JP2022011720A - Propulsion mechanism of electric propulsion ship and electric propulsion ship - Google Patents

Propulsion mechanism of electric propulsion ship and electric propulsion ship Download PDF

Info

Publication number
JP2022011720A
JP2022011720A JP2020113037A JP2020113037A JP2022011720A JP 2022011720 A JP2022011720 A JP 2022011720A JP 2020113037 A JP2020113037 A JP 2020113037A JP 2020113037 A JP2020113037 A JP 2020113037A JP 2022011720 A JP2022011720 A JP 2022011720A
Authority
JP
Japan
Prior art keywords
generator
electric motor
electric
storage battery
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020113037A
Other languages
Japanese (ja)
Inventor
廉彦 佐藤
Kiyohiko Sato
俊太郎 江川
Shuntaro Egawa
拓久 松本
Takuhisa Matsumoto
達弥 木下
Tatsuya Kinoshita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Mitsui E&S Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Mitsui E&S Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd, Mitsui E&S Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP2020113037A priority Critical patent/JP2022011720A/en
Priority to CN202121471036.XU priority patent/CN215752972U/en
Publication of JP2022011720A publication Critical patent/JP2022011720A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Landscapes

  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

To provide a propulsion mechanism which is a simpler structure than before and capable of stably operating in a propulsion mechanism of a DF engine driven by selecting a diffusing combustion and a premixed combustion, and of an electric propulsion ship powered by battery.SOLUTION: A propulsion mechanism 3 of an electric propulsion ship 1 comprises a generator 15 to generate electricity with a DF engine 23 driven by selecting diffusion combustion of liquid fuel or by premixed combustion of gas fuel, a battery 13, an electric motor 11 to drive a propeller 17 when power is supplied to the electric motor from the generator 15 or the battery 13, and a switching controller 9 to control the connecting selection of the generator 15, the battery 13, and the electric motor 11, and to control the distribution of power. The electric motor 11 is a DC motor. The switching controller 9 connects the electric motor 11 and the battery 13 when a load change of the electric motor 11 is beyond the predetermined threshold in the case that the motor 11 with the connected state to the generator 15 is in a power running by receiving power supply from the generator 15 while the DF engine 23 is driven by the premixed combustion.SELECTED DRAWING: Figure 1

Description

本発明は電気推進船の推進機構及び当該推進機構を備える電気推進船に関する。 The present invention relates to a propulsion mechanism of an electric propulsion ship and an electric propulsion ship provided with the propulsion mechanism.

電気推進船は電動モータでプロペラを駆動することで推進力を得る船舶である。電動モータは加減速や起動停止がディーゼル機関やタービン機関よりも容易であるため、これらの機関で推進する船舶に比べて操作性に優れる。 An electric propulsion ship is a ship that obtains propulsive force by driving a propeller with an electric motor. Since electric motors are easier to accelerate / decelerate and start / stop than diesel engines and turbine engines, they are superior in operability to ships propelled by these engines.

電気推進船に電力を供給する発電機の動力源は重油のような液体燃料を拡散燃焼させるディーゼル機関が広く用いられているが、液体燃料とガス燃料の両方で駆動できるDF(Dual Fuel)エンジンが近年では動力源として検討されている。
これは、液化ガス運搬船で貨物である液化ガスが気化して生じたガスを捨てずにガス燃料として用いることで航行コストを下げるためである。またガス燃料を用いてディーゼルサイクル以外の熱サイクルで駆動することで、NOxの発生量を低減する目的もある。
A diesel engine that diffuses and burns liquid fuel such as heavy oil is widely used as the power source for the generator that supplies power to the electric propulsion ship, but it is a DF (Dual Fuel) engine that can be driven by both liquid fuel and gas fuel. Has been considered as a power source in recent years.
This is to reduce the navigation cost by using the gas generated by vaporizing the liquefied gas, which is cargo, as gas fuel in the liquefied gas carrier without discarding it. It also has the purpose of reducing the amount of NO x generated by driving it in a thermal cycle other than the diesel cycle using gas fuel.

一方でガス燃料を用いる場合、燃焼方式を予混合燃焼とすると、ディーゼル機関のような拡散燃焼と比べて燃焼が遅れるためノッキングや失火のような異常燃焼が生じやすい。そのため、特に電動モータに加えられる負荷変動が大きい場合はガス燃料でDFエンジンを駆動させるのが困難であり、液体燃料で駆動させる必要があった。
そこで、電動モータの電源として、発電機に加えて蓄電池を設け、電動モータに加えられる負荷変動が大きくなると蓄電池から電動モータに電力を供給することで、負荷変動によらずガス燃料で駆動できる推進機関が提案されている(特許文献1)。
On the other hand, when gas fuel is used, if the combustion method is premixed combustion, combustion is delayed as compared with diffusion combustion such as a diesel engine, so that abnormal combustion such as knocking or misfire is likely to occur. Therefore, it is difficult to drive the DF engine with gas fuel, especially when the load fluctuation applied to the electric motor is large, and it is necessary to drive it with liquid fuel.
Therefore, as a power source for the electric motor, a storage battery is provided in addition to the generator, and when the load fluctuation applied to the electric motor becomes large, the storage battery supplies electric power to the electric motor so that it can be driven by gas fuel regardless of the load fluctuation. An institution has been proposed (Patent Document 1).

特表2017-532239号公報Special Table 2017-532239

特許文献1の構成は発電機が交流電力を生成し、モータが交流駆動であるため、交流/直流変換器、直流バス、直流/交流変換器を有するインバータ装置で発電機とモータを接続して発電機が生成した電力の周波数をモータ制御用に調整している。一方で蓄電池は直流電流を供給する電源なので、インバータ装置の直流バスに蓄電池を接続し、蓄電池が供給した電力を直流/交流変換器で交流に変換して電動モータに供給している。
この構造ではインバータ装置の構造が複雑になり、またインバータ装置の直流バスに蓄電池が放電するので、直流バスの電圧を制御し難く、インバータ装置の動作を安定させ難い。そのため特許文献1の推進機構は構造が複雑で動作を安定させ難い問題があった。
本発明は上記課題に鑑みてなされたものであり、拡散燃焼と予混合燃焼を選択して駆動するDFエンジンで発電する発電機と、蓄電池とを電源とする電気推進船の推進機構において、従来よりも構造が単純で安定した動作が可能な推進機構の提供を目的とする。
In the configuration of Patent Document 1, since the generator generates AC power and the motor is AC driven, the generator and the motor are connected by an inverter device having an AC / DC converter, a DC bus, and a DC / AC converter. The frequency of the power generated by the generator is adjusted for motor control. On the other hand, since the storage battery is a power source that supplies direct current, the storage battery is connected to the DC bus of the inverter device, and the power supplied by the storage battery is converted into alternating current by a direct current / alternating current converter and supplied to the electric motor.
With this structure, the structure of the inverter device becomes complicated, and since the storage battery is discharged to the DC bus of the inverter device, it is difficult to control the voltage of the DC bus and it is difficult to stabilize the operation of the inverter device. Therefore, the propulsion mechanism of Patent Document 1 has a problem that the structure is complicated and it is difficult to stabilize the operation.
The present invention has been made in view of the above problems, and is conventionally used in a propulsion mechanism of an electric propulsion ship using a storage battery as a power source and a generator that generates electricity with a DF engine that selectively drives diffusion combustion and premix combustion. The purpose is to provide a propulsion mechanism that has a simpler structure and is capable of stable operation.

上記の課題を解決するため、本発明の電気推進船の推進機構は、液体燃料の拡散燃焼又はガス燃料の予混合燃焼を選択して駆動するDFエンジンで発電する発電機と、蓄電池と、前記発電機又は前記蓄電池から電力が供給されるとプロペラを駆動する電動モータと、前記発電機、前記蓄電池、及び前記電動モータの接続の選択及び電力の分配を制御する切替制御部を備える、電気推進船の推進機構であって、前記電動モータは直流モータであり、前記切替制御部は、前記DFエンジンが予混合燃焼で駆動中に、前記電動モータが前記発電機と接続された状態で前記発電機から電力の供給を受けて力行している場合、前記電動モータの負荷変動が予め定められた閾値を超えると前記電動モータと前記蓄電池を接続することを特徴とする。
また本発明の電気推進船は、上記記載の電気推進船の推進機構と、液化ガスを貯蔵する液化ガスタンクと、前記液化ガスが気化して、あるいは強制的に気化させて発生したガスを前記ガス燃料として前記DFエンジンに供給する供給手段を備えることを特徴とする。
In order to solve the above problems, the propulsion mechanism of the electric propulsion vessel of the present invention includes a generator, a storage battery, and a storage battery that generate power with a DF engine that is driven by selecting diffusion combustion of liquid fuel or premixed combustion of gas fuel. Electric propulsion including an electric motor that drives a propeller when power is supplied from the generator or the storage battery, and a switching control unit that controls connection selection and power distribution of the generator, the storage battery, and the electric motor. The electric motor is a DC motor, which is a propulsion mechanism of the ship, and the switching control unit generates the power while the DF engine is being driven by premixed combustion and the electric motor is connected to the generator. It is characterized in that when the load fluctuation of the electric motor exceeds a predetermined threshold value, the electric motor and the storage battery are connected when power is supplied from the machine.
Further, the electric propulsion vessel of the present invention has a propulsion mechanism of the electric propulsion vessel described above, a liquefied gas tank for storing liquefied gas, and the gas generated by vaporizing or forcibly vaporizing the liquefied gas. It is characterized by comprising a supply means for supplying the DF engine as fuel.

この構成では、ガス燃料でDFエンジンが駆動中に直流モータの負荷変動が大きくなり、予め定められた閾値を超えると切替制御部が蓄電池から直流電流を直流モータに供給して駆動させる。
そのため、直流モータを蓄電池に接続する際に直流電力を交流電力に変換する変換器が不要となり、従来よりも構造が単純で安定した動作が可能となる。
In this configuration, the load fluctuation of the DC motor becomes large while the DF engine is being driven by gas fuel, and when a predetermined threshold is exceeded, the switching control unit supplies DC current from the storage battery to the DC motor to drive the DC motor.
Therefore, when the DC motor is connected to the storage battery, a converter that converts DC power to AC power becomes unnecessary, and the structure is simpler than before and stable operation is possible.

本発明によれば、拡散燃焼と予混合燃焼を選択して駆動するDFエンジンで発電する発電機と、蓄電池とを電源とする電気推進船の推進機構において、従来よりも構造が単純で安定した動作が可能な推進機構を提供できる。 According to the present invention, the structure of the propulsion mechanism of an electric propulsion ship powered by a DF engine that selectively drives diffusion combustion and premixed combustion and a storage battery is simpler and more stable than before. It is possible to provide a propulsion mechanism capable of operation.

本実施形態に係る電気推進機構を備える電気推進船の概要を示す機能ブロック図である。It is a functional block diagram which shows the outline of the electric propulsion ship provided with the electric propulsion mechanism which concerns on this embodiment. 図1の発電機が交流発電機の場合を示す変形例である。It is a modification which shows the case where the generator of FIG. 1 is an AC generator. 図1において、DFエンジンの駆動力で発電する発電機で電動モータを駆動する場合の電力供給を示す図である。FIG. 1 is a diagram showing power supply when an electric motor is driven by a generator that generates electricity with the driving force of a DF engine. 図1において、蓄電池で電動モータを駆動する場合の電力供給を示す図である。FIG. 1 is a diagram showing an electric power supply when an electric motor is driven by a storage battery. 図1において、電動モータが回生駆動している場合を示す図である。FIG. 1 is a diagram showing a case where an electric motor is regeneratively driven. 本実施形態に係る電気推進機構を用いた船舶の航行の手順の一例を示すフロー図である。It is a flow chart which shows an example of the navigation procedure of a ship using the electric propulsion mechanism which concerns on this embodiment.

以下、図面に基づき本発明に好適な実施形態を詳細に説明する。
まず図1~図5を参照して本実施形態に係る推進機構3を備える電気推進船1の構成を説明する。
ここでは電気推進船1として、LNG(液化天然ガス)を貨物として運搬する貨物船であって、DFエンジン23で発電する発電機15と、蓄電池13の2つを電源とする電動モータ11でプロペラ17を駆動する推進機構3を備える貨物船を例示する。
図1に示すように電気推進船1は船体5、燃料タンク19、液化ガスタンク21、及び推進機構3を備える。
Hereinafter, embodiments suitable for the present invention will be described in detail with reference to the drawings.
First, the configuration of the electric propulsion vessel 1 provided with the propulsion mechanism 3 according to the present embodiment will be described with reference to FIGS. 1 to 5.
Here, as the electric propulsion ship 1, it is a cargo ship that carries LNG (liquefied natural gas) as cargo, and is a propeller with an electric motor 11 that uses two power sources, a generator 15 that generates power with a DF engine 23 and a storage battery 13. An example is a cargo ship provided with a propulsion mechanism 3 for driving 17.
As shown in FIG. 1, the electric propulsion ship 1 includes a hull 5, a fuel tank 19, a liquefied gas tank 21, and a propulsion mechanism 3.

船体5は電気推進船1の船殻となる構造体であり、船底、側壁、暴露甲板で船内を囲むように構成される。具体的な船型や船殻構造、あるいは水密隔壁の配置等は電気推進船1の用途に応じて適宜設計される。 The hull 5 is a structure that becomes the hull of the electric propulsion ship 1, and is configured to surround the inside of the ship with a ship bottom, side walls, and an exposed deck. The specific hull shape, hull structure, arrangement of watertight bulkheads, etc. are appropriately designed according to the application of the electric propulsion ship 1.

燃料タンク19は電気推進船1の燃料を貯蔵するタンクである。燃料タンク19の形状、構造、容量や設置位置は、電気推進船1に求められる航続距離や船体5の排水量や復原性、貨物の積載重量を考慮して適宜設定される。
燃料タンク19に貯蔵される燃料は液体燃料である。ここでいう液体燃料とは、液体の状態でDFエンジン23に供給される燃料を意味する。電気推進船1では液体燃料として重油のような石油系の液体燃料が主に用いられる。LNGを貨物として運搬する大型船の場合はC重油が主に用いられるが、小型船ではA重油が用いられる場合もある。
The fuel tank 19 is a tank for storing the fuel of the electric propulsion vessel 1. The shape, structure, capacity, and installation position of the fuel tank 19 are appropriately set in consideration of the cruising range required for the electric propulsion ship 1, the displacement and stability of the hull 5, and the load weight of the cargo.
The fuel stored in the fuel tank 19 is a liquid fuel. The liquid fuel here means the fuel supplied to the DF engine 23 in a liquid state. In the electric propulsion vessel 1, petroleum-based liquid fuel such as heavy oil is mainly used as the liquid fuel. C heavy oil is mainly used for large vessels that carry LNG as cargo, but A heavy oil may be used for small vessels.

液化ガスタンク21は、液化ガスとしてのLNGを貯蔵するタンクである。液化ガスとは、常温、常圧で気体のガスを冷却や圧縮で液体にしたものである。
電気推進船1で液化ガスは貨物であるため、液化ガスタンク21の形状、構造、容量や設置位置は、船体5の排水量や復原性、液化ガスの積載重量、積載時の液化ガスの温度や圧力を考慮して適宜設定される。図1では独立球形タンクのように船体5から独立した球形のタンクを模式的に図示しているが、メンブレン式のように、液化ガスの圧力と重量を船体5で保持する構造でもよい。
液化ガスは貨物であるが、電気推進船1ではガス燃料としても利用する。ガス燃料とは気体の状態でDFエンジン23に供給される燃料を意味する。貨物である液化ガスをガス燃料として利用できる理由は、航行中の液化ガスタンク21内と外気の温度差による侵入熱と、船体運動による運動エネルギーによる温度上昇で液化ガスの一部が気化してBOG(Boil Off Gas)と呼ばれるガス燃料となるためである。また、図示しない気化器を用いて強制的に液化ガスを気化させてガス燃料として利用する場合もあるためである。
液化ガスタンク21にはLNGから気化したBOGをガス燃料としてDFエンジン23に供給する配管や、ガス燃料の圧力を調整する加圧機構を備える供給手段61が必要に応じて設けられる。
The liquefied gas tank 21 is a tank for storing LNG as a liquefied gas. Liquefied gas is a gas that is cooled or compressed to a liquid at normal temperature and pressure.
Since the liquefied gas is cargo in the electric propulsion ship 1, the shape, structure, capacity and installation position of the liquefied gas tank 21 are the displacement and stability of the hull 5, the load weight of the liquefied gas, and the temperature and pressure of the liquefied gas at the time of loading. It is set appropriately in consideration of. In FIG. 1, a spherical tank independent of the hull 5 such as an independent spherical tank is schematically shown, but a structure such as a membrane type in which the pressure and weight of the liquefied gas are held by the hull 5 may be used.
Although liquefied gas is cargo, it is also used as gas fuel in the electric propulsion ship 1. The gas fuel means a fuel supplied to the DF engine 23 in a gaseous state. The reason why the liquefied gas, which is cargo, can be used as gas fuel is that a part of the liquefied gas is vaporized by the invading heat due to the temperature difference between the inside of the liquefied gas tank 21 during navigation and the outside air, and the temperature rise due to the kinetic energy due to the movement of the hull, and the BOG. This is because it becomes a gas fuel called (Boil Off Gas). This is also because the liquefied gas may be forcibly vaporized using a vaporizer (not shown) and used as a gas fuel.
The liquefied gas tank 21 is provided with a pipe for supplying the BOG vaporized from the LNG as gas fuel to the DF engine 23 and a supply means 61 provided with a pressurizing mechanism for adjusting the pressure of the gas fuel, if necessary.

推進機構3は電気推進船1を推進させる機構であり、DFエンジン23、発電機15、蓄電池13、直流モータである電動モータ11、減速機7、プロペラ17、及び切替制御部9を備える。 The propulsion mechanism 3 is a mechanism for propelling the electric propulsion ship 1, and includes a DF engine 23, a generator 15, a storage battery 13, an electric motor 11 which is a DC motor, a speed reducer 7, a propeller 17, and a switching control unit 9.

DFエンジン23は液体燃料の拡散燃焼又はガス燃料の予混合燃焼を選択して駆動する内燃機関である。
DFエンジン23には燃料タンク19から液体燃料が供給され、液化ガスタンク21の内部に貯蔵された液化ガスが気化して生成したBOGがガス燃料として供給される。
The DF engine 23 is an internal combustion engine that selectively drives diffuse combustion of liquid fuel or premixed combustion of gas fuel.
Liquid fuel is supplied to the DF engine 23 from the fuel tank 19, and BOG generated by vaporizing the liquefied gas stored inside the liquefied gas tank 21 is supplied as gas fuel.

DFエンジン23が液体燃料の拡散燃焼で駆動する際の燃焼方式は圧縮着火であり、燃焼サイクルはディーゼルサイクルである。
液体燃料でDFエンジン23を駆動する場合、ディーゼルサイクルであることから熱効率がガス燃料を用いた場合よりも優れており、ノッキングや失火も生じないことから電動モータ11の負荷変動にも強い。
When the DF engine 23 is driven by diffusion combustion of liquid fuel, the combustion method is compression ignition, and the combustion cycle is a diesel cycle.
When the DF engine 23 is driven by liquid fuel, the thermal efficiency is superior to that when gas fuel is used because it is a diesel cycle, and knocking and misfire do not occur, so that it is resistant to load fluctuations of the electric motor 11.

DFエンジン23がガス燃料の予混合燃焼で駆動する際は、ガス燃料が予め図示しない吸気マニホールド等の燃焼室の前室で吸気と混合されてから燃焼室に導入される。燃焼方式は点火式であり、燃焼サイクルは主にオットーサイクルになる。
ガス燃料でDFエンジン23を駆動する場合、BOGを有効利用できる点が有利である。
When the DF engine 23 is driven by premixed combustion of gas fuel, the gas fuel is mixed with intake air in the front chamber of a combustion chamber such as an intake manifold (not shown in advance) and then introduced into the combustion chamber. The combustion method is an ignition type, and the combustion cycle is mainly the Otto cycle.
When driving the DF engine 23 with gas fuel, it is advantageous that the BOG can be effectively used.

DFエンジン23は液体燃料の拡散燃焼又はガス燃料の予混合燃焼を選択して駆動でき、電気推進船1の推進に必要な動力を得られ、かつ電気推進船1に搭載できる範囲で構造、形状、寸法、設置位置が適宜設定される。通常は船体5の機関室に搭載できる範囲で大きさが決まる。なお2ストローク機関では掃気の際に燃焼ガスと吸気が混合されるため、ガス燃料を予混合するのに不向きであり、DFエンジン23は4ストローク機関であるのが好ましい。
液体燃料とガス燃料の切り替えは例えば手動であるが自動でも良い。通常は機関始動時と機関停止時は液体燃料で駆動し、航行時は液体燃料とガス燃料の一方を選択する。
The DF engine 23 can be driven by selecting diffusion combustion of liquid fuel or premixed combustion of gas fuel, can obtain the power required for propulsion of the electric propulsion ship 1, and has a structure and shape within a range that can be mounted on the electric propulsion ship 1. , Dimensions and installation position are set appropriately. Normally, the size is determined within the range that can be mounted in the engine room of the hull 5. Since the combustion gas and the intake air are mixed in the 2-stroke engine during scavenging, it is not suitable for premixing the gas fuel, and the DF engine 23 is preferably a 4-stroke engine.
Switching between liquid fuel and gas fuel is, for example, manual or automatic. Normally, it is driven by liquid fuel when the engine is started and when the engine is stopped, and either liquid fuel or gas fuel is selected when sailing.

発電機15は電動モータ11の電源の1つであり、DFエンジン23の動力が伝達されて発電する発電機である。発電した電力は電動モータ11に供給され、電気推進船1の推進に用いられる。
発電機15はDFエンジン23の動力が伝達される入力軸を備え、電気推進船1の推進に必要な電力を生成でき、船体5に収納できる範囲で構造、形状、寸法、設置位置を適宜設定できる。通常はDFエンジン23に隣接して船体5の機関室に配置される。
The generator 15 is one of the power sources of the electric motor 11, and is a generator that generates electricity by transmitting the power of the DF engine 23. The generated electric power is supplied to the electric motor 11 and used for propulsion of the electric propulsion ship 1.
The generator 15 is provided with an input shaft to which the power of the DF engine 23 is transmitted, can generate the electric power required for propulsion of the electric propulsion ship 1, and appropriately sets the structure, shape, dimensions, and installation position within the range that can be stored in the hull 5. can. Normally, it is arranged in the engine room of the hull 5 adjacent to the DF engine 23.

発電機15は直流発電機が好ましい。直流発電機とは、発電する電力が直流の発電機を意味する。
推進機構3は電動モータ11も直流であるため、発電機15が直流発電機の場合、発電機が発電した電力が直流のまま電動モータ11に供給される。
そのため発電機15が発電した電力を電動モータ11に供給する際に交流/直流変換用のコンバータが不要になり、発電機15が交流電力を生成する場合と比べて構造が単純になる。
The generator 15 is preferably a DC generator. A DC generator means a generator whose generated power is DC.
Since the electric motor 11 of the propulsion mechanism 3 is also DC, when the generator 15 is a DC generator, the power generated by the generator is supplied to the electric motor 11 as DC.
Therefore, when the electric power generated by the generator 15 is supplied to the electric motor 11, a converter for AC / DC conversion becomes unnecessary, and the structure becomes simple as compared with the case where the generator 15 generates AC electric power.

発電機15は交流発電機でもよい。交流発電機とは、発電する電力が交流の発電機を意味する。
推進機構3は電動モータ11が直流であるため、発電機15が交流発電機の場合、図2に示すように、発電機15の電源出力部はコンバータ25に接続される。コンバータ25は交流電力を直流電力に変換する変換器であり、発電機15が発電した交流電力はコンバータ25に出力されて直流電力に変換され、電動モータ11に供給される。
発電機15が交流発電機の場合、既存の船舶の発電機は交流発電機が主流であるため、種類や構造の選択の幅が直流発電機よりも広い点で有利である。
なお、以下の説明では特に断りがない場合は発電機15が直流発電機である場合を例に説明する。
The generator 15 may be an alternator. The alternator means an alternator whose generated power is an alternating current.
Since the electric motor 11 of the propulsion mechanism 3 is a direct current, when the generator 15 is an alternating current generator, the power output unit of the generator 15 is connected to the converter 25 as shown in FIG. The converter 25 is a converter that converts AC power into DC power, and the AC power generated by the generator 15 is output to the converter 25, converted into DC power, and supplied to the electric motor 11.
When the generator 15 is an AC generator, the existing ship's generator is mainly an AC generator, which is advantageous in that the range of choices of types and structures is wider than that of the DC generator.
In the following description, unless otherwise specified, the case where the generator 15 is a DC generator will be described as an example.

図1に示す蓄電池13は電動モータ11の電源の1つであり、繰り返し充放電可能な電池である。
蓄電池13は電気推進船1の推進に必要な電力を充放電できる静電容量と充放電サイクル数を備え、船体5に収納できる範囲で電極や電解質等の基本構成、電池の種類や寸法、形状、設置位置が決定される。具体的な電池の種類としてはリチウムイオン二次電池を例示できる。なお、蓄電池13が放電する電力は直流である。
The storage battery 13 shown in FIG. 1 is one of the power sources of the electric motor 11, and is a battery that can be repeatedly charged and discharged.
The storage battery 13 has a capacitance that can charge and discharge the electric power required for propulsion of the electric propulsion ship 1 and the number of charge / discharge cycles. , The installation position is determined. As a specific type of battery, a lithium ion secondary battery can be exemplified. The electric power discharged by the storage battery 13 is direct current.

電動モータ11は発電機15又は蓄電池13から電力が供給されると図示しない回転子が回転することでプロペラ17に回転力を伝達して回転させるモータである。
電動モータ11は、発電機15又は蓄電池13の電力で電気推進船1の推進に必要な回転力を生成してプロペラ17に伝達でき、船体5に収納できるのであれば構造、形状、寸法、設置位置は適宜設定できる。
The electric motor 11 is a motor that transmits rotational force to the propeller 17 by rotating a rotor (not shown) when electric power is supplied from the generator 15 or the storage battery 13 to rotate the motor.
The electric motor 11 can generate the rotational force required for propulsion of the electric propulsion ship 1 by the electric power of the generator 15 or the storage battery 13 and transmit it to the propeller 17, and if it can be stored in the hull 5, the structure, shape, dimensions, and installation. The position can be set as appropriate.

ただし、電動モータ11は直流モータである。理由は以下の通りである。
電気推進船1のプロペラ17を駆動するモータの電源として、発電機15と蓄電池13を設け、ガス燃料でDFエンジン23を駆動中に負荷変動が大きくなると蓄電池13を電源とする電気推進機関は公知である。
一方で蓄電池13が放電する電力は直流であるため、プロペラ17を駆動するモータが交流モータの場合は、直流/交流変換器を介して蓄電池13と交流モータを接続し、蓄電池13が放電した直流電力を交流電力に変換する必要がある。特にDFエンジン23の発電機15が交流発電機の場合、発電機15から電動モータ11に供給される交流電力の周波数を調整する交流/直流変換器、直流バス、直流/交流変換器を備えたインバータ装置が発電機15と電動モータ11の間を接続している。この構造で蓄電池13を直流/交流変換器に接続するためには直流バスに蓄電池13を接続する必要があり、直流バスを流れる電力が安定しないためインバータ装置の動作が不安定になりやすい。
これに対して本実施形態に係る推進機構3は電動モータ11が直流モータであり直流/交流変換器を介して蓄電池13と電動モータ11とを接続する必要が無く、構造を簡略化できる。
また、電動モータ11が直流モータであるため、発電機15が直流でも交流でもインバータ装置が不要である。そのため、インバータ装置の直流バスに蓄電池13を接続する不安定な構造にならず、安定した動作が可能である。
However, the electric motor 11 is a DC motor. The reason is as follows.
An electric propulsion engine that provides a generator 15 and a storage battery 13 as a power source for a motor that drives a propeller 17 of an electric propulsion ship 1 and uses the storage battery 13 as a power source when the load fluctuation becomes large while driving the DF engine 23 with gas fuel is known. Is.
On the other hand, since the electric power discharged by the storage battery 13 is direct current, when the motor for driving the propeller 17 is an AC motor, the storage battery 13 and the AC motor are connected via a DC / AC converter, and the DC discharged by the storage battery 13 is connected. Power needs to be converted to AC power. In particular, when the generator 15 of the DF engine 23 is an AC generator, it is provided with an AC / DC converter, a DC bus, and a DC / AC converter that adjust the frequency of the AC power supplied from the generator 15 to the electric motor 11. An inverter device connects between the generator 15 and the electric motor 11. In order to connect the storage battery 13 to the DC / AC converter with this structure, it is necessary to connect the storage battery 13 to the DC bus, and the power flowing through the DC bus is not stable, so that the operation of the inverter device tends to be unstable.
On the other hand, in the propulsion mechanism 3 according to the present embodiment, the electric motor 11 is a DC motor, and it is not necessary to connect the storage battery 13 and the electric motor 11 via a DC / AC converter, and the structure can be simplified.
Further, since the electric motor 11 is a direct current motor, no inverter device is required regardless of whether the generator 15 is direct current or alternating current. Therefore, stable operation is possible without an unstable structure in which the storage battery 13 is connected to the DC bus of the inverter device.

減速機7は電動モータ11で生成された回転力の向きや回転数を調整してプロペラ17に伝達する図示しない歯車機構を備えた動力伝達機構である。減速機7の入力軸は電動モータ11の出力軸に連結されて動力が電動モータ11から伝達される。減速機7の出力軸はプロペラ17のボスに連結されてプロペラ17を所望の向き及び回転数で回転させる。
減速機7は電気推進船1の航行に必要な回転力をプロペラ17に伝達でき、船体5に収納できるのであれば構造、形状、寸法、設置位置は適宜設定できる。
The speed reducer 7 is a power transmission mechanism provided with a gear mechanism (not shown) that adjusts the direction and rotation speed of the rotational force generated by the electric motor 11 and transmits the rotational force to the propeller 17. The input shaft of the speed reducer 7 is connected to the output shaft of the electric motor 11, and power is transmitted from the electric motor 11. The output shaft of the speed reducer 7 is connected to the boss of the propeller 17 to rotate the propeller 17 in a desired direction and rotation speed.
The speed reducer 7 can transmit the rotational force required for navigation of the electric propulsion ship 1 to the propeller 17, and if it can be stored in the hull 5, the structure, shape, dimensions, and installation position can be appropriately set.

プロペラ17は減速機7から伝達された回転力を船舶の航行する方向に作用する推進力に変換することで電気推進船1を推進させる推進器である。プロペラ17は減速機7の出力軸に連結されて回転力が伝達されるボス、及び回転軸に直交する方向にボスから突設されて回転力を推進力に変換するプロペラ翼を備える。
プロペラ17は電気推進船1の航行に必要な推進力を生成でき、船体5や舵等の他の構造物に干渉しない範囲で構造、形状、寸法を適宜設定できる。
The propeller 17 is a propulsion device that propels the electric propulsion ship 1 by converting the rotational force transmitted from the speed reducer 7 into a propulsive force acting in the navigation direction of the ship. The propeller 17 includes a boss connected to the output shaft of the speed reducer 7 to transmit the rotational force, and a propeller blade projecting from the boss in a direction orthogonal to the rotational axis to convert the rotational force into propulsive force.
The propeller 17 can generate the propulsive force required for the navigation of the electric propulsion vessel 1, and the structure, shape, and dimensions can be appropriately set within a range that does not interfere with other structures such as the hull 5 and the rudder.

切替制御部9は発電機15、蓄電池13、及び電動モータ11の間の電力線の接続の選択及び電力の分配を制御する装置であり、これらの装置と電力線で接続される。 The switching control unit 9 is a device that controls the selection of the connection of the power line between the generator 15, the storage battery 13, and the electric motor 11 and the distribution of the power, and is connected to these devices by the power line.

切替制御部9は直流電力の接続の選択及び電力の分配を行う装置であるため、蓄電池13や電動モータ11とはインバータ装置やコンバータのような交流と直流の変換器を介さずに接続される。
発電機15が直流発電機の場合も切替制御部9はインバータ装置やコンバータのような変換器を介さずに発電機15に接続される。
発電機15が交流発電機の場合、切替制御部9は図2に示すコンバータ25を介して発電機15に接続される。
切替制御部9は発電機15、蓄電池13、及び電動モータ11の間の電力線の接続の選択及び電力の分配を制御できるのであれば、公知の配電盤とその制御装置を組み合わせた装置を用いればよい。
Since the switching control unit 9 is a device that selects and distributes DC power connection, it is connected to the storage battery 13 and the electric motor 11 without going through an AC / DC converter such as an inverter device or a converter. ..
Even when the generator 15 is a DC generator, the switching control unit 9 is connected to the generator 15 without going through a converter such as an inverter device or a converter.
When the generator 15 is an alternator, the switching control unit 9 is connected to the generator 15 via the converter 25 shown in FIG.
If the switching control unit 9 can control the selection of the connection of the power line between the generator 15, the storage battery 13, and the electric motor 11 and the distribution of the power, a device combining a known switchboard and the control device may be used. ..

切替制御部9は以下の条件に基づき発電機15、蓄電池13、及び電動モータ11の間の電力線の接続の選択及び電力の分配を制御する。
まず、DFエンジン23が液体燃料を用いた拡散燃焼中で、かつ電動モータ11が発電機15と接続された状態で発電機15から電力の供給を受けて力行している場合、切替制御部9は発電機15が電動モータ11と接続された状態を維持する。この状態では図3に示すように発電機15が発電した直流電力が切替制御部9を介して電動モータ11に供給され、電動モータ11が力行する。電動モータ11が力行することで、回転力が生成され、減速機7を介してプロペラ17に伝達される。プロペラ17は伝達された回転力を推進力に変換することで電気推進船1を航行させる。
The switching control unit 9 controls the selection of the connection of the power line between the generator 15, the storage battery 13, and the electric motor 11 and the distribution of the power based on the following conditions.
First, when the DF engine 23 is undergoing diffusion combustion using liquid fuel and the electric motor 11 is connected to the generator 15 and is powered by the power supplied from the generator 15, the switching control unit 9 Maintains a state in which the generator 15 is connected to the electric motor 11. In this state, as shown in FIG. 3, the DC power generated by the generator 15 is supplied to the electric motor 11 via the switching control unit 9, and the electric motor 11 powers. When the electric motor 11 powers, a rotational force is generated and transmitted to the propeller 17 via the speed reducer 7. The propeller 17 navigates the electric propulsion ship 1 by converting the transmitted rotational force into a propulsive force.

DFエンジン23が拡散燃焼中か否かは、DFエンジン23の燃焼状態を示す信号をDFエンジン23が切替制御部9に出力するように構成し、受信した信号から切替制御部9が判断してもよい。あるいは切替制御部9にDFエンジン23が拡散燃焼中か予混合燃焼中かを選択する手動のスイッチを設け、DFエンジン23を操作する機関士がスイッチを操作することで切替制御部9が判断できるようにしてもよい。 Whether or not the DF engine 23 is in diffusion combustion is configured so that the DF engine 23 outputs a signal indicating the combustion state of the DF engine 23 to the switching control unit 9, and the switching control unit 9 determines from the received signal. May be good. Alternatively, the switching control unit 9 can determine whether the switching control unit 9 is provided with a manual switch for selecting whether the DF engine 23 is in diffusion combustion or premixed combustion, and the engineer who operates the DF engine 23 operates the switch. You may do so.

液体燃料を用いた拡散燃焼中は蓄電池13を電動モータ11の電源として使用することはないので、切替制御部9は蓄電池13を電動モータ11に接続しない。これは、液体燃料を用いた拡散燃焼はガス燃料を用いた予混合燃焼よりも負荷変動に対する追従性が高いため、蓄電池13を電源として使用しなくても十分な電力を電動モータ11に供給できるためである。 Since the storage battery 13 is not used as a power source for the electric motor 11 during diffusion combustion using liquid fuel, the switching control unit 9 does not connect the storage battery 13 to the electric motor 11. This is because diffusion combustion using liquid fuel has higher followability to load fluctuations than premixed combustion using gas fuel, so sufficient power can be supplied to the electric motor 11 without using the storage battery 13 as a power source. Because.

ただし、蓄電池13の充電率が予め定められた所定の下限充電率以下になった場合、切替制御部9は、発電機15が発電した電力の少なくとも一部を蓄電池13に供給して蓄電池13を予め設定された上限充電率に達するまで充電してもよい。
このように蓄電池13の充電率が下限以下になると発電機15を用いて蓄電池13を充電することで、蓄電池13の電池切れを防止できる。
蓄電池13の充電率は放電電圧を測定し、放電曲線を参照する等して静電容量を算出すれば求められる。
However, when the charge rate of the storage battery 13 becomes equal to or less than a predetermined lower limit charge rate, the switching control unit 9 supplies at least a part of the power generated by the generator 15 to the storage battery 13 to supply the storage battery 13. It may be charged until the preset upper limit charge rate is reached.
When the charge rate of the storage battery 13 becomes equal to or less than the lower limit in this way, the storage battery 13 can be charged by using the generator 15 to prevent the storage battery 13 from running out.
The charge rate of the storage battery 13 can be obtained by measuring the discharge voltage and calculating the capacitance by referring to the discharge curve or the like.

DFエンジン23がガス燃料を用いた予混合燃焼中で、かつ電動モータ11が発電機15と接続された状態で発電機15から電力の供給を受けて力行している場合、切替制御部9は以下の制御を行う。
まず切替制御部9は電動モータ11の負荷変動が予め定められた閾値を超えると電動モータ11と蓄電池13を接続する。予め定められた閾値とは、予混合燃焼の際にDFエンジン23にノッキングや失火が生じる可能性がある値である。
ここでいう負荷変動とは具体的には電動モータ11の負荷トルクの変動であり、負荷率等から計算してもよいし、トルクセンサ等で実測してもよい。
When the DF engine 23 is undergoing premixed combustion using gas fuel and the electric motor 11 is connected to the generator 15 and is powered by the power supplied from the generator 15, the switching control unit 9 is driven. The following control is performed.
First, the switching control unit 9 connects the electric motor 11 and the storage battery 13 when the load fluctuation of the electric motor 11 exceeds a predetermined threshold value. The predetermined threshold value is a value at which knocking or misfire may occur in the DF engine 23 during premixed combustion.
The load fluctuation referred to here is specifically a fluctuation in the load torque of the electric motor 11, and may be calculated from a load factor or the like, or may be actually measured by a torque sensor or the like.

電動モータ11と蓄電池13が接続されると、図4に示すように蓄電池13から電力が電動モータ11に供給され、電動モータ11が駆動する。蓄電池13はガス燃料を用いた予混合燃焼と比べると負荷変動に対する追従性が高い。そのため、負荷変動が閾値を超えた場合に蓄電池13から電動モータ11に電力を供給することで、予混合燃焼で安定したDFエンジン23の駆動が困難な負荷変動が生じた場合でも、DFエンジン23を拡散燃焼に切り替える必要がない。そのためDFエンジン23を予混合燃焼で駆動できる負荷変動の条件をより広くできる。
また、電動モータ11が直流であるため、電動モータ11と蓄電池13を接続する際に直流電力を交流電力に変換する変換器が必要ない。そのため従来よりも構造が単純で安定した動作が可能となる。
When the electric motor 11 and the storage battery 13 are connected, electric power is supplied from the storage battery 13 to the electric motor 11 as shown in FIG. 4, and the electric motor 11 is driven. The storage battery 13 has higher followability to load fluctuations as compared with premixed combustion using gas fuel. Therefore, by supplying electric power from the storage battery 13 to the electric motor 11 when the load fluctuation exceeds the threshold value, even if the load fluctuation that makes it difficult to drive the DF engine 23 stably by premixed combustion occurs, the DF engine 23 There is no need to switch to diffusion combustion. Therefore, the conditions of load fluctuation that can drive the DF engine 23 by premixed combustion can be broadened.
Further, since the electric motor 11 is direct current, there is no need for a converter that converts DC power into AC power when connecting the electric motor 11 and the storage battery 13. Therefore, the structure is simpler than before and stable operation is possible.

蓄電池13を電動モータ11に接続する場合は、切替制御部9は発電機15を電動モータ11に接続しなくてもよい。この場合は、切替制御部9は発電機15を電動モータ11に接続せずに蓄電池13に接続して、発電した電力で蓄電池13を充電してもよい。具体的には蓄電池13が電動モータ11を駆動することで消費された電力に相当する電力を発電機15が蓄電池13に供給して充電する。この場合、蓄電池13が電動モータ11に電力を供給している間に蓄電池13が電池切れになるのを防止できる。ただしこの構造では蓄電池13のみで電動モータ11を駆動するため、蓄電池13の出力が発電機15の最大出力以上である必要がある。 When the storage battery 13 is connected to the electric motor 11, the switching control unit 9 does not have to connect the generator 15 to the electric motor 11. In this case, the switching control unit 9 may connect the generator 15 to the storage battery 13 without connecting the generator 15 to the electric motor 11 and charge the storage battery 13 with the generated electric power. Specifically, the generator 15 supplies the electric power corresponding to the electric power consumed by the storage battery 13 to drive the electric motor 11 to the storage battery 13 to charge the electric power. In this case, it is possible to prevent the storage battery 13 from running out while the storage battery 13 is supplying electric power to the electric motor 11. However, in this structure, since the electric motor 11 is driven only by the storage battery 13, the output of the storage battery 13 needs to be equal to or higher than the maximum output of the generator 15.

蓄電池13を電動モータ11に接続する場合、発電機15が電動モータ11と接続された状態を維持して発電機15も電動モータ11に電力を供給してもよい。この場合、発電機15が電動モータ11に供給する電力で不足する分の電力を蓄電池13が電動モータ11に供給すればよい。この構成は、蓄電池13の容量は発電機15で供給する電力の不足分に相当する容量であればよいので、蓄電池13を小型化しやすい点で有利である。 When the storage battery 13 is connected to the electric motor 11, the generator 15 may also supply electric power to the electric motor 11 while maintaining the state in which the generator 15 is connected to the electric motor 11. In this case, the storage battery 13 may supply the electric motor 11 with the electric power insufficient for the electric power supplied by the generator 15 to the electric motor 11. This configuration is advantageous in that the storage battery 13 can be easily miniaturized because the capacity of the storage battery 13 may be a capacity corresponding to the shortage of the electric power supplied by the generator 15.

DFエンジン23がガス燃料を用いた予混合燃焼中で、電動モータ11が発電機15と接続されて電力の供給を受け力行しており、電動モータ11の負荷変動が閾値以下の場合、切替制御部9は拡散燃焼中と同様に電動モータ11を蓄電池13に接続しない。この場合、切替制御部9は発電機15が電動モータ11と接続された状態を維持する。
これは、電動モータ11の負荷変動が閾値以下の場合、DFエンジン23が予混合燃焼の場合でも安定した動作ができるためである。また蓄電池13を電源として使用し続けると電池切れになる可能性があるためである。
電動モータ11と発電機15が接続された状態では発電機15から電力が電動モータ11に供給され、電動モータ11が駆動する。
When the DF engine 23 is in premixed combustion using gas fuel, the electric motor 11 is connected to the generator 15 to receive power supply and power, and the load fluctuation of the electric motor 11 is equal to or less than the threshold value, switching control is performed. The unit 9 does not connect the electric motor 11 to the storage battery 13 as in the case of diffusion combustion. In this case, the switching control unit 9 maintains a state in which the generator 15 is connected to the electric motor 11.
This is because when the load fluctuation of the electric motor 11 is equal to or less than the threshold value, the DF engine 23 can operate stably even in the case of premixed combustion. Further, if the storage battery 13 is continuously used as a power source, the battery may run out.
When the electric motor 11 and the generator 15 are connected, electric power is supplied from the generator 15 to the electric motor 11 to drive the electric motor 11.

なお、予混合燃焼中に蓄電池13の充電率が予め定められた所定の下限充電率以下の場合、切替制御部9は、発電機15が発電した電力の少なくとも一部を蓄電池13に供給して蓄電池13を予め設定された上限充電率に達するまで充電してもよい。理由は拡散燃焼中に蓄電池13を充電する場合と同様に電池切れを防ぐためである。 When the charge rate of the storage battery 13 is equal to or less than a predetermined lower limit charge rate during premixed combustion, the switching control unit 9 supplies at least a part of the power generated by the generator 15 to the storage battery 13. The storage battery 13 may be charged until it reaches a preset upper limit charge rate. The reason is to prevent the battery from running out as in the case of charging the storage battery 13 during diffusion combustion.

電動モータ11が回生駆動している場合、具体的には電動モータ11から回生発電による電力が切替制御部9に供給された場合、切替制御部9は、電動モータ11を蓄電池13に接続して、図5に示すように供給された回生電力を蓄電池13に充電する。電動モータ11が回生駆動している場合とは、波浪の影響等でプロペラ17が航行時と逆回転した場合が挙げられる。この場合、回生電力を消費する装置がないと、切替制御部9、発電機15、蓄電池13に回生電力が逆電力として流れ込み、ブレーカーの遮断、あるいは電力上昇による加熱に起因する装置の焼損等の原因となるためである。
回生電力を消費する方法としては抵抗体で熱として消費する方法もあるが、回生電力を蓄電池13に充電することで、従来は抵抗体で熱として消費されていた回生電力の一部を電気推進船1の航行用の電力として利用できる。
なお、回生電力を蓄電池13に充電する際は、電動モータ11を発電機15に接続しないのが好ましい。接続すると逆電力が発電機15に流れ込む可能性があるためである。また、電動モータ11が回生駆動中に蓄電池13の充電率が上限充電率以上である場合や、蓄電池13の放電容量を超える電力の回生電力が発生している場合は、回生電力を蓄電池13に充電せずに図示しない抵抗体で熱として消費させる。
When the electric motor 11 is regeneratively driven, specifically, when the power generated by the regenerative power generation is supplied from the electric motor 11 to the switching control unit 9, the switching control unit 9 connects the electric motor 11 to the storage battery 13. , The regenerative power supplied as shown in FIG. 5 is charged into the storage battery 13. The case where the electric motor 11 is regeneratively driven includes a case where the propeller 17 rotates in the reverse direction to the time of navigation due to the influence of waves and the like. In this case, if there is no device that consumes the regenerative power, the regenerative power flows into the switching control unit 9, the generator 15, and the storage battery 13 as reverse power, and the breaker is cut off or the device is burnt due to heating due to an increase in power. This is because it causes.
As a method of consuming the regenerative power, there is a method of consuming it as heat with a resistor, but by charging the storage battery 13 with the regenerative power, a part of the regenerative power conventionally consumed as heat by the resistor is electrically propelled. It can be used as electric power for navigation of ship 1.
When charging the storage battery 13 with regenerative power, it is preferable not to connect the electric motor 11 to the generator 15. This is because there is a possibility that reverse power will flow into the generator 15 when connected. Further, when the charge rate of the storage battery 13 is equal to or higher than the upper limit charge rate while the electric motor 11 is being regenerated, or when the regenerative power of the power exceeding the discharge capacity of the storage battery 13 is generated, the regenerative power is transferred to the storage battery 13. It is consumed as heat by a resistor (not shown) without charging.

電動モータ11を蓄電池13に接続した場合、接続を解除する条件は接続の条件を満たさなくなった場合である。具体的には電動モータ11が回生発電中に電動モータ11を蓄電池13に接続した場合、接続を解除する条件は、回生発電をしなくなった場合か、充電が不可能になった場合である。
電動モータ11が力行中に電動モータ11を蓄電池13に接続した場合、接続を解除する条件は、DFエンジン23が液体燃料を用いた拡散燃焼中になった場合である。あるいは、DFエンジン23がガス燃料を用いた予混合燃焼中に電動モータ11の負荷変動が閾値以下になった場合である。
以上が本実施形態における推進機構3を備える電気推進船1の構造の説明である。
When the electric motor 11 is connected to the storage battery 13, the condition for disconnecting the connection is the case where the connection condition is no longer satisfied. Specifically, when the electric motor 11 connects the electric motor 11 to the storage battery 13 during the regenerative power generation, the condition for disconnecting the connection is when the regenerative power generation is stopped or when charging becomes impossible.
When the electric motor 11 is connected to the storage battery 13 while the electric motor 11 is running, the condition for disconnecting the connection is that the DF engine 23 is undergoing diffusion combustion using liquid fuel. Alternatively, the load fluctuation of the electric motor 11 becomes equal to or less than the threshold value during the premixed combustion of the DF engine 23 using the gas fuel.
The above is the description of the structure of the electric propulsion ship 1 provided with the propulsion mechanism 3 in the present embodiment.

次に図6を参照して本実施形態に係る推進機構3を備える電気推進船1の航行の手順の一例を説明する。以下の説明では、電動モータ11と蓄電池13とを接続する場合でも電動モータ11と発電機15の接続を維持し、発電機15が電動モータ11に供給する電力で不足する分の電力を蓄電池13が電動モータ11に供給する手順を例にする。
まず切替制御部9は電動モータ11からの逆電力の供給の有無から電動モータ11が回生発電中か否かを判断し、回生発電中の場合はS2に進み、回生発電中でない場合はS3に進む(図6のS1)。
S1で回生発電中と判断した場合、切替制御部9は蓄電池13が回生電力を充電可能か否か、具体的には蓄電池13の充電率が上限充電率未満で、かつ回生電力が蓄電池13の放電容量を超えていないかを判断する(図6のS2)。充電可能と判断した場合は蓄電池13と電動モータ11を接続し、回生電力を蓄電池13に充電してリターンする(図6のS2-2)。この際、切替制御部9は電動モータ11と発電機15を接続しない。S2で充電可能でないと判断した場合は蓄電池13と電動モータ11を接続せずに、図示しない抵抗体と電動モータ11を接続して回生電力を熱エネルギーとして消費させてリターンする(図6のS2-3)。
Next, an example of the navigation procedure of the electric propulsion vessel 1 provided with the propulsion mechanism 3 according to the present embodiment will be described with reference to FIG. In the following description, even when the electric motor 11 and the storage battery 13 are connected, the connection between the electric motor 11 and the generator 15 is maintained, and the power supplied by the generator 15 to the electric motor 11 is insufficient for the storage battery 13. Take as an example the procedure of supplying to the electric motor 11.
First, the switching control unit 9 determines whether or not the electric motor 11 is in regenerative power generation based on whether or not the reverse power is supplied from the electric motor 11, and proceeds to S2 if the electric motor 11 is in the regenerative power generation, and to S3 if the electric motor 11 is not in the regenerative power generation. Proceed (S1 in FIG. 6).
When it is determined in S1 that regenerative power generation is in progress, the switching control unit 9 determines whether or not the storage battery 13 can charge the regenerative power, specifically, the charge rate of the storage battery 13 is less than the upper limit charge rate, and the regenerative power is the storage battery 13. It is determined whether the discharge capacity is exceeded (S2 in FIG. 6). When it is determined that the battery can be charged, the storage battery 13 and the electric motor 11 are connected, and the regenerative power is charged to the storage battery 13 and returned (S2-2 in FIG. 6). At this time, the switching control unit 9 does not connect the electric motor 11 and the generator 15. If it is determined in S2 that the battery cannot be charged, the storage battery 13 and the electric motor 11 are not connected, but a resistor (not shown) and the electric motor 11 are connected to consume the regenerated power as heat energy and return (S2 in FIG. 6). -3).

S1で回生発電中でないと判断した場合、切替制御部9は電動モータ11と発電機15を接続し、発電機15が供給する電力で電動モータ11を駆動させる(図6のS3)。この際、直前まで回生発電をしていた等の理由で電動モータ11と蓄電池13が接続されていた場合は接続を解除する。次に切替制御部9はDFエンジン23がガス燃焼中か否か、つまりガス燃料を用いた予混合燃焼中か否かを判断し、ガス燃焼中の場合はS5に進み、ガス燃焼中でない場合はS7-2に進む(図6のS4)。
S4でDFエンジン23がガス燃焼中であると判断した場合、切替制御部9は電動モータ11の負荷変動を取得する(図6のS5)。さらに切替制御部9はS5で取得した負荷変動が予め定められた閾値を超えるか否かを判断し、閾値を超えると判断した場合はS7に進み、超えないと判断した場合はS7-2に進む(図6のS6)。
S6で負荷変動が閾値を超えると判断した場合、切替制御部9は蓄電池13と電動モータ11を接続し、蓄電池13が供給する電力が負荷変動分を加勢し、電動モータ11を駆動させてS8に進む(図6のS7)。
When it is determined in S1 that regenerative power generation is not in progress, the switching control unit 9 connects the electric motor 11 and the generator 15 and drives the electric motor 11 with the power supplied by the generator 15 (S3 in FIG. 6). At this time, if the electric motor 11 and the storage battery 13 are connected due to reasons such as regenerative power generation until immediately before, the connection is canceled. Next, the switching control unit 9 determines whether or not the DF engine 23 is in gas combustion, that is, whether or not it is in premixed combustion using gas fuel, and if it is in gas combustion, proceeds to S5, and if it is not in gas combustion. Proceeds to S7-2 (S4 in FIG. 6).
When it is determined in S4 that the DF engine 23 is burning gas, the switching control unit 9 acquires the load fluctuation of the electric motor 11 (S5 in FIG. 6). Further, the switching control unit 9 determines whether or not the load fluctuation acquired in S5 exceeds a predetermined threshold value, proceeds to S7 if it is determined to exceed the threshold value, and proceeds to S7-2 if it is determined not to exceed the threshold value. Proceed (S6 in FIG. 6).
When it is determined in S6 that the load fluctuation exceeds the threshold value, the switching control unit 9 connects the storage battery 13 and the electric motor 11, and the electric power supplied by the storage battery 13 boosts the load fluctuation amount to drive the electric motor 11 in S8. (S7 in FIG. 6).

S4でDFエンジン23がガス燃焼でないと判断した場合、S6で負荷変動が閾値を超えないと判断した場合、切替制御部9は蓄電池13と電動モータ11を接続せず、既に接続されている場合は接続を解除してS8に進む(図6のS7-2)。
S7又はS7-2を実行した場合、切替制御部9は蓄電池13の充電率を取得する(図6のS8)。取得した充電率が下限充電率以下の場合はS10に進み、下限充電率以下でない場合はリターンする(図6のS9)。
S9で充電率が下限充電率以下と判断した場合、切替制御部9は発電機15と蓄電池13を接続して、蓄電池13の充電率が上限充電率に達するまで蓄電池13を充電してリターンする(図6のS10)。
以上が本実施形態に係る推進機構3を備える電気推進船1の航行の手順の一例の説明である。
When it is determined in S4 that the DF engine 23 is not gas combustion, when it is determined in S6 that the load fluctuation does not exceed the threshold value, the switching control unit 9 does not connect the storage battery 13 and the electric motor 11, but is already connected. Disconnects and proceeds to S8 (S7-2 in FIG. 6).
When S7 or S7-2 is executed, the switching control unit 9 acquires the charge rate of the storage battery 13 (S8 in FIG. 6). If the acquired charge rate is not less than or equal to the lower limit charge rate, the process proceeds to S10, and if it is not less than or equal to the lower limit charge rate, the process returns (S9 in FIG. 6).
When it is determined in S9 that the charge rate is equal to or less than the lower limit charge rate, the switching control unit 9 connects the generator 15 and the storage battery 13, charges the storage battery 13 until the charge rate of the storage battery 13 reaches the upper limit charge rate, and returns. (S10 in FIG. 6).
The above is an explanation of an example of the navigation procedure of the electric propulsion vessel 1 provided with the propulsion mechanism 3 according to the present embodiment.

このように本実施形態の推進機構3は、ガス燃料でDFエンジン23が駆動中に負荷変動が大きくなると切替制御部9が蓄電池13から直流電流を、直流モータである電動モータ11に供給して駆動させる。
そのため、蓄電池13を電動モータ11に接続する際に直流電力を交流電力に変換する変換器が不要となり、従来よりも構造が単純で安定した動作が可能となる。
As described above, in the propulsion mechanism 3 of the present embodiment, when the load fluctuation becomes large while the DF engine 23 is being driven by gas fuel, the switching control unit 9 supplies a direct current from the storage battery 13 to the electric motor 11 which is a direct current motor. Drive.
Therefore, when the storage battery 13 is connected to the electric motor 11, a converter that converts DC power into AC power becomes unnecessary, and the structure is simpler and more stable operation than before is possible.

以上、実施形態を参照して本発明を説明したが、本発明は実施形態に限定されない。当業者であれば、本発明の技術思想の範囲内において各種変形例及び改良例に想到するのは当然のことであり、これらも本発明に含まれる。 Although the present invention has been described above with reference to the embodiments, the present invention is not limited to the embodiments. It is natural for a person skilled in the art to come up with various modifications and improvements within the scope of the technical idea of the present invention, and these are also included in the present invention.

1 :電気推進船
3 :推進機構
5 :船体
7 :減速機
9 :切替制御部
11 :電動モータ
13 :蓄電池
15 :発電機
17 :プロペラ
19 :燃料タンク
21 :液化ガスタンク
23 :DFエンジン
25 :コンバータ
61 :供給手段
1: Electric propulsion ship 3: Propulsion mechanism 5: Hull 7: Reducer 9: Switching control unit 11: Electric motor 13: Storage battery 15: Generator 17: Propeller 19: Fuel tank 21: Liquefied gas tank 23: DF engine 25: Converter 61: Supply means

Claims (8)

液体燃料の拡散燃焼又はガス燃料の予混合燃焼を選択して駆動するDFエンジンで発電する発電機と、蓄電池と、前記発電機又は前記蓄電池から電力が供給されるとプロペラを駆動する電動モータと、前記発電機、前記蓄電池、及び前記電動モータの接続の選択及び電力の分配を制御する切替制御部を備える、電気推進船の推進機構であって、
前記電動モータは直流モータであり、
前記切替制御部は、前記DFエンジンが予混合燃焼で駆動中に、前記電動モータが前記発電機と接続された状態で前記発電機から電力の供給を受けて力行している場合、
前記電動モータの負荷変動が予め定められた閾値を超えると前記電動モータと前記蓄電池を接続することを特徴とする電気推進船の推進機構。
A generator that generates electricity with a DF engine that selectively drives diffuse combustion of liquid fuel or premixed combustion of gas fuel, a storage battery, and an electric motor that drives a propeller when power is supplied from the generator or the storage battery. A propulsion mechanism for an electric propulsion vessel, comprising a switching control unit that controls connection selection and power distribution of the generator, the storage battery, and the electric motor.
The electric motor is a DC motor and
When the switching control unit operates by receiving electric power from the generator while the DF engine is being driven by premixed combustion and the electric motor is connected to the generator.
A propulsion mechanism for an electric propulsion ship, characterized in that the electric motor and the storage battery are connected when the load fluctuation of the electric motor exceeds a predetermined threshold value.
前記発電機は直流発電機である請求項1に記載の電気推進船の推進機構。 The propulsion mechanism for an electric propulsion ship according to claim 1, wherein the generator is a DC generator. 前記発電機は交流発電機であり、発電した交流電力を直流電力に変換するコンバータを介して前記切替制御部に接続される請求項1に記載の電気推進船の推進機構。 The propulsion mechanism for an electric propulsion ship according to claim 1, wherein the generator is an AC generator, and is connected to the switching control unit via a converter that converts the generated AC power into DC power. 前記切替制御部は前記電動モータと前記蓄電池を接続した場合、
前記発電機を前記電動モータに接続せずに前記蓄電池に接続し、前記蓄電池が前記電動モータを駆動することで消費された電力に相当する電力を前記発電機が前記蓄電池に供給して充電する請求項1~3のいずれか一項に記載の電気推進船の推進機構。
When the switching control unit connects the electric motor and the storage battery,
The generator is connected to the storage battery without being connected to the electric motor, and the generator supplies and charges the storage battery with electric power corresponding to the electric power consumed by driving the electric motor. The propulsion mechanism for an electric propulsion vessel according to any one of claims 1 to 3.
前記切替制御部は前記電動モータと前記蓄電池を接続した場合、前記発電機が前記電動モータと接続された状態を維持し、
前記発電機が前記電動モータに供給する電力で不足する分の電力を前記蓄電池が前記電動モータに供給する請求項1~3のいずれか一項に記載の電気推進船の推進機構。
When the electric motor and the storage battery are connected, the switching control unit maintains the state in which the generator is connected to the electric motor.
The propulsion mechanism for an electric propulsion ship according to any one of claims 1 to 3, wherein the storage battery supplies electric power insufficient for the electric power supplied to the electric motor by the generator.
前記切替制御部は、
前記蓄電池の充電率が予め定められた所定の下限充電率以下になった場合、前記発電機が発電した電力の少なくとも一部を前記蓄電池に供給して前記蓄電池を予め設定された上限充電率に達するまで充電する請求項1~5のいずれか一項に記載の電気推進船の推進機構。
The switching control unit
When the charge rate of the storage battery becomes equal to or less than a predetermined lower limit charge rate, at least a part of the power generated by the generator is supplied to the storage battery to bring the storage battery to a preset upper limit charge rate. The propulsion mechanism for an electric propulsion vessel according to any one of claims 1 to 5, which is charged until it reaches the limit.
前記切替制御部は、
前記電動モータから回生発電による電力が供給された場合に、前記電動モータを前記蓄電池に接続して、供給された電力を前記蓄電池に充電する請求項1~5のいずれか一項に記載の電気推進船の推進機構。
The switching control unit
The electricity according to any one of claims 1 to 5, wherein when the electric motor is supplied with electric power by regenerative power generation, the electric motor is connected to the storage battery and the supplied electric power is charged to the storage battery. Propulsion mechanism of the propulsion ship.
請求項1~7のいずれか一項に記載の電気推進船の推進機構と、
液化ガスを貯蔵する液化ガスタンクと、
前記液化ガスが気化して、あるいは強制的に気化させて発生したガスを前記ガス燃料として前記DFエンジンに供給する供給手段を備えることを特徴とする電気推進船。
The propulsion mechanism of the electric propulsion vessel according to any one of claims 1 to 7.
A liquefied gas tank that stores liquefied gas and
An electric propulsion vessel comprising a supply means for supplying the gas generated by vaporizing or forcibly vaporizing the liquefied gas to the DF engine as the gas fuel.
JP2020113037A 2020-06-30 2020-06-30 Propulsion mechanism of electric propulsion ship and electric propulsion ship Pending JP2022011720A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020113037A JP2022011720A (en) 2020-06-30 2020-06-30 Propulsion mechanism of electric propulsion ship and electric propulsion ship
CN202121471036.XU CN215752972U (en) 2020-06-30 2021-06-30 Propulsion mechanism of electric propulsion ship and electric propulsion ship

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020113037A JP2022011720A (en) 2020-06-30 2020-06-30 Propulsion mechanism of electric propulsion ship and electric propulsion ship

Publications (1)

Publication Number Publication Date
JP2022011720A true JP2022011720A (en) 2022-01-17

Family

ID=80103053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020113037A Pending JP2022011720A (en) 2020-06-30 2020-06-30 Propulsion mechanism of electric propulsion ship and electric propulsion ship

Country Status (2)

Country Link
JP (1) JP2022011720A (en)
CN (1) CN215752972U (en)

Also Published As

Publication number Publication date
CN215752972U (en) 2022-02-08

Similar Documents

Publication Publication Date Title
KR101877095B1 (en) Improvement in ship propulsion engine fuel efficiency
JP7171002B1 (en) Composite Ship Mixed Power System Based on Ammonia-Hydrogen Drive
JP7018976B2 (en) How to operate a marine engine
US20100144219A1 (en) Marine Vessel Hybrid Propulsion System
JP4228608B2 (en) Propulsion device for liquefied gas carrier
KR102050762B1 (en) Drive cascade system for a watercraft
KR102314973B1 (en) Hybrid propulsion vessel with shaft generator and battery
JP4048862B2 (en) BOG processing method and apparatus for liquefied gas carrier
CN108860549A (en) A kind of parallel ship hybrid power system of the bavin pneumoelectric of carrying fuel battery
AU2012203987A1 (en) Propulsion system
CN101767645A (en) Novel electric propulsion system
CN108674627A (en) A kind of twin axle ship hybrid power system of carrying fuel battery
CN113328442A (en) Comprehensive power control management system for ship
CN108657405A (en) A kind of single machine single-blade formula pneumoelectric mixing ship power system
KR20170079873A (en) Operation Method of Engine for a Ship
KR101775042B1 (en) Control apparatus and method of dual fuel engine
JP2022011720A (en) Propulsion mechanism of electric propulsion ship and electric propulsion ship
JP2008038608A (en) Control device for dual fuel engine
RU2483972C1 (en) Method of controlling ship combined power plant
CN109878676A (en) A kind of double paddle bavin pneumoelectric mixing ship power systems of three machines
KR20230059560A (en) Hybrid generation and propulsion system and method for a vessel
WO2022158565A1 (en) Ship
KR20220160293A (en) Vessel
KR102664938B1 (en) BOG Treatment System for Hybrid Propulsion Vessel
KR20230040781A (en) Vessel

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20221130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230829

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231025

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20240213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240305

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20240312