… Work Platform 71 ……… Branch pipe

Claims (8)

地盤を掘削する掘削システムであって、
地盤を掘削する掘削部と、
前記掘削部の近傍から地盤へ安定液を供給するポンプと、
前記安定液を回収する回収部と、
を具備し、
前記安定液には、ポリタングステン酸ナトリウムが含まれていることを特徴とする掘削システム。
An excavation system that excavates the ground
An excavation part that excavates the ground and
A pump that supplies a stabilizing liquid to the ground from the vicinity of the excavated part,
A recovery unit that collects the stable liquid and
Equipped with
An excavation system characterized in that the stabilizer contains sodium polytungstate.
前記安定液の密度が1.8g/cm以上3.1g/cm以下であることを特徴とする請求項1記載の掘削システム。 The excavation system according to claim 1, wherein the density of the stabilizing liquid is 1.8 g / cm 3 or more and 3.1 g / cm 3 or less. 前記回収部で回収された前記安定液は、掘削土と分離された後、前記ポンプによって地盤へ循環可能であることを特徴とする請求項1又は請求項2に記載の掘削システム。 The excavation system according to claim 1 or 2, wherein the stabilizing liquid recovered by the recovery unit can be circulated to the ground by the pump after being separated from the excavated soil. 回収された前記安定液から、固形のポリタングステン酸ナトリウムを抽出し、再度溶液化することで新たに前記安定液を得て、得られた前記安定液を前記ポンプによって地盤へ循環可能であることを特徴とする請求項1から請求項3のいずれかに記載の掘削システム。 The solid sodium polytungstate is extracted from the recovered stable liquid and liquefied again to obtain a new stable liquid, and the obtained stable liquid can be circulated to the ground by the pump. The excavation system according to any one of claims 1 to 3, wherein the drilling system is characterized. 地盤に対して安定液をポンプで供給しつつ、掘削部で地盤の掘削を行う地盤の掘削方法であって、
前記安定液には、ポリタングステン酸ナトリウムが含まれており、
掘削後の前記安定液を掘削土と分離して回収することを特徴とする地盤の掘削方法。
It is a ground excavation method that excavates the ground at the excavation part while supplying a stabilizing liquid to the ground with a pump.
The stabilizer contains sodium polytungstate and
A method for excavating ground, characterized in that the stabilizing liquid after excavation is separated from excavated soil and recovered.
前記地盤の掘削が、ボーリング削孔であり、
前記掘削部によって前記地盤に対して略鉛直方向に削孔することを特徴とする請求項5記載の地盤の掘削方法。
The excavation of the ground is boring drilling,
The method for excavating the ground according to claim 5, wherein the excavation portion drills a hole in a substantially vertical direction with respect to the ground.
前記地盤が、水中の水底であり、
前記掘削部の上方に配置した管体によって、掘削後の前記安定液と掘削土を回収することを特徴とする請求項6記載の地盤の掘削方法。
The ground is the bottom of the water,
The method for excavating ground according to claim 6, wherein the stabilizing liquid and excavated soil after excavation are collected by a pipe body arranged above the excavation portion.
前記地盤の掘削が、シールド機による削孔であり、
前記掘削部によって前記地盤に対して略水平方向に削孔することを特徴とする請求項5記載の地盤の掘削方法。
The excavation of the ground is drilling by a shield machine.
The method for excavating the ground according to claim 5, wherein the excavation portion drills a hole in a substantially horizontal direction with respect to the ground.
JP2020117735A 2020-07-08 2020-07-08 Drilling system and ground excavation method Active JP7410812B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020117735A JP7410812B2 (en) 2020-07-08 2020-07-08 Drilling system and ground excavation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020117735A JP7410812B2 (en) 2020-07-08 2020-07-08 Drilling system and ground excavation method

Publications (2)

Publication Number Publication Date
JP2022015102A true JP2022015102A (en) 2022-01-21
JP7410812B2 JP7410812B2 (en) 2024-01-10

Family

ID=80120563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020117735A Active JP7410812B2 (en) 2020-07-08 2020-07-08 Drilling system and ground excavation method

Country Status (1)

Country Link
JP (1) JP7410812B2 (en)

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01154993A (en) * 1987-12-10 1989-06-16 Toda Constr Co Ltd Method of shield construction utilizing double structure cutter for stabilizing face
JPH02153191A (en) * 1988-12-02 1990-06-12 Ohbayashi Corp Ground excavation method
JPH0826740B1 (en) * 1990-01-17 1996-03-21 Kenjiro Jinbo
JPH08302670A (en) * 1995-05-01 1996-11-19 Takenaka Komuten Co Ltd Method and device for improvement of ground with horizontal cutter in working with large depth
JPH09177068A (en) * 1995-12-26 1997-07-08 Shiraishi:Kk Method for excavating trench for underground structure and method for executing work for underground structure
JP2001240852A (en) * 1999-12-24 2001-09-04 Fujita Corp Stabilization liquid composition having high specific gravity and drilling method using stabilization liquid
JP2005089969A (en) * 2003-09-12 2005-04-07 Daiho Constr Co Ltd Muddy water shield machine
JP2005240308A (en) * 2004-02-24 2005-09-08 Japan Agengy For Marine-Earth Science & Technology Method of extracting crustal core sample, and flowable covering material for crustal core sample extraction
JP2007120120A (en) * 2005-10-27 2007-05-17 East Japan Railway Co Excavation method
JP2009196456A (en) * 2008-02-20 2009-09-03 Mitsui Eng & Shipbuild Co Ltd Linear structure position control system, linear structure position control method, and moving structure control system
JP2010248759A (en) * 2009-04-14 2010-11-04 Yoshida Engineering Kk High specific gravity slurry and excavation method
JP2011232280A (en) * 2010-04-30 2011-11-17 Shimizu Corp Method for estimating amount of fly ash in concrete
JP2016186172A (en) * 2015-03-27 2016-10-27 株式会社大林組 Stable liquid plant facility
JP2016200437A (en) * 2015-04-08 2016-12-01 株式会社東芝 Method for processing soil containing radioactive cesium
US20190241789A1 (en) * 2016-07-07 2019-08-08 Halliburton Energy Services, Inc. Treatment fluids comprising recycled drilling cuttings and method of use

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01154993A (en) * 1987-12-10 1989-06-16 Toda Constr Co Ltd Method of shield construction utilizing double structure cutter for stabilizing face
JPH02153191A (en) * 1988-12-02 1990-06-12 Ohbayashi Corp Ground excavation method
JPH0826740B1 (en) * 1990-01-17 1996-03-21 Kenjiro Jinbo
JPH08302670A (en) * 1995-05-01 1996-11-19 Takenaka Komuten Co Ltd Method and device for improvement of ground with horizontal cutter in working with large depth
JPH09177068A (en) * 1995-12-26 1997-07-08 Shiraishi:Kk Method for excavating trench for underground structure and method for executing work for underground structure
JP2001240852A (en) * 1999-12-24 2001-09-04 Fujita Corp Stabilization liquid composition having high specific gravity and drilling method using stabilization liquid
JP2005089969A (en) * 2003-09-12 2005-04-07 Daiho Constr Co Ltd Muddy water shield machine
JP2005240308A (en) * 2004-02-24 2005-09-08 Japan Agengy For Marine-Earth Science & Technology Method of extracting crustal core sample, and flowable covering material for crustal core sample extraction
JP2007120120A (en) * 2005-10-27 2007-05-17 East Japan Railway Co Excavation method
JP2009196456A (en) * 2008-02-20 2009-09-03 Mitsui Eng & Shipbuild Co Ltd Linear structure position control system, linear structure position control method, and moving structure control system
JP2010248759A (en) * 2009-04-14 2010-11-04 Yoshida Engineering Kk High specific gravity slurry and excavation method
JP2011232280A (en) * 2010-04-30 2011-11-17 Shimizu Corp Method for estimating amount of fly ash in concrete
JP2016186172A (en) * 2015-03-27 2016-10-27 株式会社大林組 Stable liquid plant facility
JP2016200437A (en) * 2015-04-08 2016-12-01 株式会社東芝 Method for processing soil containing radioactive cesium
US20190241789A1 (en) * 2016-07-07 2019-08-08 Halliburton Energy Services, Inc. Treatment fluids comprising recycled drilling cuttings and method of use

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
壇原徹、外4名: "無毒な重液SPT(ポリタングステン酸ナトリウム)とその利用", 地質ニュース, vol. 第455号, JPN6023034507, July 1992 (1992-07-01), JP, pages 31 - 36, ISSN: 0005138511 *

Also Published As

Publication number Publication date
JP7410812B2 (en) 2024-01-10

Similar Documents

Publication Publication Date Title
US6968893B2 (en) Method and system for production of gas and water from a gas bearing strata during drilling and after drilling completion
US9732492B2 (en) Situ treatment system and method for dewatering and stabilization of waste material deposits in waste impoundments
CN212223929U (en) Flushing and sucking device for non-drainage sinking construction process of open caisson
CN104141300A (en) Foundation pile hole drilling construction process
Heath Drilled pile foundations in porous, pinnacled carbonate rock
JP7410812B2 (en) Drilling system and ground excavation method
RU2529197C1 (en) Drilling wastes underground burial
Preene Techniques and developments in quarry and surface mine dewatering
JP2011038344A (en) Treatment method of slime-containing muddy water and treatment system therefor
Newman et al. Sinking a jacked caisson within the London Basin geological sequence for the Thames Water Ring Main extension
JPH0213696A (en) Under-pit hydraulic mining method of mineral resource
Roberts et al. The changing nature of groundwater control for temporary works
JP2019002174A (en) Methane hydrate drilling method
JP3224008B2 (en) Underwater ground improvement method
JP2005097936A (en) Boring execution method and its device excavating gravel layer or obstacle layer
JP4783120B2 (en) Drilling method
KR101670071B1 (en) Apparatus and method for digging well by recycle under ground water
JP7016077B2 (en) Gas hydrate mining equipment and mining method
JP2020026677A (en) Repair method of infiltration well
JP3488887B2 (en) Well drilling method
KR101523367B1 (en) Method of dewatering for Landfill by directional drilling
Cashman et al. Other Dewatering Systems
Norton et al. Advance dewatering and control of groundwater in surface coal mining
Mathy et al. TBM vs. MTBM: Geotechnical considerations
Stevanović Tapping of karst groundwater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230829

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231222

R150 Certificate of patent or registration of utility model

Ref document number: 7410812

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150