JP2022012964A - Large diameter imaging lens - Google Patents

Large diameter imaging lens Download PDF

Info

Publication number
JP2022012964A
JP2022012964A JP2020115167A JP2020115167A JP2022012964A JP 2022012964 A JP2022012964 A JP 2022012964A JP 2020115167 A JP2020115167 A JP 2020115167A JP 2020115167 A JP2020115167 A JP 2020115167A JP 2022012964 A JP2022012964 A JP 2022012964A
Authority
JP
Japan
Prior art keywords
lens
group
lenses
lens group
aperture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020115167A
Other languages
Japanese (ja)
Other versions
JP7570602B2 (en
Inventor
靖之 菅野
Yasuyuki Sugano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cosina Co Ltd
Original Assignee
Cosina Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cosina Co Ltd filed Critical Cosina Co Ltd
Priority to JP2020115167A priority Critical patent/JP7570602B2/en
Priority claimed from JP2020115167A external-priority patent/JP7570602B2/en
Publication of JP2022012964A publication Critical patent/JP2022012964A/en
Application granted granted Critical
Publication of JP7570602B2 publication Critical patent/JP7570602B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lenses (AREA)

Abstract

To provide a large diameter imaging lens which has the sufficient optical performance from the infinity to the short range as a single focus lens to be used in imaging from semi-wide angle to middle telephoto being the short-range imaging side while being miniaturized.SOLUTION: A large diameter imaging lens comprises: a plurality of front positive lenses LF continuous from an object OBJ side; and a front negative lens L4 on the most aperture stop STO side. The entire lenses LF are constituted by meniscus lenses whose object OBJ side is the convex shape. The large diameter imaging lens comprises: a front lens group 101 in which a curvature radius of each lens surface on the aperture stop STO side gradually becomes smaller from the object OBJ side to the aperture stop STO side and the lens surfaces of the entire lenses are in contact with the air; a plurality of rear positive lenses L6 which are held between a biconcave lens L5 arranged on the most aperture stop STO side and a final lens LE which is arranged on the most image IMG side, in which both surfaces are curved in the same direction on an optical axis Dc and has the negative power; and a rear lens group 102 which includes at least a biconvex lens in the rear positive lens L6.SELECTED DRAWING: Figure 1

Description

本発明は、デジタルカメラ等に使用する交換レンズとして用いて好適な大口径撮像レンズに関する。 The present invention relates to a large-diameter image pickup lens suitable for use as an interchangeable lens used in a digital camera or the like.

一般に、デジタルカメラ等に使用する交換レンズは、ミラーレス化やマウントの大口径化により、バックフォーカスや後玉径の制約が少なくなり、レンズタイプのバリエーションが広がっているとともに、撮像素子における写真フイルムと同等サイズの大型化及び写真フイルム以上の高性能化(高精細化)が進んでいる。この結果、準広角から中望遠域(撮影対角画角57-28゜)の明るい単焦点レンズ(交換レンズ)では、Fナンバー1.8以下が普通になり、より明るいレンズが求められている。また、デジタルカメラ本体の小型化により、交換レンズのコンパクト化、更には、消費者ニーズによるフォーカシング撮影領域全体における収差安定化も求められている。 In general, interchangeable lenses used in digital cameras, etc. have less restrictions on back focus and rear lens diameter due to mirrorless cameras and larger mount diameters, and the variety of lens types is expanding. The size of the lens is increasing and the performance is higher than that of the photo film (higher definition). As a result, in a bright single focus lens (interchangeable lens) in the quasi-wide-angle to medium telephoto range (shooting diagonal angle of view 57-28 °), an F number of 1.8 or less is common, and a brighter lens is required. .. Further, by downsizing the digital camera body, it is required to make the interchangeable lens compact, and further to stabilize the aberration in the entire focusing shooting region according to consumer needs.

このような要請から、開口絞りに対して光軸方向の物体側に前レンズ群を配するとともに、像側に後レンズ群を配することにより、軸上光線及び軸外主光線の各レンズ面への入射角を小さくし、各レンズ面における球面収差,非点収差及びコマ収差の発生を抑制できるようにした対称配置タイプのレンズ構成を備える光学系も知られている。特に、この種の光学系では、レンズのパワー配置が開口絞りを中心にして対称に近いほど、球面収差,コマ収差,歪曲収差,倍率色収差等の諸収差を、前レンズ群と後レンズ群間で打ち消し合うことができるため、光学系全体として良好な収差補正を実現できる。しかし、この種の対称配置タイプは、一般に、遠距離撮影には対応していないとともに、結像サイズなどの仕様も大きく異なるため、用途としては、主に、複写用レンズや製版カメラ用レンズなどの特定分野に限られている。一方、この種の一般的な対称配置タイプのレンズ構成を変形させた、いわゆる変形ダブルガウスタイプとして、バックフォーカスの短いレンジファインダーカメラ(フィルムカメラ)用レンズから発展しながら、コンパクトデジタルカメラ及びミラーレスデジタルカメラ等に使用できるようにした大口径撮像レンズも提案されている。 In response to such a request, by arranging the front lens group on the object side in the optical axis direction with respect to the aperture aperture and the rear lens group on the image side, each lens surface of the on-axis ray and the off-axis main ray is arranged. An optical system having a symmetrical arrangement type lens configuration is also known in which the angle of incidence on the lens is reduced so that the occurrence of spherical aberration, astigmatism, and coma on each lens surface can be suppressed. In particular, in this type of optical system, the closer the power arrangement of the lens is to symmetry with respect to the aperture aperture, the more various aberrations such as spherical aberration, coma aberration, distortion, and chromatic aberration of magnification are caused between the front lens group and the rear lens group. Since they can cancel each other out with each other, good aberration correction can be realized for the entire optical system. However, this type of symmetrical arrangement type is generally not compatible with long-distance photography and has significantly different specifications such as imaging size. Therefore, it is mainly used for copying lenses and plate-making camera lenses. Limited to a specific field of. On the other hand, as a so-called modified double gauss type, which is a modification of this type of general symmetrical arrangement type lens configuration, it has evolved from a lens for range finder cameras (film cameras) with a short back focus, and is a compact digital camera and mirrorless. Large-diameter imaging lenses that can be used in digital cameras and the like have also been proposed.

従来、このような大口径撮像レンズ、特に、Fナンバーが1.7以下となり、開口絞りの前後に3-5枚のレンズを配した対称配置タイプの撮影光学系としては、特許文献1に開示される一眼レフカメラ用の大口径中望遠レンズ及び特許文献2に開示されるレンジファインダーカメラ用のレンズシステムが知られている。同文献1に開示される大口径中望遠レンズは、前群に4枚の正レンズと1枚の負レンズを配した変形ダブルガウスタイプのレンズ例である。特に、撮影画角が約29゜、Fナンバーが1.4程度での撮影レンズで、ピントの合った位置前後のデフォーカス領域でのぼけを良好にした高性能な大口径中望遠レンズの提供を目的としたものであり、具体的には、物体側に強い凸面を向けた少なくとも3枚の正レンズと像側に強い凹面を向けた負レンズ1枚とを少なくとも含む前群と、接合レンズと物体側に強い凹面を向けた負レンズと少なくとも2枚の正レンズを含む後群にて構成され、後群中に屈折率分布型レンズを用いて構成したものである。一方、同文献2に開示されるレンズシステムは、後レンズ群に負レンズを配したゾナータイプのレンズ例である。具体的には、前レンズ群を、物体側から1枚の正レンズ,正レンズと正レンズと負レンズの3枚接合レンズにより構成するとともに、後レンズ群を、負レンズと正レンズと負レンズの3枚接合レンズにより構成したものである。このように、F1.5クラスにおけるオリジナル構成のゾナータイプ標準レンズの場合、接合レンズが多用されている。また、変形ダブルガウスタイプのレンズの後レンズ群は、1枚の負レンズが多いが、ゾナータイプは負レンズが2枚であり、この負レンズ間に正レンズが挟まれる接合レンズとして使用されている。 Conventionally, such a large-diameter image pickup lens, particularly a symmetrical arrangement type photographing optical system in which an F number is 1.7 or less and 3 to 5 lenses are arranged before and after an aperture diaphragm, is disclosed in Patent Document 1. A large-diameter medium-telephoto lens for a single-lens reflex camera and a lens system for a range finder camera disclosed in Patent Document 2 are known. The large-diameter medium-telephoto lens disclosed in Document 1 is an example of a modified double-Gauss type lens in which four positive lenses and one negative lens are arranged in the front group. In particular, we provide a high-performance large-diameter medium-telephoto lens with a shooting angle of view of about 29 ° and an F number of about 1.4, with good blur in the defocus area before and after the in-focus position. Specifically, the front group including at least three positive lenses with a strong convex surface facing the object side and one negative lens with a strong concave surface facing the image side, and a junction lens. It is composed of a rear group including a negative lens with a strong concave surface facing the object side and at least two positive lenses, and is configured by using a refractive index distribution type lens in the rear group. On the other hand, the lens system disclosed in Document 2 is an example of a Sonnar type lens in which a negative lens is arranged in the rear lens group. Specifically, the front lens group is composed of one positive lens from the object side, and the three-element junction lens of the positive lens, the positive lens, and the negative lens, and the rear lens group is composed of the negative lens, the positive lens, and the negative lens. It is composed of the three-lens junction lens of. As described above, in the case of the Sonnar type standard lens having the original configuration in the F1.5 class, a junction lens is often used. In addition, the rear lens group of the modified double gauss type lens often has one negative lens, while the Sonnar type has two negative lenses, and it is used as a junction lens in which a positive lens is sandwiched between these negative lenses. There is.

特開平5-142469号公報Japanese Unexamined Patent Publication No. 5-142469 米国特許公開2186621号公報U.S. Patent Publication No. 2186621

しかし、上述した特許文献1及び2に開示されるような対称配置タイプによる従来のレンズは次のような課題も存在した。 However, the conventional lens of the symmetrical arrangement type as disclosed in the above-mentioned Patent Documents 1 and 2 also has the following problems.

即ち、特許文献1の変形ダブルガウスタイプをはじめ、一般に、中望遠撮影領域のレンズの場合、公知の収差補正技術により正パワーを分割してレンズ枚数を増やしているため、レンズ全長が長くなる傾向があるとともに、他方、特許文献2のゾナータイプによるレンズの場合、接合レンズを多用する傾向があるため、単レンズにより構成する場合と比較して屈折率差が少なくなる。この結果、レンズが厚くなり、かつ重量アップを招きやすい。結局、大口径撮像レンズにおいては、高性能を確保しつつコンパクト化を図ることが容易でない。しかも、従来のこの種レンズの場合、主に、遠方物体に対する各種収差の補正に重点が置かれていたため、至近距離に対する光学性能を十分に確保できない課題も残されていた。 That is, in the case of a lens in the medium telephoto shooting region, such as the modified double gauss type of Patent Document 1, the total length of the lens tends to be long because the positive power is divided by a known aberration correction technique to increase the number of lenses. On the other hand, in the case of the Sonnar type lens of Patent Document 2, since there is a tendency to use a lot of bonded lenses, the difference in refraction coefficient is smaller than that of the case of using a single lens. As a result, the lens becomes thicker and tends to increase in weight. After all, it is not easy to make a large-diameter image pickup lens compact while ensuring high performance. Moreover, in the case of this type of conventional lens, since the emphasis is mainly on the correction of various aberrations for distant objects, there remains a problem that sufficient optical performance cannot be ensured at close range.

このように、現状では、準広角から中望遠域の撮影に用いる単焦点レンズとして、無限遠から近距離まで十分な光学性能によりカバーするとともに、小型コンパクト化を図るデジタルカメラ等に使用する交換レンズ(単焦点レンズ)を得る観点からの明るい交換レンズの実現は容易でなく、現在においても、このような交換レンズを希望する消費者ニーズに十分に応えていないのが実情である。
本発明は、このような背景技術に存在する課題を解決した大口径撮像レンズの提供を目的とするものである。
As described above, at present, as a single focus lens used for shooting in the quasi-wide-angle to medium-television range, an interchangeable lens used for digital cameras, etc., which covers from infinity to short distances with sufficient optical performance and is compact and compact. It is not easy to realize a bright interchangeable lens from the viewpoint of obtaining a single focus lens, and even now, the reality is that such an interchangeable lens does not fully meet the needs of consumers.
An object of the present invention is to provide a large-diameter image pickup lens that solves the problems existing in such a background technique.

本発明は、上述した課題を解決するため、レンズ全系100に、開口絞りSTOに対して、物体OBJ側に配した正のパワーを有する前レンズ群101,及び像IMG側に配した正のパワーを有する後レンズ群102を備える大口径撮像レンズ1を構成するに際して、物体OBJ側から連続した複数枚の前正レンズLF,L2,L3及び最も開口紋りSTO側の前負レンズL4を含み、全レンズLF,L2,L3,L4を物体OBJ側が凸形状のメニスカスレンズにより構成するとともに、開口絞りSTO側の各レンズ面(i=2,4,6,8)の曲率半径が物体OBJ側から開口絞りSTO側へ順次小さくなり、かつ全レンズLF,L2,L3,L4のレンズ面(i=1,2,3,4,5,6,7,8)が空気に接触する前レンズ群101と、最も開口絞りSTO側に配した両凹レンズL5と最も像IMG側に配して両面が光軸Dc上の同方向に湾曲した負のパワーを有する最終レンズLEとにより挟まれた複数枚の後正レンズL6,L7を含み、かつ当該後正レンズL6,L7に少なくとも一つの両凸レンズ(L6,L7)を含ませた後レンズ群102とを有するレンズ全系100を備え、物体距離を無限遠とし、全系焦点距離をAFL,レンズ全系100の光軸長をTLL,最も物体OBJ側のレンズ面(i=1)から像IMGまでの光軸長をTLi,最終レンズLEの像IMG側のレンズ面から像IMGまでの光軸長をIMDとしたとき、「0.68<〔TLL/AFL〕<1.00」(条件式[1]),「0.8 <〔TLi/AFL〕<1.4」(条件式[2]),「0.2 <〔IMD/AFL〕」(条件式[3])の各条件を満たすように構成したことを特徴とする。 In order to solve the above-mentioned problems, the present invention has a front lens group 101 having a positive power arranged on the object OBJ side and a positive lens arranged on the image IMG side with respect to the aperture aperture STO in the entire lens system 100. When constructing the large-diameter image pickup lens 1 including the rear lens group 102 having power, a plurality of front positive lenses LF, L2, L3 continuous from the object OBJ side and a front negative lens L4 on the most open pattern STO side are included. All lenses LF, L2, L3, L4 are composed of a meniscus lens having a convex shape on the object OBJ side, and the radius of curvature of each lens surface (i = 2, 4, 6, 8) on the aperture aperture STO side is the object OBJ side. Front lens group that gradually decreases from the aperture to the STO side and the lens surfaces (i = 1,2,3,4,5,6,7,8) of all lenses LF, L2, L3, L4 come into contact with air. A plurality of lenses sandwiched between 101, a biconcave lens L5 arranged on the most open aperture STO side, and a final lens LE having a negative power arranged on the image IMG side and having both sides curved in the same direction on the optical axis Dc. The entire lens system 100 including the posterior positive lenses L6 and L7 and having the posterior lens group 102 including at least one biconvex lens (L6, L7) in the posterior positive lenses L6 and L7 is provided with an object distance. At infinity, the focal distance of the entire system is AFL, the optical axis length of the entire lens system 100 is TLL, the optical axis length from the lens surface (i = 1) on the most object OBJ side to the image IMG is TLi, and the image of the final lens LE. When the optical axis length from the lens surface on the IMG side to the image IMG is IMD, "0.68 <[TLL / AFL] <1.00" (conditional formula [1]), "0.8 <[TLi / AFL] <1.4 "(conditional expression [2]) and" 0.2 <[IMD / AFL] "(conditional expression [3]) are configured to satisfy each condition.

また、本発明は、好適な形態により、後レンズ群102は、両凹レンズL5の開口絞りSTO側のレンズ面(i=9)から像IMG側へ順次空気に接触する三番目までのレンズ面(i=9,11,13)の湾曲方向(+,+,-)と、最終レンズLEの像IMG側のレンズ面(i=15)から開口絞りSTO側へ順次空気に接触する三番目までのレンズ面(i=15,14,13)の湾曲方向(-,-,+)を、逆方向に設定することができる。さらに、後レンズ群102は、2枚の後正レンズL6,L7を有することにより、開口絞りSTO側の当該後正レンズL6から開口絞りSTO側の後レンズA群102A,及び像IMG側の当該後正レンズL7から像IMG側の後レンズB群102Bを備え、後レンズA群102Aが無限物体時であって、かつレンズ全系100の最も物体OBJ側に配する最先レンズLFの物体OBJ側のレンズ面(i=1)から当該後レンズA群102Aの出射後における近軸像位置までの長さの絶対値が最も大きくなる際に、物体距離を無限遠とし、かつ全系のFナンバーをFNO,前レンズ群101の光軸長をLF1,後レンズ群102の光軸長をLF2,後レンズA群102Aの光軸長をTL2A,後レンズB群102Bの光軸長をTL2Bとしたとき、「0.8<〔TLl/TL2〕<1.6」(条件式[4]),「0.6<〔TL2A/TL2B〕<1.6」(条件式[5]),「1.0<〔TLL/(AFL/FNO)〕<1.5」(条件式[6]),「0.3<〔TL2/(FL2/FNO)〕<0.6」(条件式[7])の各条件を満たすように設定することができる。 Further, in the present invention, according to a preferred embodiment, the rear lens group 102 has a lens surface (i = 9) on the aperture stop STO side of the biconcave lens L5 up to a third lens surface (i = 9) in which the lens surface (i = 9) sequentially comes into contact with air toward the image IMG side. The bending direction (+, +,-) of i = 9,11,13) and the lens surface (i = 15) on the image IMG side of the final lens LE to the third lens surface (i = 15) that sequentially contacts the air toward the aperture stop STO side. The bending direction (-,-, +) of the lens surface (i = 15, 14, 13) can be set in the opposite direction. Further, since the rear lens group 102 has two rear regular lenses L6 and L7, the rear lens group A 102A on the aperture aperture STO side, the rear lens group A 102A on the aperture aperture STO side, and the image IMG side from the rear lens group L6 on the aperture aperture STO side. The rear lens B group 102B on the image IMG side from the rear positive lens L7 is provided, the rear lens A group 102A is an infinite object, and the object OBJ of the frontmost lens LF arranged on the most object OBJ side of the entire lens system 100. When the absolute value of the length from the lens surface (i = 1) on the side to the near-axis image position after the emission of the rear lens group A 102A becomes the largest, the object distance is set to infinity and the entire system is F. The number is FNO, the optical axis length of the front lens group 101 is LF1, the optical axis length of the rear lens group 102 is LF2, the optical axis length of the rear lens group A 102A is TL2A, and the optical axis length of the rear lens group B 102B is TL2B. Then, "0.8 <[TLl / TL2] <1.6" (conditional expression [4]), "0.6 << [TL2A / TL2B] <1.6" (conditional expression [5]), " 1.0 <[TLL / (AFL / FNO)] <1.5 "(conditional expression [6])," 0.3 <[TL2 / (FL2 / FNO)] <0.6 "(conditional expression [7]" ]) Can be set to satisfy each condition.

加えて、レンズ全系100は、3枚以上の前正レンズLF,L2,L3…及び2枚以上の後正レンズL6,L7…を含むとともに、全ての正レンズLF,L2…,L6,L7…において、d線の屈折率が1.75以上となる硝材を用いた正レンズを2枚以上含み、かつ平均アッベ数を38.0以上とし、レンズ全系100における全ての正レンズLF,L2…,L6,L7…の焦点距離の絶対値を、レンズ全系100における最大の焦点距離を有する負レンズの当該焦点距離の絶対値の80〔%〕よりも大きく設定することが望ましく、さらに、全ての正レンズLF,L2…,L6,L7…において、d線の屈折率が1.85以上となる硝材を用いた正レンズを少なくとも1枚含ませることがより望ましい。この際、前レンズ群101は、異常部分分散値dPgfの絶対値が0.02以上となる低屈折率低分散硝材を用いた少なくとも1枚のレンズを含ませて構成することができる。また、後レンズ群102は、最も開口絞りSTO側に配した両凹レンズL5とこの両凹レンズL5の像IMG側に配した後正レンズL6による接合レンズJaを備え、当該両凹レンズL5を、異常部分分散値dPgfの絶対値が0.02以上となる硝材を用いて形成するとともに、当該後正レンズL6を、d線の屈折率が1.75以上となる高屈折ガラスを用いて形成することができる。 In addition, the entire lens system 100 includes three or more front positive lenses LF, L2, L3 ... And two or more rear positive lenses L6, L7 ..., and all positive lenses LF, L2 ..., L6, L7. In ..., all positive lenses LF, L2 in the entire lens system 100 are included, including two or more positive lenses using a glass material having a d-line refractive index of 1.75 or more, and an average Abbe number of 38.0 or more. It is desirable to set the absolute value of the focal distances of ..., L6, L7 ... In all the positive lenses LF, L2 ..., L6, L7 ..., it is more desirable to include at least one positive lens using a glass material having a d-line refractive index of 1.85 or more. At this time, the front lens group 101 can be configured to include at least one lens using a low refractive index low dispersion glass material having an absolute partial dispersion value dPgf of 0.02 or more. Further, the rear lens group 102 includes a biconcave lens L5 arranged on the most aperture stop STO side and a junction lens Ja by a rear positive lens L6 arranged on the image IMG side of the biconcave lens L5, and the biconcave lens L5 is an abnormal portion. It is possible to form the rear positive lens L6 by using a glass material having an absolute value of the dispersion value dPgf of 0.02 or more, and to form the rear positive lens L6 by using a high refraction glass having a refractive index of 1.75 or more of the d line. can.

一方、レンズ全系100は、開口絞りSTOに対向するレンズ面(i=8,9)の曲率半径の絶対値を、前レンズ群101側を小さく設定し、かつ前レンズ群101側のレンズ面(i=8)の曲率半径をSR1,開口絞りSTOの空間間隔をTLSとしたとき、「1.0<〔SR1/TLS〕<1.5」(条件式[8])の条件を満たすことが望ましい。また、最終レンズLEは、メニスカス形状の非球面を含み、かつ当該最終レンズLEの焦点距離をFLEとしたとき、「-4.0<〔FLE/AFL〕<-0.8」(条件式[9])の条件を満たすように形成することが望ましい。さらに、レンズ全系100は、前レンズ群101に4枚のレンズLF,L2,L3,L4を配し、かつ後レンズ群102Bに4枚のレンズL5,L6,L7,LEを配することにより、全体で8枚のレンズLF,L2…L7,LEにより構成するとともに、Fナンバーを1.7以下に、かつ半画角を12-25〔゜〕にそれぞれ設定することができる。 On the other hand, in the entire lens system 100, the absolute value of the radius of curvature of the lens surface (i = 8, 9) facing the aperture stop STO is set small on the front lens group 101 side, and the lens surface on the front lens group 101 side. When the radius of curvature of (i = 8) is SR1 and the spatial spacing of the aperture stop STO is TLS, the condition of "1.0 <[SR1 / TLS] <1.5" (conditional expression [8]) is satisfied. Is desirable. Further, when the final lens LE includes a meniscus-shaped aspherical surface and the focal length of the final lens LE is FLE, "-4.0 <[FLE / AFL] <-0.8" (conditional expression []. It is desirable to form it so as to satisfy the conditions of 9]). Further, in the entire lens system 100, four lenses LF, L2, L3, L4 are arranged in the front lens group 101, and four lenses L5, L6, L7, LE are arranged in the rear lens group 102B. A total of eight lenses LF, L2 ... L7, LE can be used, and the F number can be set to 1.7 or less and the half angle of view can be set to 12-25 [°].

他方、フォーカス調整に関し、後レンズ群102は、複数枚の後正レンズL6,L7における相隣る前後の後正レンズL6とL7間の物体OBJ側を後レンズA群102Aとし、かつ像IMG側を後レンズB群102Bとするとともに、当該後レンズA群102Aの前後における空気空間Sf,Frの少なくとも一つを、フォーカス調整時に変化させる調整間隔として設定することができる。この際、調整間隔は、後レンズA群102Aに対して物体OBJ側の空気空間Sf,後レンズA群102Aに対して像IMG側の空気空間Sr,後レンズA群102Aに対して前後の空気空間Sf,Srのいずれか一つを含み、最大で三つのレンズ群101,102A,102Bを移動可能に構成することができる。 On the other hand, regarding the focus adjustment, in the rear lens group 102, the object OBJ side between the adjacent front and rear rear lenses L6 and L7 in the plurality of rear lenses L6 and L7 is set as the rear lens A group 102A, and the image IMG side. Can be set as the rear lens group B 102B, and at least one of the air spaces Sf and Fr before and after the rear lens group A 102A can be set as an adjustment interval to be changed at the time of focus adjustment. At this time, the adjustment interval is the air space Sf on the object OBJ side with respect to the rear lens group A 102A, the air space Sr on the image IMG side with respect to the rear lens group A 102A, and the air before and after with respect to the rear lens group A 102A. A maximum of three lens groups 101, 102A, 102B can be configured to be movable, including any one of the spaces Sf and Sr.

このような構成を有する本発明に係る大口径撮像レンズ1によれば、次のような顕著な効果を奏する。 According to the large-diameter image pickup lens 1 according to the present invention having such a configuration, the following remarkable effects are obtained.

(1) 物体OBJ側から連続した複数枚の前正レンズLF,L2…及び最も開口紋りSTO側の前負レンズL4を含み、全レンズLF,L2…を物体OBJ側が凸形状のメニスカスレンズにより構成するとともに、開口絞りSTO側の各レンズ面(i=2…)の曲率半径が物体OBJ側から開口絞りSTOへ順次小さくなり、かつ全レンズLF,L2…のレンズ面(i=1,2…)が空気に接触する前レンズ群101と、最も開口絞りSTO側に配した両凹レンズL5と最も像IMG側に配して両面が光軸Dc上の同方向に湾曲した負のパワーを有する最終レンズLEとにより挟まれた複数枚の後正レンズL6,L7を含み、かつ当該後正レンズL6,L7に少なくとも一つの両凸レンズ(L6,L7)を含ませた後レンズ群102とを有するレンズ全系100を備え、物体距離を無限遠とし、前述した条件式[1]-[3]を満たすように構成したため、構築した前レンズ群101により光軸Dc方向の長さを短縮できるとともに、各レンズ面の入出射角を緩めることにより収差発生を抑え、加えて、後レンズ群102を部分対称レンズ群として機能させることにより前段で発生した残存収差をバランス良く補正ことができる。これにより、準広角から中望遠域の撮影に用いる単焦点レンズとして、無限遠から近距離まで十分な光学性能によりカバーできるなど、消費者ニーズに十分に応えることができるデジタルカメラ等に最適な明るい交換レンズを実現できるとともに、光学系全体の小型コンパクト化を図りつつ大型高精細撮像素子にも対応できる大口径撮像レンズ1を得ることができる。 (1) A plurality of front positive lenses LF, L2 ... Continuous from the object OBJ side and a front negative lens L4 on the most open pattern STO side are included, and all lenses LF, L2 ... In addition, the radius of curvature of each lens surface (i = 2 ...) on the aperture aperture STO side gradually decreases from the object OBJ side to the aperture aperture STO, and the lens surfaces (i = 1, 2 ...) of all lenses LF, L2 ... ...) has a front lens group 101 that comes into contact with air, a biconcave lens L5 that is arranged on the most aperture aperture STO side, and a negative power that is arranged on the image IMG side and both sides are curved in the same direction on the optical axis Dc. It includes a plurality of posterior regular lenses L6, L7 sandwiched by the final lens LE, and has a posterior lens group 102 in which the posterior regular lenses L6, L7 include at least one biconvex lens (L6, L7). Since the entire lens system 100 is provided, the object distance is set to infinity, and the above-mentioned conditional equations [1]-[3] are satisfied, the length in the optical axis Dc direction can be shortened by the constructed front lens group 101. By loosening the entrance / exit angle of each lens surface, the occurrence of aberration can be suppressed, and in addition, by making the rear lens group 102 function as a partially symmetric lens group, the residual aberration generated in the previous stage can be corrected in a well-balanced manner. This is a bright replacement that is ideal for digital cameras that can fully meet consumer needs, such as being able to cover from infinity to short distances with sufficient optical performance as a single focus lens used for shooting in the quasi-wide-angle to medium-television range. It is possible to obtain a large-diameter image pickup lens 1 that can realize a lens and can also be used for a large-sized high-definition image pickup element while reducing the size and compactness of the entire optical system.

(2) 好適な態様により、後レンズ群102を構成するに際し、両凹レンズL5の開口絞りSTO側のレンズ面(i=9)から像IMG側へ順次空気に接触する三番目までのレンズ面(i=9…)の湾曲方向と、最終レンズLEの像IMG側のレンズ面(i=15)から開口絞りSTO側へ順次空気に接触する三番目までのレンズ面(i=15…)の湾曲方向を、逆方向に設定すれば、レンズ全系100における望ましい部分対称レンズ群を構築できるため、残存収差に対する、更なるバランスの良好な補正を実現できるとともに、収差変動の低減を図ることができる。 (2) According to a preferred embodiment, when the rear lens group 102 is formed, the lens surface (i = 9) on the aperture aperture STO side of the biconcave lens L5 to the third lens surface (i = 9) that sequentially comes into contact with air toward the image IMG side (2). The bending direction of i = 9 ...) and the bending of the third lens surface (i = 15 ...) that sequentially comes into contact with air from the lens surface (i = 15) on the image IMG side of the final lens LE to the aperture aperture STO side. If the direction is set to the opposite direction, a desirable partially symmetric lens group in the entire lens system 100 can be constructed, so that it is possible to realize a more well-balanced correction for residual aberration and reduce aberration fluctuation. ..

(3) 好適な態様により、後レンズ群102を構成するに際し、2枚の後正レンズL6,L7を有することにより、開口絞りSTO側の当該後正レンズL6から開口絞りSTO側の後レンズA群102A,及び像IMG側の当該後正レンズL7から像IMG側の後レンズB群102Bを備え、後レンズA群102Aが無限物体時であって、かつレンズ全系100の最も物体OBJ側に配する最先レンズLFの物体OBJ側のレンズ面(i=1)から当該後レンズA群102Aの出射後における近軸像位置までの長さの絶対値が最も大きくなる際に、物体距離を無限遠とし、前述した条件式[4]-[7]を満たすように設定すれば、後レンズA群102Aの通過後の光線を、アフォーカルレンズに近い状態にして光線角度の変化を少なくできるため、後レンズA群102Aを含むこの前後のレンズ群をフォーカス調整時に移動させる場合であっても、収差変動をより少なくできるとともに、組立工程における調整ポイントとして利用することができる。 (3) According to a preferred embodiment, when the rear lens group 102 is configured, by having two rear positive lenses L6 and L7, the rear lens A from the rear positive lens L6 on the aperture aperture STO side to the rear lens A on the aperture aperture STO side. The rear lens group 102A and the rear positive lens L7 on the image IMG side to the rear lens B group 102B on the image IMG side are provided, and the rear lens group A 102A is at the time of an infinite object and is on the most object OBJ side of the entire lens system 100. When the absolute value of the length from the lens surface (i = 1) on the object OBJ side of the frontmost lens LF to the near-axis image position after the emission of the rear lens group A 102A is the largest, the object distance is set. If the distance is set to infinity and the above-mentioned conditional equations [4]-[7] are set, the light beam after passing through the rear lens group A 102A can be brought into a state close to that of the afocal lens to reduce the change in the light beam angle. Therefore, even when the front and rear lens groups including the rear lens A group 102A are moved at the time of focus adjustment, the fluctuation of the aberration can be further reduced and the lens group can be used as an adjustment point in the assembly process.

(4) 好適な態様により、レンズ全系100を構成するに際し、3枚以上の前正レンズLF,L2,L3…及び2枚以上の後正レンズL6,L7…を含むとともに、全ての正レンズLF,L2…,L6,L7…において、d線の屈折率が1.75以上となる硝材を用いた正レンズを2枚以上含み、かつ平均アッベ数を38.0以上とし、レンズ全系100における全ての正レンズLF,L2…,L6,L7…の焦点距離の絶対値を、レンズ全系100における最大の焦点距離を有する負レンズの当該焦点距離の絶対値の80〔%〕よりも大きく設定すれば、全ての正レンズLF,L2…,L6,L7…の硝材特性及びパワー配分を考慮することによりガラス特性とレンズ形状をバランス良く組合せることができるため、レンズ全系において、微調整を含めた収差調整を容易かつ良好に行うことができる。特に、前レンズ群101における各前正レンズLF,L2,L3…のパワーバランスを高屈折率硝材と組合わせた曲率に選定できるため、前レンズ群101のコンパクト化及び収差補正効果を高めることができるとともに、後レンズ群102による軸上収差(色収差)の補正を有利に行うことができる。なお、全ての正レンズLF,L2…,L6,L7…において、d線の屈折率が1.85以上となる硝材を用いた正レンズを少なくとも1枚含ませることにより、より望ましい効果を得ることができる。 (4) According to a preferred embodiment, when the entire lens system 100 is configured, three or more front positive lenses LF, L2, L3 ... And two or more rear positive lenses L6, L7 ... Are included, and all positive lenses are included. In LF, L2 ..., L6, L7 ..., two or more positive lenses using a glass material having a d-line refractive index of 1.75 or more are included, and the average Abbe number is 38.0 or more, and the entire lens system is 100. The absolute value of the focal distances of all the positive lenses LF, L2 ..., L6, L7 ... If set, the glass characteristics and lens shape can be combined in a well-balanced manner by considering the glass material characteristics and power distribution of all positive lenses LF, L2 ..., L6, L7 ..., so fine adjustment can be made in the entire lens system. It is possible to easily and satisfactorily adjust the lens including the lens. In particular, since the power balance of each front lens LF, L2, L3 ... In the front lens group 101 can be selected to the curvature combined with the high refractive index glass material, the front lens group 101 can be made compact and the aberration correction effect can be enhanced. At the same time, it is possible to advantageously correct the axial aberration (chromatic aberration) by the rear lens group 102. In all the positive lenses LF, L2 ..., L6, L7 ..., a more desirable effect can be obtained by including at least one positive lens using a glass material having a refractive index of 1.85 or more of the d-line. Can be done.

(5) 好適な態様により、前レンズ群101を構成するに際し、異常部分分散値dPgfの絶対値が0.02以上となる低屈折率低分散硝材を用いた少なくとも1枚のレンズを含ませて構成すれば、特に、低屈折率低分散硝材を用いた正レンズを含ませることにより、色収差が目立つ傾向のある中望遠撮影領域での色収差の捕正効果をより高めることができる。 (5) According to a preferred embodiment, when the front lens group 101 is configured, at least one lens using a low refractive index low dispersion glass material having an absolute partial dispersion value dPgf of 0.02 or more is included. If configured, in particular, by including a positive lens using a low-refractive index, low-dispersion glass material, it is possible to further enhance the effect of capturing chromatic aberration in the medium telephoto imaging region where chromatic aberration tends to be conspicuous.

(6) 好適な態様により、後レンズ群102を構成するに際し、最も開口絞りSTO側に配した両凹レンズL5とこの両凹レンズL5の像IMG側に配した後正レンズL6による接合レンズJaを備え、当該両凹レンズL5を、異常部分分散値dPgfの絶対値が0.02以上となる硝材を用いて形成するとともに、当該後正レンズL6を、d線の屈折率が1.75以上となる高屈折ガラスを用いて形成すれば、特に、アッベ数の大きなガラスと屈折率差の利用により、球面収差及び軸上色収差に対する捕正効果をより高めることができる。 (6) According to a preferred embodiment, when the rear lens group 102 is configured, the biconcave lens L5 arranged on the most aperture aperture STO side and the junction lens Ja by the rear positive lens L6 arranged on the image IMG side of the biconcave lens L5 are provided. The biconcave lens L5 is formed by using a glass material having an abnormal partial dispersion value dPgf of 0.02 or more, and the rear positive lens L6 has a high refraction index of 1.75 or more. If it is formed by using a refracting glass, it is possible to further enhance the correction effect on spherical aberration and axial chromatic aberration, in particular by utilizing a glass having a large Abbe number and a refraction coefficient difference.

(7) 好適な態様により、レンズ全系100を構成するに際し、開口絞りSTOに対向するレンズ面(i=8,9)の曲率半径の絶対値を、前レンズ群101側を小さく設定し、かつ前レンズ群101側のレンズ面(i=8)の曲率半径をSR1,開口絞りSTOの空間間隔をTLSとしたとき、「1.0<〔SR1/TLS〕<1.5」(条件式[8])を満たすように構成すれば、開口絞りSTOに対向するレンズ面(i=8,9)の曲率半径の絶対値は、前レンズ群101側を小さく設定できるため、変形ガウスタイプの欠点となるサジタルコマ収差の発生を効果的に抑制できる。また、条件式[8]を設定したため、半球度の抑制によりレンズの加工性を高めることができるとともに、絞り対称性を高めることにより収差補正の有効性をより高めることができる。 (7) According to a preferred embodiment, when the entire lens system 100 is configured, the absolute value of the radius of curvature of the lens surface (i = 8, 9) facing the aperture aperture STO is set small on the front lens group 101 side. And when the radius of curvature of the lens surface (i = 8) on the front lens group 101 side is SR1 and the spatial spacing of the aperture aperture STO is TLS, "1.0 <[SR1 / TLS] <1.5" (conditional expression). If it is configured to satisfy [8]), the absolute value of the radius of curvature of the lens surface (i = 8,9) facing the aperture aperture STO can be set small on the front lens group 101 side, so that it is a modified Gaussian type. It is possible to effectively suppress the occurrence of sagittal coma, which is a drawback. Further, since the conditional expression [8] is set, the processability of the lens can be improved by suppressing the hemispherical degree, and the effectiveness of the aberration correction can be further enhanced by improving the aperture symmetry.

(8) 好適な態様により、最終レンズLEを、メニスカス形状の非球面を含み、かつ当該最終レンズLEの焦点距離をFLEとしたとき、「-4.0<〔FLE/AFL〕<-0.8」(条件式[9])を満たすように形成すれば、最終レンズLEを通過する光線の入出射特性を非球面により設定できるため、最終段階における軸外収差を効果的に抑制できるとともに、軸上収差から軸外に至る収差補正も有効に行うことができる。 (8) According to a preferred embodiment, when the final lens LE includes a meniscus-shaped aspherical surface and the focal length of the final lens LE is FLE, "-4.0 <[FLE / AFL] <-0. If it is formed so as to satisfy 8 ”(conditional expression [9]), the ingress / egress characteristics of the light rays passing through the final lens LE can be set by an aspherical surface, so that off-axis aberrations in the final stage can be effectively suppressed and at the same time. Aberration correction from on-axis aberration to off-axis can also be effectively performed.

(9) 好適な態様により、レンズ全系100を構成するに際し、前レンズ群101に4枚のレンズLF,L2,L3,L4を配し、かつ後レンズ群102Bに4枚のレンズL5,L6,L7,LEを配することにより、全体で8枚のレンズLF,L2…L7,LEにより構成するとともに、Fナンバーを1.7以下に、かつ半画角を12-25〔゜〕にそれぞれ設定すれば、レンズ枚数を設定する観点から、コンパクト化を実現しつつ、Fナンバーが1.7以下となり、かつ半画角が12-25〔゜〕となる単焦点レンズにおける光学性能を確保できる。即ち、本実施形態に係る大口径撮像レンズ1における必要かつ十分な光学性能(諸収差)を確保しつつ、レンズ全長の短縮化を確保できる最適な形態として実施できる。 (9) According to a preferred embodiment, when the entire lens system 100 is configured, four lenses LF, L2, L3, L4 are arranged in the front lens group 101, and four lenses L5, L6 are arranged in the rear lens group 102B. By arranging, L7, LE, a total of eight lenses LF, L2 ... L7, LE are arranged, the F number is 1.7 or less, and the half angle of view is 12-25 [°], respectively. If set, from the viewpoint of setting the number of lenses, it is possible to secure the optical performance of a single focus lens having an F number of 1.7 or less and a half angle of view of 12-25 [°] while achieving compactness. .. That is, it can be implemented as an optimum embodiment in which the total length of the lens can be shortened while ensuring the necessary and sufficient optical performance (various aberrations) in the large-diameter image pickup lens 1 according to the present embodiment.

(10) 好適な態様により、フォーカス調整に関し、後レンズ群102を、複数枚の後正レンズL6,L7における相隣る前後の後正レンズL6とL7間の物体OBJ側を後レンズA群102Aとし、かつ像IMG側を後レンズB群102Bとするとともに、当該後レンズA群102Aの前後における空気空間Sf,Frの少なくとも一つを、フォーカス調整時に変化させる調整間隔として設定すれば、後レンズA群102Aの通過後の光線をアフォーカルレンズに近い状態にして光線角度の変化を少なくできるため、諸収差の捕正効果を高めることができるとともに、フォーカス調整時における無用な収差変動を抑制することができる。 (10) According to a preferred embodiment, regarding the focus adjustment, the rear lens group 102 is used, and the rear lens group A 102A on the object OBJ side between the adjacent front and rear rear lenses L6 and L7 in the plurality of rear lenses L6 and L7. If the image IMG side is the rear lens B group 102B and at least one of the air spaces Sf and Fr before and after the rear lens A group 102A is set as the adjustment interval to be changed at the time of focus adjustment, the rear lens Since the light beam after passing through the group A 102A can be made close to the afocal lens to reduce the change in the light beam angle, it is possible to enhance the correction effect of various aberrations and suppress unnecessary aberration fluctuations at the time of focus adjustment. be able to.

(11) 好適な態様により、フォーカス調整時に変化させる調整間隔を、後レンズA群102Aに対して物体OBJ側の空気空間Sf,後レンズA群102Aに対して像IMG側の空気空間Sr,後レンズA群102Aに対して前後の空気空間Sf,Srのいずれか一つを含み、最大で三つのレンズ群101,102A,102Bを移動可能に構成すれば、球面収差の変化によるソフトフォーカス撮影や像面湾曲の変化による周辺画像のボケ量の増減撮影、更には像面湾曲の補正等の撮影時の多様性や機能性を高めることができる。加えて、各レンズ群101,102A,102Bを移動させるアクチュエータ(不図示)を制御し、撮像素子をセンサとして利用することにより、本来のフォーカス調整の他に、球面収差や像面湾曲のコントロール、更には、製造時における調整工程にも利用できるなど、より多様性及び発展性を高めることができる。 (11) According to a preferred embodiment, the adjustment interval to be changed at the time of focus adjustment is set to the air space Sf on the object OBJ side with respect to the rear lens group A 102A, the air space Sr on the image IMG side with respect to the rear lens group A 102A, and the rear. If one of the front and rear air spaces Sf and Sr is included with respect to the lens group A 102A and a maximum of three lens groups 101, 102A and 102B are configured to be movable, soft focus photography due to changes in spherical aberration can be performed. Increasing or decreasing the amount of blurring of the peripheral image due to the change in curvature of field It is possible to enhance the variety and functionality of photography such as correction of curvature of field. In addition, by controlling the actuator (not shown) that moves each lens group 101, 102A, 102B and using the image sensor as a sensor, in addition to the original focus adjustment, spherical aberration and curvature of field can be controlled. Furthermore, it can be used for adjustment processes during manufacturing, and can further enhance diversity and expandability.

本発明の好適実施形態に係る実施例1の大口径撮像レンズの構成図、The block diagram of the large-diameter image pickup lens of Example 1 which concerns on a preferred embodiment of this invention, 同実施例1に係る大口径撮像レンズの条件項目説明図、Conditional item explanatory diagram of the large-diameter image pickup lens according to the first embodiment, 同実施例1に係る大口径撮像レンズの無限遠時の縦収差図、Longitudinal aberration diagram of the large-diameter image pickup lens according to the first embodiment at infinity, 同実施例1に係る大口径撮像レンズの図1に示すフォーカス方式F11-F13の縦収差図、The longitudinal aberration diagram of the focus method F11-F13 shown in FIG. 1 of the large-diameter image pickup lens according to the first embodiment. 同実施例1に係る大口径撮像レンズの図1に示すフォーカス方式F14及び表1に示すフォーカス方式F12AとF13Aの縦収差図、The longitudinal aberration diagram of the focus method F14 shown in FIG. 1 and the focus methods F12A and F13A shown in Table 1 of the large-diameter image pickup lens according to the first embodiment. 本発明の好適実施形態に係る各実施例における大口径撮像レンズの光学条件の一覧表、A list of optical conditions of the large-diameter image pickup lens in each embodiment according to the preferred embodiment of the present invention. 本発明の好適実施形態に係る実施例2の大口径撮像レンズの構成図、Configuration diagram of the large-diameter image pickup lens of Example 2 according to the preferred embodiment of the present invention, 同実施例2に係る大口径撮像レンズの無限遠時及び図7に示すフォーカス方式F14の縦収差図、The longitudinal aberration diagram of the large-diameter image pickup lens according to the second embodiment at infinity and the focus method F14 shown in FIG. 7. 本発明の好適実施形態に係る実施例3の大口径撮像レンズの構成図、Configuration diagram of the large-diameter image pickup lens of Example 3 according to the preferred embodiment of the present invention, 同実施例3に係る大口径撮像レンズの無限遠時及び図9に示すフォーカス方式F12の縦収差図、The longitudinal aberration diagram of the large-diameter image pickup lens according to the third embodiment at infinity and the focus method F12 shown in FIG. 本発明の好適実施形態に係る実施例4の大口径撮像レンズの構成図、Configuration diagram of the large-diameter image pickup lens of Example 4 according to the preferred embodiment of the present invention, 同実施例4に係る大口径撮像レンズの無限遠時及び図11に示すフォーカス方式F12の縦収差図、The longitudinal aberration diagram of the large-diameter image pickup lens according to the fourth embodiment at infinity and the focus method F12 shown in FIG.

次に、本発明に係る好適実施形態である実施例1-4を挙げ、図面に基づき詳細に説明する。 Next, Examples 1-4, which are preferred embodiments according to the present invention, will be given and will be described in detail with reference to the drawings.

まず、本実施形態に係る実施例1の大口径撮像レンズ1について、図1-図6を参照して具体的に説明する。 First, the large-diameter image pickup lens 1 of the first embodiment according to the present embodiment will be specifically described with reference to FIGS. 1 to 6.

最初に、図1を参照して、本実施形態(実施例1)に係る大口径撮像レンズ1について説明する。なお、この大口径撮像レンズ1は、デジタルカメラ用交換レンズに適用することを想定できる。図1中、OBJは物体(被写体)を示し、IMGは像(撮像素子)を示している。したがって、物体OBJ側が光軸Dc方向の前方となり、像IMG側が光軸Dc方向の後方となる。 First, the large-diameter image pickup lens 1 according to the present embodiment (Example 1) will be described with reference to FIG. It should be noted that this large-diameter image pickup lens 1 can be assumed to be applied to an interchangeable lens for a digital camera. In FIG. 1, OBJ indicates an object (subject), and IMG indicates an image (image sensor). Therefore, the object OBJ side is in front of the optical axis Dc direction, and the image IMG side is behind in the optical axis Dc direction.

本実施形態に係る大口径撮像レンズ1は、開口絞りSTOに対して、物体OBJ側に配した正のパワーを有する前レンズ群101,及び像IMG側に配した正のパワーを有する後レンズ群102を備え、この前レンズ群101と後レンズ群102により基本となるレンズ全系100を構成する。 The large-diameter image pickup lens 1 according to the present embodiment has a front lens group 101 having a positive power arranged on the object OBJ side and a rear lens group having a positive power arranged on the image IMG side with respect to the aperture stop STO. The 102 is provided, and the front lens group 101 and the rear lens group 102 constitute the entire basic lens system 100.

前レンズ群101は、図1に示すように、物体OBJ側から連続した4枚の前正レンズLF,L2,L3及び最も開口紋りSTO側の前負レンズL4を備え、全レンズLF,L2,L3,L4は、物体OBJ側が凸形状のメニスカスレンズにより構成する。より具体的には、物体OBJ側から、凸メニスカスレンズを使用した一番目の前正レンズ(最先レンズ)LF,凸メニスカスレンズを使用した二番目の前正レンズL2,凸メニスカスレンズを使用した三番目の前正レンズL3,凹メニスカスレンズを使用した四番目の前負レンズL4を備える。そして、開口絞りSTO側の各レンズ面(i=2,4,6,8)の曲率半径は、物体OBJ側から開口絞りSTO側へ順次小さくなるように設定するとともに、全レンズLF,L2,L3,L4のレンズ面(i=1,2,3,4,5,6,7,8)が空気に接触する。したがって、全レンズLF,L2,L3,L4はそれぞれ単レンズにより構成する。 As shown in FIG. 1, the front lens group 101 includes four front positive lenses LF, L2, L3 continuous from the object OBJ side and a front negative lens L4 on the most aperture pattern STO side, and all lenses LF, L2. , L3 and L4 are composed of a meniscus lens having a convex object OBJ side. More specifically, from the object OBJ side, the first front positive lens (frontmost lens) LF using a convex meniscus lens, the second front positive lens L2 using a convex meniscus lens, and a convex meniscus lens were used. A third front positive lens L3 and a fourth front negative lens L4 using a concave meniscus lens are provided. The radius of curvature of each lens surface (i = 2, 4, 6, 8) on the aperture stop STO side is set so as to gradually decrease from the object OBJ side to the aperture stop STO side, and all lenses LF, L2, The lens surfaces of L3 and L4 (i = 1,2,3,4,5,6,7,8) come into contact with air. Therefore, all lenses LF, L2, L3, and L4 are each composed of a single lens.

このように、前レンズ群101は、全レンズLF,L2,L3,L4が物体OBJ側に凸形状となるメニスカス形状にすることにより、光軸Dc方向の長さを圧縮し、コンパクト化を図るとともに、各レンズ面(i=2,4,6,8)の入出射角を緩めることにより収差の発生を抑制している。特に、前正レンズLF,L2,L3は、正のパワーを分割することにより、パワーの分散化を行うとともに、図1に示すように、前負レンズL4の物体OBJ側(i=6と7間)に、メニスカス形状の細い空間(負の空気レンズ)Laを設けることにより、球面収差の補正効果を高めている。 In this way, the front lens group 101 is made compact by reducing the length in the optical axis Dc direction by forming a meniscus shape in which all lenses LF, L2, L3, and L4 are convex toward the object OBJ side. At the same time, the occurrence of aberration is suppressed by loosening the entrance / exit angles of each lens surface (i = 2, 4, 6, 8). In particular, the front positive lenses LF, L2, and L3 disperse the power by dividing the positive power, and as shown in FIG. 1, the front negative lens L4 is on the object OBJ side (i = 6 and 7). By providing a meniscus-shaped narrow space (negative air lens) La in the space), the effect of correcting spherical aberration is enhanced.

一方、後レンズ群102は、最も開口絞りSTO側に配した両凹レンズL5と最も像IMG側に配して両面が光軸Dc上の同方向に湾曲した負のパワーを有する最終レンズLEを備えるとともに、この両凹レンズL5と最終レンズLEにより挟まれた2枚の後正レンズL6,L7、即ち、開口絞りSTO側から像IMG側に、両凸レンズ(L6),両凸レンズ(L7)を備える。このように、後正レンズL6,L7には、少なくとも一つの両凸レンズ(L6,L7)を含ませるとともに、両凹レンズL5と後正レンズ(両凸レンズ)L6は、接合レンズJaにより構成する。 On the other hand, the rear lens group 102 includes a biconcave lens L5 arranged on the most aperture stop STO side and a final lens LE arranged on the image IMG side and having negative power on both sides curved in the same direction on the optical axis Dc. At the same time, two posterior positive lenses L6 and L7 sandwiched between the biconcave lens L5 and the final lens LE, that is, a biconvex lens (L6) and a biconvex lens (L7) are provided from the aperture stop STO side to the image IMG side. As described above, the posterior positive lenses L6 and L7 include at least one biconvex lens (L6, L7), and the biconcave lens L5 and the posterior positive lens (biconvex lens) L6 are composed of the junction lens Ja.

このように構成するため、後レンズ群102は、前後の負レンズ(L5,LE)に挟まれた2枚の正レンズ(L6,L7)を備える部分対称レンズ群となり、前レンズ群101により発生した残存収差をバランス良く補正することができる。また、後述するように、フォーカス調整時に移動するレンズ群を、接合レンズJa(後レンズA群102A)とすることにより諸収差の変動を抑制している。 Due to this configuration, the rear lens group 102 is a partially symmetrical lens group including two positive lenses (L6, L7) sandwiched between the front and rear negative lenses (L5, LE), and is generated by the front lens group 101. It is possible to correct the residual aberration in a well-balanced manner. Further, as will be described later, fluctuations in various aberrations are suppressed by using a junction lens Ja (rear lens A group 102A) as the lens group that moves during focus adjustment.

レンズ全系100を、このような前レンズ群101と後レンズ群102により構成することにより、無限物体から入射する光軸Dcに平行な光線は、前レンズ群101を通過し、収斂することにより後レンズ群102に入射するとともに、後レンズ群102に対して軸外から入射する斜め光線は、最初に位置する両凹レンズL5のレンズ面(i=9)に対して面の法線に近い角度で入射する。 By configuring the entire lens system 100 with such a front lens group 101 and a rear lens group 102, light rays parallel to the optical axis Dc incident from an infinite object pass through the front lens group 101 and converge. The oblique light rays incident on the rear lens group 102 and incident on the rear lens group 102 from off-axis are at an angle close to the normal line of the surface with respect to the lens surface (i = 9) of the biconcave lens L5 located first. Incident at.

他方、以上の基本的なレンズ構成において、物体距離を無限遠とし、全系焦点距離をAFL,レンズ全系100の光軸長をTLL,最も物体OBJ側のレンズ面(i=1)から像IMGまでの光軸長をTLi,最終レンズLEの像IMG側のレンズ面から像IMGまでの光軸長をIMDとしたとき、以下の条件、即ち、条件式[1]-[3]を満たすように設定する。なお、図2に、これらの条件項目の一部を図示する。
0.68<〔TLL/AFL〕<1.00 … [1]
0.8 <〔TLi/AFL〕<1.4 … [2]
0.2 <〔IMD/AFL〕 … [3]
On the other hand, in the above basic lens configuration, the object distance is set to infinity, the focal length of the entire system is AFL, the optical axis length of the entire lens system 100 is TLL, and the image is taken from the lens surface (i = 1) on the most object OBJ side. When the optical axis length to IMG is TLi and the optical axis length from the lens surface on the image IMG side of the final lens LE to the image IMG is IMD, the following conditions, that is, the conditional equations [1]-[3] are satisfied. To set. Note that FIG. 2 illustrates some of these condition items.
0.68 <[TLL / AFL] <1.00 ... [1]
0.8 <[TLi / AFL] <1.4 ... [2]
0.2 <[IMD / AFL] ... [3]

この場合、条件式[1],[2]は、本実施形態に係る大口径撮像レンズ1をコンパクト化する範囲を設定するものであり、上限を超える場合、レンズの曲率や硝材の屈折率を低くできるため、収差発生を抑えることができるものの、コンパクト性を確保できなくなる。他方、下限を下回る場合、コンパクト性は確保できるものの、各レンズのパワーが強くなるため、収差の発生が多くなる。条件式[3]を満たすことにより、必要なバックフォーカスを確保できる。大口径撮像レンズ1の場合、撮像素子(IMG:像)の前面に設置される波長カットフィルタや防塵ガラスなどの平行平面板に干渉しない光軸距離を確保する必要があり、特に、交換レンズとして用いる場合には、各種の撮像装置(カメラ)に対応させる必要があるため、ある程度のバックフォーカスを確保する必要がある。 In this case, the conditional equations [1] and [2] set the range for making the large-diameter image pickup lens 1 according to the present embodiment compact, and when the upper limit is exceeded, the curvature of the lens and the refractive index of the glass material are changed. Since it can be lowered, the occurrence of aberration can be suppressed, but compactness cannot be ensured. On the other hand, when it is below the lower limit, although compactness can be ensured, the power of each lens becomes stronger, so that aberrations occur more frequently. By satisfying the conditional expression [3], the required back focus can be secured. In the case of the large-diameter image pickup lens 1, it is necessary to secure an optical axis distance that does not interfere with a parallel flat plate such as a wavelength cut filter or dustproof glass installed in front of the image pickup element (IMG: image), and in particular, as an interchangeable lens. When using it, it is necessary to make it compatible with various image sensors (cameras), so it is necessary to secure a certain degree of back focus.

また、基本的なレンズ構成において、後レンズ群102は、両凹レンズL5の開口絞りSTO側のレンズ面(i=9)から像IMG側へ順次空気に接触する三番目までのレンズ面(i=9,11,13)の湾曲方向(+,+,-)と、最終レンズLEの像IMG側のレンズ面(i=15)から開口絞りSTO側へ順次空気に接触する三番目までのレンズ面(i=15,14,13)の湾曲方向(-,-,+)を、逆方向に設定する。これにより、レンズ全系100における望ましい部分対称レンズ群を構築できるため、残存収差に対する、更なるバランスの良好な補正を実現できるとともに、収差変動の低減を図ることができる。 Further, in the basic lens configuration, the rear lens group 102 has the third lens surface (i =) that sequentially contacts the air from the lens surface (i = 9) on the aperture stop STO side of the biconcave lens L5 to the image IMG side. 9,11,13) bending direction (+, +,-) and the third lens surface that sequentially comes into contact with air from the lens surface (i = 15) on the image IMG side of the final lens LE to the aperture stop STO side. The bending direction (-,-, +) of (i = 15, 14, 13) is set in the opposite direction. As a result, a desirable partially symmetric lens group in the entire lens system 100 can be constructed, so that it is possible to further correct the residual aberration with a good balance and reduce the aberration variation.

さらに、後レンズ群102は、2枚の後正レンズL6,L7を有するため、開口絞りSTO側の後正レンズL6から開口絞りSTO側を後レンズA群102Aとし、像IMG側の後正レンズL7から像IMG側を後レンズB群102Bとして設定する。この場合、後レンズA群102Aを通過した後の光線はアフォーカルレンズに近い状態になるため、光線角度の変化を少なくすることができる。したがって、後レンズA群102Aを含む前後のレンズ群をフォーカス調整に用いる移動群とした場合には最適なレンズ群となり、固定間隔又は可変間隔のいずれに設定しても収差変動を少なくできるとともに、組立工程における調整ポイントとしても利用しやすくなる。なお、前レンズ群101及び後レンズ群102の各正レンズは、分割により枚数を増やせば、諸収差の補正は容易になるが、反面、光軸Dcが長くなるため、コンパクト性の観点からは不利になる。また、後レンズ群102は、部分対称レンズ群を構成するため、対称性から得られる収差補正のメリットを確保する観点から、後レンズA群102Aと後レンズB群102Bの光軸長の偏りはできるだけ抑えることが望ましい。 Further, since the rear lens group 102 has two rear positive lenses L6 and L7, the rear positive lens L6 on the aperture stop STO side is referred to as the rear lens A group 102A on the aperture aperture STO side, and the rear positive lens on the image IMG side. The image IMG side from L7 is set as the rear lens B group 102B. In this case, since the light beam after passing through the rear lens group A 102A is in a state close to that of the afocal lens, the change in the light ray angle can be reduced. Therefore, when the front and rear lens groups including the rear lens group A 102A are used as the moving group for focus adjustment, the lens group becomes the optimum lens group, and the aberration fluctuation can be reduced regardless of whether the fixed interval or the variable interval is set. It will be easier to use as an adjustment point in the assembly process. If the number of positive lenses in the front lens group 101 and the rear lens group 102 is increased by division, various aberrations can be easily corrected, but on the other hand, the optical axis Dc becomes long, so from the viewpoint of compactness. It will be disadvantageous. Further, since the rear lens group 102 constitutes a partially symmetric lens group, the deviation of the optical axis lengths of the rear lens group A 102A and the rear lens group B 102B is large from the viewpoint of ensuring the merit of aberration correction obtained from the symmetry. It is desirable to suppress it as much as possible.

そして、レンズ全系100において、後レンズA群102Aが無限物体時であって、かつレンズ全系100の最も物体OBJ側に配する最先レンズLFの物体OBJ側のレンズ面(i=1)から当該後レンズA群102Aの出射後における近軸像位置までの長さの絶対値が最も大きくなる際に、物体距離を無限遠とし、かつ全系のFナンバーをFNO,前レンズ群101の光軸長をLF1,後レンズ群102の光軸長をLF2,後レンズA群102Aの光軸長をTL2A,後レンズB群102Bの光軸長をTL2Bとしたとき、以下の条件、即ち、条件式[4]-[7]を満たすように設定する。なお、図2に、これらの条件項目の一部を図示する。
0.8<〔TLl/TL2〕<1.6 … [4]
0.6<〔TL2A/TL2B〕<1.6 … [5]
1.0<〔TLL/(AFL/FNO)〕<1.5 … [6]
0.3<〔TL2/(FL2/FNO)〕<0.6 … [7]
Then, in the entire lens system 100, the rear lens group A 102A is an infinite object, and the lens surface (i = 1) of the frontmost lens LF arranged on the most object OBJ side of the entire lens system 100 on the object OBJ side. When the absolute value of the length from the rear lens A group 102A to the near-axis image position is the largest, the object distance is set to infinity, the F number of the entire system is FNO, and the front lens group 101. When the optical axis length is LF1, the optical axis length of the rear lens group 102 is LF2, the optical axis length of the rear lens group A 102A is TL2A, and the optical axis length of the rear lens group B 102B is TL2B, the following conditions, that is, Set so as to satisfy the conditional expression [4]-[7]. Note that FIG. 2 illustrates some of these condition items.
0.8 <[TLl / TL2] <1.6 ... [4]
0.6 <[TL2A / TL2B] <1.6 ... [5]
1.0 <[TLL / (AFL / FNO)] <1.5 ... [6]
0.3 <[TL2 / (FL2 / FNO)] <0.6 ... [7]

この場合、条件式[4]は、前レンズ群101と後レンズ群102の光軸Dc長さの割合を示すことから、部分対称性を確保できるように、各正レンズの分割数は偏りが生じることなく均等に設定することが望ましい。条件式[5]も同様であり、後レンズ群102の部分対称性を確保できるように考慮する。このため、条件式[4]又は[5]の範囲を満たさない場合、前レンズ群101又は後レンズ群102の一方の負担が大きくなり、収差補正が不安定になるとともに、大口径撮像レンズ1のコンパクト性を確保できなくなる。また、条件式[6]は、前レンズ群101と後レンズ群102の径方向の制約を設定するものであり、入射瞳径をAFL/FNOとしたときのレンズ全系100における縦横比を示す。また、条件式[7]は、後レンズ群102の径方向の制約を設定するものであり、開口紋りSTOの径の代替として、FL2/FNOとしたときの後レンズ群102の縦横比を示す。このため、条件式[6],[7]の上限を超える場合には光軸Dc方向に長くなるとともに、他方、下限を下回る場合には径方向に大きくなる。 In this case, since the conditional expression [4] indicates the ratio of the optical axis Dc lengths of the front lens group 101 and the rear lens group 102, the number of divisions of each positive lens is biased so as to ensure partial symmetry. It is desirable to set it evenly without occurring. The same applies to the conditional expression [5], and consideration is given so that the partial symmetry of the rear lens group 102 can be ensured. Therefore, if the range of the conditional expression [4] or [5] is not satisfied, the load on either the front lens group 101 or the rear lens group 102 becomes large, the aberration correction becomes unstable, and the large-diameter image pickup lens 1 It becomes impossible to secure the compactness of the lens. Further, the conditional expression [6] sets a constraint in the radial direction of the front lens group 101 and the rear lens group 102, and indicates the aspect ratio in the entire lens system 100 when the entrance pupil diameter is AFL / FNO. .. Further, the conditional expression [7] sets a constraint in the radial direction of the rear lens group 102, and as an alternative to the diameter of the aperture pattern STO, the aspect ratio of the rear lens group 102 when FL2 / FNO is set is set. show. Therefore, when the upper limit of the conditional expressions [6] and [7] is exceeded, the length increases in the optical axis Dc direction, and when the condition falls below the lower limit, the length increases in the radial direction.

他方、大口径撮像レンズ1を構成するに際しては、レンズ全系100において、以下の点を考慮する。まず、全ての正レンズLF,L2…,L6,L7…において、d線の屈折率が1.75以上となる硝材を用いた正レンズを2枚以上含み、かつ平均アッベ数を38.0以上とし、レンズ全系100における全ての正レンズLF,L2…,L6,L7…の焦点距離の絶対値を、レンズ全系100における最大の焦点距離を有する負レンズの当該焦点距離の絶対値の80〔%〕よりも大きく設定する。 On the other hand, when constructing the large-diameter image pickup lens 1, the following points are taken into consideration in the entire lens system 100. First, in all the positive lenses LF, L2 ..., L6, L7 ..., two or more positive lenses using a glass material having a d-line refractive index of 1.75 or more are included, and the average Abbe number is 38.0 or more. The absolute value of the focal lengths of all the positive lenses LF, L2 ..., L6, L7 ... In the whole lens system 100 is 80, which is the absolute value of the focal length of the negative lens having the maximum focal length in the whole lens system 100. Set larger than [%].

前レンズ群101における前正レンズLF,L2,L3は高屈折タイプのガラスを使用し、弱い曲率により正のパワーを得る。この場合、正レンズ2枚により構成することも可能となるが、1枚当たりのパワーが強くなるため、レンズ厚が大きくなり、収差の補正も十分に行えない。したがって、3枚以上に分割すれば、前レンズ群101のコンパクト化を図れることに加え、収差の補正効果も確保できる。なお、前レンズ群101の各正レンズLF,L2…に、低屈折及び低分散の硝材を用いることにより色収差の補正を行うことができるが、屈折率が低い場合、所定の正のパワーを得るには曲率半径を小さくする必要があるため、レンズ厚が大きくなる。加えて、メニスカス形状より、屈折力が得られる平凸形状や両凸形状に近づける必要があり、この点もレンズ厚を大きくする要因となる。このため、前レンズ群101における前正レンズLF,L2…のパワーバランスは、高屈折率硝材と組合わせた上で曲率を設定することが望ましい。他方、後レンズ群102の接合レンズJaに使用するガラス特性を屈折率差にした場合には軸上収差補正に有利になるとともに、アッベ数差にした場合には色収差の改善に有利になる。また、ガラス特性と形状をバランスよく組み合わせることによりレンズ全系100において収差を微調整できる効果もある。 The front lenses LF, L2, and L3 in the front lens group 101 use high refraction type glass and obtain positive power due to a weak curvature. In this case, it is possible to configure the lens with two positive lenses, but since the power per lens is increased, the lens thickness becomes large and the aberration cannot be sufficiently corrected. Therefore, if the lens group is divided into three or more lenses, the front lens group 101 can be made compact, and the aberration correction effect can be ensured. Chromatic aberration can be corrected by using a low-refraction and low-dispersion glass material for each of the positive lenses LF, L2 ... Of the front lens group 101, but when the refractive index is low, a predetermined positive power is obtained. Since it is necessary to reduce the radius of curvature, the lens thickness becomes large. In addition, it is necessary to make the shape closer to a plano-convex shape or a biconvex shape in which a refractive power can be obtained, rather than the meniscus shape, which also causes an increase in the lens thickness. Therefore, it is desirable to set the curvature of the front positive lenses LF, L2 ... In the front lens group 101 in combination with the high refractive index glass material. On the other hand, when the glass characteristic used for the junction lens Ja of the rear lens group 102 is a refractive index difference, it is advantageous for correcting axial aberrations, and when it is set to an Abbe number difference, it is advantageous for improving chromatic aberration. Further, by combining the glass characteristics and the shape in a well-balanced manner, there is an effect that the aberration can be finely adjusted in the entire lens system 100.

このように、レンズ全系100の全ての正レンズLF,L2…,L6,L7…において、d線の屈折率が1.75以上となる硝材を用いた正レンズを2枚以上含み、かつ平均アッベ数を38.0以上とし、レンズ全系100における全ての正レンズLF,L2…,L6,L7…の焦点距離の絶対値を、レンズ全系100における最大の焦点距離を有する負レンズの当該焦点距離の絶対値の80〔%〕よりも大きく設定すれば、全ての正レンズLF,L2…,L6,L7…の硝材特性及びパワー配分を考慮することによりガラス特性とレンズ形状をバランス良く組合せることができるため、レンズ全系において、微調整を含めた収差調整を容易かつ良好に行うことができる。特に、前レンズ群101における各前正レンズLF,L2,L3…のパワーバランスを高屈折率硝材と組合わせた曲率に選定できるため、前レンズ群101のコンパクト化及び収差補正効果を高めることができるとともに、後レンズ群102による軸上収差(色収差)の補正を有利に行うことができる。なお、全ての正レンズLF,L2…,L6,L7…において、d線の屈折率が1.85以上となる硝材を用いた正レンズを少なくとも1枚含ませることにより、より望ましい効果を得ることができる。 As described above, in all the positive lenses LF, L2 ..., L6, L7 ... Of the entire lens system 100, two or more positive lenses using a glass material having a d-line refractive index of 1.75 or more are included, and the average. The Abbe number is 38.0 or more, and the absolute value of the focal distances of all the positive lenses LF, L2 ..., L6, L7 ... In the entire lens system 100 is the relevant negative lens having the maximum focal distance in the entire lens system 100. If it is set to be larger than the absolute value of the focal distance of 80 [%], the glass characteristics and the lens shape are combined in a well-balanced manner by considering the glass material characteristics and power distribution of all the positive lenses LF, L2 ..., L6, L7 ... Therefore, it is possible to easily and satisfactorily adjust the aberration including fine adjustment in the entire lens system. In particular, since the power balance of each front lens LF, L2, L3 ... In the front lens group 101 can be selected to the curvature combined with the high refractive index glass material, the front lens group 101 can be made compact and the aberration correction effect can be enhanced. At the same time, it is possible to advantageously correct the axial aberration (chromatic aberration) by the rear lens group 102. In all the positive lenses LF, L2 ..., L6, L7 ..., a more desirable effect can be obtained by including at least one positive lens using a glass material having a refractive index of 1.85 or more of the d-line. Can be done.

また、レンズ全系100において、開口絞りSTOに対向するレンズ面(i=8,9)の曲率半径の絶対値を、前レンズ群101側を小さく設定するとともに、前レンズ群101側のレンズ面(i=8)の曲率半径をSR1,開口絞りSTOの空間間隔をTLSとしたとき、
1.0<〔SR1/TLS〕<1.5 … [8]
の条件を満たすように設定する。
Further, in the entire lens system 100, the absolute value of the radius of curvature of the lens surface (i = 8, 9) facing the aperture stop STO is set small on the front lens group 101 side, and the lens surface on the front lens group 101 side is set small. When the radius of curvature of (i = 8) is SR1 and the spatial spacing of the aperture stop STO is TLS,
1.0 <[SR1 / TLS] <1.5 ... [8]
Set to meet the conditions of.

後レンズ群102は、前レンズ群101より強い正のパワーを有するが、後レンズ群102の後負レンズL5の開口絞りSTO側の曲率半径が小さい場合、変形ガウスタイプの欠点であるサジタル方向のコマ収差が発生しやすくなるため、開口絞りSTOに対して像IMG側の曲率半径SR2の絶対値を開口紋りSTOに対して物体OBJ側の曲率半径SR1より大きく設定する。また、大口径の場合、開口絞りSTOの空間に接するレンズ面(i=8,9)の曲率半径の絶対値は小さくなる傾向により半球度が増加するため、この条件式[8]を設定する。このため、条件式[8]の下限を下回る場合には半球度が増してレンズの加工が困難になるとともに、上限を超える場合には部分対称性の低下により収差補正が困難になる。 The rear lens group 102 has a stronger positive power than the front lens group 101, but when the radius of curvature on the aperture stop STO side of the rear negative lens L5 of the rear lens group 102 is small, it is a drawback of the modified Gaussian type in the sagittal direction. Since coma is likely to occur, the absolute value of the radius of curvature SR2 on the image IMG side with respect to the aperture stop STO is set larger than the radius of curvature SR1 on the object OBJ side with respect to the aperture pattern STO. Further, in the case of a large diameter, the hemispherical degree increases due to the tendency that the absolute value of the radius of curvature of the lens surface (i = 8, 9) in contact with the space of the aperture stop STO decreases, so this conditional expression [8] is set. .. Therefore, if it is below the lower limit of the conditional expression [8], the hemispherical degree increases and it becomes difficult to process the lens, and if it exceeds the upper limit, it becomes difficult to correct the aberration due to the decrease in partial symmetry.

したがって、このような条件を設定すれば、開口絞りSTOに対向するレンズ面(i=8,9)の曲率半径の絶対値は、前レンズ群101側を小さく設定できるため、変形ガウスタイプの欠点となるサジタルコマ収差の発生を効果的に抑制できる。また、条件式[8]を設定したため、半球度の抑制によりレンズの加工性を高めることができるとともに、絞り対称性を高めることにより収差補正の有効性をより高めることができる。 Therefore, if such a condition is set, the absolute value of the radius of curvature of the lens surface (i = 8, 9) facing the aperture stop STO can be set small on the front lens group 101 side, which is a drawback of the modified Gauss type. The occurrence of sagittal coma aberration can be effectively suppressed. Further, since the conditional expression [8] is set, the processability of the lens can be improved by suppressing the hemispherical degree, and the effectiveness of the aberration correction can be further enhanced by improving the aperture symmetry.

さらに、最終レンズLEを形成するに際しては、メニスカス形状の非球面を含み、かつ当該最終レンズLEの焦点距離をFLEとしたとき、
-4.0<〔FLE/AFL〕<-0.8 … [9]
の条件を満たすように形成する。
Further, when forming the final lens LE, when a meniscus-shaped aspherical surface is included and the focal length of the final lens LE is set to FLE,
-4.0 <[FLE / AFL] <-0.8 ... [9]
It is formed so as to satisfy the conditions of.

最終レンズLEを構成する非球面レンズは、両面の面形状が光軸Dcから外周部にかけて同方向を向くため、両面が物体OBJ側の方向へ凸形状となるタイプと凹形状となるタイプの二つのタイプがある。凹形状の場合、各画角の主光線が通過する面の法線に近い角度で入出射するため、軸外収差の発生が少なくなるとともに、非球面レンズの開口紋りSTO側における両凹レンズL5が、軸上光線から軸外光線を分離させるように徐々に上方へ跳ね上げられるため、軸上収差から軸外に至る収差を補正する際に有利となる。一方、凸形状の場合、光線の入出射する非球面位置の法線に対して、軸上光線と軸外光線が均等に近い角度となるため、軸上収差から軸外収差を同様に補正することができる。 Since the surface shapes of both sides of the aspherical lens constituting the final lens LE face in the same direction from the optical axis Dc to the outer peripheral portion, there are two types, one is a convex shape toward the object OBJ side and the other is a concave shape. There are two types. In the case of a concave shape, since it enters and exits at an angle close to the normal line of the surface through which the main light rays of each angle of view pass, the occurrence of off-axis aberrations is reduced, and the biconcave lens L5 on the opening pattern STO side of the aspherical lens is reduced. However, since it is gradually bounced upward so as to separate the off-axis ray from the on-axis ray, it is advantageous in correcting the aberration from the on-axis aberration to the off-axis aberration. On the other hand, in the case of a convex shape, since the on-axis ray and the off-axis ray have an angle close to equal to the normal of the aspherical position where the light ray enters and exits, the off-axis aberration is similarly corrected from the on-axis aberration. be able to.

例示の最終レンズLEは、構成要素として負のパワーが弱く、球面から極小にズレた非球面効果により収差補正を行っている。負メニスカスレンズのため、両面の曲率中心の方向の面の方がカーブが強くなる。なお、両凹レンズでも可能であるが中心と周辺ではカーブの動向が異なることがあるため、同方向を向く条件が条件式[9]となる。このような最終レンズLEを用いれば、最終レンズLEを通過する光線の入出射特性を非球面により設定できるため、最終段階における軸外収差を効果的に抑制できるとともに、軸上収差から軸外に至る収差補正も有効に行うことができる。 The final lens LE of the example has a weak negative power as a component, and aberration correction is performed by an aspherical effect that is slightly deviated from the spherical surface. Since it is a negative meniscus lens, the curve is stronger in the direction of the center of curvature on both sides. Although it is possible to use a biconcave lens, the curve trend may differ between the center and the periphery, so the condition for facing in the same direction is the conditional expression [9]. By using such a final lens LE, the ingress / egress characteristics of the light rays passing through the final lens LE can be set by an aspherical surface, so that off-axis aberrations in the final stage can be effectively suppressed and off-axis aberrations can be suppressed. Aberration correction can also be effectively performed.

本実施形態に係る大口径撮像レンズ1は、図1に示すように、レンズ全系100を構成するに際し、前レンズ群101に4枚のレンズLF,L2,L3,L4を配し、かつ後レンズ群102Bに4枚のレンズL5,L6,L7,LEを配することにより、全体で8枚のレンズLF,L2…L7,LEにより構成するするとともに、Fナンバーを1.7以下に、かつ半画角を12-25〔゜〕にそれぞれ設定する。これにより、レンズ枚数を設定する観点から、コンパクト化を実現しつつ、Fナンバーが1.7以下となり、かつ半画角が12-25〔゜〕となる光学性能を確保できる。即ち、本実施形態に係る大口径撮像レンズ1における必要かつ十分な光学性能(諸収差)を確保しつつ、レンズ全長の短縮化を確保できる最適な形態として実施できる。 In the large-diameter image pickup lens 1 according to the present embodiment, as shown in FIG. 1, four lenses LF, L2, L3, and L4 are arranged in the front lens group 101 when the entire lens system 100 is configured, and the rear lens group 101 is arranged. By arranging four lenses L5, L6, L7, LE in the lens group 102B, the lens group 102B is composed of eight lenses LF, L2 ... L7, LE in total, and the F number is 1.7 or less. Set the half angle of view to 12-25 [°] respectively. As a result, from the viewpoint of setting the number of lenses, it is possible to secure the optical performance that the F number is 1.7 or less and the half angle of view is 12-25 [°] while realizing the compactification. That is, it can be implemented as an optimum embodiment in which the total length of the lens can be shortened while ensuring the necessary and sufficient optical performance (various aberrations) in the large-diameter image pickup lens 1 according to the present embodiment.

さらに、本実施形態に係る大口径撮像レンズ1は、図1に示すように、フォーカス調整機能部201を備える。即ち、フォーカス調整に関し、後レンズ群102を、複数枚の後正レンズL6,L7における相隣る前後の後正レンズL6とL7間の物体OBJ側を後レンズA群102Aとし、かつ像IMG側を後レンズB群102Bとするとともに、当該後レンズA群102Aの前後における空気空間Sf,Frの少なくとも一つを、フォーカス調整時に変化させる調整間隔として設定すれば、後レンズA群102Aの通過後の光線をアフォーカルレンズに近い状態にして光線角度の変化を少なくできるため、諸収差の捕正効果を高めることができるとともに、フォーカス調整時における無用な収差変動を抑制することができる。 Further, as shown in FIG. 1, the large-diameter image pickup lens 1 according to the present embodiment includes a focus adjustment function unit 201. That is, regarding the focus adjustment, the rear lens group 102 is set as the rear lens A group 102A on the object OBJ side between the adjacent front and rear rear lenses L6 and L7 in the plurality of rear regular lenses L6 and L7, and the image IMG side. Is set to the rear lens B group 102B, and if at least one of the air spaces Sf and Fr before and after the rear lens A group 102A is set as an adjustment interval to be changed at the time of focus adjustment, after passing through the rear lens A group 102A. Since the change in the beam angle can be reduced by making the light beam close to that of the afocal lens, it is possible to enhance the correction effect of various aberrations and suppress unnecessary aberration fluctuations at the time of focus adjustment.

このフォーカス調整機能部201では、開口絞りSTOの空間を可変することにより、主に球面収差の捕正効果を高めている。また、後レンズ群102の2枚の後正レンズL6とL7間の空間を可変することにより、主に非点収差の補正効果を高めている。図1に示す〔F11〕のフォーカス方式のように、三つのレンズ群(前レンズ群101,後レンズA群102A,後レンズB群102B)を移動(Gm1,Gm2,Gm3)させることにより、無限遠から近距離でのフォーカス時の収差変化を小さくすることが可能である。さらに、二つのレンズ群(前レンズ群101+後レンズA群102A,後レンズB群102B)を移動(Gm4,Gm3)させる〔F12〕のフォーカス方式の場合には、主に非点収差を抑えることができるとともに、二つのレンズ群(前レンズ群101,後レンズA群102A+後レンズB群102B)を移動(Gm1,Gm5)させる〔F13〕のフォーカス方式の場合には、主に球面収差を抑えることによりフォーカス収差の変動を少なくすることもできる。 The focus adjustment function unit 201 mainly enhances the effect of capturing spherical aberration by varying the space of the aperture stop STO. Further, by varying the space between the two rear lenses L6 and L7 of the rear lens group 102, the effect of correcting astigmatism is mainly enhanced. By moving (Gm1, Gm2, Gm3) three lens groups (front lens group 101, rear lens A group 102A, rear lens B group 102B) as in the focus method of [F11] shown in FIG. It is possible to reduce the change in aberration during focusing from a long distance to a short distance. Further, in the case of the focus method of [F12] in which the two lens groups (front lens group 101 + rear lens A group 102A, rear lens B group 102B) are moved (Gm4, Gm3), astigmatism is mainly suppressed. In the case of the focus method of [F13] in which two lens groups (front lens group 101, rear lens A group 102A + rear lens B group 102B) are moved (Gm1, Gm5), spherical aberration is mainly suppressed. Thereby, the fluctuation of the focus aberration can be reduced.

本発明の対象とする大口径の撮像レンズでは、被写体である立体空間を平面の撮像素子により撮像するため、焦点空間から遠ざかるに従い、徐々にボケた像になる。特に、中距離から近距離の撮影では焦点深度が浅くなるため、平面の被写体をコピーするのではなく、一ケ所の被写体付近に焦点を合わせ、その周りをボカす撮影手法が多くなる。この場合、〔F14〕のフォーカス方式、即ち、レンズ全系100を移動(Gm6)させる全体繰り出し方式により画面周辺の像面湾曲を残存させた方が撮影上効果がある。 In the large-diameter image pickup lens which is the object of the present invention, since the three-dimensional space which is the subject is imaged by the plane image pickup element, the image gradually becomes blurred as the distance from the focal space increases. In particular, since the depth of focus becomes shallow when shooting from a medium distance to a short distance, there are many shooting methods that focus on the vicinity of one subject and blur the surroundings instead of copying a flat subject. In this case, it is more effective in shooting to leave the curvature of field around the screen by the focus method of [F14], that is, the whole extension method of moving the entire lens system 100 (Gm6).

また、フォーカス調整時に変化させる調整間隔については、後レンズA群102Aに対して、物体OBJ側の空気空間Sf,後レンズA群102Aに対して像IMG側の空気空間Sr,後レンズA群102Aに対して前後の空気空間Sf,Srのいずれか一つを含むため、最大で三つのレンズ群101,102A,102Bを移動可能に構成することになる。 Regarding the adjustment interval to be changed at the time of focus adjustment, the air space Sf on the object OBJ side with respect to the rear lens group A 102A, the air space Sr on the image IMG side with respect to the rear lens group A 102A, and the rear lens group A 102A. On the other hand, since any one of the front and rear air spaces Sf and Sr is included, a maximum of three lens groups 101, 102A and 102B can be configured to be movable.

上述したように、可変間隔と収差の関係は、開口絞りSTOの空間間隔を可変することにより、主に球面収差が変化するとともに、後レンズ群102の2枚の後正レンズL6,L7の空間間隔を可変することにより、主に非点収差が変化する。この結果、開口絞りSTOの空間間隔を変えることにより球面収差が変化してソフトフォーカスになる。さらに、後レンズ群102の2枚の後正レンズL6,L7の空間間隔を変更すれば、像面湾曲が変化する。この場合、像面湾曲によるボケはデフォーカスになるため、周辺画像のボケ量を増減することができる。即ち、Fナンバーの大きなエリアとなる球面収差の上部が焦点位置前後に僅かに変化するため、球面収差によるソフトフォーカス効果はピントの芯があり周囲が滲みとなる。また、この間隔による収差調整は、組立時のバラつきにより発生する像面湾曲の補正に利用できる効果もある。 As described above, the relationship between the variable spacing and the aberration is that the spherical aberration mainly changes by changing the spatial spacing of the aperture stop STO, and the space of the two rear positive lenses L6 and L7 of the rear lens group 102. By changing the interval, astigmatism mainly changes. As a result, the spherical aberration changes by changing the spatial interval of the aperture stop STO, resulting in soft focus. Further, if the spatial spacing between the two rear positive lenses L6 and L7 of the rear lens group 102 is changed, the curvature of field changes. In this case, since the blur caused by the curvature of field is defocused, the amount of blur in the peripheral image can be increased or decreased. That is, since the upper part of the spherical aberration, which is an area with a large F number, slightly changes before and after the focal position, the soft focus effect due to the spherical aberration has a focus core and the surroundings become blurred. Further, the aberration adjustment by this interval has an effect that it can be used for correcting the curvature of field caused by the variation at the time of assembly.

以下、この収差調整、特に、軸上面間隔ZD9とZD12の可変間隔を利用した収差調整及びこの収差調整を応用した製造時に利用できる調整について説明する。 Hereinafter, this aberration adjustment, particularly the aberration adjustment using the variable spacing of the shaft upper surface spacing ZD9 and ZD12, and the adjustment that can be used at the time of manufacturing to which this aberration adjustment is applied will be described.

カメラ等の撮像装置(光学機器)では、センサによるピント検出、メモリによるレンズ性能の記憶、演算装置とアクチュエータによるレンズ群の移動等の多様な機能が実現されているため、通常のレンズ性能を維持しつつ、撮影時に、レンズ群の間隔を変化させることによりレンズ性能を崩した状態の画像を得ることができる。また、レンズ性能を崩した状態において肉眼によりピントや構図(画面内の物体の距離等)を確認するのは困難であるため、撮像装置の多様な機能により、複雑に変化する被写体側の空間情報を迅速かつ正確に把握し、撮像装置の特性に合わせた操作を的確に行うことができる。 Image pickup devices (optical devices) such as cameras have various functions such as focus detection by sensors, lens performance storage by memory, and lens group movement by arithmetic devices and actuators, so normal lens performance is maintained. At the same time, it is possible to obtain an image in which the lens performance is impaired by changing the distance between the lens groups during shooting. In addition, since it is difficult to check the focus and composition (distance of objects in the screen, etc.) with the naked eye when the lens performance is impaired, the spatial information on the subject side changes in a complicated manner due to the various functions of the image pickup device. Can be quickly and accurately grasped, and the operation can be accurately performed according to the characteristics of the image pickup device.

まず、「像面湾曲」の調整について説明する。図5(f)に示すフォーカス方式〔F12A〕は、実施例1(図1)に係る撮像レンズ1のフォーカス方式〔F12〕に対して、軸上面間隔(ZD12)を変更した場合の縦収差図を示す。即ち、フォーカス方式〔F12〕の近距離収差補正を行った状態から可変間隔ZD12を「-0.20mm」過剰に移動させた状態を示す。この場合、図4(c)に示す〔F12〕の縦収差図よりも「非点収差」が負の方向に移動していることを確認できる。像面湾曲は、デフォーカスによるボケであり、画面中心の合焦時には画面周辺にボケが生じるとともに、画面周辺の合焦時には画面中心にボケが生じる。即ち、非点収差が負の方向に移動する場合、画面周辺のピント面に対応する物体は画面中心に対応するピント面より無限遠方向にあり、非点収差が正の方向に移動する場合、画面周辺のピント面に対応する物体は画面中心に対応するピント面よりレンズ側に近くなる。 First, the adjustment of "curvature of field" will be described. The focus method [F12A] shown in FIG. 5 (f) is a longitudinal aberration diagram when the shaft upper surface spacing (ZD12) is changed with respect to the focus method [F12] of the image pickup lens 1 according to the first embodiment (FIG. 1). Is shown. That is, it shows a state in which the variable interval ZD12 is excessively moved by "−0.20 mm" from the state in which the short-distance aberration correction of the focus method [F12] is performed. In this case, it can be confirmed that the "astigmatism" moves in the negative direction as compared with the longitudinal aberration diagram of [F12] shown in FIG. 4 (c). The curvature of field is a blur caused by defocusing, and when the center of the screen is in focus, the periphery of the screen is blurred, and when the periphery of the screen is in focus, the center of the screen is blurred. That is, when the astigmatism moves in the negative direction, the object corresponding to the focus plane around the screen is in the infinity direction from the focus plane corresponding to the center of the screen, and when the astigmatism moves in the positive direction. The object corresponding to the focus plane around the screen is closer to the lens side than the focus plane corresponding to the center of the screen.

このため、製造工程における、例えば、投影解像検査などに応用することが可能である。即ち、投影面中心に解像している場合、投影面周辺の解像がレンズ側にあれば、可変間隔ZD12を広げ、他方、投影面周辺のレンズ側に解像していなければ、可変間隔ZD12を狭くすることにより、平坦な結像面を得ることができる。さらに、ZD12より像側における後レンズB群102Bの全体又は一部のレンズを偏心状態にすることにより、解像面の傾きを修正することができる。 Therefore, it can be applied to, for example, projection resolution inspection in the manufacturing process. That is, when the resolution is centered on the projection plane, the variable spacing ZD12 is widened if the resolution around the projection plane is on the lens side, while the variable spacing is widened if the resolution is not on the lens side around the projection plane. By narrowing the ZD12, a flat image plane can be obtained. Further, the inclination of the resolution surface can be corrected by making the whole or a part of the rear lens group B 102B on the image side of the ZD 12 into an eccentric state.

次に、「球面収差」の調整について説明する。図5(g)に示すフォーカス方式〔F13A〕は、実施例1(図1)に係る撮像レンズ1のフォーカス方式〔F13〕に対して、軸上面間隔(ZD9)を変更した場合の縦収差図を示す。即ち、フォーカス方式〔F13〕の近距離収差補正を行った状態から可変間隔ZD9を「-0.50mm」過剰に移動させた場合を示す。この場合、図4(d)に示す〔F13〕の縦収差図よりも「球面収差」が負の方向に移動していることを確認できる。なお、球面収差は、収差図の縦軸の上方がレンズ径が大きい方向となる。したがって、開口絞りSTOよりも像IMG側のレンズ面では、像面周辺に結像する光線の入出射角が緩やかになり、他方、像面中心に結像する光線は、レンズ面の中心(光軸Dc)に対して、周辺になるに従って急峻になるため、開口絞りSTOの空間間隔を変化させれば、球面収差は、収差図における縦軸の上方の変化が大きくなる。 Next, the adjustment of "spherical aberration" will be described. The focus method [F13A] shown in FIG. 5 (g) is a longitudinal aberration diagram when the shaft upper surface spacing (ZD9) is changed with respect to the focus method [F13] of the image pickup lens 1 according to the first embodiment (FIG. 1). Is shown. That is, the case where the variable interval ZD9 is excessively moved by "−0.50 mm" from the state where the short-distance aberration correction of the focus method [F13] is performed is shown. In this case, it can be confirmed that the "spherical aberration" moves in the negative direction from the longitudinal aberration diagram of [F13] shown in FIG. 4 (d). As for spherical aberration, the direction in which the lens diameter is large is above the vertical axis of the aberration diagram. Therefore, on the lens surface on the image IMG side of the aperture stop STO, the entry / exit angle of the light beam formed around the image plane becomes gentle, while the light beam formed on the center of the image plane is the center of the lens surface (light). Since it becomes steeper toward the periphery with respect to the axis Dc), if the spatial spacing of the aperture stop STO is changed, the change in the spherical aberration above the vertical axis in the aberration diagram becomes large.

このため、通常の球面収差によるソフトフォーカス効果は、開口径が小さくなる絞った状態において「ピントの芯」になるとともに、開口径の周辺では球面収差が変化した「ピントの芯の周囲における滲み」となる。球面収差が負側、即ち、ZD9の空気間隔を狭くする側は、近軸焦点位置より物体側となり、球面収差が正側、即ち、ZD9の空気間隔を広くする側は、その反対となる。また、これらを上述した投影解像検査などに応用した場合、ソフトフォーカスの効果が大きい状態では焦点を合わせにくいため、開口絞りSTOを絞った状態で投影面中心に焦点を合わせるとともに、開口絞りSTOを開放させてから開口絞りSTOの空間間隔ZD9を調整すれば、明瞭な結像面を得ることが可能になる。なお、製造時の調整は、後述する実施例2-4においても、ZD9による球面収差の調整、ZD12による像面湾曲の調整が可能である。 For this reason, the soft focus effect due to normal spherical aberration becomes the "focus core" when the aperture diameter is small, and the spherical aberration changes around the aperture diameter "bleeding around the focus core". It becomes. The side where the spherical aberration is negative, that is, the side where the air spacing of ZD9 is narrowed is the object side from the paraxial focal position, and the side where the spherical aberration is positive, that is, the side where the air spacing of ZD9 is widened is the opposite. In addition, when these are applied to the above-mentioned projection resolution inspection, it is difficult to focus when the effect of soft focus is large. If the spatial spacing ZD9 of the aperture stop STO is adjusted after opening the aperture, a clear image plane can be obtained. As for the adjustment at the time of manufacture, the spherical aberration can be adjusted by ZD9 and the curvature of field can be adjusted by ZD12 also in Example 2-4 described later.

このように、フォーカス調整機能部201は、フォーカス調整時に変化させる調整間隔を、後レンズA群102Aに対して物体OBJ側の空気空間Sf,後レンズA群102Aに対して像IMG側の空気空間Sr,後レンズA群102Aに対して前後の空気空間Sf,Srのいずれか一つを含み、最大で三つのレンズ群101,102A,102Bを移動可能に構成できるため、球面収差の変化によるソフトフォーカス撮影や像面湾曲の変化による周辺画像のボケ量の増減撮影、更には像面湾曲の補正等の撮影時の多様性や機能性を高めることができる。加えて、各レンズ群101,102A,102Bを移動させるアクチュエータ(不図示)を制御し、撮像素子をセンサとして利用することにより、本来のフォーカス調整の他に、球面収差や像面湾曲のコントロール、更には、製造時における調整工程にも利用できるなど、より多様性及び発展性を高めることができる。 In this way, the focus adjustment function unit 201 sets the adjustment interval to be changed at the time of focus adjustment in the air space Sf on the object OBJ side with respect to the rear lens group A 102A and the air space on the image IMG side with respect to the rear lens group A 102A. Since any one of the front and rear air spaces Sf and Sr is included with respect to the Sr and the rear lens A group 102A, and a maximum of three lens groups 101, 102A and 102B can be configured to be movable, the softness due to the change in spherical aberration It is possible to enhance the versatility and functionality of focus photography, increase / decrease in the amount of blurring of peripheral images due to changes in curvature of field, and correction of curvature of field. In addition, by controlling the actuator (not shown) that moves each lens group 101, 102A, 102B and using the image sensor as a sensor, in addition to the original focus adjustment, spherical aberration and curvature of field can be controlled. Furthermore, it can be used for adjustment processes during manufacturing, and can further enhance diversity and expandability.

よって、このような本実施形態に係る大口径撮像レンズによれば、基本構成として、物体OBJ側から連続した複数枚の前正レンズLF,L2…及び最も開口紋りSTO側の前負レンズL4を含み、全レンズLF,L2…を物体OBJ側が凸形状のメニスカスレンズにより構成するとともに、開口絞りSTO側の各レンズ面(i=2…)の曲率半径が物体OBJ側から開口絞りSTOへ順次小さくなり、かつ全レンズLF,L2…のレンズ面(i=1,2…)が空気に接触する前レンズ群101と、最も開口絞りSTO側に配した両凹レンズL5と最も像IMG側に配して両面が光軸Dc上の同方向に湾曲した負のパワーを有する最終レンズLEとにより挟まれた複数枚の後正レンズL6,L7を含み、かつ当該後正レンズL6,L7に少なくとも一つの両凸レンズ(L6,L7)を含ませた後レンズ群102とを有するレンズ全系100を備え、物体距離を無限遠とし、前述した条件式[1]-[3]を満たすように構成したため、構築した前レンズ群101により光軸Dc方向の長さを短縮できるとともに、各レンズ面の入出射角を緩めることにより収差発生を抑え、加えて、後レンズ群102を部分対称レンズ群として機能させることにより前段で発生した残存収差をバランス良く補正ことができる。これにより、近距離撮影においても十分な光学性能をカバーできるなど、消費者ニーズに十分に応えることができるデジタルカメラ等に最適な明るい交換レンズを実現できるとともに、光学系全体の小型コンパクト化を図りつつ大型高精細撮像素子にも対応できる、特に、準広角から中望遠の撮影域に最適な単焦点の大口径撮像レンズ1を得ることができる。 Therefore, according to such a large-diameter imaging lens according to the present embodiment, as a basic configuration, a plurality of front positive lenses LF, L2 ... Continuously from the object OBJ side and a front negative lens L4 on the most open pattern STO side. All lenses LF, L2 ... The front lens group 101, which is smaller and the lens surfaces (i = 1, 2, ...) Of all lenses LF, L2 ... Are in contact with air, the biconcave lens L5 arranged on the most aperture aperture STO side, and the most image IMG side. A plurality of posterior positive lenses L6, L7 sandwiched by a final lens LE having a negative power whose both sides are curved in the same direction on the optical axis Dc are included, and at least one of the posterior positive lenses L6, L7. This is because the entire lens system 100 having a rear lens group 102 including two biconvex lenses (L6, L7) is provided, the object distance is set to infinity, and the above-mentioned conditional equations [1]-[3] are satisfied. The constructed front lens group 101 can shorten the length in the optical axis Dc direction, and the entrance / exit angle of each lens surface is loosened to suppress the occurrence of aberrations. In addition, the rear lens group 102 functions as a partially symmetric lens group. By doing so, the residual aberration generated in the previous stage can be corrected in a well-balanced manner. As a result, it is possible to realize a bright interchangeable lens that is optimal for digital cameras, etc. that can fully meet consumer needs, such as being able to cover sufficient optical performance even in short-distance photography, and to reduce the size and compactness of the entire optical system. At the same time, it is possible to obtain a single-focus large-diameter image pickup lens 1 that is compatible with a large-scale high-definition image pickup element and is particularly suitable for a quasi-wide-angle to medium-television shooting range.

表1には、実施例1に係る大口径撮像レンズ1におけるレンズ全系100のレンズデータを示す。無限物点時のレンズ全系100は、焦点距離:49.60mm,Fナンバー:1.43,半画角:23.31゜,像高:21.63mmである。 Table 1 shows the lens data of the entire lens system 100 in the large-diameter image pickup lens 1 according to the first embodiment. The entire lens system 100 at the time of an infinite object has a focal length of 49.60 mm, an F number of 1.43, a half angle of view: 23.31 °, and an image height of 21.63 mm.

Figure 2022012964000002
Figure 2022012964000002

表1の「面データ」は、物体OBJ側から数えたレンズ面の面番号をiで示し、この面番号iは、図1に示した符号(数字)に一致する。これに対応して、レンズ面の曲率半径R(i)、軸上面間隔D(i)、レンズの屈折率nd(i)、レンズのアッベ数νd(i)、異常部分分散値ΔPgF(i)の絶対値をそれぞれ示す。nd(i)及びνd(i)はd線(587.56〔nm〕)に対する数値である。軸上面間隔D(i)は相対向する面と面間のレンズ厚或いは空気空間を示す。なお、曲率半径R(i)と面間隔D(i)の単位は〔mm〕である。面番号のOBJは物体、STOは開口絞り、IMGは像の位置を示す。曲率半径R(i)のInfinityは平面であり、面番号iの後にAが付いた面は面形状が非球面であることを示す。屈折率nd(i)とアッベ数νd(i)の空欄は空気であることを示す。 The "plane data" in Table 1 indicates the surface number of the lens surface counted from the object OBJ side by i, and this surface number i corresponds to the reference numeral (number) shown in FIG. Correspondingly, the radius of curvature R (i) of the lens surface, the axis top surface distance D (i), the refractive index nd (i) of the lens, the Abbe number νd (i) of the lens, and the abnormal partial dispersion value ΔPgF (i). The absolute values of are shown respectively. nd (i) and νd (i) are numerical values for the d line (587.56 [nm]). The shaft upper surface distance D (i) indicates the lens thickness or the air space between the facing surfaces. The unit of the radius of curvature R (i) and the surface spacing D (i) is [mm]. The surface number OBJ indicates an object, STO indicates an aperture stop, and IMG indicates the position of an image. The Infinity of the radius of curvature R (i) is a plane, and the surface with A after the surface number i indicates that the surface shape is aspherical. The blanks of the refractive index nd (i) and the Abbe number νd (i) indicate that it is air.

また、表1の「非球面係数」は、面の中心を原点とし、光軸Dc方向をZとした直交座標系(X,Y,Z)において、ASPを非球面の面番号としたとき、Zは数1により表される。数1において、Rは中心曲率半径、A4,A6,A8,A10は、それぞれ4次,6次,8次,10次の非球面係数、Hは光軸上の原点からの距離である。なお、表2において、「E」は「×10」を意味する。 The "aspherical coefficient" in Table 1 is based on the case where the ASP is an aspherical surface number in a Cartesian coordinate system (X, Y, Z) with the center of the surface as the origin and the optical axis Dc direction as Z. Z is represented by the number 1. In Equation 1, R is the central radius of curvature, A4, A6, A8, and A10 are the aspherical coefficients of the 4th, 6th, 8th, and 10th orders, respectively, and H is the distance from the origin on the optical axis. In Table 2, "E" means "x10".

Figure 2022012964000003
Figure 2022012964000003

図6に示すように、AFLは49.60mm,TLLは40.69mmであるため、TLL/AFLは「0.82」となり、条件式[1](0.68<〔TLL/AFL〕<1.00)を満たす。TLiは65.00mmであるため、TLi/AFLは「1.31」となり、条件式[2](0.8 <〔TLi/AFL〕<1.4)を満たす。IMDは24.31mmであるため、IMD/AFLは「0.49」となり、条件式[3](0.2 <〔IMD/AFL〕)を満たす。 As shown in FIG. 6, since AFL is 49.60 mm and TLL is 40.69 mm, TLL / AFL is “0.82”, and the conditional expression [1] (0.68 <[TLL / AFL] <1. .00) is satisfied. Since TLi is 65.00 mm, TLi / AFL becomes "1.31" and satisfies the conditional expression [2] (0.8 <[TLi / AFL] <1.4). Since the IMD is 24.31 mm, the IMD / AFL is "0.49", which satisfies the conditional expression [3] (0.2 << [IMD / AFL]).

また、TL1は15.44mm,TL2は14.33mmであるため、TLl/TL2は「1.08」となり、条件式[4](0.8<〔TLl/TL2〕<1.6)を満たす。TL2Aは5.28mm,TL2Bは7.80mmであるため、TL2A/TL2Bは「0.68」となり、条件式[5](0.6<〔TL2A/TL2B〕<1.6)を満たす。FNOは1.43であるため、TLL/(AFL/FNO)は1.17となり、条件式[6](1.0<〔TLL/(AFL/FNO)〕<1.5)を満たす。FL2は44.15mmであるため、TL2/(FL2/FNO)は「0.46」となり、条件式[7](0.3<〔TL2/(FL2/FNO)〕<0.6)を満たす。 Further, since TL1 is 15.44 mm and TL2 is 14.33 mm, TLl / TL2 is "1.08", which satisfies the conditional expression [4] (0.8 <[TLl / TL2] <1.6). .. Since TL2A is 5.28 mm and TL2B is 7.80 mm, TL2A / TL2B is "0.68", and the conditional expression [5] (0.6 <[TL2A / TL2B] <1.6) is satisfied. Since FNO is 1.43, TLL / (AFL / FNO) is 1.17, which satisfies the conditional expression [6] (1.0 << [TLL / (AFL / FNO)] <1.5). Since FL2 is 44.15 mm, TL2 / (FL2 / FNO) becomes "0.46", which satisfies the conditional expression [7] (0.3 <[TL2 / (FL2 / FNO)] <0.6). ..

さらに、SR1は14.41mm,TLSは10.92mmであるため、SR1/TLSは「1.32」となり、条件式[8](1.0<〔SR1/TLS〕<1.5)を満たす。FLEは-73.00mmであるため、FLE/AFLは「-1.47」となり、条件式[9](-4.0<〔FLE/AFL〕<-0.8)満たす。加えて、図6に示すように、実施例1における他の各種物理量及び条件式の範囲についても本発明が要求する構成要件を満たしている。 Further, since SR1 is 14.41 mm and TLS is 10.92 mm, SR1 / TLS is "1.32" and the conditional expression [8] (1.0 << [SR1 / TLS] <1.5) is satisfied. .. Since the FLE is −73.00 mm, the FLE / AFL is “-1.47” and the conditional expression [9] (-4.0 <[FLE / AFL] <−0.8) is satisfied. In addition, as shown in FIG. 6, various other physical quantities and the range of conditional expressions in Example 1 also satisfy the constituent requirements required by the present invention.

他方、表1の「フォーカス可変間隔」において、F10は無限遠時、F11-F14は、図1に示すフォーカス方式〔F11〕-〔F14〕にそれぞれ対応し、また、F12AはF12に対して軸上面間隔(ZD12)を変更するとともに、F13AはF13に対して軸上面間隔(ZD9)を変更した場合を示す。「フォーカス可変間隔」のZD16は、最終レンズ面(i=15)から像IMGまでの光軸長となり、特に、無限遠時は前述したIMDを示す。 On the other hand, in the "variable focus interval" in Table 1, F10 corresponds to the focus method [F11]-[F14] shown in FIG. 1 at infinity, and F12A corresponds to the axis with respect to F12. F13A shows a case where the upper surface spacing (ZD12) is changed and the shaft upper surface spacing (ZD9) is changed with respect to F13. The ZD16 of the "focus variable interval" is the optical axis length from the final lens surface (i = 15) to the image IMG, and particularly indicates the above-mentioned IMD at infinity.

実施例1の場合、物体OBJの距離が無限遠から近距離に変化するときのフォーカス調整は、フォーカス方式〔F11〕-〔F14〕で示す4種類の何れかの方式により可能である。〔F11〕は、前レンズ群101,後レンズA群102A,後レンズB群102Bをそれぞれ一体とした三つの各レンズ群を、物体OBJ側に異なる量で移動させ、開口絞りSTO含む空気間隔,後レンズ群102における後正レンズL6とL7間の空気間隔,像IMG側の空気間隔,をそれぞれ変化させる方式、〔F12(F12A)〕は、前レンズ群101と後レンズA群102Aを一体としたレンズ群と、後レンズB群102Bを一体とした二つの各レンズ群を、物体OBJ側に異なる量で移動させ、後レンズ群102における後正レンズL6とL7間の空気間隔,像IMG側の空気間隔,をそれぞれ変化させる方式、〔F13(F13A)〕は、前レンズ群101と後レンズ群102をそれぞれ一体とした二つの各レンズ群を、物体OBJ側に異なる量で移動させ、開口絞りSTO含む空気間隔,像IMG側の空気間隔,をそれぞれ変化させる方式、〔F14〕は、レンズ全系100を一体として物体OBJ側に移動させ、像IMG側の空気間隔を変化させる方式である。 In the case of the first embodiment, the focus adjustment when the distance of the object OBJ changes from infinity to a short distance can be performed by any one of the four types of focus methods [F11]-[F14]. In [F11], each of the three lens groups in which the front lens group 101, the rear lens A group 102A, and the rear lens B group 102B are integrated is moved to the object OBJ side by different amounts, and the air spacing including the aperture throttle STO, [F12 (F12A)], a method of changing the air spacing between the rear positive lenses L6 and L7 in the rear lens group 102 and the air spacing on the image IMG side, integrates the front lens group 101 and the rear lens group A 102A. The two lens groups, which are the integrated lens group and the rear lens group B 102B, are moved to the object OBJ side by different amounts, and the air gap between the rear positive lenses L6 and L7 in the rear lens group 102, the image IMG side. [F13 (F13A)] is a method of changing the air spacing of the two lenses, in which the front lens group 101 and the rear lens group 102 are integrated, and the two lens groups are moved to the object OBJ side by different amounts to open the lens. The method of changing the air spacing including the aperture STO and the air spacing on the image IMG side, respectively, [F14] is a method of moving the entire lens system 100 to the object OBJ side as a unit and changing the air spacing on the image IMG side. ..

図3-図5に、実施例1の撮像レンズ1における無限遠時〔F10〕,フォーカス方式〔F11〕-〔F14〕,軸上面間隔を変更した場合のフォーカス方式〔F12A〕及び〔F13A〕にそれぞれ対応する縦収差図を示す。各縦収差図は、左側から、球面収差(656.27nm,587.56nm,435.83nm)、非点収差(587.56nm)、歪曲収差(587.56nm)を示す。各スケールは、±0.50mm,±0.50mm,±3.0%である。 3 and 5 show the focus methods [F12A] and [F13A] at infinity [F10], the focus method [F11]-[F14], and the shaft upper surface spacing in the image pickup lens 1 of the first embodiment. The corresponding longitudinal aberration diagrams are shown. Each longitudinal aberration diagram shows spherical aberration (656.27 nm, 587.56 nm, 435.83 nm), astigmatism (587.56 nm), and distortion (587.56 nm) from the left side. Each scale is ± 0.50 mm, ± 0.50 mm, ± 3.0%.

図3-図5から明らかなように、いずれのフォーカス方式(〔F10〕,〔F11〕-〔F14〕,〔F12A〕及び〔F13A〕)であっても、良好な収差、即ち、撮像性能が得られることを確認できる。 As is clear from FIG. 3-FIG. 5, good aberration, that is, imaging performance is obtained regardless of the focus method ([F10], [F11]-[F14], [F12A] and [F13A]). It can be confirmed that it can be obtained.

なお、像面(IMG)には撮像素子を配するとともに、通常、この撮像素子の前面には、フェイスプレート,赤外線カットフィルタ,ローパスフィルタ等の平行平面板などが配されるが、これらについては、その総厚を光学的に等価となる空気間隔に換算し、全系のバックフォーカスに加えている。 An image sensor is arranged on the image plane (IMG), and a face plate, an infrared cut filter, a parallel flat plate such as a low-pass filter, etc. are usually arranged on the front surface of the image sensor. , The total thickness is converted into an optically equivalent air spacing and added to the back focus of the entire system.

次に、本実施形態に係る実施例2の大口径撮像レンズ1について、図6-図8を参照して説明する。 Next, the large-diameter image pickup lens 1 of the second embodiment according to the present embodiment will be described with reference to FIGS. 6-8.

実施例2の大口径撮像レンズ1は、図7に示すように、上述した実施例1と基本的なレンズ構成は同じとなるが、フォーカス方式として、フォーカス可変間隔ZD9,ZD12を不変とし、実施例1のフォーカス方式〔F14〕と同じレンズ全系100を移動(Gm6)させる全体繰り出し方式を採用したものである。 As shown in FIG. 7, the large-diameter image pickup lens 1 of the second embodiment has the same basic lens configuration as the first embodiment described above, but the focus variable intervals ZD9 and ZD12 are unchanged. The whole extension method of moving (Gm6) the entire lens system 100, which is the same as the focus method [F14] of Example 1, is adopted.

表2には、実施例2に係る大口径撮像レンズ1におけるレンズ全系100のレンズデータを示す。無限物点時の撮像レンズ1は、焦点距離:49.60mm,Fナンバー:1.43,半画角:23.29゜,像高:21.63mmである。 Table 2 shows the lens data of the entire lens system 100 in the large-diameter image pickup lens 1 according to the second embodiment. The image pickup lens 1 at an infinite object point has a focal length of 49.60 mm, an F number of 1.43, a half angle of view: 23.29 °, and an image height of 21.63 mm.

Figure 2022012964000004
Figure 2022012964000004

図6に示すように、AFLは49.60mm,TLLは40.00mmであるため、TLL/AFLは「0.81」となり、条件式[1](0.68<〔TLL/AFL〕<1.00)を満たす。TLiは65.00mmであるため、TLi/AFLは「1.31」となり、条件式[2](0.8 <〔TLi/AFL〕<1.4)を満たす。IMDは25.00mmであるため、IMD/AFLは「0.50」となり、条件式[3](0.2 <〔IMD/AFL〕)を満たす。 As shown in FIG. 6, since AFL is 49.60 mm and TLL is 40.00 mm, TLL / AFL is “0.81”, and the conditional expression [1] (0.68 <[TLL / AFL] <1. .00) is satisfied. Since TLi is 65.00 mm, TLi / AFL becomes "1.31" and satisfies the conditional expression [2] (0.8 <[TLi / AFL] <1.4). Since the IMD is 25.00 mm, the IMD / AFL is "0.50", which satisfies the conditional expression [3] (0.2 << [IMD / AFL]).

また、TL1は15.23mm,TL2は12.87mmであるため、TLl/TL2は「1.18」となり、条件式[4](0.8<〔TLl/TL2〕<1.6)を満たす。TL2Aは5.55mm,TL2Bは7.17mmであるため、TL2A/TL2Bは「0.77」となり、条件式[5](0.6<〔TL2A/TL2B〕<1.6)を満たす。FNOは1.43であるため、TLL/(AFL/FNO)は1.15となり、条件式[6](1.0<〔TLL/(AFL/FNO)〕<1.5)を満たす。FL2は44.84mmであるため、TL2/(FL2/FNO)は「0.41」となり、条件式[7](0.3<〔TL2/(FL2/FNO)〕<0.6)を満たす。 Further, since TL1 is 15.23 mm and TL2 is 12.87 mm, TLl / TL2 is "1.18", which satisfies the conditional expression [4] (0.8 <[TLl / TL2] <1.6). .. Since TL2A is 5.55 mm and TL2B is 7.17 mm, TL2A / TL2B is “0.77” and the conditional expression [5] (0.6 << [TL2A / TL2B] <1.6) is satisfied. Since FNO is 1.43, TLL / (AFL / FNO) is 1.15, which satisfies the conditional expression [6] (1.0 << [TLL / (AFL / FNO)] <1.5). Since FL2 is 44.84 mm, TL2 / (FL2 / FNO) becomes "0.41" and satisfies the conditional expression [7] (0.3 <[TL2 / (FL2 / FNO)] <0.6). ..

さらに、SR1は14.62mm,TLSは11.90mmであるため、SR1/TLSは「1.23」となり、条件式[8](1.0<〔SR1/TLS〕<1.5)を満たす。FLEは-127.32mmであるため、FLE/AFLは「-2.57」となり、条件式[9](-4.0<〔FLE/AFL〕<-0.8)満たす。加えて、図6に示すように、実施例2における他の各種物理量及び条件式の範囲についても本発明が要求する構成要件を満たしている。 Further, since SR1 is 14.62 mm and TLS is 11.90 mm, SR1 / TLS is "1.23" and the conditional expression [8] (1.0 << [SR1 / TLS] <1.5) is satisfied. .. Since the FLE is -127.32 mm, the FLE / AFL is "-2.57", which satisfies the conditional expression [9] (-4.0 <[FLE / AFL] <-0.8). In addition, as shown in FIG. 6, various other physical quantities and the range of conditional expressions in Example 2 also satisfy the constituent requirements required by the present invention.

図8に、実施例2の撮像レンズ1における無限遠時〔F10〕及びフォーカス方式〔F14〕にそれぞれ対応する縦収差図を示す。図8から明らかなように、いずれのフォーカス方式(〔F10〕,〔F14〕)であっても、良好な収差、即ち、撮像性能が得られることを確認できる。 FIG. 8 shows a longitudinal aberration diagram corresponding to the point at infinity [F10] and the focus method [F14] in the image pickup lens 1 of the second embodiment, respectively. As is clear from FIG. 8, it can be confirmed that good aberration, that is, imaging performance can be obtained regardless of the focus method ([F10], [F14]).

次に、本実施形態に係る実施例3の大口径撮像レンズ1について、図6,図9及び図10を参照して説明する。 Next, the large-diameter image pickup lens 1 of the third embodiment according to the present embodiment will be described with reference to FIGS. 6, 9 and 10.

実施例3の大口径撮像レンズ1は、図9に示すように、前述した実施例1と基本的なレンズ構成は同じとなるが、フォーカス方式として、フォーカス可変間隔ZD9を不変とし、実施例1のフォーカス方式〔F12〕と同じ方式、即ち、至近距離のフォーカス調整をZD12の可変間隔で行うようにしたものである。具体的には、前レンズ群101と後レンズA群102Aを一体としたレンズ群と、後レンズB群102Bを一体とした二つの各レンズ群を、物体OBJ側に異なる量で移動させ、後レンズ群102における後正レンズL6とL7間の空気間隔,像IMG側の空気間隔,をそれぞれ変化させる方式、即ち、二つのレンズ群(前レンズ群101+後レンズA群102A,後レンズB群102B)を移動(Gm4,Gm3)させる〔F12〕のフォーカス方式を採用したものである。 As shown in FIG. 9, the large-diameter image pickup lens 1 of Example 3 has the same basic lens configuration as that of Example 1 described above, but as a focus method, the focus variable interval ZD9 is unchanged, and Example 1 is used. The same method as the focus method [F12] of the above, that is, the focus adjustment at a close distance is performed at the variable interval of the ZD12. Specifically, the lens group in which the front lens group 101 and the rear lens group A 102A are integrated, and the two lens groups in which the rear lens group B 102B is integrated are moved to the object OBJ side by different amounts, and the rear lens group B is moved to the rear. A method of changing the air spacing between the posterior positive lenses L6 and L7 in the lens group 102 and the air spacing on the image IMG side, that is, two lens groups (front lens group 101 + rear lens A group 102A, rear lens B group 102B). ) Is moved (Gm4, Gm3) [F12], and the focus method is adopted.

また、実施例3では、後レンズ群102を構成するに際し、最も開口絞りSTO側に配した両凹レンズL5とこの両凹レンズL5の像IMG側に配した後正レンズL6による接合レンズJaを構成するに際し、両凹レンズL5を、異常部分分散値dPgfの絶対値が0.02以上となる硝材を用いて形成し、さらに、後正レンズL6を、d線の屈折率が1.75以上となる高屈折ガラスを用いて形成した。後レンズ群102を、このように構成すれば、特に、アッベ数の大きなガラスと屈折率差の利用により、球面収差及び軸上色収差に対する捕正効果をより高めることができる。 Further, in the third embodiment, when the rear lens group 102 is configured, the junction lens Ja is configured by the biconcave lens L5 arranged on the most aperture stop STO side and the rear positive lens L6 arranged on the image IMG side of the biconcave lens L5. In this case, the biconcave lens L5 is formed by using a glass material having an abnormal partial dispersion value dPgf of 0.02 or more, and the posterior positive lens L6 has a high refractive index of 1.75 or more. Formed using refracted glass. If the rear lens group 102 is configured in this way, it is possible to further enhance the correction effect on spherical aberration and axial chromatic aberration, in particular by utilizing glass having a large Abbe number and the difference in refractive index.

表3には、実施例3に係る大口径撮像レンズ1におけるレンズ全系100のレンズデータを示す。無限物点時の撮像レンズ1は、焦点距離:49.60mm,Fナンバー:1.40,半画角:23.29゜,像高:21.63mmである。 Table 3 shows the lens data of the entire lens system 100 in the large-diameter image pickup lens 1 according to the third embodiment. The image pickup lens 1 at an infinite object point has a focal length of 49.60 mm, an F number of 1.40, a half angle of view: 23.29 °, and an image height of 21.63 mm.

Figure 2022012964000005
Figure 2022012964000005

図6に示すように、AFLは49.60mm,TLLは40.06mmであるため、TLL/AFLは「0.81」となり、条件式[1](0.68<〔TLL/AFL〕<1.00)を満たす。TLiは65.00mmであるため、TLi/AFLは「1.31」となり、条件式[2](0.8 <〔TLi/AFL〕<1.4)を満たす。IMDは24.94mmであるため、IMD/AFLは「0.50」となり、条件式[3](0.2 <〔IMD/AFL〕)を満たす。 As shown in FIG. 6, since AFL is 49.60 mm and TLL is 40.06 mm, TLL / AFL is “0.81”, and the conditional expression [1] (0.68 <[TLL / AFL] <1. .00) is satisfied. Since TLi is 65.00 mm, TLi / AFL becomes "1.31" and satisfies the conditional expression [2] (0.8 <[TLi / AFL] <1.4). Since the IMD is 24.94 mm, the IMD / AFL is "0.50", which satisfies the conditional expression [3] (0.2 << [IMD / AFL]).

また、TL1は15.56mm,TL2は13.59mmであるため、TLl/TL2は「1.15」となり、条件式[4](0.8<〔TLl/TL2〕<1.6)を満たす。TL2Aは5.30mm,TL2Bは7.72mmであるため、TL2A/TL2Bは「0.69」となり、条件式[5](0.6<〔TL2A/TL2B〕<1.6)を満たす。FNOは1.43であるため、TLL/(AFL/FNO)は1.16となり、条件式[6](1.0<〔TLL/(AFL/FNO)〕<1.5)を満たす。FL2は41.94mmであるため、TL2/(FL2/FNO)は「0.46」となり、条件式[7](0.3<〔TL2/(FL2/FNO)〕<0.6)を満たす。 Further, since TL1 is 15.56 mm and TL2 is 13.59 mm, TLl / TL2 is "1.15", which satisfies the conditional expression [4] (0.8 <[TLl / TL2] <1.6). .. Since TL2A is 5.30 mm and TL2B is 7.72 mm, TL2A / TL2B is "0.69", and the conditional expression [5] (0.6 <[TL2A / TL2B] <1.6) is satisfied. Since FNO is 1.43, TLL / (AFL / FNO) is 1.16, which satisfies the conditional expression [6] (1.0 << [TLL / (AFL / FNO)] <1.5). Since FL2 is 41.94 mm, TL2 / (FL2 / FNO) becomes "0.46", which satisfies the conditional expression [7] (0.3 <[TL2 / (FL2 / FNO)] <0.6). ..

さらに、SR1は14.77mm,TLSは10.91mmであるため、SR1/TLSは「1.35」となり、条件式[8](1.0<〔SR1/TLS〕<1.5)を満たす。FLEは-58.42mmであるため、FLE/AFLは「-1.18」となり、条件式[9](-4.0<〔FLE/AFL〕<-0.8)満たす。加えて、図6に示すように、実施例3における他の各種物理量及び条件式の範囲についても本発明が要求する構成要件を満たしている。 Further, since SR1 is 14.77 mm and TLS is 10.91 mm, SR1 / TLS is "1.35", which satisfies the conditional expression [8] (1.0 << [SR1 / TLS] <1.5). .. Since the FLE is −58.42 mm, the FLE / AFL becomes “-1.18” and the conditional expression [9] (-4.0 <[FLE / AFL] <−0.8) is satisfied. In addition, as shown in FIG. 6, various other physical quantities and the range of conditional expressions in Example 3 also satisfy the constituent requirements required by the present invention.

図10に、実施例3の撮像レンズ1における無限遠時〔F10〕及びフォーカス方式〔F12〕にそれぞれ対応する縦収差図を示す。図10から明らかなように、いずれのフォーカス方式(〔F10〕,〔F12〕)であっても、良好な収差、即ち、撮像性能が得られることを確認できる。 FIG. 10 shows a longitudinal aberration diagram corresponding to the point at infinity [F10] and the focus method [F12] in the image pickup lens 1 of the third embodiment, respectively. As is clear from FIG. 10, it can be confirmed that good aberration, that is, imaging performance can be obtained regardless of the focus method ([F10], [F12]).

次に、本実施形態に係る実施例4の大口径撮像レンズ1について、図6,図11及び図12を参照して説明する。 Next, the large-diameter image pickup lens 1 of the fourth embodiment according to the present embodiment will be described with reference to FIGS. 6, 11 and 12.

実施例4の大口径撮像レンズ1は、図11に示すように、前述した実施例1と基本的なレンズ構成は同じとなるが、フォーカス方式として、フォーカス可変間隔ZD9を不変とし、実施例1のフォーカス方式〔F12〕と同じ方式(実施例3と同じ方式)、即ち、至近距離のフォーカス調整をZD12の可変間隔で行うようにしたものである。具体的には、前レンズ群101と後レンズA群102Aを一体としたレンズ群と、後レンズB群102Bを一体とした二つの各レンズ群を、物体OBJ側に異なる量で移動させ、後レンズ群102における後正レンズL6とL7間の空気間隔,像IMG側の空気間隔,をそれぞれ変化させる方式、即ち、二つのレンズ群(前レンズ群101+後レンズA群102A,後レンズB群102B)を移動(Gm4,Gm3)させる〔F12〕のフォーカス方式を採用し、撮影領域を中望遠領域としたものである。 As shown in FIG. 11, the large-diameter image pickup lens 1 of Example 4 has the same basic lens configuration as that of Example 1 described above, but as a focus method, the focus variable interval ZD9 is unchanged, and Example 1 is used. The same method as the focus method [F12] of the above (the same method as in the third embodiment), that is, the focus adjustment at a close distance is performed at variable intervals of the ZD12. Specifically, the lens group in which the front lens group 101 and the rear lens group A 102A are integrated, and the two lens groups in which the rear lens group B 102B is integrated are moved to the object OBJ side by different amounts, and the rear lens group B is moved to the rear. A method of changing the air spacing between the posterior positive lenses L6 and L7 in the lens group 102 and the air spacing on the image IMG side, that is, two lens groups (front lens group 101 + rear lens A group 102A, rear lens B group 102B). ) Is moved (Gm4, Gm3) by the focus method of [F12], and the shooting area is set to the medium telephoto area.

また、実施例4では、前レンズ群101を構成するに際し、異常部分分散値dPgfの絶対値が0.02以上となる低屈折率低分散硝材を用いた少なくとも1枚のレンズ(例示は、前正レンズL3)を含ませて構成した。前レンズ群101を、このように構成すれば、特に、低屈折率低分散硝材を用いた正レンズを含ませることにより、色収差が目立つ傾向のある中望遠撮影領域での色収差の捕正効果をより高めることができる。 Further, in Example 4, when constructing the front lens group 101, at least one lens using a low refractive index low dispersion glass material having an absolute partial dispersion value dPgf of 0.02 or more (example is the front lens). It was configured to include a positive lens L3). When the front lens group 101 is configured in this way, in particular, by including a positive lens using a low-refractive index low-dispersion glass material, the effect of correcting chromatic aberration in the medium telephoto shooting region where chromatic aberration tends to be conspicuous can be obtained. Can be enhanced.

なお、この条件を適用するレンズは、いずれの前正レンズLF,L2,L3でも可能であるが、低屈折率低分散硝材は、低硬度の特性を有するため、最先レンズLFへの適用は避けた方が望ましく、また、加工上は小径レンズへの適用が望ましい。さらに、前レンズ群101の前正レンズL3…に低分散硝材を用いる場合、色収差の補正を行うことができるが、屈折率が低い場合、所定の正パワーを得るには曲率半径を小さくする必要があるとともに、メニスカス形状より、パワーの得られる平凸形状又は両凸形状に近づける必要がある。この場合、レンズ厚が大きくなるため、レンズ厚とのバランスを考慮する必要がある。 The lens to which this condition is applied can be any of the front positive lenses LF, L2, and L3, but since the low refractive index low dispersion glass material has the characteristic of low hardness, it can be applied to the foremost lens LF. It is desirable to avoid it, and it is desirable to apply it to small-diameter lenses in terms of processing. Further, when a low-dispersion glass material is used for the front positive lens L3 of the front lens group 101, chromatic aberration can be corrected, but when the refractive index is low, it is necessary to reduce the radius of curvature in order to obtain a predetermined positive power. At the same time, it is necessary to make the shape closer to a plano-convex shape or a biconvex shape where power can be obtained, rather than the meniscus shape. In this case, since the lens thickness becomes large, it is necessary to consider the balance with the lens thickness.

表4には、実施例4に係る大口径撮像レンズ1におけるレンズ全系100のレンズデータを示す。無限物点時の撮像レンズ1は、焦点距離:73.00mm,Fナンバー:1.55,半画角:16.35゜,像高:21.63mmである。 Table 4 shows the lens data of the entire lens system 100 in the large-diameter image pickup lens 1 according to the fourth embodiment. The image pickup lens 1 at the time of an infinite object has a focal length: 73.00 mm, an F number: 1.55, a half angle of view: 16.35 °, and an image height: 21.63 mm.

Figure 2022012964000006
Figure 2022012964000006

図6に示すように、AFLは73.00mm,TLLは54.29mmであるため、TLL/AFLは「0.74」となり、条件式[1](0.68<〔TLL/AFL〕<1.00)を満たす。TLiは89.25mmであるため、TLi/AFLは「1.22」となり、条件式[2](0.8 <〔TLi/AFL〕<1.4)を満たす。IMDは34.96mmであるため、IMD/AFLは「0.48」となり、条件式[3](0.2 <〔IMD/AFL〕)を満たす。 As shown in FIG. 6, since AFL is 73.00 mm and TLL is 54.29 mm, TLL / AFL is “0.74”, and the conditional expression [1] (0.68 <[TLL / AFL] <1. .00) is satisfied. Since TLi is 89.25 mm, TLi / AFL becomes "1.22" and satisfies the conditional expression [2] (0.8 <[TLi / AFL] <1.4). Since the IMD is 34.96 mm, the IMD / AFL is "0.48", which satisfies the conditional expression [3] (0.2 << [IMD / AFL]).

また、TL1は22.92mm,TL2は15.84mmであるため、TLl/TL2は「1.45」となり、条件式[4](0.8<〔TLl/TL2〕<1.6)を満たす。TL2Aは7.28mm,TL2Bは8.36mmであるため、TL2A/TL2Bは「0.87」となり、条件式[5](0.6<〔TL2A/TL2B〕<1.6)を満たす。FNOは1.55であるため、TLL/(AFL/FNO)は1.15となり、条件式[6](1.0<〔TLL/(AFL/FNO)〕<1.5)を満たす。FL2は68.46mmであるため、TL2/(FL2/FNO)は「0.36」となり、条件式[7](0.3<〔TL2/(FL2/FNO)〕<0.6)を満たす。 Further, since TL1 is 22.92 mm and TL2 is 15.84 mm, TLl / TL2 is "1.45", which satisfies the conditional expression [4] (0.8 <[TLl / TL2] <1.6). .. Since TL2A is 7.28 mm and TL2B is 8.36 mm, TL2A / TL2B is “0.87”, which satisfies the conditional expression [5] (0.6 << [TL2A / TL2B] <1.6). Since FNO is 1.55, TLL / (AFL / FNO) is 1.15, which satisfies the conditional expression [6] (1.0 << [TLL / (AFL / FNO)] <1.5). Since FL2 is 68.46 mm, TL2 / (FL2 / FNO) becomes "0.36", which satisfies the conditional expression [7] (0.3 <[TL2 / (FL2 / FNO)] <0.6). ..

さらに、SR1は19.63mm,TLSは15.53mmであるため、SR1/TLSは「1.26」となり、条件式[8](1.0<〔SR1/TLS〕<1.5)を満たす。FLEは-81.98mmであるため、FLE/AFLは「-1.12」となり、条件式[9](-4.0<〔FLE/AFL〕<-0.8)満たす。加えて、図6に示すように、実施例4における他の各種物理量及び条件式の範囲についても本発明が要求する構成要件を満たしている。 Further, since SR1 is 19.63 mm and TLS is 15.53 mm, SR1 / TLS is "1.26" and the conditional expression [8] (1.0 << [SR1 / TLS] <1.5) is satisfied. .. Since the FLE is −81.98 mm, the FLE / AFL becomes “-1.12” and the conditional expression [9] (-4.0 <[FLE / AFL] <−0.8) is satisfied. In addition, as shown in FIG. 6, the range of various other physical quantities and conditional expressions in Example 4 also satisfy the constituent requirements required by the present invention.

図12に、実施例4の撮像レンズ1における無限遠時〔F10〕及びフォーカス方式〔F12〕にそれぞれ対応する縦収差図を示す。図12から明らかなように、いずれのフォーカス方式(〔F10〕,〔F12〕)であっても、良好な収差、即ち、撮像性能が得られることを確認できる。 FIG. 12 shows a longitudinal aberration diagram corresponding to the point at infinity [F10] and the focus method [F12] in the image pickup lens 1 of the fourth embodiment, respectively. As is clear from FIG. 12, it can be confirmed that good aberration, that is, imaging performance can be obtained regardless of the focus method ([F10], [F12]).

以上、実施例1-4を含む好適実施形態について詳細に説明したが、本発明は、このような実施形態に限定されるものではなく、細部の構成,形状,素材,数量,数値等において、本発明の要旨を逸脱しない範囲で、任意に変更,追加,削除することができる。 Although the preferred embodiments including the first and fourth embodiments have been described in detail above, the present invention is not limited to such an embodiment, and the present invention is not limited to such an embodiment, and the detailed configuration, shape, material, quantity, numerical value, and the like are used. It may be arbitrarily changed, added or deleted without departing from the gist of the present invention.

例えば、前レンズ群101に、物体OBJ側から連続した3枚の前正レンズLF,L2,L3を含ませた例を示したが、2枚の前正レンズLF…又は4枚以上の前正レンズLF…を含む場合を排除するものではない。また、後レンズ群102に、両凹レンズL5と最終レンズLEにより挟まれた2枚の後正レンズL6,L7を含ませた例を示したが、必要により3枚以上の後正レンズL6…を含む場合を排除するものではない。これらはレンズ分割による公知の収差補正技術を用いることによりレンズ群における光軸長の制約を許容できる範囲において任意の枚数を選定できる。一方、後レンズ群102を構成するに際し、両凹レンズL5の開口絞りSTO側のレンズ面(i=9)から像IMG側へ順次空気に接触する三番目までのレンズ面の湾曲方向と、最終レンズLEの像IMG側のレンズ面(i=15)から開口絞りSTO側へ順次空気に接触する三番目までのレンズ面の湾曲方向を、逆方向に設定することが望ましいが、必須の構成要件となるものではない。同様に、後レンズ群102を構成するに際し、2枚の後正レンズL6,L7を有することにより、開口絞りSTO側の当該後正レンズL6から開口絞りSTO側の後レンズA群102A,及び像IMG側の当該後正レンズL7から像IMG側の後レンズB群102Bを備え、後レンズA群102Aが無限物体時であって、かつレンズ全系100の最も物体OBJ側に配する最先レンズLFの物体OBJ側のレンズ面(i=1)から当該後レンズA群102Aの出射後における近軸像位置までの長さの絶対値が最も大きくなる際に、物体距離を無限遠とし、かつ全系のFナンバーをFNO,前レンズ群101の光軸長をLF1,後レンズ群102の光軸長をLF2,後レンズA群102Aの光軸長をTL2A,後レンズB群102Bの光軸長をTL2Bとしたとき、条件式[4]-[7]を満たすように設定することが望ましいが、必須の構成要件となるものではない。 For example, an example is shown in which the front lens group 101 includes three continuous front lenses LF, L2, and L3 from the object OBJ side, but two front lenses LF ... Or four or more front lenses. It does not exclude the case where the lens LF ... Is included. Further, an example is shown in which the rear lens group 102 includes two posterior positive lenses L6 and L7 sandwiched between the biconcave lens L5 and the final lens LE, but if necessary, three or more posterior positive lenses L6 ... It does not exclude the case of inclusion. By using a known aberration correction technique by lens division, an arbitrary number of these can be selected within a range in which the restriction of the optical axis length in the lens group can be tolerated. On the other hand, when constructing the rear lens group 102, the bending direction of the third lens surface that sequentially contacts the air from the lens surface (i = 9) on the aperture stop STO side of the biconcave lens L5 to the image IMG side, and the final lens. It is desirable to set the bending direction of the third lens surface that comes into contact with air sequentially from the lens surface (i = 15) on the image IMG side of the LE to the aperture stop STO side in the opposite direction, but this is an essential configuration requirement. It does not become. Similarly, when the rear lens group 102 is configured, by having two rear positive lenses L6 and L7, the rear lens group A 102A on the aperture aperture STO side, the rear lens group A 102A on the aperture aperture STO side, and the image The rearmost lens B group 102B on the image IMG side is provided from the rear positive lens L7 on the IMG side, and the rear lens group A 102A is the earliest lens arranged on the most object OBJ side of the entire lens system 100 when the rear lens group A 102A is an infinite object. When the absolute value of the length from the lens surface (i = 1) on the LB object OBJ side to the near-axis image position after the exit of the rear lens group A 102A is the largest, the object distance is set to infinity and the object distance is set to infinity. The F number of the entire system is FNO, the optical axis length of the front lens group 101 is LF1, the optical axis length of the rear lens group 102 is LF2, the optical axis length of the rear lens group A 102A is TL2A, and the optical axis length of the rear lens group B 102B. When the length is TL2B, it is desirable to set it so as to satisfy the conditional expressions [4]-[7], but it is not an indispensable constituent requirement.

また、レンズ全系100において、3枚以上の前正レンズLF…及び2枚以上の後正レンズL6…を含むとともに、全ての正レンズLF…,L6…において、d線の屈折率が1.75以上となる硝材を用いた正レンズを2枚以上含み、かつ平均アッベ数を38.0以上とし、レンズ全系100における全ての正レンズLF…,L6…の焦点距離の絶対値を、レンズ全系100における最大の焦点距離を有する負レンズの当該焦点距離の絶対値の80〔%〕よりも大きく設定すること,全ての正レンズLF…,L6…において、d線の屈折率が1.85以上となる硝材を用いた正レンズを少なくとも1枚含ませること,前レンズ群101を、異常部分分散値dPgfの絶対値が0.02以上となる低屈折率低分散硝材を用いた少なくとも1枚のレンズを含ませること,後レンズ群102を、最も開口絞りSTO側に配した両凹レンズL5とこの両凹レンズL5の像IMG側に配した後正レンズL6による接合レンズJaを備え、当該両凹レンズL5を、異常部分分散値dPgfの絶対値が0.02以上となる硝材を用いて形成するとともに、当該後正レンズL6を、d線の屈折率が1.75以上となる高屈折ガラスを用いること,の各構成により実施することが望ましいが、いずれも必須の構成要件となるものではない。 Further, in the entire lens system 100, the d-line refractive index is 1. The absolute value of the focal distances of all the positive lenses LF ..., L6 ... The refractive index of the d-line is 1. Including at least one positive lens using a glass material having an abnormal partial dispersion value of 85 or more, and at least 1 using a low refractive index low dispersion glass material having an absolute partial dispersion value dPgf of 0.02 or more in the front lens group 101. It is equipped with a biconcave lens L5 in which the rear lens group 102 is arranged on the most aperture aperture STO side and a junction lens Ja by a rear positive lens L6 in which the rear lens group 102 is arranged on the image IMG side of the biconcave lens L5. The concave lens L5 is formed by using a glass material having an abnormal partial dispersion value dPgf of 0.02 or more, and the rear positive lens L6 is made of a highly refracting glass having a d-line refractive index of 1.75 or more. It is desirable to implement it according to each configuration of use, but none of them is an essential configuration requirement.

本発明に係る大口径撮像レンズは、デジタルカメラやビデオカメラ等の各種光学機器における専用レンズ或いは交換レンズ等に利用できる。 The large-diameter image pickup lens according to the present invention can be used as a dedicated lens or an interchangeable lens in various optical devices such as digital cameras and video cameras.

1:大口径撮像レンズ,100:レンズ全系,101:前レンズ群,102:後レンズ群,102A:後レンズA群,102B:後レンズB群,STO:開口絞り,OBJ:物体,IMG:像,LF:前正レンズ,L2:前正レンズ,L3:前正レンズ,L4:前負レンズ,L5:両凹レンズ,L6:後正レンズ(両凸レンズ),L7:後正レンズ(両凸レンズ),LE:最終レンズ,(i=1,2,3,4,5,6,7,8):レンズ面,Dc:光軸,AFL:全系焦点距離,TLL:レンズ全系の光軸長,TLi:最も物体側のレンズ面から像までの光軸長,IMD:最終レンズの像側のレンズ面から像までの光軸長,FNO:Fナンバー,LF1:前レンズ群の光軸長,LF2:後レンズ群の光軸長,TL2A:後レンズA群の光軸長,TL2B:後レンズB群の光軸長,Ja:接合レンズ,dPgf:異常部分分散値,SR1:曲率半径,TLS:開口絞りの空間間隔,FLE:最終レンズの焦点距離,Sf:空気空間,Sr:空気空間 1: Large-diameter image pickup lens, 100: Whole lens system, 101: Front lens group, 102: Rear lens group, 102A: Rear lens A group, 102B: Rear lens B group, STO: Aperture aperture, OBJ: Object, IMG: Image, LF: front positive lens, L2: front positive lens, L3: front positive lens, L4: front negative lens, L5: biconcave lens, L6: back positive lens (biconvex lens), L7: back positive lens (biconvex lens) , LE: final lens, (i = 1,2,3,4,5,6,7,8): lens surface, Dc: optical axis, AFL: whole system focal distance, TLL: optical axis length of the whole lens system , TLi: optical axis length from the lens surface on the most object side to the image, IMD: optical axis length from the lens surface on the image side of the final lens to the image, FNO: F number, LF1: optical axis length of the front lens group, LF2: optical axis length of rear lens group, TL2A: optical axis length of rear lens A group, TL2B: optical axis length of rear lens B group, Ja: junction lens, dPgf: abnormal partial dispersion value, SR1: radius of curvature, TLS : Spatial spacing of aperture aperture, FLE: Focus distance of final lens, Sf: Air space, Sr: Air space

Claims (12)

レンズ全系に、開口絞りに対して、物体側に配した正のパワーを有する前レンズ群,及び像側に配した正のパワーを有する後レンズ群を備える大口径撮像レンズにおいて、物体側から連続した複数枚の前正レンズ,及び最も開口紋り側の前負レンズを含み、全レンズを物体側が凸形状のメニスカスレンズにより構成するとともに、開口絞り側の各レンズ面の曲率半径が物体側から開口絞り側へ順次小さくなり、かつ全レンズのレンズ面が空気に接触する前レンズ群と、最も開口絞り側に配した両凹レンズと最も像側に配して両面が光軸上の同方向に湾曲した負のパワーを有する最終レンズとにより挟まれた複数枚の後正レンズを含み、かつ当該後正レンズに少なくとも一つの両凸レンズを含ませた後レンズ群とを有するレンズ全系を備え、物体距離を無限遠とし、全系焦点距離をAFL,レンズ全系の光軸長をTLL,最も物体側のレンズ面から像までの光軸長をTLi,前記最終レンズの像側のレンズ面から像までの光軸長をIMDとしたとき、
0.68<〔TLL/AFL〕<1.00 …(条件式1)
0.8 <〔TLi/AFL〕<1.4 …(条件式2)
0.2 <〔IMD/AFL〕 …(条件式3)
の条件を満たすことを特徴とする大口径撮像レンズ。
In a large-diameter imaging lens having a front lens group having a positive power arranged on the object side and a rear lens group having a positive power arranged on the image side with respect to the aperture aperture in the entire lens system, from the object side. It includes a plurality of continuous front positive lenses and a front negative lens on the most aperture pattern side, and all lenses are composed of meniscus lenses with a convex shape on the object side, and the radius of curvature of each lens surface on the aperture aperture side is on the object side. The front lens group, which gradually decreases from the lens surface to the aperture aperture side and the lens surfaces of all lenses come into contact with air, and the biconcave lenses arranged on the most aperture aperture side and the most image side, both sides are in the same direction on the optical axis. It comprises a whole lens system including a plurality of posterior positive lenses sandwiched between a final lens having a curved negative power and a posterior lens group including at least one biconvex lens in the posterior positive lens. , The object distance is set to infinity, the focal distance of the entire system is AFL, the optical axis length of the entire lens system is TLL, the optical axis length from the lens surface on the most object side to the image is TLi, and the lens surface on the image side of the final lens. When the optical axis length from to the image is IMD,
0.68 <[TLL / AFL] <1.00 ... (conditional expression 1)
0.8 <[TLi / AFL] <1.4 ... (Conditional expression 2)
0.2 <[IMD / AFL] ... (Conditional expression 3)
A large-diameter imaging lens characterized by satisfying the above conditions.
前記後レンズ群は、前記両凹レンズの開口絞り側のレンズ面から像側へ順次空気に接触する三番目までのレンズ面の湾曲方向と、前記最終レンズの像側のレンズ面から開口絞り側へ順次空気に接触する三番目までのレンズ面の湾曲方向を、逆方向に設定することを特徴とする請求項1記載の大口径撮像レンズ。 The rear lens group includes the bending direction of the third lens surface that sequentially contacts the air from the lens surface on the aperture diaphragm side of the biconcave lens to the image side, and from the lens surface on the image side of the final lens to the aperture diaphragm side. The large-diameter imaging lens according to claim 1, wherein the bending direction of the third lens surface that sequentially comes into contact with air is set in the opposite direction. 前記後レンズ群は、2枚の前記後正レンズを有することにより、開口絞り側の当該後正レンズから開口絞り側の後レンズA群,及び像側の当該後正レンズから像側の後レンズB群を備え、後レンズA群が無限物体時であって、かつ前記レンズ全系の最も物体側に配する最先レンズの物体側のレンズ面から当該後レンズA群の出射後における近軸像位置までの長さの絶対値が最も大きくなる際に、物体距離を無限遠とし、かつ全系のFナンバーをFNO,前記前レンズ群の光軸長をLF1,前記後レンズ群の光軸長をLF2,前記後レンズA群の光軸長をTL2A,前記後レンズB群の光軸長をTL2Bとしたとき、
0.8<〔TLl/TL2〕 <1.6 …(条件式4)
0.6<〔TL2A/TL2B〕<1.6 …(条件式5)
1.0<〔TLL/(AFL/FNO)〕<1.5 …(条件式6)
0.3<〔TL2/(FL2/FNO)〕<0.6 …(条件式7)
の条件を満たすことを特徴とする請求項1又は2記載の大口径撮像レンズ。
By having the two posterior positive lenses, the rear lens group includes the rear lens group A from the posterior positive lens on the aperture aperture side to the rear lens group A on the aperture aperture side, and the rear lens on the image side from the posterior positive lens on the image side. A near axis after emission of the rear lens group A from the lens surface on the object side of the earliest lens arranged on the object side of the entire lens system when the rear lens group A is an infinite object and has group B. When the absolute value of the length to the image position is the largest, the object distance is set to infinity, the F number of the entire system is FNO, the optical axis length of the front lens group is LF1, and the optical axis of the rear lens group. When the length is LF2, the optical axis length of the rear lens A group is TL2A, and the optical axis length of the rear lens B group is TL2B.
0.8 <[TLl / TL2] <1.6 ... (conditional expression 4)
0.6 <[TL2A / TL2B] <1.6 ... (Conditional expression 5)
1.0 <[TLL / (AFL / FNO)] <1.5 ... (conditional expression 6)
0.3 <[TL2 / (FL2 / FNO)] <0.6 ... (Conditional expression 7)
The large-diameter image pickup lens according to claim 1 or 2, wherein the condition of the above is satisfied.
前記レンズ全系は、3枚以上の前記前正レンズ及び2枚以上の前記後正レンズを含むとともに、全ての正レンズにおいて、d線の屈折率が1.75以上となる硝材を用いた正レンズを2枚以上含み、かつ平均アッベ数を38.0以上とし、レンズ全系における全ての正レンズの焦点距離の絶対値を、レンズ全系における最大の焦点距離を有する負レンズの当該焦点距離の絶対値の80〔%〕よりも大きく設定することを特徴とする請求項1,2又は3記載の大口径撮像レンズ。 The entire lens system includes three or more front positive lenses and two or more rear positive lenses, and all positive lenses are made of a glass material having a d-line refractive index of 1.75 or more. The absolute value of the focal distances of all positive lenses in the entire lens system is the focal distance of the negative lens having the maximum focal distance in the entire lens system, including two or more lenses and having an average Abbe number of 38.0 or more. The large-diameter image pickup lens according to claim 1, 2, or 3, wherein the absolute value of is set to be larger than 80 [%]. 前記レンズ全系は、全ての正レンズにおいて、d線の屈折率が1.85以上となる硝材を用いた正レンズを少なくとも1枚含むことを特徴とする請求項4記載の大口径撮像レンズ。 The large-diameter imaging lens according to claim 4, wherein the entire lens system includes at least one positive lens using a glass material having a refractive index of 1.85 or more for the d-line in all the positive lenses. 前記前レンズ群は、異常部分分散値の絶対値が0.02以上となる低屈折率低分散硝材を用いた少なくとも1枚のレンズを含むことを特徴とする請求項4又は5記載の大口径撮像レンズ。 The large diameter according to claim 4 or 5, wherein the front lens group includes at least one lens using a low refractive index low dispersion glass material having an absolute value of an abnormal partial dispersion value of 0.02 or more. Imaging lens. 前記後レンズ群は、最も開口絞り側に配した両凹レンズとこの両凹レンズの像側に配した後正レンズによる接合レンズを備え、当該両凹レンズを、異常部分分散値の絶対値が0.02以上となる硝材を用いて形成するとともに、当該後正レンズを、d線の屈折率が1.75以上となる高屈折ガラスを用いて形成することを特徴とする請求項4又は5記載の大口径撮像レンズ。 The rear lens group includes a biconcave lens arranged on the most aperture aperture side and a junction lens composed of a rear positive lens arranged on the image side of the biconcave lens, and the biconcave lens has an absolute partial dispersion value of 0.02. The large according to claim 4 or 5, wherein the positive lens is formed by using the above-mentioned glass material and the high-refractive-index glass having a refractive index of 1.75 or more of the d-line. Aperture imaging lens. 前記レンズ全系は、前記開口絞りに対向するレンズ面の曲率半径の絶対値を、前レンズ群側を小さく設定し、かつ前記前レンズ群側のレンズ面の曲率半径をSR1,前記開口絞りの空間間隔をTLSとしたとき、
1.0<〔SR1/TLS〕<1.5 …(条件式8)
の条件を満たすことを特徴とする請求項1-7のいずれかに記載の大口径撮像レンズ。
In the entire lens system, the absolute value of the radius of curvature of the lens surface facing the aperture diaphragm is set small on the front lens group side, and the radius of curvature of the lens surface on the front lens group side is set to SR1 and the aperture diaphragm. When the space spacing is TLS,
1.0 <[SR1 / TLS] <1.5 ... (Conditional expression 8)
The large-diameter image pickup lens according to any one of claims 1-7, wherein the large-diameter image pickup lens is characterized by satisfying the condition of.
前記最終レンズは、メニスカス形状の非球面を含み、かつ当該最終レンズの焦点距離をFLEとしたとき、
-4.0<〔FLE/AFL〕<-0.8 …(条件式9)
の条件を満たすことを特徴とする請求項1記載の大口径撮像レンズ。
When the final lens includes a meniscus-shaped aspherical surface and the focal length of the final lens is FLE,
-4.0 <[FLE / AFL] <-0.8 ... (conditional expression 9)
The large-diameter image pickup lens according to claim 1, wherein the condition of the above is satisfied.
前記レンズ全系は、前レンズ群に4枚のレンズを配し、かつ後レンズ群に4枚のレンズを配することにより、全体で8枚のレンズにより構成するとともに、Fナンバーを1.7以下に、かつ半画角を12-25〔゜〕にそれぞれ設定することを特徴とする請求項1記載の大口径撮像レンズ。 The entire lens system is composed of eight lenses in total by arranging four lenses in the front lens group and four lenses in the rear lens group, and has an F number of 1.7. The large-diameter image pickup lens according to claim 1, wherein the half angle of view is set to 12-25 [°], respectively. 前記後レンズ群は、複数枚の前記後正レンズにおける相隣る前後の後正レンズ間の物体側を後レンズA群とし、かつ像側を後レンズB群とするとともに、当該後レンズA群の前後における空気空間の少なくとも一つを、フォーカス調整時に変化させる調整間隔として設定することを特徴とする請求項1記載の大口径撮像レンズ。 In the rear lens group, the object side between the adjacent front and rear rear lenses in the plurality of rear lenses is the rear lens A group, the image side is the rear lens B group, and the rear lens group A is the rear lens group. The large-diameter imaging lens according to claim 1, wherein at least one of the air spaces before and after the lens is set as an adjustment interval to be changed at the time of focus adjustment. 前記調整間隔は、前記後レンズA群に対して物体側の空気空間,前記後レンズA群に対して像側の空気空間,前記後レンズA群に対して前後の空気空間のいずれか一つを含み、最大で三つのレンズ群を移動可能に構成することを特徴とする請求項11記載の大口径撮像レンズ。 The adjustment interval is any one of the air space on the object side with respect to the rear lens A group, the air space on the image side with respect to the rear lens A group, and the air space before and after the rear lens A group. The large-diameter imaging lens according to claim 11, wherein a maximum of three lens groups can be moved.
JP2020115167A 2020-07-02 Large aperture imaging lens Active JP7570602B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020115167A JP7570602B2 (en) 2020-07-02 Large aperture imaging lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020115167A JP7570602B2 (en) 2020-07-02 Large aperture imaging lens

Publications (2)

Publication Number Publication Date
JP2022012964A true JP2022012964A (en) 2022-01-18
JP7570602B2 JP7570602B2 (en) 2024-10-22

Family

ID=

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0422910A (en) * 1990-05-18 1992-01-27 Olympus Optical Co Ltd Medium telephotolens with large aperture
JP2002318346A (en) * 2001-04-24 2002-10-31 Asahi Optical Co Ltd Variable soft focusing lens system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0422910A (en) * 1990-05-18 1992-01-27 Olympus Optical Co Ltd Medium telephotolens with large aperture
JP2002318346A (en) * 2001-04-24 2002-10-31 Asahi Optical Co Ltd Variable soft focusing lens system

Similar Documents

Publication Publication Date Title
US11933947B2 (en) Imaging lens system, image capturing unit and electronic device
US9753246B2 (en) Eyepiece optical system, optical apparatus and method for manufacturing the eyepiece optical system
US20210157156A1 (en) Optical system and image pickup apparatus
US20110069402A1 (en) Imaging Optical System, Camera Apparatus, and Personal Digital Assistant
US10649184B2 (en) Optical system and image pickup apparatus including the same
US8000035B2 (en) Wide-angle lens, optical apparatus, and method for focusing
US20240231043A1 (en) Converter lens, interchangeable lens, and image pickup apparatus
CN107340589B (en) Optical imaging system
US11137584B2 (en) Imaging lens and imaging apparatus
JP6847067B2 (en) Imaging lens and imaging device
US11372201B2 (en) Optical system and imaging apparatus having the same
CN107589521B (en) Optical imaging system
US11586022B2 (en) Converter lens, interchangeable lens, and image capturing apparatus
CN112748520A (en) Optical system, projection lens, image projection apparatus, and image capture lens
US20100073776A1 (en) Zoom lens and imaging apparatus
US20150370041A1 (en) Zoom lens and imaging apparatus
JP2021043376A (en) Imaging optical system
CN108267840B (en) Optical imaging system
JP7306687B2 (en) Imaging optical system
JP2019003074A (en) Converter lens and imaging apparatus having the same
US20180259754A1 (en) Zoom lens and imaging apparatus
JP7203811B2 (en) Imaging lens and imaging device
CN115220180A (en) Optical system and image pickup apparatus having the same
US9423596B2 (en) Retrofocus-type wide angle lens and imaging apparatus
CN112444943B (en) Optical imaging system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240417

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240613

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240904

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240927