JP2022015093A - Gas adsorbent and gas mask - Google Patents
Gas adsorbent and gas mask Download PDFInfo
- Publication number
- JP2022015093A JP2022015093A JP2020117720A JP2020117720A JP2022015093A JP 2022015093 A JP2022015093 A JP 2022015093A JP 2020117720 A JP2020117720 A JP 2020117720A JP 2020117720 A JP2020117720 A JP 2020117720A JP 2022015093 A JP2022015093 A JP 2022015093A
- Authority
- JP
- Japan
- Prior art keywords
- gas
- gas adsorbent
- adsorbent
- mass
- adsorption
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000003463 adsorbent Substances 0.000 title claims abstract description 130
- 239000000126 substance Substances 0.000 claims abstract description 72
- 238000001179 sorption measurement Methods 0.000 claims abstract description 53
- 239000007789 gas Substances 0.000 claims description 233
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims description 34
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 claims description 31
- 239000011230 binding agent Substances 0.000 claims description 17
- 239000011787 zinc oxide Substances 0.000 claims description 17
- 239000005751 Copper oxide Substances 0.000 claims description 15
- 229910000431 copper oxide Inorganic materials 0.000 claims description 15
- 239000002253 acid Substances 0.000 claims description 13
- 229920003171 Poly (ethylene oxide) Polymers 0.000 claims description 12
- 229910044991 metal oxide Inorganic materials 0.000 claims description 10
- 150000004706 metal oxides Chemical class 0.000 claims description 10
- 230000000274 adsorptive effect Effects 0.000 claims description 4
- GUJOJGAPFQRJSV-UHFFFAOYSA-N dialuminum;dioxosilane;oxygen(2-);hydrate Chemical compound O.[O-2].[O-2].[O-2].[Al+3].[Al+3].O=[Si]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O GUJOJGAPFQRJSV-UHFFFAOYSA-N 0.000 claims description 4
- 229910052901 montmorillonite Inorganic materials 0.000 claims description 4
- 239000002734 clay mineral Substances 0.000 claims description 3
- 229910052680 mordenite Inorganic materials 0.000 claims description 3
- 229920000620 organic polymer Polymers 0.000 claims description 3
- 230000002378 acidificating effect Effects 0.000 abstract description 3
- LELOWRISYMNNSU-UHFFFAOYSA-N hydrogen cyanide Chemical compound N#C LELOWRISYMNNSU-UHFFFAOYSA-N 0.000 description 22
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 18
- 238000000034 method Methods 0.000 description 18
- 238000010438 heat treatment Methods 0.000 description 17
- 239000002002 slurry Substances 0.000 description 16
- 230000000052 comparative effect Effects 0.000 description 12
- 239000000843 powder Substances 0.000 description 12
- 239000000463 material Substances 0.000 description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 10
- 229940116318 copper carbonate Drugs 0.000 description 8
- GEZOTWYUIKXWOA-UHFFFAOYSA-L copper;carbonate Chemical compound [Cu+2].[O-]C([O-])=O GEZOTWYUIKXWOA-UHFFFAOYSA-L 0.000 description 8
- 239000013078 crystal Substances 0.000 description 8
- 238000002156 mixing Methods 0.000 description 8
- 239000000203 mixture Substances 0.000 description 8
- 239000008188 pellet Substances 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 7
- 238000002360 preparation method Methods 0.000 description 7
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 239000001301 oxygen Substances 0.000 description 6
- 229910052760 oxygen Inorganic materials 0.000 description 6
- 239000011164 primary particle Substances 0.000 description 6
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 5
- 239000007864 aqueous solution Substances 0.000 description 5
- 229910052802 copper Inorganic materials 0.000 description 5
- 239000010949 copper Substances 0.000 description 5
- 238000004898 kneading Methods 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- 239000011148 porous material Substances 0.000 description 5
- 238000000634 powder X-ray diffraction Methods 0.000 description 5
- 235000013162 Cocos nucifera Nutrition 0.000 description 4
- 244000060011 Cocos nucifera Species 0.000 description 4
- 239000010903 husk Substances 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 230000002194 synthesizing effect Effects 0.000 description 4
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- 238000004090 dissolution Methods 0.000 description 3
- 238000011049 filling Methods 0.000 description 3
- 230000036541 health Effects 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 230000029058 respiratory gaseous exchange Effects 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- 230000027455 binding Effects 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 238000000748 compression moulding Methods 0.000 description 2
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 2
- 239000008187 granular material Substances 0.000 description 2
- 239000003446 ligand Substances 0.000 description 2
- 229910021645 metal ion Inorganic materials 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 239000002105 nanoparticle Substances 0.000 description 2
- UOURRHZRLGCVDA-UHFFFAOYSA-D pentazinc;dicarbonate;hexahydroxide Chemical compound [OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[Zn+2].[Zn+2].[Zn+2].[Zn+2].[Zn+2].[O-]C([O-])=O.[O-]C([O-])=O UOURRHZRLGCVDA-UHFFFAOYSA-D 0.000 description 2
- -1 polypropylene Polymers 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 238000010248 power generation Methods 0.000 description 2
- GETQZCLCWQTVFV-UHFFFAOYSA-N trimethylamine Chemical compound CN(C)C GETQZCLCWQTVFV-UHFFFAOYSA-N 0.000 description 2
- 229910021642 ultra pure water Inorganic materials 0.000 description 2
- 239000012498 ultrapure water Substances 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- JJLJMEJHUUYSSY-UHFFFAOYSA-L Copper hydroxide Chemical compound [OH-].[OH-].[Cu+2] JJLJMEJHUUYSSY-UHFFFAOYSA-L 0.000 description 1
- 239000005750 Copper hydroxide Substances 0.000 description 1
- JPVYNHNXODAKFH-UHFFFAOYSA-N Cu2+ Chemical compound [Cu+2] JPVYNHNXODAKFH-UHFFFAOYSA-N 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 229920006328 Styrofoam Polymers 0.000 description 1
- 235000010724 Wisteria floribunda Nutrition 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- PTFCDOFLOPIGGS-UHFFFAOYSA-N Zinc dication Chemical compound [Zn+2] PTFCDOFLOPIGGS-UHFFFAOYSA-N 0.000 description 1
- ZOIORXHNWRGPMV-UHFFFAOYSA-N acetic acid;zinc Chemical compound [Zn].CC(O)=O.CC(O)=O ZOIORXHNWRGPMV-UHFFFAOYSA-N 0.000 description 1
- 230000004931 aggregating effect Effects 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 229910001956 copper hydroxide Inorganic materials 0.000 description 1
- 229910001431 copper ion Inorganic materials 0.000 description 1
- BERDEBHAJNAUOM-UHFFFAOYSA-N copper(I) oxide Inorganic materials [Cu]O[Cu] BERDEBHAJNAUOM-UHFFFAOYSA-N 0.000 description 1
- ORTQZVOHEJQUHG-UHFFFAOYSA-L copper(II) chloride Chemical compound Cl[Cu]Cl ORTQZVOHEJQUHG-UHFFFAOYSA-L 0.000 description 1
- XTVVROIMIGLXTD-UHFFFAOYSA-N copper(II) nitrate Chemical compound [Cu+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O XTVVROIMIGLXTD-UHFFFAOYSA-N 0.000 description 1
- KRFJLUBVMFXRPN-UHFFFAOYSA-N cuprous oxide Chemical compound [O-2].[Cu+].[Cu+] KRFJLUBVMFXRPN-UHFFFAOYSA-N 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 230000005802 health problem Effects 0.000 description 1
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 description 1
- 229910000041 hydrogen chloride Inorganic materials 0.000 description 1
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 239000013110 organic ligand Substances 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 230000010399 physical interaction Effects 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 229920002620 polyvinyl fluoride Polymers 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000008261 styrofoam Substances 0.000 description 1
- 229910052902 vermiculite Inorganic materials 0.000 description 1
- 239000010455 vermiculite Substances 0.000 description 1
- 235000019354 vermiculite Nutrition 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
- 239000012855 volatile organic compound Substances 0.000 description 1
- 238000004876 x-ray fluorescence Methods 0.000 description 1
- 238000012982 x-ray structure analysis Methods 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
- 239000004246 zinc acetate Substances 0.000 description 1
- UGZADUVQMDAIAO-UHFFFAOYSA-L zinc hydroxide Chemical compound [OH-].[OH-].[Zn+2] UGZADUVQMDAIAO-UHFFFAOYSA-L 0.000 description 1
- 229910021511 zinc hydroxide Inorganic materials 0.000 description 1
- 229940007718 zinc hydroxide Drugs 0.000 description 1
Images
Landscapes
- Respiratory Apparatuses And Protective Means (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Abstract
Description
本発明は、ガス吸着材及び防毒マスクに関する。 The present invention relates to a gas adsorbent and a gas mask.
職場における健康障害を予防するために、作業環境の大気中に含まれる各種ガス濃度を基準値以下にすることが求められている。上記基準値として、例えば、日本産業衛生学会は、各種ガスの作業環境中の許容濃度を非特許文献1に提示している。しかし、作業条件によっては、これら許容濃度を超えるガスを含む環境で作業者が作業を行うことも想定される。このような環境中では、作業者が防毒マスクを着用することによって、作業者が実際に吸入する空気中の対象ガス濃度を許容濃度以下に下げることが求められる。 In order to prevent health problems in the workplace, it is required to keep the concentration of various gases contained in the atmosphere of the working environment below the standard value. As the above reference value, for example, the Japan Society for Occupational Health presents the permissible concentrations of various gases in the working environment in Non-Patent Document 1. However, depending on the working conditions, it is expected that the worker will work in an environment containing gas exceeding these allowable concentrations. In such an environment, it is required that the operator wears a gas mask to reduce the concentration of the target gas in the air actually inhaled by the operator to the allowable concentration or less.
防毒マスクは、通常、ガス吸着材が充填されたガス吸着部を備える。このガス吸着部において人体に有害なガスが除去されることによって、防毒マスクを装着した作業者が有害なガスを吸入することを防ぐことができ、又は有害なガスの吸入量を低減することができる。例えば特許文献1~3には、有害なガスを吸着除去するためのガス吸着材が開示されている。 The gas mask usually includes a gas adsorbent filled with a gas adsorbent. By removing the gas harmful to the human body in this gas adsorption part, it is possible to prevent the operator wearing the gas mask from inhaling the harmful gas, or to reduce the inhalation amount of the harmful gas. can. For example, Patent Documents 1 to 3 disclose gas adsorbents for adsorbing and removing harmful gases.
特許文献1~3には、活性炭を基材としたガス吸着材が開示されている。活性炭を基材としたガス吸着材は、通常、対象となるガスと親和性の高い物質が活性炭の表面又は空孔に添着されている。活性炭は、主に植物性天然素材であるヤシガラを加熱処理することで得られるため、その特性は原材料であるヤシガラの性状に依存する。ヤシガラは、ヤシの育成環境等により化学的組成及び物理的強度が異なる。そのため、均一な性質を持たせることは容易ではなく、同一生産地や同一製造工程から得られたヤシガラであっても、生産ロットごとに性質のばらつきがある。このため、ヤシガラから製造された活性炭を基材とする場合、安定した品質を担保できるガス吸着材を合成することは困難である。したがって、活性炭を基材とする従来のガス吸着材に代わる、ガス吸着能に優れる新たなガス吸着材を提供することが望まれる。 Patent Documents 1 to 3 disclose gas adsorbents based on activated carbon. In a gas adsorbent based on activated carbon, a substance having a high affinity for the target gas is usually adhered to the surface or pores of the activated carbon. Activated carbon is mainly obtained by heat-treating coconut husk, which is a natural plant material, so its characteristics depend on the properties of coconut husk, which is the raw material. The chemical composition and physical strength of palm gala differ depending on the palm growing environment and the like. Therefore, it is not easy to have uniform properties, and even coconut husks obtained from the same production area or the same manufacturing process have different properties depending on the production lot. Therefore, when activated carbon produced from coconut husk is used as a base material, it is difficult to synthesize a gas adsorbent that can guarantee stable quality. Therefore, it is desired to provide a new gas adsorbent having excellent gas adsorbing ability in place of the conventional gas adsorbent using activated carbon as a base material.
本発明の目的は、優れたガス吸着能を有する新たなガス吸着材を提供することにある。 An object of the present invention is to provide a new gas adsorbent having an excellent gas adsorbing ability.
本発明は、
酸性ガス、塩基性ガス及び有機ガスからなる群から選ばれる1種以上のガスに対する吸着能を有する吸着機能物質を1種以上含み、
上記吸着機能物質の含有率が60質量%以上100質量%以下であり、且つ
かさ密度が0.60g/mL以上であるガス吸着材、
に関する。
The present invention
It contains one or more adsorption functional substances having an adsorptive ability to one or more gases selected from the group consisting of acid gas, basic gas and organic gas.
A gas adsorbent having a content of 60% by mass or more and 100% by mass or less and a bulk density of 0.60 g / mL or more.
Regarding.
本発明のガス吸着材において、酸性ガス、塩基性ガス及び有機ガスからなる群から選ばれる1種以上のガスに対する吸着能を有する吸着機能物質の含有率は、60質量%以上100質量%以下である。一方、活性炭を基材とする従来のガス吸着材では、通常、吸着機能物質は活性炭の表面又は空孔に添着されるため、吸着機能物質の含有率は、上限が16~20質量%と極めて低い含有率に留まる。これに対し、本発明者らの鋭意検討の結果、吸着機能物質の含有率を60質量%以上100質量%以下とし、且つかさ密度を0.60g/mL以上とすることによって、ガス吸着能に優れるガス吸着材の提供が可能となることが新たに見出された。こうして本発明は完成された。 In the gas adsorbent of the present invention, the content of the adsorbing functional substance having an adsorbing ability to one or more gases selected from the group consisting of acid gas, basic gas and organic gas is 60% by mass or more and 100% by mass or less. be. On the other hand, in the conventional gas adsorbent using activated carbon as a base material, the adsorption functional substance is usually adhered to the surface or pores of the activated carbon, so that the content of the adsorption functional substance is extremely high at 16 to 20% by mass. Stays at a low content. On the other hand, as a result of diligent studies by the present inventors, the content of the adsorption functional substance is set to 60% by mass or more and 100% by mass or less, and the bulk density is set to 0.60 g / mL or more to improve the gas adsorption capacity. It has been newly discovered that it is possible to provide an excellent gas adsorbent. In this way, the present invention was completed.
本発明のガス吸着材の一態様は、以下の通りである。 One aspect of the gas adsorbent of the present invention is as follows.
上記吸着機能物質は、少なくとも酸性ガス吸着能を有することができる。 The adsorption functional substance can have at least an acid gas adsorption ability.
上記ガス吸着材は、上記吸着機能物質として、金属酸化物の1種以上を含むことができる。 The gas adsorbent may contain one or more metal oxides as the adsorption functional substance.
上記ガス吸着材は、上記金属酸化物として、酸化銅及び/又は酸化亜鉛を含むことができる。 The gas adsorbent may contain copper oxide and / or zinc oxide as the metal oxide.
上記ガス吸着材は、バインダーを更に含むことができる。 The gas adsorbent may further contain a binder.
上記ガス吸着材は、上記バインダーとして、有機ポリマー及び/又は無機粘土鉱物を含むことができる。 The gas adsorbent can contain an organic polymer and / or an inorganic clay mineral as the binder.
上記ガス吸着材は、上記バインダーとして、ポリエチレンオキサイドを含むことができる。 The gas adsorbent can contain polyethylene oxide as the binder.
上記ガス吸着材は、上記バインダーとして、モンモリロナイト及び/又はモルデナイトを含むことができる。 The gas adsorbent can contain montmorillonite and / or mordenite as the binder.
上記ガス吸着材のかさ密度は、0.60g/mL以上3.50g/mL以下であることができる。 The bulk density of the gas adsorbent can be 0.60 g / mL or more and 3.50 g / mL or less.
上記ガス吸着材は、造粒体であることができる。 The gas adsorbent can be a granulated body.
更に、本発明は、上記ガス吸着材を含むガス吸着部を有する防毒マスクに関する。 Furthermore, the present invention relates to a gas mask having a gas adsorbing portion containing the gas adsorbent.
本発明によれば、優れたガス吸着能を有するガス吸着材を提供することができる。また、本発明によれば、上記ガス吸着材を含むガス吸着部を有する防毒マスクを提供することもできる。 According to the present invention, it is possible to provide a gas adsorbent having an excellent gas adsorbing ability. Further, according to the present invention, it is also possible to provide a gas mask having a gas adsorbing portion containing the gas adsorbent.
[ガス吸着材]
本発明のガス吸着材は、酸性ガス、塩基性ガス及び有機ガスからなる群から選ばれる1種以上のガスに対する吸着能を有する吸着機能物質を1種以上含み、上記吸着機能物質の含有率が60質量%以上100質量%以下であり、且つかさ密度が0.60g/mL以上である。
[Gas adsorbent]
The gas adsorbent of the present invention contains one or more adsorbent functional substances having an adsorbing ability for one or more gases selected from the group consisting of acid gas, basic gas and organic gas, and the content of the adsorbent functional substance is high. It is 60% by mass or more and 100% by mass or less, and the bulk density is 0.60 g / mL or more.
<吸着機能物質>
本発明のガス吸着材は、酸性ガス、塩基性ガス及び有機ガスからなる群から選ばれる1種以上のガスに対する吸着能を有する吸着機能物質を1種以上含む。本発明のガス吸着材は、上記吸着機能物質を1種のみ含むこともでき、2種以上(例えば2~4種程度)含むこともできる。例えば、1種の吸着機能物質が、1種又は2種以上のガスに対する吸着能を有することができる。また、本発明のガス吸着材は、異なる種類のガスに対する吸着能を有する2種以上の吸着機能物質を任意の割合で含むこともできる。本発明のガス吸着材が2種以上の吸着機能物質が含む場合、吸着機能物質の含有率とは、これら2種以上の吸着機能物質の合計含有率を言うものとする。また、本発明のガス吸着材における各成分の含有率は、ガス吸着材の質量を100質量%として算出される値である。
<Adsorption functional substance>
The gas adsorbent of the present invention contains one or more adsorbent functional substances having an adsorbing ability for one or more gases selected from the group consisting of acid gas, basic gas and organic gas. The gas adsorbent of the present invention may contain only one type of the above-mentioned adsorption functional substance, or may contain two or more types (for example, about 2 to 4 types). For example, one type of adsorption functional substance can have an adsorption ability for one type or two or more types of gas. Further, the gas adsorbent of the present invention may contain two or more kinds of adsorbent functional substances having an adsorbing ability for different kinds of gases in an arbitrary ratio. When the gas adsorbent of the present invention contains two or more kinds of adsorption functional substances, the content of the adsorption functional substances means the total content of these two or more kinds of adsorption functional substances. The content of each component in the gas adsorbent of the present invention is a value calculated with the mass of the gas adsorbent as 100% by mass.
本発明のガス吸着材の吸着機能物質の含有率は、ガス吸着材によって対象ガスを効果的に除去することを可能にする観点から、60質量%以上であり、65質量%以上であることが好ましく、70質量%以上であることがより好ましく、75質量%以上であることが更に好ましく、80質量%以上であることが一層好ましく、85質量%以上であることがより一層好ましく、90質量%以上であることが更に一層好ましく、95質量%以上であることが更により一層好ましい。また、本発明のガス吸着材の吸着機能物質の含有率は、100質量%以下であり、100質量%であることもでき、100質量%未満、例えば99質量%以下又は98質量%以下であることもできる。 The content of the adsorption functional substance of the gas adsorbent of the present invention is 60% by mass or more and 65% by mass or more from the viewpoint of enabling the gas adsorbent to effectively remove the target gas. It is preferable that it is 70% by mass or more, more preferably 75% by mass or more, further preferably 80% by mass or more, further preferably 85% by mass or more, and 90% by mass. The above is even more preferable, and 95% by mass or more is even more preferable. Further, the content of the adsorption functional substance of the gas adsorbent of the present invention is 100% by mass or less, may be 100% by mass, and is less than 100% by mass, for example, 99% by mass or less or 98% by mass or less. You can also do it.
上記ガス吸着材に含まれる吸着機能物質は、酸性ガス、塩基性ガス及び有機ガスからなる群から選ばれる1種以上のガスに対する吸着能を有する。本発明における吸着機能物質は、処理対象となるガスを吸着して大気から除去できる機能を有していればよい。ガスの吸着とは、処理対象となるガスの分子が、吸着機能物質の表面近傍に、化学的又は物理的相互作用により一定時間滞在することを示しており、例えば、吸着した分子が一定時間後に再度脱離することがあってもよい。その表面近傍での滞在時間(以下、「吸着時間」と言う。)は、処理対象となるガスの濃度を、作業者の作業期間等の所定の期間中、所望の濃度以下に低減できればよく、吸着時間は特に限定されるものではない。 The adsorption functional substance contained in the gas adsorbent has an adsorptive ability for one or more gases selected from the group consisting of acid gas, basic gas and organic gas. The adsorption functional substance in the present invention may have a function of adsorbing a gas to be treated and removing it from the atmosphere. Adsorption of gas means that molecules of gas to be treated stay in the vicinity of the surface of an adsorption functional substance for a certain period of time by chemical or physical interaction. For example, the adsorbed molecules stay after a certain period of time. It may be detached again. The staying time in the vicinity of the surface (hereinafter referred to as "adsorption time") may be such that the concentration of the gas to be treated can be reduced to a desired concentration or less during a predetermined period such as a worker's working period. The adsorption time is not particularly limited.
処理対象となるガスに関して、「酸性ガス」とは、水に可溶なガスであって溶解時に水のpHを下げる特徴を有するものであり、例えば、シアン化水素、硫化水素、塩化水素等が挙げられるが、これらに限定されるものではない。 Regarding the gas to be treated, the "acid gas" is a gas soluble in water and has a characteristic of lowering the pH of water at the time of dissolution, and examples thereof include hydrogen cyanide, hydrogen sulfide, and hydrogen chloride. However, it is not limited to these.
「塩基性ガス」とは、水に可溶なガスであって溶解時に水のpHを上げること特徴を有するものであり、例えば、アンモニア、ピリジン、トリメチルアミン等が挙げられるが、これらに限定されるものではない。 The "basic gas" is a gas that is soluble in water and has a characteristic of raising the pH of water at the time of dissolution. Examples thereof include, but are limited to, ammonia, pyridine, trimethylamine and the like. It's not a thing.
「有機ガス」とは、一般に揮発性有機化合物とも呼ばれ、室温(通常20~25℃程度)の大気圧下で大気中にガスとして揮発する特徴を有する有機化合物であり、例えばシクロヘキサン、トルエン、酢酸エチル等が挙げられるが、これらに限定されるものではない。 The "organic gas" is also generally called a volatile organic compound, and is an organic compound having a characteristic of volatilizing as a gas in the atmosphere at room temperature (usually about 20 to 25 ° C.), for example, cyclohexane, toluene, and the like. Examples thereof include, but are not limited to, ethyl acetate.
本発明のガス吸着材は、一例として、防毒マスクのガス吸着部に充填し、作業者の作業環境の大気中の対象ガスを除去するための処理に使用することができる。処理対象となる大気中に含まれる各種ガスの濃度は、特に限定されるものではないが、例えば、安全性等の理由から推奨又は規定されている上限とされる濃度又はこの濃度を超える濃度であることができる。例えば、シアン化水素については、5ppmvが作業環境における許容濃度とされている(非特許文献1(許容濃度等の勧告(2017年度)、日本産業衛生学会、産業衛生学雑誌、2017、59(5)、153―185))。したがって、一例として、20ppmv程度のシアン化水素を含有する大気を処理し、作業者がガス吸着部を介して吸入する空気中のシアン化水素の濃度を5ppmv以下に低減することができる。処理対象の大気には、対象となるガス以外のガスが含まれていてもよい。例えば、水分含有率を示す湿度等に制限はなく、ガス吸着材に含まれる吸着機能物質が対象とするガスを適切に処理できればよい。 As an example, the gas adsorbent of the present invention can be filled in the gas adsorbed portion of the gas mask and used for a treatment for removing the target gas in the atmosphere of the worker's work environment. The concentration of various gases contained in the atmosphere to be treated is not particularly limited, but for example, the concentration is the upper limit recommended or specified for safety reasons or a concentration exceeding this concentration. There can be. For example, for hydrogen cyanide, 5 ppmv is the allowable concentration in the working environment (Non-Patent Document 1 (Recommendations for Allowable Concentrations (FY2017), Japan Society for Occupational Health, Journal of Industrial Hygiene, 2017, 59 (5), 153-185)). Therefore, as an example, it is possible to treat the atmosphere containing about 20 ppmv of hydrogen cyanide and reduce the concentration of hydrogen cyanide in the air sucked by the operator through the gas adsorption portion to 5 ppmv or less. The atmosphere to be treated may contain a gas other than the gas to be treated. For example, there is no limitation on the humidity or the like indicating the water content, and it is sufficient that the target gas can be appropriately treated by the adsorption functional substance contained in the gas adsorbent.
吸着機能物質の具体例としては、銅、亜鉛、マンガン、ニッケル等の金属の酸化物を挙げることができる。金属酸化物は、酸性ガスに対して優れた吸着能を発揮できる点で好ましい。この点から、酸化銅及び酸化亜鉛は好ましい。したがって、酸性ガスをより効果的に除去することを可能にする観点からは、本発明のガス吸着材は、酸化銅及び/又は酸化亜鉛を含むことが好ましい。ここで「酸化銅及び/又は酸化亜鉛」とは、酸化銅のみ、酸化亜鉛のみ、又は酸化銅と酸化亜鉛の両方を意味する。この点は、本発明における「及び/又は」を含む表記についても同様である。 Specific examples of the adsorption functional substance include oxides of metals such as copper, zinc, manganese, and nickel. Metal oxides are preferable because they can exhibit excellent adsorption ability to acid gas. From this point, copper oxide and zinc oxide are preferable. Therefore, from the viewpoint of enabling more effective removal of acid gas, the gas adsorbent of the present invention preferably contains copper oxide and / or zinc oxide. Here, "copper oxide and / or zinc oxide" means copper oxide only, zinc oxide only, or both copper oxide and zinc oxide. This point also applies to the notation including "and / or" in the present invention.
金属酸化物については、金属と酸素との割合は特に限定されるものではない。例えば、酸化銅は、主たる組成が銅及び酸素からなっていればよく、銅と酸素との割合は問わない。本発明において、金属酸化物に関して「主たる組成」とは、金属酸化物の全構成物質の合計質量を100質量%として、50質量%以上を占める部分をいうものとする。一般的には、酸化銅としては、CuO、Cu2Oが知られているが、そのいずれであっても、対象となるガスに対して吸着機能物質として機能すれば構わない。また、銅及び酸素以外の原子が含まれていても、主たる組成が銅及び酸素によって構成されていれば、吸着機能物質として機能し得る。以上の点は、酸化亜鉛等の各種金属酸化物についても同様である。 For metal oxides, the ratio of metal to oxygen is not particularly limited. For example, copper oxide may have a main composition of copper and oxygen, and the ratio of copper to oxygen does not matter. In the present invention, the "main composition" of a metal oxide means a portion that occupies 50% by mass or more, where the total mass of all the constituent substances of the metal oxide is 100% by mass. Generally, CuO and Cu2O are known as copper oxide, but any of them may function as an adsorption functional substance with respect to the target gas. Further, even if an atom other than copper and oxygen is contained, if the main composition is composed of copper and oxygen, it can function as an adsorption functional substance. The above points are the same for various metal oxides such as zinc oxide.
酸化銅の合成法については特に制限はなく、一般的に知られている方法を利用すればよい。例えば、塩基性炭酸銅を加熱する方法、硝酸銅や塩化銅を加熱する方法、直接金属を酸素が含まれる環境下で加熱する方法、水酸化銅を加熱脱水する方法、銅イオンを含む水溶液から電気化学的に合成する方法等が挙げられる。酸化亜鉛の合成法についても同様に、一般的に知られている方法を利用すればよく、塩基性炭酸亜鉛を加熱する方法、硝酸亜鉛や酢酸亜鉛等を原料とし、加熱等して製造する方法や、水酸化亜鉛を加熱脱水する方法、金属亜鉛に直接高温高圧の水を反応させて酸化する方法、亜鉛イオンを含む水溶液から電気化学的に酸化亜鉛を合成する方法等が利用できる。 The method for synthesizing copper oxide is not particularly limited, and a generally known method may be used. For example, a method of heating basic copper carbonate, a method of heating copper nitrate or copper chloride, a method of directly heating a metal in an environment containing oxygen, a method of heating and dehydrating copper hydroxide, or an aqueous solution containing copper ions. Examples thereof include a method of synthesizing electrochemically. Similarly, as for the method for synthesizing zinc oxide, a generally known method may be used. A method for heating basic zinc carbonate, a method for producing zinc oxide or zinc acetate as a raw material by heating or the like. Alternatively, a method of heating and dehydrating zinc hydroxide, a method of directly reacting metallic zinc with high-temperature and high-pressure water to oxidize it, a method of electrochemically synthesizing zinc oxide from an aqueous solution containing zinc ions, and the like can be used.
有機ガスに対する吸着能を有する吸着機能物質としては、有機金属構造体と呼ばれる素材を挙げることができる。有機金属構造体は、1種以上の2つ以上の配位サイトを持つ分子と1種以上の金属イオンにより構成される物質であり、50,000種以上の物質が報告されている。有機金属構造体はサブナノメートルから、数ナノメートル程度の空孔を結晶構造から有し、更に結晶には内部の有機配位子または、金属イオンの活性サイトを有することから分子吸着材として利用が期待されている。 Examples of the adsorbing functional substance having an adsorptive ability to organic gas include a material called an organic metal structure. The organic metal structure is a substance composed of one or more kinds of molecules having two or more coordination sites and one or more kinds of metal ions, and more than 50,000 kinds of substances have been reported. The organic metal structure has pores of about several nanometers from the sub-nanometer structure from the crystal structure, and since the crystal has an internal organic ligand or an active site of a metal ion, it can be used as a molecular adsorbent. Expected.
吸着機能物質の粒子サイズについては特に制限はないが、一般にガス吸着速度は材料の比表面積が高いほど速いことが多く、サイズが小さいほど比表面積は高くなる傾向があることから、平均一次粒径が200nm以下であることが好ましく、100nm以下であることがより好ましく、50nm以下であることが更に好ましい。平均一次粒径の下限に特に制限はないが、例えば4nm以上であることができる。一次粒径とは、一次粒子の円相当径を言い、円相当径は粉末X線構造解析のピークの半値幅からシェラーの式によって導出することができる。尚、配位子等が粒子表面に吸着している場合もあるが、その場合の一次粒径とは、配位子を除いた粒径を指すものとする。 There is no particular limitation on the particle size of the adsorbent functional substance, but in general, the gas adsorption rate tends to be faster as the specific surface area of the material is higher, and the specific surface area tends to be higher as the size is smaller. Is preferably 200 nm or less, more preferably 100 nm or less, and even more preferably 50 nm or less. The lower limit of the average primary particle size is not particularly limited, but may be, for example, 4 nm or more. The primary particle size refers to the equivalent circle diameter of the primary particles, and the equivalent circle diameter can be derived from the half width of the peak of the powder X-ray structure analysis by Scheller's equation. In some cases, a ligand or the like is adsorbed on the particle surface, but in that case, the primary particle size refers to the particle size excluding the ligand.
<かさ密度>
ガス吸着材によって対象となるガスを効率的に除去するためには、ガス吸着材は、ガス分子を透過可能であり且つ吸着可能な多孔質性を有することが好ましい。多孔質性の指標としては、かさ密度が挙げられる。本発明のガス吸着材のかさ密度は、ガス分子の透過性とガス吸着材の吸着容量の観点から、0.60g/mL以上であり、0.65g/mL以上であることが好ましく、0.70g/mL以上であることがより好ましい。本発明における「かさ密度」は、JIS R 1628:1997「ファインセラミックス粉末のかさ密度測定方法」にしたがい求めることができる。かさ密度は、JIS R 1628:1997に、粉末が占める単位かさ体積当たりの質量と定義されている。例えば、造粒体のかさ密度は、空隙の存在から元の材料の結晶密度よりも小さくなることが一般的である。例えば、球体の最密充填構造での空間充填率は0.74である。これは、半径rの真球同士が接する一辺2√2rの面心立方格子構造(図1参照)により説明される。立方体の内側には4つの真球が含まれることから、立方体内にて真球の占める体積は4×4πr3/3=16πr3/3であり、立方体の体積は(2√2r)3=16√2r3であることから、立方体内に真球の占める体積の割合は(16πr3/3)/(16√2r3)=π/3√2≒0.74となる。このため、結晶を凝集させて成形した造粒体の密度は最大で結晶密度の0.74倍となる。更に、上記造粒体をカラムに充填した際のかさ密度は、(0.74)2以下、即ち0.55倍以下となる。本発明のガス吸着材は、好ましくは最密充填ではなく細孔をもたせるように造粒されたものであり、そのかさ密度は結晶密度の0.55以下であることが好ましく、0.50以下であることがより好ましく、0.45以下であることが更に好ましい。金属酸化物等の吸着機能物質の結晶密度を考慮すると、本発明のガス吸着材のかさ密度は、3.50g/mL以下であることが好ましく、3.30g/mL以下であることがより好ましく、3.00g/mL以下であることが更に好ましい。
<Bulk density>
In order to efficiently remove the target gas by the gas adsorbent, it is preferable that the gas adsorbent has a porosity that allows gas molecules to permeate and adsorb. Bulk density is an index of porosity. The bulk density of the gas adsorbent of the present invention is 0.60 g / mL or more, preferably 0.65 g / mL or more, preferably 0.65 g / mL or more, from the viewpoint of the permeability of gas molecules and the adsorption capacity of the gas adsorbent. More preferably, it is 70 g / mL or more. The "bulk density" in the present invention can be obtained according to JIS R 1628: 1997 "Method for measuring bulk density of fine ceramic powder". Bulk density is defined in JIS R 1628: 1997 as the mass per unit bulk volume occupied by powder. For example, the bulk density of the granulated material is generally smaller than the crystal density of the original material due to the presence of voids. For example, the space filling factor in the close-packed structure of a sphere is 0.74. This is explained by a face-centered cubic lattice structure (see FIG. 1) having a side of 2√2r in which true spheres having a radius r are in contact with each other. Since the inside of the cube contains four true spheres, the volume occupied by the true sphere in the cube is 4 × 4πr 3/3 = 16πr 3/3 , and the volume of the cube is (2√2r) 3 =. Since it is 16√2r 3 , the ratio of the volume occupied by the true sphere in the cube is (16πr 3/3 ) / (16√2r 3 ) = π / 3√2≈0.74. Therefore, the density of the granulated body formed by aggregating the crystals is 0.74 times the crystal density at the maximum. Further, the bulk density when the granulated body is filled in the column is (0.74) 2 or less, that is, 0.55 times or less. The gas adsorbent of the present invention is preferably granulated so as to have pores rather than close-packed, and its bulk density is preferably 0.55 or less and 0.50 or less of the crystal density. Is more preferable, and 0.45 or less is further preferable. Considering the crystal density of the adsorbent functional substance such as metal oxide, the bulk density of the gas adsorbent of the present invention is preferably 3.50 g / mL or less, and more preferably 3.30 g / mL or less. , 3.00 g / mL or less, more preferably.
<任意成分>
本発明のガス吸着材は、吸着機能物質の複合体(結合体と言うこともできる。)であることができる。複合体では、吸着機能物質が適切な空隙を維持して結着していることが好ましい。バインダーは、必要に応じてその結着作用を発現するために導入されるものであり、バインダーなしでも吸着機能物質同士(例えば粒子同士)が結着できるのであれば、必ずしも必要ではない。
<Arbitrary ingredient>
The gas adsorbent of the present invention can be a complex (also referred to as a conjugate) of adsorbent functional substances. In the complex, it is preferable that the adsorption functional substance is bound while maintaining an appropriate void. The binder is introduced to exhibit the binding action as needed, and is not always necessary as long as the adsorbing functional substances (for example, particles) can be bound to each other without the binder.
バインダーとしては、吸着機能物質同士の結着を保持できるものであれば、特に材料は問わない。例えば、有機ポリマー、無機粘土鉱物等の一般にバインダーとして使用可能な各種の有機物質及び無機物質の1種以上をバインダーとして使用することができる。例えば、有機物質としては、ポリエチレンオキサイド、ポリビニルアルコール、ポリエチルブラチール等などを利用できる。無機物質としては、ゼオライト、モルデナイト、モンモリロナイト、バーミキュライト、シリカ等を利用できる。本発明のガス吸着材のバインダーの含有率は、0質量%以上40質量%以下であることができる。本発明のガス吸着材の質量において、吸着機能物質の質量以外の部分の全てをバインダーの質量が占めてもよく、又は他の成分の1種以上が含まれていてもよい。一例として、本発明のガス吸着材が吸着機能物質として酸化銅を含む場合は、塩基性炭酸銅から酸化銅が合成されることがあるため、その塩基性炭酸銅が残留している場合や合成時の副生成物が混入している場合があるが、そのような成分の存在も許容される。 The binder may be any material as long as it can maintain the binding between the adsorbing functional substances. For example, various organic substances such as organic polymers and inorganic clay minerals that can be generally used as a binder, and one or more of inorganic substances can be used as a binder. For example, as the organic substance, polyethylene oxide, polyvinyl alcohol, polyethyl bratyl and the like can be used. As the inorganic substance, zeolite, mordenite, montmorillonite, vermiculite, silica and the like can be used. The content of the binder of the gas adsorbent of the present invention can be 0% by mass or more and 40% by mass or less. In the mass of the gas adsorbent of the present invention, the mass of the binder may occupy all the parts other than the mass of the adsorbent functional substance, or one or more of other components may be contained. As an example, when the gas adsorbent of the present invention contains copper oxide as an adsorption functional substance, copper oxide may be synthesized from basic copper carbonate, so that the basic copper carbonate remains or is synthesized. Occupational by-products of time may be present, but the presence of such components is also acceptable.
本発明のガス吸着材は、一態様では、吸着機能物質の1種または2種以上のみを圧縮成形して造粒した造粒体であることができる。また、他の一態様では、本発明のガス吸着材は、吸着機能物質の1種または2種以上をバインダーと混合して成形して造粒した造粒体であることもできる。本発明において、「造粒体」とは、吸着機能物質をバインダーあり又はバインダーなしで固めて粒状に成形した成形体を言うものとする。ここで「粒状」とは、真球状に限定されず、楕円状、薄片状等の一般的なペレットの形状として知られる各種形状を包含する意味で用いられる。例えば、押出成形された成形体を任意の長さに切断してガス吸着材を製造することができる。また、圧縮成形して得たペレットを必要に応じてハンマー等によって粉砕してガス吸着材を製造することもできる。造粒体の製造法は公知であり、本発明のガス吸着材は、公知の造粒体の製造法によって、または公知の造粒体の製造方法に準じて、製造することができる。 In one aspect, the gas adsorbent of the present invention can be a granulated body obtained by compression molding only one or more of the adsorption functional substances. Further, in another aspect, the gas adsorbent of the present invention may be a granulated body obtained by mixing one or more of the adsorption functional substances with a binder and molding the mixture. In the present invention, the "granulated body" refers to a molded body obtained by solidifying an adsorption functional substance with or without a binder and molding it into granules. Here, "granular" is not limited to a true spherical shape, but is used to include various shapes known as general pellet shapes such as an ellipse and a flaky shape. For example, the extruded molded product can be cut to an arbitrary length to produce a gas adsorbent. Further, it is also possible to produce a gas adsorbent by pulverizing the pellets obtained by compression molding with a hammer or the like, if necessary. The method for producing a granulated product is known, and the gas adsorbent of the present invention can be produced by a known method for producing a granulated product or according to a known method for producing a granulated product.
本発明のガス吸着材は、防毒マスクのガス吸着部に充填して使用することができる。防毒マスクを装着した作業者の呼吸時の圧力損失は、作業者の呼吸を妨げない程度の圧力損失であることが好ましい。この点から、呼吸時の圧力損失は、300パスカル以下であることが好ましく、200パスカル以下であることがより好ましく、100パスカル以下であることが更に好ましい。ここでの圧力損失とは、ガス吸着材を通気可能な容器に充填した際の流入口と流出口の圧力の差のことを言う。圧力損失は、一般にガス吸着材のサイズに依存する。好ましい圧力損失を実現する観点から、本発明のガス吸着材のサイズは、0.5mm以上30mm以下であることが好ましく、0.6mm以上20mm以下であることがより好ましく、0.8mm以上10mm以下であることが更に好ましい。ここでガス吸着材のサイズとは、粒子の最短辺の長さをいうものと言う。 The gas adsorbent of the present invention can be used by filling the gas adsorbent portion of the gas mask. It is preferable that the pressure loss during breathing of the worker wearing the gas mask is such that the pressure loss does not interfere with the breathing of the worker. From this point, the pressure loss during respiration is preferably 300 pascals or less, more preferably 200 pascals or less, and even more preferably 100 pascals or less. The pressure loss here refers to the difference in pressure between the inlet and outlet when the gas adsorbent is filled in a ventilable container. Pressure drop generally depends on the size of the gas adsorbent. From the viewpoint of realizing a preferable pressure loss, the size of the gas adsorbent of the present invention is preferably 0.5 mm or more and 30 mm or less, more preferably 0.6 mm or more and 20 mm or less, and 0.8 mm or more and 10 mm or less. Is more preferable. Here, the size of the gas adsorbent is said to mean the length of the shortest side of the particles.
本発明のガス吸着材は、作業環境等の雰囲気中の対象とするガスの濃度を低減するためのフィルター材として、防毒マスク、空気清浄機、エアーコンディショナー等の人の呼気に関わる用途に用いることができる。また、自動車等のエンジン、工場、焼却処分場、火力発電施設等の排気ガスの浄化に用いることもできる。 The gas adsorbent of the present invention is used as a filter material for reducing the concentration of a target gas in an atmosphere such as a work environment, and is used for applications related to human exhalation such as gas masks, air purifiers, and air conditioners. Can be done. It can also be used to purify exhaust gas from engines of automobiles, factories, incineration sites, thermal power generation facilities, and the like.
[防毒マスク]
本発明は、本発明のガス吸着材を含むガス吸着部を有する防毒マスクに関する。
[gas mask]
The present invention relates to a gas mask having a gas adsorbing portion containing the gas adsorbent of the present invention.
防毒マスクの構造等の詳細については、特に制限はなく、防毒マスクに関する公知技術を適用できる。ガス吸着部は、一般に吸着缶等とも呼ばれる。本発明の防毒マスクは、本発明のガス吸着材をガス吸着部に充填して使用することができる。ガス吸着部には、本発明のガス吸着材を1種のみ充填してもよく、本発明のガス吸着材の2種以上を任意の割合で混合して充填してもよい。また、ガス吸着部には、2種以上の異なる吸着機能物質を任意の割合で含む本発明のガス吸着材の1種のみを充填することもでき、ガス吸着能が異なる本発明のガス吸着材の2種以上を任意の割合で混合して充填することもできる。または、本発明のガス吸着材の1種以上と他のガス吸着材の1種以上とをガス吸着部に充填することもできる。上記の他のガス吸着材としては、例えば、リン酸等の酸が表面又は空孔に添着された活性炭、ゼオライト等が挙げられる。 The details of the structure of the gas mask are not particularly limited, and known techniques relating to the gas mask can be applied. The gas adsorption unit is also generally called an adsorption can or the like. The gas mask of the present invention can be used by filling the gas adsorbent portion with the gas adsorbent of the present invention. The gas adsorbent may be filled with only one type of the gas adsorbent of the present invention, or two or more types of the gas adsorbent of the present invention may be mixed and filled at an arbitrary ratio. Further, the gas adsorbing portion can be filled with only one kind of the gas adsorbent of the present invention containing two or more kinds of different adsorbing functional substances at an arbitrary ratio, and the gas adsorbent of the present invention having different gas adsorbing ability can be filled. It is also possible to mix and fill two or more of the above in any proportion. Alternatively, one or more of the gas adsorbents of the present invention and one or more of other gas adsorbents can be filled in the gas adsorbent. Examples of the above-mentioned other gas adsorbent include activated carbon and zeolite in which an acid such as phosphoric acid is attached to the surface or pores.
防毒マスクのガス吸着部にガス吸着能が異なるガス吸着材を2種以上充填させる場合、それらの混合比に特に制限はないが、一般的には、除去対象とするガスの濃度に応じて混合比を決定することが好ましい。例えば、作業者の作業環境において、酸性ガスの濃度が最も高く、有機ガスの濃度が次に高く、塩基性ガスは存在しない場合、酸性ガスに対する吸着能を有する吸着機能物質を含むガス吸着材を主成分とし、有機ガスに対する吸着能を有する吸着機能物質を含むガス吸着材を主成分のガス吸着材より少量混合し、塩基性ガスに対する吸着能を有する吸着機能物質を含むガス吸着材は混合しないことが好ましい。 When two or more kinds of gas adsorbents having different gas adsorbing abilities are filled in the gas adsorbing part of the gas mask, the mixing ratio thereof is not particularly limited, but generally, they are mixed according to the concentration of the gas to be removed. It is preferable to determine the ratio. For example, in the working environment of a worker, when the concentration of acidic gas is the highest, the concentration of organic gas is the next highest, and the presence of basic gas is absent, a gas adsorbent containing an adsorbing functional substance having an adsorbing ability to acidic gas is used. A gas adsorbent containing an adsorbing functional substance having an adsorbing ability to organic gas as a main component is mixed in a smaller amount than a gas adsorbent having an adsorbing ability to basic gas, and a gas adsorbent containing an adsorbing functional substance having an adsorbing ability to basic gas is not mixed. Is preferable.
以下に、本発明を実施例に基づいて更に説明する。但し、本発明は実施例に示された実施形態に限定されるものではない。 Hereinafter, the present invention will be further described based on examples. However, the present invention is not limited to the embodiments shown in the examples.
[吸着機能物質の調製例1]
塩基性炭酸銅(寺田薬泉工業社製)を300℃で30分間加熱してCuOを得た。ここで得られた粉末がCuOであることは、以下に記載の粉末X線回折測定によって確認した。特記しない限り、以下の実施例及び比較例で使用したCuOは、調製例1によって調製されたCuOである。
[Preparation Example 1 of Adsorbent Functional Substance]
Basic copper carbonate (manufactured by Terada Yakusen Kogyo Co., Ltd.) was heated at 300 ° C. for 30 minutes to obtain CuO. It was confirmed by the powder X-ray diffraction measurement described below that the powder obtained here was CuO. Unless otherwise specified, the CuO used in the following Examples and Comparative Examples is the CuO prepared by Preparation Example 1.
[吸着機能物質の調製例2]
塩基性炭酸亜鉛(富士フィルム和光純薬一級)を400℃で3時間加熱してZnOを得た。ここで得られた粉末がZnOであることは、以下に記載の粉末X線回折測定によって確認した。
[Preparation Example 2 of Adsorbent Functional Substance]
Basic zinc carbonate (Fuji Film Wako Pure Chemical Industries, Ltd.) was heated at 400 ° C. for 3 hours to obtain ZnO. It was confirmed by the powder X-ray diffraction measurement described below that the powder obtained here was ZnO.
調製例1、2について、それぞれ得られた粉末の一部を採取して粉末X線回折測定を行って結晶構造を同定した。その結果、調製例1で得られた粉末の回折ピークは市販の酸化銅ナノ粒子(富士フイルム和光純薬社製CAS No.1317-38-0)の回折ピークのピーク位置と一致した(図1)。また、調製例2で得られた粉末の回折ピークは、市販の酸化亜鉛ナノ粒子(富士フイルム和光純薬社製)と回折ピークのピーク位置が一致した。シェラーの式によって導出したCuOの平均一次粒径は30nmであり、シェラーの式によって導出したZnOの平均一次粒径は25nmであった。 For Preparation Examples 1 and 2, a part of the obtained powder was collected and powder X-ray diffraction measurement was performed to identify the crystal structure. As a result, the diffraction peak of the powder obtained in Preparation Example 1 coincided with the peak position of the diffraction peak of commercially available copper oxide nanoparticles (CAS No. 1317-38-0 manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) (FIG. 1). ). The diffraction peak of the powder obtained in Preparation Example 2 coincided with the peak position of the diffraction peak of the commercially available zinc oxide nanoparticles (manufactured by Wako Pure Chemical Industries, Ltd.). The average primary particle size of CuO derived by Scheller's formula was 30 nm, and the average primary particle size of ZnO derived by Scherrer's formula was 25 nm.
以下の実施例及び比較例で使用したポリエチレンオキサイドは、明成化学工業社製アルコックスL―8であり、後述の表1中、「PEO」と表記する。 The polyethylene oxide used in the following Examples and Comparative Examples is Alcox L-8 manufactured by Meisei Chemical Industry Co., Ltd., and is referred to as "PEO" in Table 1 described later.
[比較例1]
25グラムの吸着機能物質CuOと、濃度62.5質量%のポリエチレンオキサイド水溶液20グラムとを、自転公転ミキサーにて混合10分、脱泡1.5分にて混練してスラリーを調製した。調製したスラリーを内径2mmのシリンジに入れ、シャーレに押出し、60℃にて16時間加熱した。加熱後、カッターナイフで2~3mmのサイズに切り分け、ステンレスふるいによって20メッシュ(目開き0.85mm)以上、8メッシュ(2.36mm)以下のサイズのものを取り分けた。
こうして、比較例1のガス吸着材(造粒体)を作製した。
[Comparative Example 1]
A slurry was prepared by kneading 25 grams of the adsorption functional substance CuO and 20 grams of a polyethylene oxide aqueous solution having a concentration of 62.5% by mass with a rotating revolution mixer for 10 minutes and defoaming for 1.5 minutes. The prepared slurry was placed in a syringe having an inner diameter of 2 mm, extruded into a petri dish, and heated at 60 ° C. for 16 hours. After heating, it was cut into 2 to 3 mm sizes with a cutter knife, and those with a size of 20 mesh (opening 0.85 mm) or more and 8 mesh (2.36 mm) or less were separated by a stainless sieve.
In this way, the gas adsorbent (granulator) of Comparative Example 1 was produced.
[実施例1]
ポリエチレンオキサイド7.5グラムと水7.5グラムとを自転公転ミキサーにて混合10分、脱泡1.5分にて混合した後に、17.5グラムのCuOを加え、更に自転公転ミキサーにて混合10分、脱泡1.5分で混練してスラリーを調製した。調製したスラリーを内径2mmのシリンジに入れ、シャーレに押出し、60℃にて16時間加熱した。加熱後、カッターナイフで2~3mmサイズに切り分け、ステンレスふるいによって20メッシュ(目開き0.85mm)以上、8メッシュ(2.36mm)以下のサイズのものを取り分けた。
こうして、実施例1のガス吸着材(造粒体)を得た。
[Example 1]
7.5 grams of polyethylene oxide and 7.5 grams of water were mixed in a rotation / revolution mixer for 10 minutes and defoamed for 1.5 minutes, then 17.5 grams of CuO was added, and then in a rotation / revolution mixer. A slurry was prepared by kneading with mixing for 10 minutes and defoaming for 1.5 minutes. The prepared slurry was placed in a syringe having an inner diameter of 2 mm, extruded into a petri dish, and heated at 60 ° C. for 16 hours. After heating, it was cut into 2 to 3 mm sizes with a cutter knife, and those with a size of 20 mesh (opening 0.85 mm) or more and 8 mesh (2.36 mm) or less were separated by a stainless sieve.
In this way, the gas adsorbent (granulator) of Example 1 was obtained.
[実施例2]
ポリエチレンオキサイド6.25グラムと水6.25グラムとを自転公転ミキサーにて混合10分、脱泡1.5分にて混合した後に、18.75グラムのCuOを加え、更に自転公転ミキサーにて混合10分、脱泡1.5分で混練してスラリーを調製した。調製したスラリーを内径2mmのシリンジに入れ、シャーレに押出し、60℃にて16時間加熱した。加熱後、カッターナイフで2~3mmサイズに切り分け、ステンレスふるいによって20メッシュ(目開き0.85mm)以上、8メッシュ(2.36mm)以下のサイズのものを取り分けた。
こうして、実施例2のガス吸着材(造粒体)を得た。
[Example 2]
After mixing 6.25 g of polyethylene oxide and 6.25 g of water in a rotation / revolution mixer for 10 minutes and defoaming for 1.5 minutes, add 18.75 g of CuO and further in a rotation / revolution mixer. A slurry was prepared by kneading with mixing for 10 minutes and defoaming for 1.5 minutes. The prepared slurry was placed in a syringe having an inner diameter of 2 mm, extruded into a petri dish, and heated at 60 ° C. for 16 hours. After heating, it was cut into 2 to 3 mm sizes with a cutter knife, and those with a size of 20 mesh (opening 0.85 mm) or more and 8 mesh (2.36 mm) or less were separated by a stainless sieve.
In this way, the gas adsorbent (granulator) of Example 2 was obtained.
[実施例3]
ポリエチレンオキサイド5グラムと水7.875グラムとを自転公転ミキサーにて混合10分、脱泡1.5分にて混合した後に、20グラムのCuOを加え、更に自転公転ミキサーにて混合10分、脱泡1.5分で混練してスラリーを調製した。調製したスラリーを内径2mmのシリンジに入れ、シャーレに押出し、60℃にて16時間加熱した。加熱後、カッターナイフで2~3mmサイズに切り分け、ステンレスふるいによって20メッシュ(目開き0.85mm)以上、8メッシュ(2.36mm)以下のサイズのものを取り分けた。
こうして、実施例3のガス吸着材(造粒体)を得た。
[Example 3]
After mixing 5 grams of polyethylene oxide and 7.875 grams of water in a rotation / revolution mixer for 10 minutes and defoaming for 1.5 minutes, add 20 grams of CuO and further mix in a rotation / revolution mixer for 10 minutes. A slurry was prepared by kneading after defoaming for 1.5 minutes. The prepared slurry was placed in a syringe having an inner diameter of 2 mm, extruded into a petri dish, and heated at 60 ° C. for 16 hours. After heating, it was cut into 2 to 3 mm sizes with a cutter knife, and those with a size of 20 mesh (opening 0.85 mm) or more and 8 mesh (2.36 mm) or less were separated by a stainless sieve.
In this way, the gas adsorbent (granulator) of Example 3 was obtained.
[実施例4]
24.75グラムのCuOと、濃度1.96質量%のポリエチレンオキサイド水溶液12.75グラムとを自転公転ミキサーにて混合10分、脱泡1.5分にて混練してスラリーを調製した。調製したスラリーを内径2mmのシリンジに入れ、シャーレに押出し、60℃にて16時間加熱した。加熱後、カッターナイフで2~3mmサイズに切り分け、ステンレスふるいによって20メッシュ(目開き0.85mm)以上、8メッシュ(2.36mm)以下のサイズのものを取り分けた。
こうして、実施例4のガス吸着材(造粒体)を得た。
[Example 4]
A slurry was prepared by mixing 24.75 grams of CuO and 12.75 grams of a polyethylene oxide aqueous solution having a concentration of 1.96% by mass with a rotating revolution mixer for 10 minutes and defoaming for 1.5 minutes. The prepared slurry was placed in a syringe having an inner diameter of 2 mm, extruded into a petri dish, and heated at 60 ° C. for 16 hours. After heating, it was cut into 2 to 3 mm sizes with a cutter knife, and those with a size of 20 mesh (opening 0.85 mm) or more and 8 mesh (2.36 mm) or less were separated by a stainless sieve.
In this way, the gas adsorbent (granulator) of Example 4 was obtained.
[実施例5]
CuOを内径7mmのペレット成形機に500ミリグラムずつ入れ、400キログラム重/cm2の圧力で3分間圧縮してペレットに成形した。このペレットをハンマーで砕き、内容積500ミリリットルの蓋付きポリプロピレン製スクリューボトルに入れた後、スクリューボトルを横に寝かせた状態で、スクリューボトルをモーターにより2時間回転させることで角取りを行った。その後、ステンレスふるいによって20メッシュ(目開き0.85mm)以上、8メッシュ(2.36mm)以下のサイズのものを取り分けた。
こうして、実施例5のガス吸着材(造粒体)を得た。
[Example 5]
CuO was placed in a pellet forming machine having an inner diameter of 7 mm in an amount of 500 mg each, and compressed at a pressure of 400 kg / cm 2 for 3 minutes to form pellets. The pellets were crushed with a hammer and placed in a polypropylene screw bottle with a lid having an internal volume of 500 ml, and then the screw bottle was laid on its side and the screw bottle was rotated by a motor for 2 hours to perform cornering. Then, those having a size of 20 mesh (opening 0.85 mm) or more and 8 mesh (2.36 mm) or less were separated by a stainless sieve.
In this way, the gas adsorbent (granulator) of Example 5 was obtained.
[実施例6]
15グラムのZnOと濃度30質量%のポリエチレンオキサイド水溶液3.5グラムと超純水6.0グラムとを混合し、自転公転ミキサーにて混合10分、脱泡1.5分で混練してスラリーを調製した。調製したスラリーを内径2mmシリンジに入れ、シャーレに押出し、45℃で16時間加熱した。加熱後、カッターナイフで2mmのサイズに切断し、ステンレスふるいによって20メッシュ(目開き0.85mm)以上、8メッシュ(2.36mm)以下のサイズのものを取り分けた。
こうして、実施例6のガス吸着材(造粒体)を得た。
[Example 6]
Mix 15 grams of ZnO, 3.5 grams of a 30% by mass polyethylene oxide aqueous solution, and 6.0 grams of ultrapure water, mix with a rotating revolution mixer for 10 minutes, and defoam for 1.5 minutes to knead the slurry. Was prepared. The prepared slurry was placed in a syringe having an inner diameter of 2 mm, extruded into a petri dish, and heated at 45 ° C. for 16 hours. After heating, it was cut into a size of 2 mm with a cutter knife, and those having a size of 20 mesh (opening 0.85 mm) or more and 8 mesh (2.36 mm) or less were separated by a stainless sieve.
In this way, the gas adsorbent (granulator) of Example 6 was obtained.
[実施例7]
750グラムの塩基性炭酸銅、15グラムのモンモリロナイト、105グラムのモルデナイト及び275グラムの水をワーリングスタンドミキサー(大阪ケミカル株式会社WSM7Q)にて混練してスラリーを調製した。調製したスラリーを押出成形機(三庄インダストリー社製V-20)にて直径2mmの糸状に押し出し、電気炉にて60℃で16時間乾燥させた。乾燥後、長さ2mm程度に切り分け、ステンレスふるいにより20メッシュ(目開き0.85mm)以上、8メッシュ(2.36mm)以下のサイズのものを取り分けた。このうち300グラムをステンレス製パットに入れ、300℃で16時間加熱した後、内容積500ミリリットルの蓋付きポリプロピレン製スクリューボトルに入れた。スクリューボトルを横に寝かせた状態で、モーターによりスクリューボトルを2時間回転させることで角取りを行った後、再度ステンレスふるいにより20メッシュ(目開き0.85mm)以上、8メッシュ(2.36mm)以下のサイズのものを取り分けた。加熱により、塩基性炭酸銅が酸化銅になり、酸化銅を含む実施例7のガス吸着材(造粒体)が得られた。
[Example 7]
A slurry was prepared by kneading 750 grams of basic copper carbonate, 15 grams of montmorillonite, 105 grams of mordenite and 275 grams of water with a Waring Stand Mixer (Osaka Chemical Co., Ltd. WSM7Q). The prepared slurry was extruded into a thread having a diameter of 2 mm with an extrusion molding machine (V-20 manufactured by Misho Industry Co., Ltd.), and dried at 60 ° C. for 16 hours in an electric furnace. After drying, the pieces were cut into pieces having a length of about 2 mm, and those having a size of 20 mesh (opening 0.85 mm) or more and 8 mesh (2.36 mm) or less were separated by a stainless sieve. Of this, 300 grams was placed in a stainless steel pad, heated at 300 ° C. for 16 hours, and then placed in a polypropylene screw bottle with a lid having an internal volume of 500 ml. With the screw bottle laid on its side, the screw bottle is rotated for 2 hours by a motor to perform cornering, and then again with a stainless sieve to 20 mesh (opening 0.85 mm) or more, 8 mesh (2.36 mm). The following sizes were set aside. By heating, the basic copper carbonate became copper oxide, and the gas adsorbent (granulator) of Example 7 containing copper oxide was obtained.
[比較例2]
塩基性炭酸銅を300℃で16時間加熱して得たCuO2.1グラムを、濃度42.86質量%のポリエチレンオキサイド水溶液2.1グラム、発泡スチロール粉末0.06グラム及び超純水1.2グラムと混合し、自転公転ミキサーにて混合10分、脱泡1.5分で混練してスラリーを調製した。調製したスラリーを内径2mmシリンジに入れ、シャーレに押出し、60℃で16時間加熱した。加熱後、カッターナイフで2mmのサイズに切断し、発泡スチロール粉末の溶解除去のためにトルエンに浸漬させた。浸漬後、自然乾燥した。
こうして、比較例2のガス吸着材(造粒体)を得た。
[Comparative Example 2]
2.1 grams of CuO obtained by heating basic copper carbonate at 300 ° C. for 16 hours, 2.1 grams of an aqueous polyethylene oxide solution with a concentration of 42.86% by mass, 0.06 grams of foamed styrene powder and 1.2 grams of ultrapure water. And kneaded with a rotating and revolving mixer for 10 minutes for mixing and 1.5 minutes for defoaming to prepare a slurry. The prepared slurry was placed in a syringe having an inner diameter of 2 mm, extruded into a petri dish, and heated at 60 ° C. for 16 hours. After heating, it was cut to a size of 2 mm with a utility knife and immersed in toluene for dissolution and removal of Styrofoam powder. After soaking, it was naturally dried.
In this way, the gas adsorbent (granulator) of Comparative Example 2 was obtained.
[実施例8]
2.5グラムのCuOを内径14mmのペレット成形機に入れ、18000キログラム重/cm2の圧力で10分間圧縮させてペレットに成形した。このペレットをハンマーで2~3mmサイズに破砕した。
こうして、実施例8のガス吸着材(造粒体)を得た。
[Example 8]
2.5 grams of CuO was placed in a pellet forming machine having an inner diameter of 14 mm and compressed at a pressure of 18,000 kilograms / cm 2 for 10 minutes to form pellets. The pellet was crushed to a size of 2 to 3 mm with a hammer.
In this way, the gas adsorbent (granulator) of Example 8 was obtained.
[吸着機能物質の含有率]
実施例及び比較例で得たガス吸着材について、吸着機能物質(CuO、ZnO)の含有率を、原料の仕込み量から算出した。算出された値を表1に示す。
また、吸着機能物質の含有率は、以下の方法によって求めることもできる。
ガス吸着材を粉末エックス線回折分析に付し、粉末エックス線回折パターンにより、含有されている吸着機能物質を同定する。その後、エックス線蛍光分析装置により、ガス吸着材に含まれる元素比率を導出することで、同定された吸着機能物質の含有率を求めることができる。
[Content rate of adsorption functional substances]
For the gas adsorbents obtained in Examples and Comparative Examples, the content of adsorption functional substances (CuO, ZnO) was calculated from the amount of raw materials charged. The calculated values are shown in Table 1.
The content of the adsorbing functional substance can also be determined by the following method.
The gas adsorbent is subjected to powder X-ray diffraction analysis, and the contained adsorption functional substance is identified by the powder X-ray diffraction pattern. After that, the content ratio of the identified adsorbent functional substance can be obtained by deriving the element ratio contained in the gas adsorbent by using an X-ray fluorescence analyzer.
[かさ密度]
JIS R 1628:1997「ファインセラミックス粉末のかさ密度測定方法」にしたがって、実施例及び比較例の各ガス吸着材のかさ密度を求めた。具体的には、 実施例及び比較例で得た各ガス吸着材を、内径が77.6mmであり内容積が96mLのカラムに高さ2cmになるように振動させながら充填した後、質量増加分を計測した。質量増加分をMグラムとすると、かさ密度は、「かさ密度(単位:g/mL)=M/96」によって算出される。
[Bulk density]
The bulk density of each gas adsorbent of Examples and Comparative Examples was determined according to JIS R 1628: 1997 "Method for measuring bulk density of fine ceramic powder". Specifically, each gas adsorbent obtained in Examples and Comparative Examples was filled in a column having an inner diameter of 77.6 mm and an internal volume of 96 mL while vibrating so as to have a height of 2 cm, and then the mass increase. Was measured. Assuming that the mass increase is M grams, the bulk density is calculated by "bulk density (unit: g / mL) = M / 96".
[シアン化水素ガス破過試験]
実施例及び比較例の各ガス吸着材について、1000ppmvのシアン化水素ガス破過試験により、シアン化水素吸着能を評価した。以下の方法によって求められる破過時間が長いほど、シアン化水素吸着能に優れることを示す。
実施例及び比較例の各ガス吸着材を、内径5mmのカラムに高さ4cm分充填して吸着カラムを準備した。20±1℃の恒温槽中にて、シアン化水素ガス濃度1000ppmv、相対湿度50±2%のガスを、吸着カラムに70ミリリットル毎分で通気し、通気後のガスを1リットルのテドラーバッグに回収し、テドラーバッグ内のシアン化水素濃度をシアン化水素検知管にて測定した。テドラーバッグ内のシアン化水素濃度が5ppmvを超えた時間を破過時間とした。
[Hydrocyanide gas breakthrough test]
The hydrogen cyanide adsorbing ability of each of the gas adsorbents of Examples and Comparative Examples was evaluated by a hydrogen cyanide gas breakthrough test at 1000 ppmv. It is shown that the longer the breakthrough time obtained by the following method, the better the hydrogen cyanide adsorption ability.
A column having an inner diameter of 5 mm was filled with the gas adsorbents of Examples and Comparative Examples for a height of 4 cm to prepare an adsorption column. In a constant temperature bath at 20 ± 1 ° C., a gas having a hydrogen cyanide gas concentration of 1000 ppmv and a relative humidity of 50 ± 2% was aerated on an adsorption column at 70 ml / min, and the aerated gas was collected in a 1 liter Tedlar bag. The concentration of hydrogen cyanide in the tedler bag was measured with a hydrogen cyanide detector tube. The time when the hydrogen cyanide concentration in the tedler bag exceeded 5 ppmv was defined as the breakthrough time.
以上の結果を表1に示す。 The above results are shown in Table 1.
表1に示す結果から、実施例1~8のガス吸着材が、比較例1、2のガス吸着材と比べてガス吸着能に優れることが確認できる。 From the results shown in Table 1, it can be confirmed that the gas adsorbents of Examples 1 to 8 are superior in gas adsorbing ability to the gas adsorbents of Comparative Examples 1 and 2.
上記には、酸性ガス吸着能を有する吸着機能物質を含むガス吸着材に関する実施例を示した。但し、これは例示であって、対象とするガスの種類に応じて吸着機能物質を変更することによって、塩基性ガス、有機ガス等の各種ガスに対して優れたガス吸着能を示すことができるガス吸着材を提供することができる。 In the above, an example regarding a gas adsorbent containing an adsorption functional substance having an acid gas adsorption ability is shown. However, this is an example, and by changing the adsorption functional substance according to the type of the target gas, it is possible to show excellent gas adsorption ability for various gases such as basic gas and organic gas. A gas adsorbent can be provided.
本発明のガス吸着材は、防毒マスク等のガスマスク、空気清浄機、エアーコンディショナー、自動車等のエンジン、工場、焼却処分場、火力発電施設等のガスの浄化を要する各種分野において、フィルター材として好適に使用することができる。 The gas adsorbent of the present invention can be used as a filter material in various fields requiring gas purification such as gas masks such as gas masks, air purifiers, air conditioners, engines such as automobiles, factories, incineration disposal sites, and thermal power generation facilities. It can be suitably used.
Claims (11)
前記吸着機能物質の含有率が60質量%以上100質量%以下であり、且つ
かさ密度が0.60g/mL以上であるガス吸着材。 It contains one or more adsorption functional substances having an adsorptive ability to one or more gases selected from the group consisting of acid gas, basic gas and organic gas.
A gas adsorbent having a content of the adsorbent functional substance of 60% by mass or more and 100% by mass or less and a bulk density of 0.60 g / mL or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020117720A JP7493718B2 (en) | 2020-07-08 | 2020-07-08 | Hydrogen cyanide gas absorbent and gas mask |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020117720A JP7493718B2 (en) | 2020-07-08 | 2020-07-08 | Hydrogen cyanide gas absorbent and gas mask |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2022015093A true JP2022015093A (en) | 2022-01-21 |
JP7493718B2 JP7493718B2 (en) | 2024-06-03 |
Family
ID=80120541
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020117720A Active JP7493718B2 (en) | 2020-07-08 | 2020-07-08 | Hydrogen cyanide gas absorbent and gas mask |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7493718B2 (en) |
Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4956494A (en) * | 1972-10-02 | 1974-05-31 | ||
JPS5227404A (en) * | 1975-07-09 | 1977-03-01 | New Jersey Zinc Co | Zinc oxide mold goods |
JPS62286524A (en) * | 1986-06-04 | 1987-12-12 | Japan Pionics Co Ltd | Method for purifying exhaust gas |
JPS62286522A (en) * | 1986-06-03 | 1987-12-12 | Japan Pionics Co Ltd | Method for purifying exhaust gas |
JPS62286523A (en) * | 1986-06-04 | 1987-12-12 | Japan Pionics Co Ltd | Method for purifying exhaust gas |
JPS62286525A (en) * | 1986-06-04 | 1987-12-12 | Japan Pionics Co Ltd | Method for purifying exhaust gas |
JPH02126936A (en) * | 1988-11-07 | 1990-05-15 | Chiyoda Corp | Adsorbent for hydride-based poisonous gas and method for purifying exhaust gas using the same |
JPH06320008A (en) * | 1993-05-10 | 1994-11-22 | Sekiyu Sangyo Kasseika Center | Catalyst for catalytic reduction of nox |
JPH08206445A (en) * | 1995-11-10 | 1996-08-13 | Japan Pionics Co Ltd | Purification of exhaust gas |
JPH09103673A (en) * | 1995-06-07 | 1997-04-22 | Phillips Petroleum Co | Preparation of granular composition for sulfur sorption |
JPH1167264A (en) * | 1997-08-08 | 1999-03-09 | Sanyo Electric Co Ltd | Manufacture of nickel-hydrogen storage battery |
JPH11267443A (en) * | 1998-03-23 | 1999-10-05 | Central Glass Co Ltd | Dry type harm removing device and method for gas |
JP2002191966A (en) * | 2000-12-22 | 2002-07-10 | Hakusui Tech Co Ltd | Deodorizing composition |
JP2014502208A (en) * | 2010-11-08 | 2014-01-30 | スリーエム イノベイティブ プロパティズ カンパニー | Filter medium containing zinc oxide and method for forming the same |
JP2014521497A (en) * | 2011-07-22 | 2014-08-28 | ジョンソン、マッセイ、パブリック、リミテッド、カンパニー | Desulfurization material containing copper supported on zinc oxide |
JP2017029905A (en) * | 2015-07-30 | 2017-02-09 | 日本化学工業株式会社 | Absorbent and method for producing the same |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101999756A (en) | 2010-11-02 | 2011-04-06 | 湖南中烟工业有限责任公司 | Absorbent for reducing hydrocyanic acid content of main stream smoke of cigarettes and use thereof |
-
2020
- 2020-07-08 JP JP2020117720A patent/JP7493718B2/en active Active
Patent Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4956494A (en) * | 1972-10-02 | 1974-05-31 | ||
JPS5227404A (en) * | 1975-07-09 | 1977-03-01 | New Jersey Zinc Co | Zinc oxide mold goods |
JPS62286522A (en) * | 1986-06-03 | 1987-12-12 | Japan Pionics Co Ltd | Method for purifying exhaust gas |
JPS62286524A (en) * | 1986-06-04 | 1987-12-12 | Japan Pionics Co Ltd | Method for purifying exhaust gas |
JPS62286523A (en) * | 1986-06-04 | 1987-12-12 | Japan Pionics Co Ltd | Method for purifying exhaust gas |
JPS62286525A (en) * | 1986-06-04 | 1987-12-12 | Japan Pionics Co Ltd | Method for purifying exhaust gas |
JPH02126936A (en) * | 1988-11-07 | 1990-05-15 | Chiyoda Corp | Adsorbent for hydride-based poisonous gas and method for purifying exhaust gas using the same |
JPH06320008A (en) * | 1993-05-10 | 1994-11-22 | Sekiyu Sangyo Kasseika Center | Catalyst for catalytic reduction of nox |
JPH09103673A (en) * | 1995-06-07 | 1997-04-22 | Phillips Petroleum Co | Preparation of granular composition for sulfur sorption |
JPH08206445A (en) * | 1995-11-10 | 1996-08-13 | Japan Pionics Co Ltd | Purification of exhaust gas |
JPH1167264A (en) * | 1997-08-08 | 1999-03-09 | Sanyo Electric Co Ltd | Manufacture of nickel-hydrogen storage battery |
JPH11267443A (en) * | 1998-03-23 | 1999-10-05 | Central Glass Co Ltd | Dry type harm removing device and method for gas |
JP2002191966A (en) * | 2000-12-22 | 2002-07-10 | Hakusui Tech Co Ltd | Deodorizing composition |
JP2014502208A (en) * | 2010-11-08 | 2014-01-30 | スリーエム イノベイティブ プロパティズ カンパニー | Filter medium containing zinc oxide and method for forming the same |
JP2014521497A (en) * | 2011-07-22 | 2014-08-28 | ジョンソン、マッセイ、パブリック、リミテッド、カンパニー | Desulfurization material containing copper supported on zinc oxide |
JP2017029905A (en) * | 2015-07-30 | 2017-02-09 | 日本化学工業株式会社 | Absorbent and method for producing the same |
Also Published As
Publication number | Publication date |
---|---|
JP7493718B2 (en) | 2024-06-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7559981B2 (en) | Air filtration media comprising oxidizing agent-treated metal-doped silicon-based gel and zeolite materials | |
Lin et al. | A facile one-step synthesized epsilon-MnO2 nanoflowers for effective removal of lead ions from wastewater | |
CA2592619C (en) | Agglomerates of precipitated silica, method for their preparation and their use as filter medium in gas filtration | |
US7585359B2 (en) | Air filtration media comprising metal-doped silicon-based gel and/or zeolite materials treated with nitric acid and/or potassium persulfate | |
Kakaei et al. | Preparation of a sepiolite/Cu-BDC nanocomposite and its application as an adsorbent in respirator cartridges for H 2 S removal | |
Lalley et al. | Phosphate removal using modified Bayoxide® E33 adsorption media | |
CN103691200A (en) | Air filtering medium material, medium, filter and air filtering method | |
KR102008079B1 (en) | Zeolite adsorbents having a high external surface area and uses thereof | |
JP2012508646A (en) | Adsorbent structures and their use | |
Zhang et al. | Nanoscale dispersing of zero-valent iron on CaCO3 and their significant synergistic effect in high performance removal of lead | |
KR101570130B1 (en) | Multiple odor absorbents by using mixing the natural zeolite and method of fabricating the same | |
US7101417B2 (en) | Activated carbon for odor control and method for making same | |
CN100444950C (en) | Immesion active carbon and its preparation method | |
US20080006012A1 (en) | Air filtration media comprising metal-doped silicon-base gel materials with oxidizing agents | |
KR101680610B1 (en) | Activated carbon adsorbent for acidic gas removal and manufacturing method the same | |
US20200023335A1 (en) | Adsorbates and methods for separation and recovery of phosphate, nitrates, and ammonia from water | |
CA2824586C (en) | Multilayered mixed bed filter for the removal of toxic gases from air streams and methods thereof | |
Ravi et al. | Novel hierarchically dispersed mesoporous silica spheres: effective adsorbents for mercury from wastewater and a thermodynamic study | |
CN104667634A (en) | Filtering medium used for removing manganese in drinking water, filter element and preparation method | |
EP3505239A1 (en) | Sorbents from iron-rich and aluminium-rich starting materials | |
JP7493718B2 (en) | Hydrogen cyanide gas absorbent and gas mask | |
EP2841182B1 (en) | Filtering material and use thereof | |
US20080156192A1 (en) | Air filtration media comprising metal-doped silicon-based gel materials with nitric acid and/or potassium persulfate | |
WO2015109385A1 (en) | Carbon monolith, carbon monolith with metal impregnant and method of producing same | |
CN108816191A (en) | A kind of compound bulky grain cleanser of graphite for air purification and preparation method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20211108 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20220824 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220830 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20220930 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20221220 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230221 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20230314 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230621 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20231003 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20231102 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20240130 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20240423 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20240513 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7493718 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |