JP2022013260A - 撮像素子、撮像装置、電子機器 - Google Patents

撮像素子、撮像装置、電子機器 Download PDF

Info

Publication number
JP2022013260A
JP2022013260A JP2020115687A JP2020115687A JP2022013260A JP 2022013260 A JP2022013260 A JP 2022013260A JP 2020115687 A JP2020115687 A JP 2020115687A JP 2020115687 A JP2020115687 A JP 2020115687A JP 2022013260 A JP2022013260 A JP 2022013260A
Authority
JP
Japan
Prior art keywords
wiring
transfer transistor
image pickup
semiconductor substrate
pixels
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020115687A
Other languages
English (en)
Inventor
肇 山岸
Hajime Yamagishi
聖大 日田
Masahiro Hida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Semiconductor Solutions Corp
Original Assignee
Sony Semiconductor Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Semiconductor Solutions Corp filed Critical Sony Semiconductor Solutions Corp
Priority to JP2020115687A priority Critical patent/JP2022013260A/ja
Priority to PCT/JP2021/023307 priority patent/WO2022004445A1/ja
Priority to US18/002,077 priority patent/US20230352512A1/en
Publication of JP2022013260A publication Critical patent/JP2022013260A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14636Interconnect structures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/32Systems determining position data of a target for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S17/36Systems determining position data of a target for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated with phase comparison between the received signal and the contemporaneously transmitted signal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/42Simultaneous measurement of distance and other co-ordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/86Combinations of lidar systems with systems other than lidar, radar or sonar, e.g. with direction finders
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • G01S17/8943D imaging with simultaneous measurement of time-of-flight at a 2D array of receiver pixels, e.g. time-of-flight cameras or flash lidar
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • G01S17/931Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4811Constructional features, e.g. arrangements of optical elements common to transmitter and receiver
    • G01S7/4813Housing arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4816Constructional features, e.g. arrangements of optical elements of receivers alone
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/4861Circuits for detection, sampling, integration or read-out
    • G01S7/4863Detector arrays, e.g. charge-transfer gates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/491Details of non-pulse systems
    • G01S7/4912Receivers
    • G01S7/4913Circuits for detection, sampling, integration or read-out
    • G01S7/4914Circuits for detection, sampling, integration or read-out of detector arrays, e.g. charge-transfer gates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14603Special geometry or disposition of pixel-elements, address-lines or gate-electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14609Pixel-elements with integrated switching, control, storage or amplification elements
    • H01L27/14612Pixel-elements with integrated switching, control, storage or amplification elements involving a transistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1464Back illuminated imager structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14641Electronic components shared by two or more pixel-elements, e.g. one amplifier shared by two pixel elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Measurement Of Optical Distance (AREA)

Abstract

Figure 2022013260000001
【課題】配線容量や抵抗を低減させる。
【解決手段】フォトダイオードと、フォトダイオードで生成された電荷を第1の電荷蓄積部に転送する第1の転送トランジスタと、フォトダイオードで生成された電荷を第2の電荷蓄積部に転送する第2の転送トランジスタとを含む画素が、行列状に配置されている半導体層と、半導体層に積層されている配線層とを備え、前記配線層の前記半導体層が積層されている第1の面と対向する第2の面側に、行列状に配置されている画素のうちの、行方向または列方向に配置されている複数の画素の第1の転送トランジスタが接続されている第1の配線と、複数の画素の第2の転送トランジスタが接続されている第2の配線とを備える。本技術は、例えば測距を行う撮像素子に適用できる。
【選択図】図12

Description

本技術は撮像素子、撮像装置、電子機器に関し、例えば、半導体基板と配線層が電気的に接続された撮像素子、撮像装置、電子機器に関する。
距離を測定するための方式は、パターンマッチングによる三角測距を基本技術に使うステレオセンサや、アクティブ光を照射して、反射した光が帰ってくるまでの時間を計測することによって距離を計測するToF(Time of Flight)方式などが存在する(例えば、特許文献1を参照)。
またToF方式には直接ToF方式と間接ToF方式が存在する。間接ToF方式は、センサ内で光電変換を行い、電荷を2以上存在する電極で振り分けし、電荷の差分をとることにより、距離を間接的に計測している。
特開2016-090268号公報
間接ToF方式では、センサ内で光電変換した、電荷を2以上ある電極に高速に振り分けて、それを転送する必要がある。例えば、1M Pixel だと駆動は数百MHz程度となる。そのためには、転送トランジスタのゲートに繋がる配線などは、低抵抗化とし、低容量化とすることが望まれている。
本技術は、このような状況に鑑みてなされたものであり、半導体基板と配線層との接続を低抵抗化とし、低容量化することができるようにするものである。
本技術の一側面の撮像素子は、フォトダイオードと、前記フォトダイオードで生成された電荷を第1の電荷蓄積部に転送する第1の転送トランジスタと、前記フォトダイオードで生成された電荷を第2の電荷蓄積部に転送する第2の転送トランジスタとを含む画素が、行列状に配置されている半導体層と、前記半導体層に積層されている配線層とを備え、前記配線層の前記半導体層が積層されている第1の面と対向する第2の面側に、前記行列状に配置されている前記画素のうちの、行方向または列方向に配置されている複数の画素の前記第1の転送トランジスタが接続されている第1の配線と、複数の画素の前記第2の転送トランジスタが接続されている第2の配線とを備える。
本技術の一側面の撮像装置は、フォトダイオードと、前記フォトダイオードで生成された電荷を第1の電荷蓄積部に転送する第1の転送トランジスタと、前記フォトダイオードで生成された電荷を第2の電荷蓄積部に転送する第2の転送トランジスタとを含む画素が、行列状に配置されている半導体層と、前記半導体層に積層されている配線層とを備え、前記配線層の前記半導体層が積層されている第1の面と対向する第2の面側に、前記第1の転送トランジスタが接続されている第1の配線と、前記第2の転送トランジスタが接続されている第2の配線とを備え、前記第2の面側に積層される半導体基板の前記第2の面と接する面側に、前記行列状に配置されている前記画素のうちの、行方向または列方向に配置されている複数の画素の前記第1の配線が接続されている第3の配線と、複数の画素の前記第2の転送トランジスタが接続されている第4の配線とを備える。
本技術の一側面の第1の電子機器は、フォトダイオードと、前記フォトダイオードで生成された電荷を第1の電荷蓄積部に転送する第1の転送トランジスタと、前記フォトダイオードで生成された電荷を第2の電荷蓄積部に転送する第2の転送トランジスタとを含む画素が、行列状に配置されている半導体層と、前記半導体層に積層されている配線層とを備え、前記配線層の前記半導体層が積層されている第1の面と対向する第2の面側に、前記行列状に配置されている前記画素のうちの、行方向または列方向に配置されている複数の画素の前記第1の転送トランジスタが接続されている第1の配線と、複数の画素の前記第2の転送トランジスタが接続されている第2の配線とを備える撮像素子と、周期的に明るさが変動する照射光を照射する光源と、前記照射光の照射タイミングを制御する発光制御部とを備える測距モジュールを備える。
本技術の一側面の第2の電子機器は、フォトダイオードと、前記フォトダイオードで生成された電荷を第1の電荷蓄積部に転送する第1の転送トランジスタと、前記フォトダイオードで生成された電荷を第2の電荷蓄積部に転送する第2の転送トランジスタとを含む画素が、行列状に配置されている半導体層と、前記半導体層に積層されている配線層とを備え、前記配線層の前記半導体層が積層されている第1の面と対向する第2の面側に、前記第1の転送トランジスタが接続されている第1の配線と、前記第2の転送トランジスタが接続されている第2の配線とを備え、前記第2の面側に積層される半導体基板の前記第2の面と接する面側に、前記配線層側に、前記行列状に配置されている前記画素のうちの、行方向または列方向に配置されている複数の画素の前記第1の配線が接続されている第3の配線と、複数の画素の前記第2の転送トランジスタが接続されている第4の配線とを備える撮像装置と、周期的に明るさが変動する照射光を照射する光源と、前記照射光の照射タイミングを制御する発光制御部とを備える測距モジュールを備える。
本技術の一側面の撮像素子においては、フォトダイオードと、フォトダイオードで生成された電荷を第1の電荷蓄積部に転送する第1の転送トランジスタと、フォトダイオードで生成された電荷を第2の電荷蓄積部に転送する第2の転送トランジスタとを含む画素が、行列状に配置されている半導体層と、半導体層に積層されている配線層とが備えられている。配線層の半導体層が積層されている第1の面と対向する第2の面側に、行列状に配置されている画素のうちの、行方向または列方向に配置されている複数の画素の第1の転送トランジスタが接続されている第1の配線と、複数の画素の第2の転送トランジスタが接続されている第2の配線とを備える。
本技術の一側面の撮像装置においては、フォトダイオードと、フォトダイオードで生成された電荷を第1の電荷蓄積部に転送する第1の転送トランジスタと、フォトダイオードで生成された電荷を第2の電荷蓄積部に転送する第2の転送トランジスタとを含む画素が、行列状に配置されている半導体層と、半導体層に積層されている配線層とが備えられている。配線層の半導体層が積層されている第1の面と対向する第2の面側に、第1の転送トランジスタが接続されている第1の配線と、第2の転送トランジスタが接続されている、第2の配線とを備える。第2の面側に積層される半導体基板の第2の面と接する面側に、行列状に配置されている画素のうちの、行方向または列方向に配置されている複数の画素の第1の配線が接続されている第3の配線と、複数の画素の第2の転送トランジスタが接続されている第4の配線とを備える。
本技術の一側面の第1の電子機器においては、前記撮像素子を備える測距モジュールが備えられる。
本技術の一側面の第2の電子機器においては、前記撮像装置を備える測距モジュールが備えられる。
なお、電子機器は、独立した装置であっても良いし、1つの装置を構成している内部ブロックであっても良い。
本技術を適用した測距装置の一実施の形態の構成を示す図である。 受光部の構成例を示す図である。 画素の回路構成例を示す図である。 画素における電荷の振り分けを説明する図である。 信号の読み出しについて説明するための図である。 画素の平面構成例を示す図である。 画素の断面構成例を示す図である。 画素の他の断面構成例を示す図である。 受光部の基板の分割例を示す図である。 受光部の基板の分割例と接合面について説明するための図である。 受光部の第1の実施の形態における断面構成例を示す図である。 第1-1の実施の形態における配線の構成例を示す図である。 第1-2の実施の形態における配線の構成例を示す図である。 第1-3の実施の形態における配線の構成例を示す図である。 第1-4の実施の形態における配線の構成例を示す図である。 第1-5の実施の形態における配線の構成例を示す図である。 第1-6の実施の形態における配線の構成例を示す図である。 第1-7の実施の形態における配線の構成例を示す図である。 受光部の第2の実施の形態における断面構成例を示す図である。 第2-1の実施の形態における配線の構成例を示す図である。 第2-2の実施の形態における配線の構成例を示す図である。 第2-3の実施の形態における配線の構成例を示す図である。 第2-4の実施の形態における配線の構成例を示す図である。 第2-5の実施の形態における配線の構成例を示す図である。 第2-6の実施の形態における配線の構成例を示す図である。 第2-7の実施の形態における配線の構成例を示す図である。 受光部の第3の実施の形態における断面構成例を示す図である。 第3-1の実施の形態における配線の構成例を示す図である。 第3-2の実施の形態における配線の構成例を示す図である。 第3-3の実施の形態における配線の構成例を示す図である。 第3-4の実施の形態における配線の構成例を示す図である。 第3-5の実施の形態における配線の構成例を示す図である。 測距モジュールの構成例を示す図である。 電子機器の構成例を示す図である。 車両制御システムの概略的な構成の一例を示すブロック図である。 車外情報検出部及び撮像部の設置位置の一例を示す説明図である。
以下に、本技術を実施するための形態(以下、実施の形態という)について説明する。
本技術は、例えば間接TOF方式により測距を行う測距システムを構成する受光素子や、そのような受光素子を有する撮像装置などに適用することが可能である。
例えば測距システムは、車両に搭載され、車外にある対象物までの距離を測定する車載用のシステムや、ユーザの手等の対象物までの距離を測定し、その測定結果に基づいてユーザのジェスチャを認識するジェスチャ認識用のシステムなどに適用することができる。この場合、ジェスチャ認識の結果は、例えばカーナビゲーションシステムの操作等に用いることができる。
<測距装置の構成例>
図1は、本技術を適用した測距装置の一実施の形態の構成例を示している。
測距装置10は、レンズ11、受光部12、信号処理部13、発光部14、および発光制御部15を備える。信号処理部13は、パターン切替部21と距離画像生成部22を備える。図1の測距装置10は、物体に対して光を照射し、その光(照射光)が物体で反射した光(反射光)を受光して、物体までの距離を測定する。
測距装置10の発光系は、発光部14と発光制御部15から成る。発光系においては、発光制御部15が、信号処理部13からの制御に従い、発光部14により赤外光(IR)を照射させる。レンズ11と受光部12の間にIRバンドフィルタを設け、IRバンドパスフィルタの透過波長帯に対応する赤外光を発光部14が発光する構成とするようにしても良い。
発光部14は、測距装置10の筐体内に配置してもよいし、測距装置10の筐体外部に配置してもよい。発光制御部15は、発光部14を、所定のパターンで発光させる。このパターンは、パターン切替部21により設定され、所定のタイミングで切り替えられるように構成されている。
パターン切替部21を設け、例えば、他の測距装置10のパターンと重ならないように発光パターンを切り替えるように構成することができる。また、このようなパターン切替部21を設けない構成とすることも可能である。
信号処理部13は、例えば、受光部12から供給される画像信号に基づいて、測距装置10から物体までの距離を算出する算出部として機能する。算出された距離を画像として出力する場合、信号処理部13の距離画像生成部22は、物体までの距離が画素毎に表された距離画像を生成し、出力する。
<撮像装置の構成>
図2は、受光部12の構成例を示すブロック図である。受光部12は、CMOS(Complementary Metal Oxide Semiconductor)イメージセンサとすることができる。以下の説明では、受光部12を撮像装置とも記述する。
受光部12は、画素アレイ部41、垂直駆動部42、カラム処理部43、水平駆動部44、およびシステム制御部45を含んで構成される。画素アレイ部41、垂直駆動部42、カラム処理部43、水平駆動部44、およびシステム制御部45は、図示しない半導体基板(チップ)上に設けられている。
画素アレイ部41には、入射光量に応じた電荷量の光電荷を発生して内部に蓄積する光電変換素子を有する単位画素(例えば、図3の画素50)が行列状に2次元配置されている。
画素アレイ部41にはさらに、行列状の画素配列に対して行毎に画素駆動線46が図の左右方向(画素行の画素の配列方向)に沿って設けられ、列毎に垂直信号線47が図の上下方向(画素列の画素の配列方向)に沿って設けられている。画素駆動線46の一端は、垂直駆動部42の各行に対応した出力端に接続されている。
垂直駆動部42は、シフトレジスタやアドレスデコーダなどによって構成され、画素アレイ部41の各画素を、全画素同時あるいは行単位等で駆動する画素駆動部である。垂直駆動部42によって選択走査された画素行の各単位画素から出力される画素信号は、垂直信号線47の各々を通してカラム処理部43に供給される。カラム処理部43は、画素アレイ部41の画素列毎に、選択行の各単位画素から垂直信号線47を通して出力される画素信号に対して所定の信号処理を行うとともに、信号処理後の画素信号を一時的に保持する。
具体的には、カラム処理部43は、信号処理として少なくとも、ノイズ除去処理、例えばCDS(Correlated Double Sampling;相関二重サンプリング)処理を行う。このカラム処理部43による相関二重サンプリングにより、リセットノイズや増幅トランジスタの閾値ばらつき等の画素固有の固定パターンノイズが除去される。なお、カラム処理部43にノイズ除去処理以外に、例えば、AD(アナログデジタル)変換機能を持たせ、信号レベルをデジタル信号で出力することも可能である。
水平駆動部44は、シフトレジスタやアドレスデコーダなどによって構成され、カラム処理部43の画素列に対応する単位回路を順番に選択する。この水平駆動部44による選択走査により、カラム処理部43で信号処理された画素信号が順番に信号処理部48に出力される。
システム制御部45は、各種のタイミング信号を生成するタイミングジェネレータ等によって構成され、タイミングジェネレータで生成された各種のタイミング信号を基に垂直駆動部42、カラム処理部43、および水平駆動部44などの駆動制御を行う。
画素アレイ部41において、行列状の画素配列に対して、画素行毎に画素駆動線46が行方向に沿って配線され、各画素列に2つの垂直信号線47が列方向に沿って配線されている。例えば画素駆動線46は、画素から信号を読み出す際の駆動を行うための駆動信号を伝送する。なお、図2では、画素駆動線46について1本の配線として示しているが、1本に限られるものではない。画素駆動線46の一端は、垂直駆動部42の各行に対応した出力端に接続されている。
<単位画素の構造>
次に、画素アレイ部41に行列状に配置されている画素50の具体的な構造について説明する。図3は、画素50の回路構成例を示す図である。
画素50は、光電変換素子であるフォトダイオード61(以下、PD61と記述する)を備え、PD61で発生した電荷がタップ51Aおよびタップ51Bに振り分けられるように構成されている。そして、PD61で発生した電荷のうち、タップ51Aに振り分けられた電荷が垂直信号線47Aから読み出されて検出信号SIG1として出力される。また、タップ51Bに振り分けられた電荷が垂直信号線47Bから読み出されて検出信号SIG2として出力される。
タップ51Aは、転送トランジスタ52A、FD53A、リセットトランジスタ54A、フィードバックイネーブルトランジスタ(FBEN)55A、排出トランジスタ(OFG)56、増幅トランジスタ57A、選択トランジスタ58A、変換効率切替用トランジスタ(FDG)59A、および付加容量部60Aにより構成される。
同様に、タップ51Bは、転送トランジスタ52B、FD53B、リセットトランジスタ54B、FBEN55B、増幅トランジスタ57B、選択トランジスタ58B、FDG59B、および付加容量部60Bにより構成される。
なお、図3に示したようにリセットトランジスタ54を、FD53AとFD53Bのそれぞれに設けられている構成としても良いし、FD53AとFD53Bで共用する構成としても良い。
図3に示したようにFD53AとFD53Bのそれぞれにリセットトランジスタ54A,54Bを設ける構成とした場合、リセットのタイミングを、FD53AとFD53Bをそれぞれ個別に制御できるため、細かな制御を行うことが可能となる。FD53AとFD53Bに共通したリセットトランジスタ54を設ける構成とした場合、リセットのタイミングを、FD53AとFD53Bで同一にすることができ、制御が簡便になり、回路構成も簡便化することができる。
以下の説明においては、FD53AとFD53Bのそれぞれにリセットトランジスタ54を設ける構成を例に挙げて説明する。
図4を参照して、画素50における電荷の振り分けについて説明する。ここで、振り分けとは、画素50(PD61)に蓄積された電荷を異なるタイミングで読み出すことで、タップ毎に読み出しを行うことを意味する。
図4に示すように、照射時間Tで照射のオン/オフを繰り返すように変調(1周期=Tp)された照射光が発光部14から出力され、物体までの距離に応じた遅延時間Tdだけ遅れて、PD61において反射光が受光される。また、転送制御信号TRT1は、転送トランジスタ52Aのオン/オフを制御し、転送制御信号TRT2は、転送トランジスタ52Bのオン/オフを制御する。図示するように、転送制御信号TRT1が、照射光と同一の位相である一方で、転送制御信号TRT2は、転送制御信号TRT1を反転した位相となっている。
従って、PD61が反射光を受光することにより発生する電荷は、転送制御信号TRT1に従って転送トランジスタ52Aがオンとなっている間ではFD53Aに転送される。また転送制御信号TRT2に従って転送トランジスタ52Bのオンとなっている間ではFD53Bに転送される。これにより、照射時間Tの照射光の照射が周期的に行われる所定の期間において、転送トランジスタ52Aを介して転送された電荷はFD53Aに順次蓄積され、転送トランジスタ52Bを介して転送された電荷はFD53Bに順次蓄積される。FD53は、このように、PD61で発生した電荷を蓄積する電荷蓄積部として機能する。
そして、電荷を蓄積する期間の終了後、選択信号SELm1に従って選択トランジスタ58Aがオンとなると、FD53Aに蓄積されている電荷が垂直信号線47Aを介して読み出され、その電荷量に応じた検出信号SIG1が受光部12から出力される。同様に、選択信号SELm2に従って選択トランジスタ58Bがオンとなると、FD53Bに蓄積されている電荷が垂直信号線47Bを介して読み出され、その電荷量に応じた検出信号SIG2が受光部12から出力される。
FD53Aに蓄積されている電荷とFD53Bに蓄積されている電荷は、リセット信号RSTに従ってリセットトランジスタ54がオンになると排出される。
このように、画素50は、PD61が受光した反射光により発生する電荷を、遅延時間Tdに応じてタップ51Aおよびタップ51Bに振り分けて、検出信号SIG1および検出信号SIG2を出力することができる。そして、遅延時間Tdは、発光部14で発光した光が物体まで飛行し、物体で反射した後に受光部12まで飛行する時間に応じたもの、即ち、物体までの距離に応じたものである。従って、測距装置10は、検出信号SIG1および検出信号SIG2に基づき、遅延時間Tdに従って物体までの距離(デプス)を求めることができる。
<間接TOF方式の測距方法>
上記したように、1つのPD61に蓄積された電荷を2つのタップ51を用いて読み出す2タップ方式における間接TOF方式による距離の算出について、図5を参照して説明する。図5を参照して測距方法について説明を加える。図5を参照した説明においては、2つのタップと4つのフェーズ(Phase)を用いた検出方法である2Tap-4Phase方式を例に挙げて説明する。
距離画像を生成する1フレーム期間は、Aフレーム(A frame)とBフレーム(B frame)との2つの信号検出期間に分割される。距離画像を生成する1フレーム期間は、例えば、約1/30秒に設定されている。よって、Aフレームの期間とBフレームの期間は、それぞれ約1/60秒となる。
発光部14(図1)から、照射時間Tpで照射のオン/オフを繰り返すように変調(1周期=Tp)された照射光が出力される。照射時間Tpは、例えば、210ns程度にすることができる。受光部12では、物体までの距離に応じた遅延時間Tdだけ遅れて、反射光が受光される。
4Phase方式において受光部12は、タップ51Aまたはタップ51Bのいずれかで、照射光と同一の位相(Phase0)、90度ずらした位相(Phase90)、180度ずらした位相(Phase180)、270度ずらした位相(Phase270)の4つのタイミングで受光する。なお、ここでの受光とは、PD61で発生した電荷を、転送トランジスタ52をオンにし、FD53に転送するまでの処理を含むとする。
図5では、Aフレームにおいて、転送制御信号TRT1が、照射光と同一の位相(Phase0)のタイミングでオンにされ、タップ51Aにより受光が開始される。また、Aフレームにおいて、転送制御信号TRT2が、照射光と180度ずらした位相(Phase180)のタイミングでオンにされ、タップ51Bにより受光が開始される。
また、Bフレームにおいて、転送制御信号TRT1が、照射光と90度ずらした位相(Phase90)のタイミングでオンにされ、タップ51Aにより受光が開始される。また、Bフレームにおいて、転送制御信号TRT2が、照射光と270度ずらした位相(Phase270)のタイミングでオンにされ、タップ51Bにより受光が開始される。
この場合、タップ51Aとタップ51Bは、180度位相反転されたタイミングで受光を行う。Aフレーム期間において、照射時間TpでPhase0のタイミングでタップ51AのFD53Aに蓄積される電荷を電荷Q1とすると、Aフレーム期間では、Aフレーム期間内での照射時間Tpの累積時間に応じた電荷Q1’がFD53Aに蓄積される。そして、FD53Aに蓄積された電荷Q1’が、読み出し期間において、FD53Aから検出信号SIG1に該当する信号として読み出される。この電荷Q1’に対応した検出信号SIG1の信号値を、信号値I1とする。
Aフレーム期間において、照射時間TpでPhase180のタイミングでタップ51BのFD53Bに蓄積される電荷を電荷Q2とすると、Aフレーム期間では、Aフレーム期間内での照射時間Tpの累積時間に応じた電荷Q2’がFD53Bに蓄積される。そして、FD53Bに蓄積された電荷Q2’が、読み出し期間において、FD53Bから検出信号SIG2に該当する信号として読み出される。この電荷Q2’に対応した検出信号SIG2の信号値を、信号値I2とする。
Bフレーム期間において、照射時間TpでPhase90のタイミングでタップ51AのFD53Aに蓄積される電荷を電荷Q3とすると、Bフレーム期間では、Bフレーム期間内での照射時間Tpの累積時間に応じた電荷Q3’がFD53Aに蓄積される。そして、FD53Aに蓄積された電荷Q3’が、読み出し期間において、FD53Aから検出信号SIG1に該当する信号として読み出される。この電荷Q3’に対応した検出信号SIG1の信号値を、信号値I3とする。
Bフレーム期間において、照射時間TpでPhase270のタイミングでタップ51BのFD53Aに蓄積される電荷を電荷Q4とすると、Bフレーム期間では、Bフレーム期間内での照射時間Tpの累積時間に応じた電荷Q4’がFD53Bに蓄積される。そして、FD53Bに蓄積された電荷Q4’が、読み出し期間において、FD53Bから検出信号SIG2に該当する信号として読み出される。この電荷Q4’に対応した検出信号SIG2の信号値を、信号値I4とする。
これらの信号値I1、信号値I2、信号値I3、信号値I4の配分比で遅延時間Tdに対応するずれ量θを検出することができる。すなわち、位相ずれ量θに基づいて遅延時間Tdが求められるので、遅延時間Tdにより対象物までの距離が求められる。
位相ずれ量θは、次式(1)により求められ、対象物までの距離Dは、次式(2)により演算される。式(2)において、Cは光速であり、Tpはパルス幅を表す。
Figure 2022013260000002
Figure 2022013260000003
このようにして、所定の対象物までの距離を算出することができる。このような測距方式によると、環境光による影響を低減した測距を行える。上記および以下の説明においては、発光パルス光の反射光のみを受光することを前提としているが、実際には、発光パルス光以外にも、さまざまな環境光も同時に受光される。よって、PD61で蓄積される電荷は、発光パルス光と環境光によるものとなる。
しかしながら、環境光は、パルス周期に対して定常と見なすことができ、定常光である場合、信号値I1、信号値I2、信号値I3、信号値I4に同等なオフセットとして重畳されていることになる。よって、式(1)の演算において環境光による成分(オフセット成分)は、キャンセルされ、測距結果には影響を及ぼさない。
ここでは2Tap-4Phase方式のTOF型センサの場合を例に挙げて説明をしたが、本技術は、他の方式のTOF型センサにも適用できる。例えば、4Tap-4Phase方式のTOF型センサに適用することもできる。
<画素の平面構成例>
図3に示した回路構成例に対応する画素50の平面構成例を図6に示す。図6に示されるように、矩形の画素50の中央付近の領域に、PD61が設けられている。PD61の図中上側(上辺)に、TG52AとTG52Bが設けられている。TG52Aは、転送トランジスタ52Aのゲート部分であり、TG52Bは、転送トランジスタ52Bのゲート部分である。
TG52AとTG52Bのぞれぞれは、PD61の4辺の内の1辺に隣接するように設けられている。図6に示した例では、TG52AとTG52Bは、PD61の上辺のX軸方向に、横並びで配置されている。
TG52Aの上側には、FD53A-1が設けられている。このFD53A-1は、タップ51Aに含まれるFD53Aの一部を構成している。すなわち、画素50においては、FD53は2つの領域から構成されている。
タップ51Aに含まれるFD53Aは、FD53A-1とFD53A-2から構成されている。このFD53A-1とFD53A-2は、異なる領域に形成されている。FD53A-1は、TG52Aの図中上側に形成され、FD53A-2は、FD53A-1とは離れた位置であり、FD53A-1の右斜め上側の位置に形成されている。後述するように、FD53A-1とFD53A-2は、配線層における配線で接続され、1領域として扱えるように構成されている。
FD53A-2の図中上側には、FDG59Aが形成されている。また、FDG59Aの図中上側には、付加容量部60Aが形成されている。FDG59Aがオンにされると、FD53A-1、FD53A-2、および付加容量部60Aの3領域が接続された状態となる。
タップ51Aに含まれる増幅トランジスタ57A(のゲート部分)は、図中、TG52Aの左側に形成されている。また、TG52Aの図中上側には、選択トランジスタ58A(のゲート部分)が形成されている。さらに、タップ51Aには、FBEN55Aも設けられており、このFBEN55Aは、リセットトランジスタ54Aの図中上側に形成されている。
このように、FD53Aは、FD53A-1とFD53A-2の2つの領域に分散されて形成されている。FD53A-1には、RST54Aが接続され、このRST54Aには、FBEN55Aが接続されている。またFD53A-2には、FDG59Aが接続されている。このように、FD53Aを、FD53A-1とFD53A-2の2領域に分けて配置することで、一方に、RST54Aを介してFBEN55Aを接続し、他方に、FDG59Aを接続することができる。
タップ51Aの図中右側には、タップ51Bを形成する各部が配置されている。タップ51Bも、タップ51Aと同様の構成を有している。
タップ51Bに含まれるTG52Bは、PD61の図中右上側に形成されている。TG52Bの図中上側には、FD53B-1が設けられている。タップ51Bに含まれるFD53Bは、FD53B-1とFD53B-2から構成されている。FD53B-1は、TG52Bの図中上側に形成され、FD53B-2は、FD53B-1とは離れた位置であり、FD53B-1の左斜め上側の位置に形成されている。後述するように、FD53B-1とFD53B-2は、配線層における配線で接続され1領域として扱えるように構成されている。
FD53B-2の図中上側には、FDG59Bが形成されている。また、FDG59Bの図中上側には、付加容量部60Bが形成されている。FDG59Bがオンにされると、FD53B-1、FD53B-2、および付加容量部60Bの3領域が接続された状態となる。
タップ51Bに含まれる増幅トランジスタ57B(のゲート部分)は、図中、TG52Bの右側に形成されている。また、TG52Bの図中上側には、選択トランジスタ58B(のゲート部分)が形成されている。さらに、タップ51Bには、FBEN55Bも設けられており、このFBEN55Bは、リセットトランジスタ54Bの図中上側に形成されている。
PD61の上側には、ウェルコンタクト65が設けられている。PD61の下側には、排出トランジスタ(OFG)56(のゲート部分)が設けられている。排出トランジスタ56は、ブルーミング防止用のオーバーフローゲートであり、タップ51Aとタップ51Bで共有された構成のため、図6に示したように画素50b内に、1つのOFD56が形成されている。
図6に示した配置は、一例であり、限定を示す記載ではない。また、図6に示した例では、排出トランジスタ56を設けた構成を示すが、排出トランジスタ56がない構成とすることもできる。
図6に示した例では、画素50の中央線L1(図中点線で示した線L1)を基準として、タップ51Aを構成する各部と、タップ51Bを構成する各部は、線対称に配置されている。
すなわち、タップ51Aを構成するTG52A、FD53A-1、FD53A-2、リセットトランジスタ54A、FBEN55A、増幅トランジスタ57A、選択トランジスタ58A、FDG59A、および付加容量部60Aと、タップ51Bを構成するTG52B、FD53B-1、FD53B-2、リセットトランジスタ54B、FBEN55B、増幅トランジスタ57B、選択トランジスタ58B、FDG59B、および付加容量部60Bは、それぞれ線対称に配置されている。
図6では、配線は図示していないが、FD53A-1と増幅トランジスタ57Aは接続されており、FD53A-1からの信号量が、増幅トランジスタ57Aに供給されるように構成されている。また、FD53B-1と増幅トランジスタ57Bも接続されており、FD53B-1からの信号量が、増幅トランジスタ57Bに供給されるように構成されている。
線対称に構成することで、FD53A-1と増幅トランジスタ57A間の配線の長さと、FD53B-1と増幅トランジスタ57B間の配線の長さを、略同一にすることができる。また、他の配線も、左右対象の配線とすることで、同一の長さとすることができる。
<画素の断面構成例>
図7は、図3,図6に示した2つのタップ51を有する画素50の断面構成例を示す図である。
画素アレイ部41には、例えば、赤外光を受光する画素を配置し、その画素から得られる信号を用いて被写体までの距離を測定する際の画素を配置することができる。そのような測距を行う装置(測距装置)に配置される画素50の断面構成について説明を加える。
図7は、画素アレイ部41に配置される画素50の構成例を示す断面図である。画素50は、半導体基板111と、その表面側(図中下側)に形成された多層配線層112とを備える。
半導体基板111は、例えばシリコン(Si)で構成され、例えば1乃至6μmの厚みを有して形成されている。シリコン以外に、InGaAs(イリジウムガリウムヒ化物)といった材料の基板が用いられても良い。半導体基板111では、例えば、P型(第1導電型)の半導体領域121に、N型(第2導電型)の半導体領域122が画素単位に形成されることにより、フォトダイオードPDが画素単位に形成されている。半導体基板111の表裏両面に設けられているP型の半導体領域121は、暗電流抑制のための正孔電荷蓄積領域を兼ねている。
図7において上側となる半導体基板111の上面が、半導体基板111の裏面であり、光が入射される光入射面となる。半導体基板111の裏面側上面には、反射防止膜113が形成されている。
反射防止膜113は、例えば、例えば、固定電荷膜および酸化膜が積層された積層構造とされ、例えば、ALD(Atomic Layer Deposition)法による高誘電率(High-k)の絶縁薄膜を用いることができる。具体的には、酸化ハフニウム(HfO2)や、酸化アルミニウム(Al2O3)、酸化チタン(TiO2)、STO(Strontium Titan Oxide)などを用いることができる。図7の例では、反射防止膜113は、酸化ハフニウム膜123、酸化アルミニウム膜124、および酸化シリコン膜125が積層されて構成されている。
反射防止膜113の上面であって、半導体基板111の隣接する画素50の境界部114(以下、画素境界部114とも称する。)には、入射光の隣接画素への入射を防止する画素間遮光膜115が形成されている。画素間遮光膜115の材料は、光を遮光する材料であればよく、例えば、タングステン(W)、アルミニウム(Al)又は銅(Cu)などの金属材料を用いることができる。
反射防止膜113の上面と、画素間遮光膜115の上面には、平坦化膜116が、例えば、酸化シリコン(SiO2)、窒化シリコン(SiN)、酸窒化シリコン(SiON)等の絶縁膜、または、樹脂などの有機材料により形成されている。
そして、平坦化膜116の上面には、オンチップレンズ117が画素ごとに形成されている。オンチップレンズ117は、例えば、スチレン系樹脂、アクリル系樹脂、スチレン-アクリル共重合系樹脂、またはシロキサン系樹脂等の樹脂系材料で形成される。オンチップレンズ117によって集光された光は、フォトダイオードPDに効率良く入射される。
また、半導体基板111の裏面側の画素境界部114には、半導体基板111の裏面側(オンチップレンズ117側)から基板深さ方向に所定の深さまで、半導体基板111の深さ方向に隣接画素どうしを分離する画素間分離部131が形成されている。画素間分離部131の底面および側壁を含む外周部は、反射防止膜113の一部である酸化ハフニウム膜123で覆われている。画素間分離部131は、入射光が隣の画素50へ突き抜けることを防止し、自画素内に閉じ込めるとともに、隣接する画素50からの入射光の漏れ込みを防止する。
図7の例では、反射防止膜113の最上層の材料である酸化シリコン膜125を、裏面側から掘り込んだトレンチ(溝)に埋め込むことにより酸化シリコン膜125と画素間分離部131を同時形成するため、反射防止膜113としての積層膜の一部である酸化シリコン膜125と、画素間分離部131とが同一の材料で構成されているが、必ずしも同一である必要はない。画素間分離部131として裏面側から掘り込んだトレンチ(溝)に埋め込む材料は、例えば、タングステン(W)、アルミニウム(Al)、チタン(Ti)、窒化チタン(TiN)等の金属材料でもよい。
一方、多層配線層112が形成された半導体基板111の表面側には、各画素50に形成された1つのフォトダイオードPDに対して、2つの転送トランジスタゲートTRG1およびTRG2が形成されている。また、半導体基板111の表面側には、フォトダイオードPDから転送された電荷を一時保持する電荷蓄積部としてのFD52AおよびFD52Bが、高濃度のN型半導体領域(N型拡散領域)により形成されている。
多層配線層112は、複数の金属膜Mと、その間の層間絶縁膜132とで構成される。図7では、第1金属膜M1乃至第3金属膜M3の3層で構成される例が示されている。
多層配線層112の複数の金属膜Mのうち、所定の金属膜Mである、例えば、第1金属膜M1には、配線133が形成され、第2金属膜M2には、配線134が形成されている。
以上のように、画素50は、オンチップレンズ117と多層配線層112との間に半導体層である半導体基板111を配置し、オンチップレンズ117が形成された裏面側から入射光をフォトダイオードPDに入射させる裏面照射型の構造を有する。
また、画素50は、各画素に設けられたフォトダイオードPDに対して、2つの転送トランジスタゲートTRG1およびTRG2を備え、フォトダイオードPDで光電変換されて生成された電荷(電子)を、FD52AまたはFD52Bに振り分け可能に構成されている。
さらに、図7に示した画素50は、画素境界部114に画素間分離部131を形成することにより、入射光が隣の画素50へ突き抜けることを防止し、自画素内に閉じ込めるとともに、隣接する画素50からの入射光の漏れ込みを防止する。
測距に用いられる画素50の他の断面構成について、図8を参照して説明する。
図8に示した画素50において、図7に示した画素50と対応する部分については同一の符号を付してあり、その部分の説明は適宜省略する。図8に示した画素50では、半導体基板111(のP型の半導体領域121)のフォトダイオードPDの形成領域の上方に位置するPD上部領域153が、微細な凹凸が形成された凹凸構造となっている。また、半導体基板111のPD上部領域153の凹凸構造に対応して、その上面に形成された反射防止膜151も凹凸構造で形成されている。反射防止膜151は、酸化ハフニウム膜123、酸化アルミニウム膜124、および、酸化シリコン膜125の積層により構成されている。
このように、半導体領域121のPD上部領域153を凹凸構造とすることで、基板界面における急激な屈折率の変化を緩和し、反射光による影響を低減させることができる。
なお、図8では、半導体領域121の裏面側(オンチップレンズ117側)から掘り込んで形成されたDTIで形成された画素間分離部131が、図7の画素間分離部131よりも、やや深い位置まで形成されている。画素間分離部131が形成される基板厚み方向の深さは、このように任意の深さとすることができる。
以下に説明に適用できる画素50は、図7に示した画素50であっても良いし、図8に示した画素50であっても良い。
<受光部の基板の分割例>
図9は、受光部12が構成されている基板の分割例を示す図である。
図9のAは、第1の例を示す。この第1の例は、第1の半導体基板161と第2の半導体基板162とから構成される。第1の半導体基板161には、画素領域163と制御回路164が搭載される。第2の半導体基板162には、信号処理回路を含むロジック回路165が搭載される。そして、第1の半導体基板161と第2の半導体基板162とが相互に電気的に接続されることにより、1つの半導体チップとしての撮像装置が構成される。
図9のBは、第2の例を示す。この第2の例は、第1の半導体基板161と第2の半導体基板162とから構成される。第1の半導体基板161には、画素領域163が搭載される。第2の半導体基板162には、制御回路164と、信号処理回路を含むロジック回路165が搭載される。そして、第1の半導体基板161と第2の半導体基板162とが相互に電気的に接続されることにより、1つの半導体チップとしての撮像装置が構成される。
図9のCは、第3の例を示す。この第3の例は、第1の半導体基板161と第2の半導体基板162とから構成される。第1の半導体基板161には、画素領域163と、その画素領域163を制御する制御回路164とが搭載される。第2の半導体基板162には、信号処理回路を含むロジック回路165と、そのロジック回路165を制御する制御回路164とが搭載される。そして、第1の半導体基板161と第2の半導体基板162とが相互に電気的に接続されることによって、1つの半導体チップとしての撮像装置が構成される。
<積層半導体基板>
図10は、本技術の実施の形態における撮像装置の基板の分割と接合面との関係例を示す図である。
この撮像装置においては、裏面照射型のCMOS撮像素子を想定している。すなわち、受光部である画素領域163を備える第1の半導体基板161が、ロジック回路165およびアナログ回路166を備える第2の半導体基板162の上部に配置される。これにより、表面照射型に比べて高感度で低ノイズのCMOS撮像素子を実現する。
接合面171は、第1の半導体基板161と第2の半導体基板162との間の接合面を仮想的に示したものである。この接合面171においては、互いの多層配線層が向かい合うようにして、接合面付近の配線が直接接合するように、貼り合わされる。
<第1の実施の形態>
図11は、本技術の第1の実施の形態における撮像装置の断面模式図の一例を示す図である。
この撮像装置においては、上述のように、接合面171において、第1の半導体基板161と第2の半導体基板162とが貼り合わされている。この例においては、接合面付近に形成される導電体の一例として、銅(Cu)配線を用いることができる。第1の半導体基板161の配線201,202と第2の半導体基板162の配線301,302との間で接合される。
配線201と配線301は、第1の半導体基板161および第2の半導体基板162の電気的接続を行うための用途を有する。すなわち、配線201および配線301の両者は、接続孔を有して、それぞれの基板内部に接続するように形成される。
配線202は、図11に示したように、第1の半導体基板161側に、線状に形成されている。配線202は、図11に示した断面図においては線状であるが、図12などを参照して説明するように、所定の幅、所定の厚さを有し、所定の長さを有する直方体形状で形成されている。
第1の半導体基板161には、図8に示した断面構成を有する画素50が形成されている。図8に示した画素50は、転送トランジスタゲートTRG1と転送トランジスタゲートTRG2を備えている。線状に形成されている配線202は、複数の画素50の転送トランジスタゲートTRG1または転送トランジスタゲートTRG2が接続されている。
配線202は、第2の半導体基板162に形成されている配線302と接続される。このように、配線202は、第1の半導体基板161内の複数の画素50と接続され、第2の半導体基板162の1つの配線302と接続される。
なお、ここでは、1つの配線302と接続されるとして説明を続けるが、1つの配線301が、複数に分散して形成されていたり、後述するようにダミー配線が形成されていたりしても良い。
以下に、第1の半導体基板161側に、線状に形成されている配線202について説明を加える。
<第1-1の実施の形態>
図12は、第1-1の実施の形態における配線202(第1-1の実施の形態における配線202は、配線202aと記述する)の構成を示す図である。なお、以下の実施の形態における図面では、配線202と、配線202に接続されているコンタクトなどを図示し、他の部分は省略した図とする。
第1の半導体基板161は、CIS(CMOS image sensor)基板などとも称される基板である。第1の半導体基板161には、図11に示したように、複数の画素50が形成されている。1画素50をみたとき、図7や図8を参照して説明したように、1画素50には、転送トランジスタゲートTRG1と転送トランジスタゲートTRG2が備えられている。
転送トランジスタゲートTRG1は、多層配線層112の第1金属膜M1乃至第4金属膜M4にそれぞれ形成されている配線241-1、配線242-1、配線243-1、配線244-1と、縦方向に形成されたビア251-1を介して接続されている。
配線244-1は、接続端子252-1を介して、配線202a-1と接続されている。なお、接続端子252-1は、ビアで形成することができる。
同様に、転送トランジスタゲートTRG2は、多層配線層112の第1金属膜M1乃至第4金属膜M4にそれぞれ形成されている配線241-2、配線242-2、配線243-2、配線244-2と、縦方向に形成されたビア251-2を介して接続されている。配線244-2は、接続端子252-2を介して、配線202a-2と接続されている。
転送トランジスタゲートTRG1は、配線202a-1と接続され、転送トランジスタゲートTRG2は、配線202a-2と接続されている。この配線202a-1と、配線202a-2は、第2の半導体基板162に形成されている配線302と接続されている。
転送トランジスタゲートTRG1に関する配線と、転送トランジスタゲートTRG2に関する配線は、同様な構成のため、以下の説明では、転送トランジスタゲートTRG1に関する配線を例に挙げて説明する。また、以下の説明においては、例えば、配線241-1と配線241-2を区別する必要がない場合、単に配線241と記述する。他の部分も同様に記述する。
配線202aは、直方体形状に形成されている。形状は一例であり、側面(断面)が正方形や多角形などの形状であっても良い。また、配線202a-1には、画素アレイ部41に配置されている複数の画素50のうちの、行方向または列方向に配置されている複数の画素50の転送トランジスタゲートTRG1が接続されている。
また、配線202a-2には、画素アレイ部41に配置されている複数の画素50のうちの、行方向または列方向に配置されている転送トランジスタゲートTRG2が接続されている。
複数の画素50の転送トランジスタゲートTRG1が並んでいる方向は、配線202a-1の長手方向となる。配線202a-1の長手方向の長さは、長手方向に配置されている複数の画素50の辺の長さの合計と略同等の長さとすることができる。また長手方向と垂直に交わる方向を短手方向とした場合、配線202a-1の短手方向の長さ(幅とする)は、接続端子252の直径(1辺)と同程度の幅以下とすることができる。
また、配線202aは、導電体で形成することができ、接合面方向に通電させるための配線とすることができる。
配線202a-1の厚さは、所定の厚さとすることができる。配線202a-1を微細化することで抵抗値が上がる可能性がある場合などには、配線202a-1の厚さを厚くし、抵抗値が下がるようにするといった設計も可能である。
配線202aは、上記したように、直方体形状で形成されているが、配線202aと接続される第2の半導体基板162に形成されている配線302は、角柱や円柱といった形状で形成され、配線202aの一部に接続される。このように形成することで、配線202aと配線302を接合するプロセスで、接合合わせのずれが発生したとしても、配線202aと配線302との間で発生する容量が増大してしまうようことを防ぐことができる。よって、接合合わせズレで発生する隣接配線間の狭スペース化による容量増加や、容量のばらつきの影響を抑制することができる。
配線202a-2に対しても同様である。
本技術によれば、第1の半導体基板161と第2の半導体基板162を積層(接続)するときの位置合わせの精度が高くなくても、隣接配線間に起こる容量の増加や、容量のばらつきの影響を抑制することができる。また、抵抗値が上がるようなことを抑制した構造とすることができ、低抵抗化を実現することができる。また画素を微細化しても、このような効果を得ることができる。
<第1-2の実施の形態>
図13は、第1-2の実施の形態における配線202bの構成を示す図である。第1-2の実施の形態における配線202bと、第1-1の実施の形態における配線202aを比較した場合、配線202bは、配線202aに、裏打ちビア253bを追加した構成とされ、その裏打ちビア253bと接続するために、配線244bも直方体形状で構成されている点が異なり、他の点は同様である。
図13に示した配線202b-1には、裏打ちビア253b-1が追加され、接続されている。すなわち、配線202b-1には、接続端子252b-1と裏打ちビア253b-1が接続されている。
裏打ちビア253b-1は、接続端子252b-1と同一の材料、例えば、Cu(銅)で形成することができる。また裏打ちビア253b-1は、接続端子252b-1と同様の形状や大きさで形成することができる。
第4金属膜M4に配置されている配線244b-1は、接続端子252b-1と裏打ちビア253b-1の両方と接続できる大きさに形成されている。また配線244b-1の長手方向の長さは、画素50の1辺と同程度に形成されている。配線244b-1は、画素50毎に設けられているが、画素50毎に設けられている配線244b-1同士は接続され、連続した1本の直線形状で形成されているように構成することができる。
または配線244b-1の長手方向の長さは、画素50の1辺よりも短く形成され、画素50毎に設けられている配線244b-1同士は接続されずに、画素50毎に設けられているようにしても良い。配線244b-1の厚さは、第4金属膜M4の厚さに依存して決定される。
このように、裏打ちビア253bを追加した構成とし、裏打ちビア253bと接続できる大きさに配線244bを形成することで、抵抗値を下げることができる。第1-2の実施の形態によれば、第1-1の実施の形態よりも抵抗値を下げることができる。
図13に示した配線202bは、接続端子252bと裏打ちビア253bに接続されている。換言すれば、図13に示した配線202bは、2つのビアを介して、配線244bと接続されている。配線202bは、1画素50あたり、2以上のビアを介して、配線244bと接続される構成としても良い。すなわち、1画素50あたり、裏打ちビア253は、複数設けることが可能である。
第1-2の実施の形態においても、第1-1の実施の形態と同じく、隣接配線間に起こる容量の増加や、容量のばらつきの影響を抑制することができる。また画素を微細化しても、このような効果を得ることができる。
<第1-3の実施の形態>
図14は、第1-3の実施の形態における配線202cの構成を示す図である。
第1-3の実施の形態における配線202cは、第1-2の実施の形態における裏打ちビア253bの代わりに、直方体形状で形成された接続端子252cを備える。接続端子252c-1は、配線202c-1と配線244c-1との間に設けられ、配線202c-1と配線244c-1を接続する接続端子として形成されている。
また、接続端子252cの長手方向の長さは、画素50の1辺と同程度に形成される。接続端子252cは、画素50毎に設けられているが、画素50毎に設けられている接続端子252c同士は接続され、連続した1本の直線形状で形成されているようにしても良い。
または接続端子252cの長手方向長さは、画素50の1辺よりも短く形成され、画素50毎に設けられている接続端子252c同士は接続されずに、個々に設けられているようにしても良い。
第4金属膜M4に配置されている配線244c-1は、直方体形状で形成されている接続端子252c-1と接続できる大きさに形成されている。配線244b-1の長手方向の大きさは、接続端子252cと同程度に形成されている。また、配線244c-1の厚さは、第4金属膜M4の厚さに依存して決定される。
このように、接続端子252cを直方体形状で構成することで、抵抗値を下げることができる。第1-3の実施の形態によれば、第1-1の実施の形態よりも抵抗値を下げることができる。また、第1-3の実施の形態においても、第1-1の実施の形態と同じく、隣接配線間に起こる容量の増加や、容量のばらつきの影響を抑制することができる。また画素を微細化しても、このような効果を得ることができる。
<第1-4の実施の形態>
図15は、第1-4の実施の形態における配線202dの構成を示す図である。
第1-4の実施の形態における配線202dは、第1-2の実施の形態における裏打ちビア253bに該当する部分が、第2の半導体基板162側に裏打ちビア331dとして形成されている。第1-4の実施の形態における第1の半導体基板161の配線202dなどに関わる部分は、第1-1の実施の形態における配線202aなどに関わる部分と同様である。
図15に示した配線202d-1は、第2の半導体基板162に形成されている裏打ちビア331d-1-1と裏打ちビア331d-1-2に接続されている。この裏打ちビア331d-1-1と裏打ちビア331d-1-2は、それぞれ、図13に示した裏打ちビア253b-1を設けた理由と同じく、配線202d-1の抵抗値を下げる構造とするために設けられている。
また、第2の半導体基板162には、2つの裏打ちビア331d-1-1と裏打ちビア331d-1-2を、第2の半導体基板162側に形成されている配線と接続するための配線341d-1が設けられている。配線341d-1は、図13に示した配線244b-1と同じ役割を有し、裏打ちビア331d―1-1と裏打ちビア331d-1-2が接続されている。
配線341dの長手方向の長さは、画素50の1辺と同程度に形成される。配線341dは、画素50毎に設けられているが、画素50毎に設けられている配線341d同士は接続され、連続して1本の直線形状に形成されているようにしても良い。
または配線341dの長手方向の長さは、画素50の1辺よりも短く形成され、画素50毎に設けられている配線341d同士は接続されずに、個々に設けられているようにしても良い。
このように、第1の半導体基板161に設けられている配線202dと接続される第2の半導体基板162の該当する部分に、裏打ちビア331dを形成し、その裏打ちビア331dと接続される配線341dを、第2の半導体基板162側に形成することで、配線202dと接続される配線全体の抵抗値を下げることができる。
また、第1-4の実施の形態においても、第1-1の実施の形態と同じく、隣接配線間に起こる容量の増加や、容量のばらつきの影響を抑制することができる。また画素を微細化しても、このような効果を得ることができる。
<第1-5の実施の形態>
図16は、第1-5の実施の形態における配線202eの構成を示す図である。
第1-5の実施の形態における配線202dは、第1-4の実施の形態における裏打ちビア331dの代わりに、直線形状で形成された裏打ちトレンチ332eを備える。
裏打ちトレンチ332e-1は、第2の半導体基板162に設けられている。また裏打ちトレンチ332は、第1の半導体基板161に設けられている配線202e-1と第2の半導体基板162に設けられている配線341e-1との間に設けられ、配線202e-1と配線341e-1を接続する接続端子として形成されている。
また、裏打ちトレンチ332eの長手方向の長さは、画素50の1辺と同程度に形成され、画素50毎に設けられている裏打ちトレンチ332e同士は接続され、連続した直線形状で形成されているようにしても良い。
または配線341dの長手方向長さは、画素50の1辺よりも短く形成され、画素50毎に設けられている配線341d同士は接続されずに、個々に設けられているようにしても良い。
また、図16に示した例では、裏打ちトレンチ332eの短手方向の長さは、配線202e-1や配線341e-1よりも短く形成されている例を示したが同程度まで長くしても良い。
配線341e-1の長手方向の長さは、裏打ちトレンチ332eと同程度に形成される。
このように、裏打ちトレンチ332eを直方体形状で構成することで、抵抗値を下げることができる。第1-5の実施の形態によれば、第1-1の実施の形態よりも抵抗値を下げることができる。
また、第1-5の実施の形態においても、第1-1の実施の形態と同じく、隣接配線間に起こる容量の増加や、容量のばらつきの影響を抑制することができる。また画素を微細化しても、このような効果を得ることができる。
<第1-6の実施の形態>
図17は、第1-6の実施の形態における配線202fの構成を示す図である。
第1-6の実施の形態における配線202fは、第1-5の実施の形態における裏打ちトレンチ332eを、配線302fとして用いた場合である。配線302fとして設け、配線として機能する(信号の授受を行えるように形成する)ようにしても良いし、ダミー配線として設けても良い。配線302fを、配線として機能させる場合については、後述する第3の実施の形態で説明を加える。
ダミー配線とは、信号の授受などのために必要な構成ではなく、仮に備えられていなくても、撮像素子が動作するのには影響を及ぼすことがない配線である。図17に示した配線302fは、ダミー配線として形成されている。
配線302fは、直方体形状で形成されている。図17に示した例では、配線302fの幅は、配線202fよりも短く形成されている例を示したが、配線202fと同程度の幅としても良い。または、配線302fの線幅は、配線202fの線幅と異なるように形成し、例えば20%以上の線幅差があるように形成しても良い。
配線302fは、ダミー配線であるため、例えば、上記した裏打ちトレンチ332e(図16)と同じく、長手方向の長さが、画素50の1辺と同程度に形成され、画素50毎に設けられている配線302f同士が接続され、連続した1本の直線形状で形成されているようにしても良い。
または配線302fの長手方向の長さは、画素50の1辺よりも短く形成され、画素50毎に設けられている配線302f同士は接続されずに、個々に設けられているようにしても良い。
配線302fを直方体形状で形成することで、配線302fと接続される配線202fの抵抗値を下げ、接続強度を向上させることができる。また、第1-6の実施の形態においても、第1-1の実施の形態と同じく、隣接配線間に起こる容量の増加や、容量のばらつきの影響を抑制することができる。また画素を微細化しても、このような効果を得ることができる。
<第1-7の実施の形態>
図18は、第1-7の実施の形態における配線202gの構成を示す図である。
第1-7の実施の形態における配線202gは、第1-4の実施の形態における裏打ちビア331d(図15)を、配線302gとして用いた場合である。
配線202g-1には、配線302g-1-1と、配線302g-1-2が接続されている。配線302g-1-1と配線302g-1-2は、ダミー配線として、抵抗値を下げたり、接続強度を向上させたりするために設けられている。
図18に示したように、配線302gをダミー配線として形成し、ドット形状で形成しても良い。配線302gをドット形状で形成することで、配線302gと接続される配線202gの抵抗値を下げ、接続強度を向上させることができる。
また、第1-7の実施の形態においても、第1-1の実施の形態と同じく、隣接配線間に起こる容量の増加や、容量のばらつきの影響を抑制することができる。また画素を微細化しても、このような効果を得ることができる。
<第2の実施の形態>
図19は、本技術の第2の実施の形態における撮像装置の断面模式図の一例を示す図である。第2の実施の形態における撮像装置も、第1の実施の形態における撮像装置(図11)と基本的には同じ構成を有している。
この撮像装置においては、上述のように、接合面171において、第1の半導体基板161と第2の半導体基板162とが貼り合わされている。この例においては、接合面付近に形成される導電体の一例として、銅(Cu)配線を用いることができる。第1の半導体基板161の配線201,202と第2の半導体基板162の配線301,302との間で接合される。
配線201と配線301は、第1の半導体基板161および第2の半導体基板162の電気的接続を行うための用途を有する。すなわち、配線201および配線301の両者は、接続孔を有して、それぞれの基板内部に接続するように形成される。
配線202は、図19に示したように、第1の半導体基板161側に、配線201と同様の形状で、画素50毎に設けられている。具体的には、画素50の転送トランジスタゲートTRG1や、転送トランジスタゲートTRG2毎に設けられている。
配線202のそれぞれは、第2の半導体基板162に形成されている配線302と接続される。
配線302は、図19に示すように線状に形成されている。配線302は、図19に示した断面図においては線状であるが、図20などを参照して説明するように、所定の幅、所定の厚さを有し、所定の長さを有する直方体形状で形成されている。
線状に形成されている配線302は、複数の画素50の転送トランジスタゲートTRG1または転送トランジスタゲートTRG2と、配線202を介して接続されている。このように、配線302は、第1の半導体基板161内の複数の画素50とそれぞれ接続される。
以下に、第2の半導体基板162側に、線状に形成されている配線302について説明を加える。
<第2-1の実施の形態>
図20は、第2-1の実施の形態における配線302hの構成を示す図である。なお、以下の実施の形態における図面では、配線302と、配線302に接続されているコンタクトなどを図示し、他の部分は省略した図とする。
第1の半導体基板162は、CIS基板などとも称される基板である。また第2の半導体基板162は、ロジック回路基板などとも称される基板である。第1の半導体基板161には、図19に示したように、複数の画素50が形成されている。1画素50をみたとき、図7や図8を参照して説明したように、1画素50には、転送トランジスタゲートTRG1と転送トランジスタゲートTRG2が備えられている。
転送トランジスタゲートTRG1は、多層配線層112の第1金属膜M1乃至第4金属膜M4にそれぞれ形成されている配線241-1、配線242-1、配線243-1、配線244-1と、縦方向に形成されたビア251-1を介して接続されている。
配線244-1は、接続端子252h-1を介して、配線302h-1と接続されている。なお、接続端子252h-1は、ビアで形成することができる。また、接続端子252h-1は、配線202(図19)に該当する。
転送トランジスタゲートTRG1は、配線302h-1と接続され、転送トランジスタゲートTRG2は、配線302h-2と接続されている。配線302hは、第2の半導体基板162に形成されている配線である。
配線302hは、直方体形状に形成されている。形状は一例であり、側面(断面)が正方形や多角形などの形状であっても良い。また、配線302h-1には、複数の画素50の転送トランジスタゲートTRG1(と接続されている接続端子252h)が接続されている。
複数の画素50の転送トランジスタゲートTRG1が並んでいる方向は、配線302h-1の長手方向となる。配線302h-1の長手方向の長さは、長手方向に配置されている複数の画素50の辺の長さの合計と略同等の長さとすることができる。また長手方向と垂直に交わる方向を短手方向とした場合、配線302h-1の短手方向の長さ(幅とする)は、接続端子252hの直径(1辺)と同程度の幅以下とすることができる。
配線302hの厚さは、所定の厚さとすることができる。配線302hを微細化することで抵抗値が上がる可能性がある場合などには、配線302hの厚さを厚くし、抵抗値が下がるようにするといった設計も可能である。
配線302hは、上記したように、直方体形状で形成されているが、配線302hと接続される第1の半導体基板161に形成されている接続端子252hは、角柱や円柱といった形状で形成され、配線302aの一部に接続される。このように形成することで、配線302hと接続端子252h(配線202h)を接合するプロセスで、接合合わせのずれが発生したとしても、配線302hと配線202hとの間で発生する容量が増大してしまうようことを防ぐことができる。よって、接合合わせズレで発生する隣接配線間の狭スペース化による容量増加や、容量のばらつきの影響を抑制することができる。
配線302h-2に対しても同様である。
本技術によれば、第2の半導体基板162と第1の半導体基板161を積層(接続)するときの位置合わせの精度が高くなくても、隣接配線間に起こる容量の増加や、容量のばらつきの影響を抑制することができる。また、抵抗値が上がるようなことを抑制した構造とすることができ、低抵抗化を実現することができる。また画素を微細化しても、このような効果を得ることができる。
<第2-2の実施の形態>
図21は、第2-2の実施の形態における配線302iの構成を示す図である。第2-2の実施の形態における配線302iと、第2-1の実施の形態における配線302hを比較した場合、配線302iは、配線302hに、裏打ちビア253iを追加した構成とされ、その裏打ちビア253iと接続するために、配線244iも直方体形状で構成されている点が異なり、他の点は同様である。
図21に示した配線302i-1には、裏打ちビア253i-1が追加され、接続されている。すなわち、配線302i-1には、接続端子252i-1と裏打ちビア253i-1が接続されている。接続端子252i-1と裏打ちビア253i-1は、第1の半導体基板161内に形成されている。
裏打ちビア253i-1は、接続端子252i-1と同一の材料、例えば、Cu(銅)で形成することができる。また裏打ちビア253i-1は、接続端子252i-1と同様の形状や大きさで形成することができる。
第4金属膜M4に配置されている配線244i-1は、接続端子252i-1と裏打ちビア253i-1の両方と接続できる大きさに形成されている。また配線244i-1の長手方向の長さは、画素50の1辺と同程度に形成されている。配線244i-1は、画素50毎に設けられているが、画素50毎に設けられている配線244i-1同士は接続され、連続した1本の直線形状で形成されているように構成することができる。
または配線244i-1の長手方向の長さは、画素50の1辺よりも短く形成され、画素50毎に設けられている配線244i-1同士は接続されずに、画素50毎に設けられているようにしても良い。配線244i-1の厚さは、第4金属膜M4の厚さに依存して決定される。
このように、裏打ちビア253iを追加した構成とし、裏打ちビア253iと接続できる大きさに配線244iを形成することで、抵抗値を下げることができる。第2-2の実施の形態によれば、第2-1の実施の形態よりも抵抗値を下げることができる。また、第2-2の実施の形態においても、第2-1の実施の形態と同じく、隣接配線間に起こる容量の増加や、容量のばらつきの影響を抑制することができる。また画素を微細化しても、このような効果を得ることができる。
<第2-3の実施の形態>
図22は、第2-3の実施の形態における配線302jの構成を示す図である。
第2-3の実施の形態における配線302jは、第2-2の実施の形態における裏打ちビア253iの代わりに、直方体形状で形成された接続端子252jを備える。接続端子252j-1は、第1の半導体基板161に設けられ、配線302j-1と配線244j-1との間に設けられ、配線302j-1と配線244j-1を接続する接続端子として形成されている。
また、接続端子252jの長手方向の長さは、画素50の1辺と同程度に形成される。接続端子252jは、画素50毎に設けられているが、画素50毎に設けられている接続端子252j同士は接続され、連続した1本の直線形状で形成されているようにしても良い。
または接続端子252jの長手方向長さは、画素50の1辺よりも短く形成され、画素50毎に設けられている接続端子252j同士は接続されずに、個々に設けられているようにしても良い。
第4金属膜M4に配置されている配線244j-1は、直方体形状で形成されている接続端子252j-1と接続できる大きさに形成されている。配線244i-1の長手方向の大きさは、接続端子252j-1と同程度に形成されている。また、配線244j-1の厚さは、第4金属膜M4の厚さに依存して決定される。
このように、接続端子252jを直方体形状で構成することで、抵抗値を下げることができる。第2-3の実施の形態によれば、第2-1の実施の形態よりも抵抗値を下げることができる。また、第2-3の実施の形態においても、第2-1の実施の形態と同じく、隣接配線間に起こる容量の増加や、容量のばらつきの影響を抑制することができる。また画素を微細化しても、このような効果を得ることができる。
<第2-4の実施の形態>
図23は、第2-4の実施の形態における配線302kの構成を示す図である。
第2-4の実施の形態における配線302kは、第2-2の実施の形態における裏打ちビア253iに該当する部分が、第2の半導体基板162側に裏打ちビア331kとして形成されている。第2-4の実施の形態における第1の半導体基板161側の配線に関わる部分は、第2-1の実施の形態における配線に関わる部分と同様である。
図23に示した配線302k-1は、第2の半導体基板162に形成されている裏打ちビア331k-1-1と裏打ちビア331k-1-2に接続されている。この裏打ちビア331k-1-1と裏打ちビア331k-1-2は、それぞれ、図21に示した裏打ちビア253i-1を設けた理由と同じく、配線302k-1の抵抗値を下げる構造とするために設けられている。
また、第2の半導体基板162には、裏打ちビア331k-1-1と裏打ちビア331k-1-2を、第2の半導体基板162内に形成されている配線と接続するための配線341k-1が設けられている。配線341k-1は、裏打ちビア331k―1-1と裏打ちビア331k-1-2に接続されている。
配線341kの長手方向の長さは、配線302kと同程度または短く形成される。
このように、第2の半導体基板162に設けられている配線302kと接続される裏打ちビア331kを形成し、その裏打ちビア331kと接続される配線341kを、第2の半導体基板162内に形成することで、配線302kと接続される配線全体の抵抗値を下げることができる。
また、第2-4の実施の形態においても、第2-1の実施の形態と同じく、隣接配線間に起こる容量の増加や、容量のばらつきの影響を抑制することができる。また画素を微細化しても、このような効果を得ることができる。
<第2-5の実施の形態>
図24は、第2-5の実施の形態における配線302mの構成を示す図である。
第2-5の実施の形態における配線302kは、第2-4の実施の形態における裏打ちビア331kの代わりに、直線形状で形成された裏打ちトレンチ332mを備える。
裏打ちトレンチ332m-1は、第2の半導体基板162に設けられている。また裏打ちトレンチ332は、第2の半導体基板162に設けられている配線302m-1と配線341m-1との間に設けられ、配線302m-1と配線341m-1を接続する接続端子として形成されている。
裏打ちトレンチ332mの長手方向の長さは、配線302mと同程度または短く形成される。
また、図24に示した例では、裏打ちトレンチ332mの短手方向の長さ(幅)は、配線302m-1や配線341m-1よりも短く形成されている例を示したが同程度まで長くしても良い。
配線341m-1の長手方向の長さは、裏打ちトレンチ332m-1と同程度に形成される。
このように、裏打ちトレンチ332mを直方体形状で構成することで、抵抗値を下げることができる。第2-5の実施の形態によれば、第2-1の実施の形態よりも抵抗値を下げることができる。
また、第2-5の実施の形態においても、第2-1の実施の形態と同じく、隣接配線間に起こる容量の増加や、容量のばらつきの影響を抑制することができる。また画素を微細化しても、このような効果を得ることができる。
<第2-6の実施の形態>
図25は、第2-6の実施の形態における配線302nの構成を示す図である。
第2-6の実施の形態における配線302nは、ダミー配線として設けられている配線202nと接続される。配線202nは、配線として機能する(信号の授受を行えるように形成する)ようにしても良いし、ダミー配線として設けても良い。配線202nを、配線として機能させる場合については、後述する第3の実施の形態で説明を加える。
配線202nは、直方体形状で形成されている。図25に示した例では、配線202nの幅は、配線302nよりも短く形成されている例を示したが、配線302nと同程度の幅としても良い。
配線202nは、ダミー配線であり、例えば、上記した裏打ちトレンチ332m(図24)と同じく、配線302mと同程度または短く形成される。
配線202nを直方体形状で形成することで、配線202nと接続される配線302nの抵抗値を下げ、接続強度を向上させることができる。また、第2-6の実施の形態においても、第2-1の実施の形態と同じく、隣接配線間に起こる容量の増加や、容量のばらつきの影響を抑制することができる。また画素を微細化しても、このような効果を得ることができる。
<第2-7の実施の形態>
図26は、第2-7の実施の形態における配線302pの構成を示す図である。
第2-7の実施の形態における配線302pには、配線202p-1と配線203p-1が接続されている。配線202p-1は、転送トランジスタゲートTRG1と接続され、転送トランジスタゲートTRG1からの信号を、配線302p-1を介して、第2の半導体基板162内の回路に供給するために端子として機能する。
配線203p-1は、ダミー配線として機能し、配線302p-1の抵抗値を下げたり、接続強度を向上させたりするために設けられている。
図26に示したように、配線202pをダミー配線として形成することで、配線202pと接続される配線302pの抵抗値を下げ、接続強度を向上させることができる。また、第2-7の実施の形態においても、第2-1の実施の形態と同じく、隣接配線間に起こる容量の増加や、容量のばらつきの影響を抑制することができる。また画素を微細化しても、このような効果を得ることができる。
<第3の実施の形態>
図27は、本技術の第3の実施の形態における撮像装置の断面模式図の一例を示す図である。
第3の実施の形態における撮像装置は、第1の実施の形態と第2の実施の形態を組み合わせた構成を有している。第1の実施の形態の説明や、第2の実施の形態の説明と重複する説明は、適宜省略して説明するが、第1の実施の形態や第2の実施の形態として説明したことは、第3の実施の形態においても適用できる。
第3の実施の形態における撮像装置は、図27に示すように、直線形状で形成された配線202と、直線形状で形成された配線302を備える構成とされている。また、配線202と配線302は、長手方向の平面において接合される構成とされている。すなわち、第3の実施の形態においては、配線202と配線302が接合している面積が、第1の実施の形態や第2の実施の形態に比べて大きい。
配線202は、図27に示したように、第1の半導体基板161側に、直線形状で形成され、複数の画素50の転送トランジスタゲートTRG1または転送トランジスタゲートTRG2と接続されている。配線202は、第2の半導体基板162に形成されている配線302と接続される。
配線302は、図27に示すように直線形状に形成されている。配線302は、1つのビア状の接続端子を有し、第2の半導体基板162内の回路と接続されている。また配線302は、配線202を介して複数の画素50の転送トランジスタゲートTRG1または転送トランジスタゲートTRG2と接続されている構成とされている。
<第3-1の実施の形態>
図28は、第3-1の実施の形態における配線202qと配線302qの構成を示す図である。第3-1の実施の形態における撮像装置は、図12を参照して説明した第1-1の実施の形態における配線202aに該当する配線202qと、図20を参照して説明した第2-1の実施の形態における配線302hに該当する配線302qを有する構成とされている。
配線202qは、直方体形状に形成され、複数の画素50の転送トランジスタゲートTRGが接続されている。配線302qは、直方体形状に形成され、配線202qと接続されている。
図28では、配線202qと配線302qがずれたように接合されている例を示しているが、接合プロセス時に、仮にずれたとしても重なり合う面積が大きいため、接続不良を起こすようなことはないことを示すため図示であり、ずらして接合されることを示す記載ではない。配線202qと配線302qの接合面が、略同一形状で、略同一の大きさである場合、配線202qの接合面と配線302qの接合面は、全面にわたって接合されるようにすることができる。
配線202qと配線302qは、信号の授受を行うための配線として用いられ、ダミー配線ではない。例えば、図17に示した第1-6の実施の形態における配線302fは、直方体形状に形成され、配線202fと接続されている構成であり、構成としては、図28に示した第3-1の実施の形態における配線202qと同様な構成とされている。また、例えば、図25に示した第2-6の実施の形態における配線202nは、直方体形状に形成され、配線302nと接続されている構成であり、構成としては、図28に示した第3-1の実施の形態における配線202qと同様な構成とされている。
図17に示した第1-6の実施の形態における配線302fや、図25に示した第2-6の実施の形態における配線202nは、ダミー配線として設けられているのに対して、図28に示した第3-1の実施の形態における配線202qと配線302qは、ダミー配線ではない点が異なる。
本技術によれば、第2の半導体基板162と第1の半導体基板161を積層(接続)するときの位置合わせの精度が高くなくても、接続不良が起きるようなことを抑制することができる。また、抵抗値が上がるようなことを抑制した構造とすることができ、低抵抗化を実現することができる。また画素を微細化しても、このような効果を得ることができる。
<第3-2の実施の形態>
図29は、第3-2の実施の形態における配線202rと配線302rの構成を示す図である。第3-2の実施の形態における撮像装置は、図13を参照して説明した第1-2の実施の形態における配線202bに該当する配線202rを有し、図20を参照して説明した第2-1の実施の形態における配線302hに該当する配線302rを有する構成とされている。
また、図29に示した第3-2の実施の形態における配線202rは、図28に示した構成に、裏打ちビア253r-1が追加され、配線244r-1が、接続端子252r-1と裏打ちビア253r-1の両方と接続できる大きさに形成された構成とされている。
配線202rと配線302rは、それぞれ直方体形状に形成され、接合されている点は、図28の第3-1の実施の形態と同様である。
本技術によれば、第2の半導体基板162と第1の半導体基板161を積層(接続)するときの位置合わせの精度が高くなくても、接続不良が起きるようなことを抑制することができる。また、抵抗値が上がるようなことを抑制した構造とすることができ、低抵抗化を実現することができる。また画素を微細化しても、このような効果を得ることができる。
<第3-3の実施の形態>
図30は、第3-3の実施の形態における配線202sと配線302sの構成を示す図である。第3-3の実施の形態における撮像装置は、図14を参照して説明した第1-3の実施の形態における配線202cに該当する配線202sを有し、図20を参照して説明した第2-1の実施の形態における配線302hに該当する配線302sを有する構成とされている。
第3-3の実施の形態における配線202sは、図14に示した第1-3の実施の形態における配線202cと同様の構成を有している。配線202sは、直方体形状で形成された接続端子252sを備え、その接続端子252sは、配線202sと配線244sとの間に設けられている。
配線202sと配線302sは、それぞれ直方体形状に形成され、接合されている点は、図28の第3-1の実施の形態と同様である。
本技術によれば、第2の半導体基板162と第1の半導体基板161を積層(接続)するときの位置合わせの精度が高くなくても、接続不良が起きるようなことを抑制することができる。また、抵抗値が上がるようなことを抑制した構造とすることができ、低抵抗化を実現することができる。また画素を微細化しても、このような効果を得ることができる。
<第3-4の実施の形態>
図31は、第3-4の実施の形態における配線202tと配線302tの構成を示す図である。第3-4の実施の形態における撮像装置は、図12を参照して説明した第1-1の実施の形態における配線202aに該当する配線202tを有し、図23を参照して説明した第2-4の実施の形態における配線302kに該当する配線302tを有する構成とされている。
配線302tは、第2の半導体基板162に形成されている裏打ちビア331t-1-1と裏打ちビア331t-1-2に接続されている。この裏打ちビア331t-1-1と裏打ちビア331t-1-2は、配線341t-1と接続されている。
配線202tと配線302tは、それぞれ直方体形状に形成され、接合されている点は、図28の第3-1の実施の形態と同様である。
本技術によれば、第2の半導体基板162と第1の半導体基板161を積層(接続)するときの位置合わせの精度が高くなくても、接続不良が起きるようなことを抑制することができる。また、抵抗値が上がるようなことを抑制した構造とすることができ、低抵抗化を実現することができる。また画素を微細化しても、このような効果を得ることができる。
<第3-5の実施の形態>
図32は、第3-5の実施の形態における配線202uと配線302uの構成を示す図である。第3-5の実施の形態における撮像装置は、図12を参照して説明した第1-1の実施の形態における配線202aに該当する配線202uを有し、図24を参照して説明した第2-5の実施の形態における配線302mに該当する配線302uを有する構成とされている。
配線302uは、第2の半導体基板162に形成されている裏打ちトレンチ332uに接続されている。この裏打ちトレンチ332uは、配線341uと接続されている。配線202uと配線302uは、それぞれ直方体形状に形成され、接合されている点は、図28の第3-1の実施の形態と同様である。
本技術によれば、第2の半導体基板162と第1の半導体基板161を積層(接続)するときの位置合わせの精度が高くなくても、接続不良が起きるようなことを抑制することができる。また、抵抗値が上がるようなことを抑制した構造とすることができ、低抵抗化を実現することができる。また画素を微細化しても、このような効果を得ることができる。
第3の実施の形態として、上記した第1の実施の形態と第2の実施の形態の組み合わせ以外の組み合わせでも良い。
<測距モジュールの構成例>
上記した実施の形態における測距装置10を、測距モジュールとして形成しても良い。図33は、上述した撮像装置(例えば、図8などを参照して説明した画素50を含む撮像装置)を用いた測距モジュールの構成例を示すブロック図である。
測距モジュール500は、発光部511、発光制御部512、および、受光部513を備える。発光部511は、所定波長の光を発する光源を有し、周期的に明るさが変動する照射光を発して物体に照射する。例えば、発光部511は、光源として、波長が780nm乃至1000nmの範囲の赤外光を発する発光ダイオードを有し、発光制御部512から供給される矩形波の発光制御信号CLKpに同期して、照射光を発生する。
なお、発光制御信号CLKpは、周期信号であれば、矩形波に限定されない。例えば、発光制御信号CLKpは、サイン波であってもよい。
発光制御部512は、発光制御信号CLKpを発光部511および受光部513に供給し、照射光の照射タイミングを制御する。この発光制御信号CLKpの周波数は、例えば、20メガヘルツ(MHz)である。なお、発光制御信号CLKpの周波数は、20メガヘルツ(MHz)に限定されず、5メガヘルツ(MHz)などであってもよい。
受光部513は、物体から反射した反射光を受光し、受光結果に応じて距離情報を画素ごとに算出し、物体(被写体)までの距離に対応するデプス値を画素値として格納したデプス画像を生成して、出力する。
受光部513には、上述した実施の形態のいずれかの画素構造を有する撮像装置が用いられる。例えば、受光部513としての撮像装置は、発光制御信号CLKpに基づいて、画素アレイ部41の各画素の浮遊拡散領域FD1またはFD2に振り分けられた電荷に応じた信号強度から、距離情報を画素ごとに算出する。なお、画素のタップ数は、上述した4タップなどでもよい。
以上のように、間接ToF方式により被写体までの距離情報を求めて出力する測距モジュール500の受光部513として、上述した画素構造を有する撮像装置を組み込むことができる。これにより、測距モジュール500としての測距特性を向上させることができる。
<電子機器の構成例>
撮像装置は、上述したように測距モジュールに適用できる他、例えば、測距機能を備えるデジタルスチルカメラやデジタルビデオカメラなどの撮像装置、測距機能を備えたスマートフォンといった各種の電子機器に適用することができる。
図34は、本技術を適用した電子機器としての、スマートフォンの構成例を示すブロック図である。
スマートフォン601は、図34に示されるように、測距モジュール602、撮像装置603、ディスプレイ604、スピーカ605、マイクロフォン606、通信モジュール607、センサユニット608、タッチパネル609、および制御ユニット610が、バス611を介して接続されて構成される。また、制御ユニット610では、CPUがプログラムを実行することによって、アプリケーション処理部621およびオペレーションシステム処理部622としての機能を備える。
測距モジュール602には、図33の測距モジュール500が適用される。例えば、測距モジュール602は、スマートフォン601の前面に配置され、スマートフォン601のユーザを対象とした測距を行うことにより、そのユーザの顔や手、指などの表面形状のデプス値を測距結果として出力することができる。
撮像装置603は、スマートフォン601の前面に配置され、スマートフォン601のユーザを被写体とした撮像を行うことにより、そのユーザが写された画像を取得する。なお、図示しないが、スマートフォン601の背面にも撮像装置603が配置された構成としてもよい。
ディスプレイ604は、アプリケーション処理部621およびオペレーションシステム処理部622による処理を行うための操作画面や、撮像装置603が撮像した画像などを表示する。スピーカ605およびマイクロフォン606は、例えば、スマートフォン601により通話を行う際に、相手側の音声の出力、および、ユーザの音声の集音を行う。
通信モジュール607は、インターネット、公衆電話回線網、所謂4G回線や5G回線等の無線移動体用の広域通信網、WAN(Wide Area Network)、LAN(Local Area Network)等の通信網を介したネットワーク通信、Bluetooth(登録商標)、NFC(Near Field Communication)等の近距離無線通信などを行う。センサユニット608は、速度や加速度、近接などをセンシングし、タッチパネル609は、ディスプレイ604に表示されている操作画面に対するユーザによるタッチ操作を取得する。
アプリケーション処理部621は、スマートフォン601によって様々なサービスを提供するための処理を行う。例えば、アプリケーション処理部621は、測距モジュール602から供給されるデプス値に基づいて、ユーザの表情をバーチャルに再現したコンピュータグラフィックスによる顔を作成し、ディスプレイ604に表示する処理を行うことができる。また、アプリケーション処理部621は、測距モジュール602から供給されるデプス値に基づいて、例えば、任意の立体的な物体の三次元形状データを作成する処理を行うことができる。
オペレーションシステム処理部622は、スマートフォン601の基本的な機能および動作を実現するための処理を行う。例えば、オペレーションシステム処理部622は、測距モジュール602から供給されるデプス値に基づいて、ユーザの顔を認証し、スマートフォン601のロックを解除する処理を行うことができる。また、オペレーションシステム処理部622は、測距モジュール602から供給されるデプス値に基づいて、例えば、ユーザのジェスチャを認識する処理を行い、そのジェスチャに従った各種の操作を入力する処理を行うことができる。
このように構成されているスマートフォン601では、測距モジュール602として、上述した測距モジュール500を適用することで、例えば、所定の物体までの距離を測定して表示したり、所定の物体の三次元形状データを作成して表示したりする処理などを行うことができる。
<移動体への応用例>
本開示に係る技術(本技術)は、様々な製品へ応用することができる。例えば、本開示に係る技術は、自動車、電気自動車、ハイブリッド電気自動車、自動二輪車、自転車、パーソナルモビリティ、飛行機、ドローン、船舶、ロボット等のいずれかの種類の移動体に搭載される装置として実現されてもよい。
図35は、本開示に係る技術が適用され得る移動体制御システムの一例である車両制御システムの概略的な構成例を示すブロック図である。
車両制御システム12000は、通信ネットワーク12001を介して接続された複数の電子制御ユニットを備える。図35に示した例では、車両制御システム12000は、駆動系制御ユニット12010、ボディ系制御ユニット12020、車外情報検出ユニット12030、車内情報検出ユニット12040、及び統合制御ユニット12050を備える。また、統合制御ユニット12050の機能構成として、マイクロコンピュータ12051、音声画像出力部12052、及び車載ネットワークI/F(Interface)12053が図示されている。
駆動系制御ユニット12010は、各種プログラムにしたがって車両の駆動系に関連する装置の動作を制御する。例えば、駆動系制御ユニット12010は、内燃機関又は駆動用モータ等の車両の駆動力を発生させるための駆動力発生装置、駆動力を車輪に伝達するための駆動力伝達機構、車両の舵角を調節するステアリング機構、及び、車両の制動力を発生させる制動装置等の制御装置として機能する。
ボディ系制御ユニット12020は、各種プログラムにしたがって車体に装備された各種装置の動作を制御する。例えば、ボディ系制御ユニット12020は、キーレスエントリシステム、スマートキーシステム、パワーウィンドウ装置、あるいは、ヘッドランプ、バックランプ、ブレーキランプ、ウィンカー又はフォグランプ等の各種ランプの制御装置として機能する。この場合、ボディ系制御ユニット12020には、鍵を代替する携帯機から発信される電波又は各種スイッチの信号が入力され得る。ボディ系制御ユニット12020は、これらの電波又は信号の入力を受け付け、車両のドアロック装置、パワーウィンドウ装置、ランプ等を制御する。
車外情報検出ユニット12030は、車両制御システム12000を搭載した車両の外部の情報を検出する。例えば、車外情報検出ユニット12030には、撮像部12031が接続される。車外情報検出ユニット12030は、撮像部12031に車外の画像を撮像させるとともに、撮像された画像を受信する。車外情報検出ユニット12030は、受信した画像に基づいて、人、車、障害物、標識又は路面上の文字等の物体検出処理又は距離検出処理を行ってもよい。
撮像部12031は、光を受光し、その光の受光量に応じた電気信号を出力する光センサである。撮像部12031は、電気信号を画像として出力することもできるし、測距の情報として出力することもできる。また、撮像部12031が受光する光は、可視光であっても良いし、赤外線等の非可視光であっても良い。
車内情報検出ユニット12040は、車内の情報を検出する。車内情報検出ユニット12040には、例えば、運転者の状態を検出する運転者状態検出部12041が接続される。運転者状態検出部12041は、例えば運転者を撮像するカメラを含み、車内情報検出ユニット12040は、運転者状態検出部12041から入力される検出情報に基づいて、運転者の疲労度合い又は集中度合いを算出してもよいし、運転者が居眠りをしていないかを判別してもよい。
マイクロコンピュータ12051は、車外情報検出ユニット12030又は車内情報検出ユニット12040で取得される車内外の情報に基づいて、駆動力発生装置、ステアリング機構又は制動装置の制御目標値を演算し、駆動系制御ユニット12010に対して制御指令を出力することができる。例えば、マイクロコンピュータ12051は、車両の衝突回避あるいは衝撃緩和、車間距離に基づく追従走行、車速維持走行、車両の衝突警告、又は車両のレーン逸脱警告等を含むADAS(Advanced Driver Assistance System)の機能実現を目的とした協調制御を行うことができる。
また、マイクロコンピュータ12051は、車外情報検出ユニット12030又は車内情報検出ユニット12040で取得される車両の周囲の情報に基づいて駆動力発生装置、ステアリング機構又は制動装置等を制御することにより、運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行うことができる。
また、マイクロコンピュータ12051は、車外情報検出ユニット12030で取得される車外の情報に基づいて、ボディ系制御ユニット12030に対して制御指令を出力することができる。例えば、マイクロコンピュータ12051は、車外情報検出ユニット12030で検知した先行車又は対向車の位置に応じてヘッドランプを制御し、ハイビームをロービームに切り替える等の防眩を図ることを目的とした協調制御を行うことができる。
音声画像出力部12052は、車両の搭乗者又は車外に対して、視覚的又は聴覚的に情報を通知することが可能な出力装置へ音声及び画像のうちの少なくとも一方の出力信号を送信する。図35の例では、出力装置として、オーディオスピーカ12061、表示部12062及びインストルメントパネル12063が例示されている。表示部12062は、例えば、オンボードディスプレイ及びヘッドアップディスプレイの少なくとも一つを含んでいてもよい。
図36は、撮像部12031の設置位置の例を示す図である。
図36では、撮像部12031として、撮像部12101、12102、12103、12104、12105を有する。
撮像部12101、12102、12103、12104、12105は、例えば、車両12100のフロントノーズ、サイドミラー、リアバンパ、バックドア及び車室内のフロントガラスの上部等の位置に設けられる。フロントノーズに備えられる撮像部12101及び車室内のフロントガラスの上部に備えられる撮像部12105は、主として車両12100の前方の画像を取得する。サイドミラーに備えられる撮像部12102、12103は、主として車両12100の側方の画像を取得する。リアバンパ又はバックドアに備えられる撮像部12104は、主として車両12100の後方の画像を取得する。車室内のフロントガラスの上部に備えられる撮像部12105は、主として先行車両又は、歩行者、障害物、信号機、交通標識又は車線等の検出に用いられる。
なお、図36には、撮像部12101ないし12104の撮影範囲の一例が示されている。撮像範囲12111は、フロントノーズに設けられた撮像部12101の撮像範囲を示し、撮像範囲12112,12113は、それぞれサイドミラーに設けられた撮像部12102,12103の撮像範囲を示し、撮像範囲12114は、リアバンパ又はバックドアに設けられた撮像部12104の撮像範囲を示す。例えば、撮像部12101ないし12104で撮像された画像データが重ね合わせられることにより、車両12100を上方から見た俯瞰画像が得られる。
撮像部12101ないし12104の少なくとも1つは、距離情報を取得する機能を有していてもよい。例えば、撮像部12101ないし12104の少なくとも1つは、複数の撮像素子からなるステレオカメラであってもよいし、位相差検出用の画素を有する撮像素子であってもよい。
例えば、マイクロコンピュータ12051は、撮像部12101ないし12104から得られた距離情報を基に、撮像範囲12111ないし12114内における各立体物までの距離と、この距離の時間的変化(車両12100に対する相対速度)を求めることにより、特に車両12100の進行路上にある最も近い立体物で、車両12100と略同じ方向に所定の速度(例えば、0km/h以上)で走行する立体物を先行車として抽出することができる。さらに、マイクロコンピュータ12051は、先行車の手前に予め確保すべき車間距離を設定し、自動ブレーキ制御(追従停止制御も含む)や自動加速制御(追従発進制御も含む)等を行うことができる。このように運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行うことができる。
例えば、マイクロコンピュータ12051は、撮像部12101ないし12104から得られた距離情報を元に、立体物に関する立体物データを、2輪車、普通車両、大型車両、歩行者、電柱等その他の立体物に分類して抽出し、障害物の自動回避に用いることができる。例えば、マイクロコンピュータ12051は、車両12100の周辺の障害物を、車両12100のドライバが視認可能な障害物と視認困難な障害物とに識別する。そして、マイクロコンピュータ12051は、各障害物との衝突の危険度を示す衝突リスクを判断し、衝突リスクが設定値以上で衝突可能性がある状況であるときには、オーディオスピーカ12061や表示部12062を介してドライバに警報を出力することや、駆動系制御ユニット12010を介して強制減速や回避操舵を行うことで、衝突回避のための運転支援を行うことができる。
撮像部12101ないし12104の少なくとも1つは、赤外線を検出する赤外線カメラであってもよい。例えば、マイクロコンピュータ12051は、撮像部12101ないし12104の撮像画像中に歩行者が存在するか否かを判定することで歩行者を認識することができる。かかる歩行者の認識は、例えば赤外線カメラとしての撮像部12101ないし12104の撮像画像における特徴点を抽出する手順と、物体の輪郭を示す一連の特徴点にパターンマッチング処理を行って歩行者か否かを判別する手順によって行われる。マイクロコンピュータ12051が、撮像部12101ないし12104の撮像画像中に歩行者が存在すると判定し、歩行者を認識すると、音声画像出力部12052は、当該認識された歩行者に強調のための方形輪郭線を重畳表示するように、表示部12062を制御する。また、音声画像出力部12052は、歩行者を示すアイコン等を所望の位置に表示するように表示部12062を制御してもよい。
本明細書において、システムとは、複数の装置により構成される装置全体を表すものである。
なお、本明細書に記載された効果はあくまで例示であって限定されるものでは無く、また他の効果があってもよい。
なお、本技術の実施の形態は、上述した実施の形態に限定されるものではなく、本技術の要旨を逸脱しない範囲において種々の変更が可能である。
なお、本技術は以下のような構成も取ることができる。
(1)
フォトダイオードと、
前記フォトダイオードで生成された電荷を第1の電荷蓄積部に転送する第1の転送トランジスタと、
前記フォトダイオードで生成された電荷を第2の電荷蓄積部に転送する第2の転送トランジスタと
を含む画素が、行列状に配置されている半導体層と、
前記配線層の前記半導体層が積層されている第1の面と対向する第2の面側に、
を備え、
前記配線層は、積層される半導体基板側に、
前記行列状に配置されている前記画素のうちの、行方向または列方向に配置されている複数の画素の前記第1の転送トランジスタが接続されている第1の配線と、
複数の画素の前記第2の転送トランジスタが接続されている第2の配線と
を備える撮像素子。
(2)
前記第1の配線と前記第2の配線はそれぞれ、直方体形状に形成されている導電体である
前記(1)に記載の撮像素子。
(3)
前記第1の配線と前記第2の配線はそれぞれ、前記配線層内の直方体形状に形成されている配線と、1画素あたり2以上のビアを介して接続されている
前記(1)または(2)に記載の撮像素子。
(4)
前記第1の配線と前記第2の配線はそれぞれ、前記配線層内の直方体形状に形成されている配線と、直方体形状で形成されているトレンチを介して接続されている
前記(1)または(2)に記載の撮像素子。
(5)
前記第1の配線と前記第2の配線はそれぞれ、前記第2の面に積層される半導体基板に形成されている2以上のビアと接続され、前記ビアを介して、前記半導体基板内に直方体形状で形成されている配線と接続されている
前記(1)または(2)に記載の撮像素子。
(6)
前記第1の配線と前記第2の配線はそれぞれ、前記第2の面に積層される半導体基板に形成されている直方体形状で形成されているトレンチと接続され、前記トレンチを介して、前記半導体基板内に直方体形状で形成されている配線と接続されている
前記(1)または(2)に記載の撮像素子。
(7)
前記第1の配線と前記第2の配線はそれぞれ、前記第2の面に積層される半導体基板に形成されている直方体形状で形成されている配線と接続されている
前記(1)または(2)に記載の撮像素子。
(8)
前記第1の配線と前記第2の配線はそれぞれ、前記第2の面に積層される半導体基板に形成されている直方体形状で形成されている、1画素あたり2以上の配線と接続されている
前記(1)に記載の撮像素子。
(9)
フォトダイオードと、
前記フォトダイオードで生成された電荷を第1の電荷蓄積部に転送する第1の転送トランジスタと、
前記フォトダイオードで生成された電荷を第2の電荷蓄積部に転送する第2の転送トランジスタと
を含む画素が、行列状に配置されている半導体層と、
前記半導体層に積層されている配線層と
を備え、
前記配線層の前記半導体層が積層されている第1の面と対向する第2の面側に、
前記第1の転送トランジスタが接続されている第1の配線と、
前記第2の転送トランジスタが接続されている第2の配線と
を備え、
前記第2の面側に積層される半導体基板の前記第2の面と接する面側に、
前記行列状に配置されている前記画素のうちの、行方向または列方向に配置されている複数の画素の前記第1の配線が接続されている第3の配線と、
複数の画素の前記第2の転送トランジスタが接続されている第4の配線と
を備える撮像装置。
(10)
前記半導体基板は、前記画素からの信号を処理する回路が形成されている基板である
前記(9)に記載の撮像装置。
(11)
前記第3の配線と前記第4の配線はそれぞれ、直方体形状に形成されている導電体である
前記(9)または(10)に記載の撮像装置。
(12)
前記第3の配線と前記第4の配線はそれぞれ、前記配線層内の直方体形状に形成されている配線と、1画素あたり2以上のビアを介して接続されている
前記(9)乃至(11)のいずれかに記載の撮像装置。
(13)
前記第3の配線と前記第4の配線はそれぞれ、前記配線層内の直方体形状に形成されている配線と、直方体形状で形成されているトレンチを介して接続されている
前記(9)乃至(11)のいずれかに記載の撮像装置。
(14)
前記第3の配線と前記第4の配線はそれぞれ、前記半導体基板に形成されている2以上のビアと接続され、前記ビアを介して、前記半導体基板内に直方体形状で形成されている配線と接続されている
前記(9)乃至(11)のいずれかに記載の撮像装置。
(15)
前記第3の配線と前記第4の配線はそれぞれ、前記半導体基板に形成されている直方体形状で形成されているトレンチと接続され、前記トレンチを介して、前記半導体基板内に直方体形状で形成されている配線と接続されている
前記(9)乃至(11)のいずれかに記載の撮像装置。
(16)
前記第3の配線と前記第4の配線はそれぞれ、前記配線層に形成されている直方体形状で形成されている配線と接続されている
前記(9)乃至(11)のいずれかに記載の撮像装置。
(17)
前記第3の配線と前記第4の配線はそれぞれ、前記配線層に形成されている直方体形状で形成されている、1画素あたり2以上の配線と接続されている
前記(9)乃至(11)のいずれかに記載の撮像装置。
(18)
フォトダイオードと、
前記フォトダイオードで生成された電荷を第1の電荷蓄積部に転送する第1の転送トランジスタと、
前記フォトダイオードで生成された電荷を第2の電荷蓄積部に転送する第2の転送トランジスタと
を含む画素が、行列状に配置されている半導体層と、
前記半導体層に積層されている配線層と
を備え、
前記配線層の前記半導体層が積層されている第1の面と対向する第2の面側に、
前記行列状に配置されている前記画素のうちの、行方向または列方向に配置されている複数の画素の前記第1の転送トランジスタが接続されている第1の配線と、
複数の画素の前記第2の転送トランジスタが接続されている第2の配線と
を備える撮像素子と、
周期的に明るさが変動する照射光を照射する光源と、
前記照射光の照射タイミングを制御する発光制御部と
を備える測距モジュール
を備える電子機器。
(19)
フォトダイオードと、
前記フォトダイオードで生成された電荷を第1の電荷蓄積部に転送する第1の転送トランジスタと、
前記フォトダイオードで生成された電荷を第2の電荷蓄積部に転送する第2の転送トランジスタと
を含む画素が、行列状に配置されている半導体層と、
前記半導体層に積層されている配線層と
を備え、
前記配線層の前記半導体層が積層されている第1の面と対向する第2の面側に、
前記第1の転送トランジスタが接続されている第1の配線と、
前記第2の転送トランジスタが接続されている第2の配線と
を備え、
前記第2の面側に積層される半導体基板の前記第2の面と接する面側に、
前記行列状に配置されている前記画素のうちの、行方向または列方向に配置されている複数の画素の前記第1の配線が接続されている第3の配線と、
複数の画素の前記第2の転送トランジスタが接続されている第4の配線と
を備える撮像装置と、
周期的に明るさが変動する照射光を照射する光源と、
前記照射光の照射タイミングを制御する発光制御部と
を備える測距モジュール
を備える電子機器。
10 測距装置, 11 レンズ, 12 受光部, 13 信号処理部, 14 発光部, 15 発光制御部, 21 パターン切替部, 22 距離画像生成部, 41 画素アレイ部, 42 垂直駆動部, 43 カラム処理部, 44 水平駆動部, 45 システム制御部, 46 画素駆動線, 47 垂直信号線, 48 信号処理部, 50 画素, 51 タップ, 52 転送トランジスタ, 52 転送トランジスタ, 54 リセットトランジスタ, 56 排出トランジスタ, 57 増幅トランジスタ, 58 選択トランジスタ, 60 付加容量部, 61 フォトダイオード, 65 ウェルコンタクト, 111 半導体基板, 112 多層配線層, 113 反射防止膜, 114 画素境界部, 115 画素間遮光膜, 116 平坦化膜, 117 オンチップレンズ, 121 半導体領域, 122 半導体領域, 123 酸化ハフニウム膜, 124 酸化アルミニウム膜, 125 酸化シリコン膜, 131 画素間分離部, 132 層間絶縁膜, 133 配線, 134 配線, 151 反射防止膜, 153 PD上部領域, 161 第1の半導体基板, 162 第2の半導体基板, 163 画素領域, 164 制御回路, 165 ロジック回路, 166 アナログ回路, 171 接合面, 201,202,203,241,242,243,244 配線, 251 ビア, 252 接続端子, 253 裏打ちビア, 301,302 配線, 331 裏打ちビア, 332 裏打ちトレンチ, 341 配線

Claims (19)

  1. フォトダイオードと、
    前記フォトダイオードで生成された電荷を第1の電荷蓄積部に転送する第1の転送トランジスタと、
    前記フォトダイオードで生成された電荷を第2の電荷蓄積部に転送する第2の転送トランジスタと
    を含む画素が、行列状に配置されている半導体層と、
    前記半導体層に積層されている配線層と
    を備え、
    前記配線層の前記半導体層が積層されている第1の面と対向する第2の面側に、
    前記行列状に配置されている前記画素のうちの、行方向または列方向に配置されている複数の画素の前記第1の転送トランジスタが接続されている第1の配線と、
    複数の画素の前記第2の転送トランジスタが接続されている第2の配線と
    を備える撮像素子。
  2. 前記第1の配線と前記第2の配線はそれぞれ、直方体形状に形成されている導電体である
    請求項1に記載の撮像素子。
  3. 前記第1の配線と前記第2の配線はそれぞれ、前記配線層内の直方体形状に形成されている配線と、1画素あたり2以上のビアを介して接続されている
    請求項1に記載の撮像素子。
  4. 前記第1の配線と前記第2の配線はそれぞれ、前記配線層内の直方体形状に形成されている配線と、直方体形状で形成されているトレンチを介して接続されている
    請求項1に記載の撮像素子。
  5. 前記第1の配線と前記第2の配線はそれぞれ、前記第2の面に積層される半導体基板に形成されている2以上のビアと接続され、前記ビアを介して、前記半導体基板内に直方体形状で形成されている配線と接続されている
    請求項1に記載の撮像素子。
  6. 前記第1の配線と前記第2の配線はそれぞれ、前記第2の面に積層される半導体基板に形成されている直方体形状で形成されているトレンチと接続され、前記トレンチを介して、前記半導体基板内に直方体形状で形成されている配線と接続されている
    請求項1に記載の撮像素子。
  7. 前記第1の配線と前記第2の配線はそれぞれ、前記第2の面に積層される半導体基板に形成されている直方体形状で形成されている配線と接続されている
    請求項1に記載の撮像素子。
  8. 前記第1の配線と前記第2の配線はそれぞれ、前記第2の面に積層される半導体基板に形成されている直方体形状で形成されている、1画素あたり2以上の配線と接続されている
    請求項1に記載の撮像素子。
  9. フォトダイオードと、
    前記フォトダイオードで生成された電荷を第1の電荷蓄積部に転送する第1の転送トランジスタと、
    前記フォトダイオードで生成された電荷を第2の電荷蓄積部に転送する第2の転送トランジスタと
    を含む画素が、行列状に配置されている半導体層と、
    前記半導体層に積層されている配線層と
    を備え、
    前記配線層の前記半導体層が積層されている第1の面と対向する第2の面側に、
    前記第1の転送トランジスタが接続されている第1の配線と、
    前記第2の転送トランジスタが接続されている第2の配線と
    を備え、
    前記第2の面側に積層される半導体基板の前記第2の面と接する面側に、
    前記行列状に配置されている前記画素のうちの、行方向または列方向に配置されている複数の画素の前記第1の配線が接続されている第3の配線と、
    複数の画素の前記第2の転送トランジスタが接続されている第4の配線と
    を備える撮像装置。
  10. 前記半導体基板は、前記画素からの信号を処理する回路が形成されている基板である
    請求項9に記載の撮像装置。
  11. 前記第3の配線と前記第4の配線はそれぞれ、直方体形状に形成されている導電体である
    請求項9に記載の撮像装置。
  12. 前記第3の配線と前記第4の配線はそれぞれ、前記配線層内の直方体形状に形成されている配線と、1画素あたり2以上のビアを介して接続されている
    請求項9に記載の撮像装置。
  13. 前記第3の配線と前記第4の配線はそれぞれ、前記配線層内の直方体形状に形成されている配線と、直方体形状で形成されているトレンチを介して接続されている
    請求項9に記載の撮像装置。
  14. 前記第3の配線と前記第4の配線はそれぞれ、前記半導体基板に形成されている2以上のビアと接続され、前記ビアを介して、前記半導体基板内に直方体形状で形成されている配線と接続されている
    請求項9に記載の撮像装置。
  15. 前記第3の配線と前記第4の配線はそれぞれ、前記半導体基板に形成されている直方体形状で形成されているトレンチと接続され、前記トレンチを介して、前記半導体基板内に直方体形状で形成されている配線と接続されている
    請求項9に記載の撮像装置。
  16. 前記第3の配線と前記第4の配線はそれぞれ、前記配線層に形成されている直方体形状で形成されている配線と接続されている
    請求項9に記載の撮像装置。
  17. 前記第3の配線と前記第4の配線はそれぞれ、前記配線層に形成されている直方体形状で形成されている、1画素あたり2以上の配線と接続されている
    請求項9に記載の撮像装置。
  18. フォトダイオードと、
    前記フォトダイオードで生成された電荷を第1の電荷蓄積部に転送する第1の転送トランジスタと、
    前記フォトダイオードで生成された電荷を第2の電荷蓄積部に転送する第2の転送トランジスタと
    を含む画素が、行列状に配置されている半導体層と、
    前記半導体層に積層されている配線層と
    を備え、
    前記配線層の前記半導体層が積層されている第1の面と対向する第2の面側に、
    前記行列状に配置されている前記画素のうちの、行方向または列方向に配置されている複数の画素の前記第1の転送トランジスタが接続されている第1の配線と、
    複数の画素の前記第2の転送トランジスタが接続されている第2の配線と
    を備える撮像素子と、
    周期的に明るさが変動する照射光を照射する光源と、
    前記照射光の照射タイミングを制御する発光制御部と
    を備える測距モジュール
    を備える電子機器。
  19. フォトダイオードと、
    前記フォトダイオードで生成された電荷を第1の電荷蓄積部に転送する第1の転送トランジスタと、
    前記フォトダイオードで生成された電荷を第2の電荷蓄積部に転送する第2の転送トランジスタと
    を含む画素が、行列状に配置されている半導体層と、
    前記半導体層に積層されている配線層と
    を備え、
    前記配線層の前記半導体層が積層されている第1の面と対向する第2の面側に、
    前記第1の転送トランジスタが接続されている第1の配線と、
    前記第2の転送トランジスタが接続されている第2の配線と
    を備え、
    前記第2の面側に積層される半導体基板の前記第2の面と接する面側に、
    前記行列状に配置されている前記画素のうちの、行方向または列方向に配置されている複数の画素の前記第1の配線が接続されている第3の配線と、
    複数の画素の前記第2の転送トランジスタが接続されている第4の配線と
    を備える撮像装置と、
    周期的に明るさが変動する照射光を照射する光源と、
    前記照射光の照射タイミングを制御する発光制御部と
    を備える測距モジュール
    を備える電子機器。
JP2020115687A 2020-07-03 2020-07-03 撮像素子、撮像装置、電子機器 Pending JP2022013260A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020115687A JP2022013260A (ja) 2020-07-03 2020-07-03 撮像素子、撮像装置、電子機器
PCT/JP2021/023307 WO2022004445A1 (ja) 2020-07-03 2021-06-21 撮像素子、撮像装置、電子機器
US18/002,077 US20230352512A1 (en) 2020-07-03 2021-06-21 Imaging element, imaging device, electronic equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020115687A JP2022013260A (ja) 2020-07-03 2020-07-03 撮像素子、撮像装置、電子機器

Publications (1)

Publication Number Publication Date
JP2022013260A true JP2022013260A (ja) 2022-01-18

Family

ID=79316186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020115687A Pending JP2022013260A (ja) 2020-07-03 2020-07-03 撮像素子、撮像装置、電子機器

Country Status (3)

Country Link
US (1) US20230352512A1 (ja)
JP (1) JP2022013260A (ja)
WO (1) WO2022004445A1 (ja)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010283288A (ja) * 2009-06-08 2010-12-16 Panasonic Corp 配線形成方法及び半導体装置
JP2013096941A (ja) * 2011-11-04 2013-05-20 Sony Corp 撮像装置、撮像方法、及びプログラム
JP6976744B2 (ja) * 2017-06-29 2021-12-08 キヤノン株式会社 撮像装置、撮像システム、および、移動体

Also Published As

Publication number Publication date
WO2022004445A1 (ja) 2022-01-06
US20230352512A1 (en) 2023-11-02

Similar Documents

Publication Publication Date Title
KR102484024B1 (ko) 수광 소자, 거리측정 모듈, 및, 전자 기기
WO2021060017A1 (en) Light-receiving element, distance measurement module, and electronic apparatus
WO2022014365A1 (ja) 受光素子およびその製造方法、並びに、電子機器
WO2021251152A1 (ja) 受光装置およびその製造方法、並びに、測距装置
WO2021085172A1 (ja) 受光素子、測距モジュール、および、電子機器
US20230038698A1 (en) Imaging element and distance measurement module
WO2022004445A1 (ja) 撮像素子、撮像装置、電子機器
WO2021256261A1 (ja) 撮像素子、電子機器
JP2021082897A (ja) 撮像装置
WO2021241191A1 (ja) 測距装置
WO2024043056A1 (ja) 撮像素子、測距装置
WO2021085171A1 (ja) 受光素子、測距モジュール、および、電子機器
WO2023286391A1 (ja) 受光装置、電子機器及び受光方法
WO2021240988A1 (ja) 測距装置
WO2022209326A1 (ja) 光検出装置
WO2023145441A1 (ja) 光検出装置