JP2022011102A - mechanical seal - Google Patents

mechanical seal Download PDF

Info

Publication number
JP2022011102A
JP2022011102A JP2020111998A JP2020111998A JP2022011102A JP 2022011102 A JP2022011102 A JP 2022011102A JP 2020111998 A JP2020111998 A JP 2020111998A JP 2020111998 A JP2020111998 A JP 2020111998A JP 2022011102 A JP2022011102 A JP 2022011102A
Authority
JP
Japan
Prior art keywords
sealing ring
mechanical seal
ring
sleeve
rotary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020111998A
Other languages
Japanese (ja)
Other versions
JP7419176B2 (en
Inventor
尚広 谷口
Naohiro Taniguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eagle Industry Co Ltd
Original Assignee
Eagle Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eagle Industry Co Ltd filed Critical Eagle Industry Co Ltd
Priority to JP2020111998A priority Critical patent/JP7419176B2/en
Publication of JP2022011102A publication Critical patent/JP2022011102A/en
Application granted granted Critical
Publication of JP7419176B2 publication Critical patent/JP7419176B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a mechanical seal which can reliably prevent a rotary sealing ring from following a stationary sealing ring and being removed when a stationary side element is separated from a rotary side element.SOLUTION: A mechanical seal 1 has: a rotary sealing ring 6 which rotates with a sleeve 4 attached to a rotary shaft 2 of a rotary device; and a stationary sealing ring 7 held by a housing 3. The sleeve 4 is formed with a protruding part 40 protruding in an outer diameter direction. The rotary sealing ring 6 contacts with the protruding part 40 to be restricted from moving in an axial direction.SELECTED DRAWING: Figure 1

Description

本発明は、回転軸を軸封するメカニカルシールに関する。 The present invention relates to a mechanical seal that seals a rotating shaft.

メカニカルシールは、流体機器のハウジングと該ハウジングを貫通するように配置される回転軸との間に装着して使用されるものであり、ハウジング等により構成される静止側要素に固定される静止密封環の摺動面と、回転軸等の回転側要素とともに回転する回転密封環の摺動面とを周方向に摺接させて、摺動面に生じる摩擦を低減するとともに被密封流体の漏れを防ぐ機能を有している。 The mechanical seal is used by being mounted between the housing of the fluid device and the rotating shaft arranged so as to penetrate the housing, and is fixed to the stationary side element configured by the housing or the like. The sliding surface of the ring and the sliding surface of the rotating sealed ring that rotates together with the rotating side element such as the rotating shaft are brought into sliding contact in the circumferential direction to reduce friction generated on the sliding surface and prevent leakage of the sealed fluid. It has a function to prevent it.

一般的な静止型のメカニカルシールは、特許文献1に示されるように、ハウジングに固定された保持部材に保持された静止密封環と、回転軸に外装固定された筒状のスリーブとともに回転する回転密封環とを備え、密封環同士の相対摺動時において、静止密封環と回転密封環の摺動面間に被密封流体である液体の液膜が形成されることによって潤滑性の向上を図っている。(特許文献1参照) As shown in Patent Document 1, a general stationary mechanical seal is a rotation that rotates together with a static sealing ring held by a holding member fixed to a housing and a tubular sleeve externally fixed to a rotating shaft. It is equipped with a sealing ring to improve lubricity by forming a liquid film, which is a sealed fluid, between the sliding surfaces of the static sealing ring and the rotary sealing ring when the sealing rings slide relative to each other. ing. (See Patent Document 1)

特開2016-125597号公報(第1頁、第2図)Japanese Unexamined Patent Publication No. 2016-125597 (Page 1, Fig. 2)

ところで、メカニカルシールは精密機器であることから、定期的に点検を行う必要があり、メカニカルシールの摺動面を点検するには、被密封流体をドレン口から排出した後、固定ボルト等を外して静止側要素を機外側に向けて移動させて、機内側の回転側要素から離間させるようにしている。 By the way, since the mechanical seal is a precision instrument, it is necessary to inspect it regularly. To inspect the sliding surface of the mechanical seal, drain the fluid to be sealed from the drain port and then remove the fixing bolts and the like. The stationary element is moved toward the outside of the machine so as to be separated from the rotating element inside the machine.

静止密封環の摺動面と回転密封環の摺動面は平滑であり、かつ両摺動面間には被密封流体である液体が介在している状態となっている。この状態で静止側要素を回転側要素から離間するように機外側へ向けて移動させた場合、摺動面同士が吸着した状態で、静止密封環の移動に伴い回転密封環が追従してしまうことがあった。また、スリーブ外周と静止側要素内周との間は狭い空間であるから、静止側要素を回転側要素から離間するように機外側へ向けて移動させた場合、該空間が相対的に負圧となって、回転密封環の追従を助長することもあった。 The sliding surface of the static sealing ring and the sliding surface of the rotary sealing ring are smooth, and a liquid, which is a fluid to be sealed, is interposed between the sliding surfaces. If the stationary element is moved toward the outside of the machine so as to be separated from the rotating element in this state, the rotating sealing ring follows the movement of the stationary sealing ring while the sliding surfaces are attracted to each other. There was something. Further, since the space between the outer circumference of the sleeve and the inner circumference of the stationary side element is narrow, when the stationary side element is moved toward the outside of the machine so as to be separated from the rotating side element, the space is relatively negatively pressured. As a result, it sometimes promoted the follow-up of the rotary sealing ring.

このように、回転密封環が静止密封環とともに機外側へ移動されることとなり、回転密封環が回転密封環を保持する保持部材から脱落し、スリーブ外周面やケーシング内周面に衝突し破損する虞があった。 In this way, the rotary sealing ring is moved to the outside of the machine together with the static sealing ring, and the rotary sealing ring falls off from the holding member holding the rotary sealing ring, collides with the outer peripheral surface of the sleeve and the inner peripheral surface of the casing, and is damaged. There was a risk.

本発明は、このような問題点に着目してなされたもので、静止側要素を回転側要素から分離する際において、回転密封環が静止密封環に追従離脱することを確実に防止できるメカニカルシールを提供することを目的とする。 The present invention has been made by paying attention to such a problem, and is a mechanical seal that can surely prevent the rotary sealing ring from following and detaching from the stationary sealing ring when the stationary side element is separated from the rotating side element. The purpose is to provide.

前記課題を解決するために、本発明のメカニカルシールは、
回転機器の回転軸に取り付けられるスリーブとともに回転する回転密封環と、ハウジングに保持される静止密封環と、を有するメカニカルシールであって、
前記スリーブには、外径方向に突出する突状部が形成されており、
前記回転密封環は、前記突状部に当接することで、前記軸方向への移動が規制されるものである。
これによれば、メカニカルシールの静止側要素を回転側要素から分離する際において、静止密封環に追従しようとする回転密封環が、スリーブに形成された突状部に当接し軸方向の移動を規制されるので、回転密封環が静止密封環に追従離脱することを確実に防止できる。
In order to solve the above problems, the mechanical seal of the present invention is used.
A mechanical seal having a rotary sealing ring that rotates with a sleeve attached to the rotating shaft of a rotating device and a static sealing ring that is held in a housing.
The sleeve is formed with a protruding portion that protrudes in the outer diameter direction.
The rotary sealing ring is restricted from moving in the axial direction by abutting on the protruding portion.
According to this, when the stationary side element of the mechanical seal is separated from the rotating side element, the rotating sealing ring that tries to follow the stationary sealing ring abuts on the protruding portion formed on the sleeve and moves in the axial direction. Since it is regulated, it is possible to reliably prevent the rotary sealing ring from following and detaching from the stationary sealing ring.

前記回転密封環は前記静止密封環へ向けて傾斜する傾斜面を備えており、前記突状部は前記傾斜面に傾斜状態で当接する傾斜面を備えている。
これによれば、回転密封環と突状部との傾斜面同士が当接することで衝撃力の一部は径方向に逃がされることから、当接による衝撃が緩和される。
The rotary sealing ring is provided with an inclined surface that is inclined toward the stationary sealing ring, and the protruding portion is provided with an inclined surface that abuts on the inclined surface in an inclined state.
According to this, a part of the impact force is released in the radial direction by the contact between the inclined surfaces of the rotary sealing ring and the protruding portion, so that the impact due to the contact is alleviated.

前記回転密封環は、背面側から2次シールを介して保持部材に保持されており、
前記回転密封環は、前記2次シールにより背面側の密封状態が維持されたまま前記突状部に至る軸方向への移動が許容されている。
これによれば、回転密封環が移動し突状部に当接した際、回転密封環の背面側の空間が2次シールにより密封されているので、被密封流体が導入される外径側室からの流体が前記空間に流入せず前記空間に気圧の急激な変化が生じにくい。
The rotary sealing ring is held by a holding member from the back surface side via a secondary seal.
The rotary sealing ring is allowed to move in the axial direction to the protruding portion while the sealed state on the back side is maintained by the secondary sealing.
According to this, when the rotary sealing ring moves and comes into contact with the projecting portion, the space on the back side of the rotary sealing ring is sealed by the secondary seal, so that the space on the back surface side is sealed from the outer diameter side chamber into which the fluid to be sealed is introduced. The fluid does not flow into the space, and a sudden change in atmospheric pressure is unlikely to occur in the space.

前記回転密封環の内周面と前記スリーブの外周面との間には弾性部材が介在している。
これによれば、回転密封環が突状部に当接するまで軸方向へ移動する際に、回転密封環の内周面がスリーブの外周面に直接接触することを防ぐ緩衝機能を有する。
An elastic member is interposed between the inner peripheral surface of the rotary sealing ring and the outer peripheral surface of the sleeve.
According to this, when the rotary sealing ring moves in the axial direction until it abuts on the protruding portion, it has a cushioning function to prevent the inner peripheral surface of the rotary sealing ring from directly contacting the outer peripheral surface of the sleeve.

前記スリーブには、内径側に凹む環状の凹溝が形成されており、
前記静止密封環及び前記スリーブの間の内径側室と前記凹溝とを連通する連通孔が形成されている。
これによれば、回転密封環が静止密封環側に移動した際に、連通孔によって凹溝内へも気体の移動が許容されるので、内径側室に生じる負圧が軽減される。
The sleeve is formed with an annular groove that is recessed on the inner diameter side.
A communication hole is formed to communicate the inner diameter side chamber between the static sealing ring and the sleeve and the concave groove.
According to this, when the rotary sealing ring moves to the static sealing ring side, the gas is allowed to move into the concave groove by the communication hole, so that the negative pressure generated in the inner diameter side chamber is reduced.

前記弾性部材は、前記内径側室と前記凹溝の間に配設されている。
これによれば、弾性部材は内径側室と凹溝の気体の連通を妨げることなく、回転密封環の内周面とスリーブの外周面との間の緩衝機能を発揮可能となっている。
The elastic member is arranged between the inner diameter side chamber and the concave groove.
According to this, the elastic member can exert a cushioning function between the inner peripheral surface of the rotary sealing ring and the outer peripheral surface of the sleeve without obstructing the communication of the gas between the inner diameter side chamber and the concave groove.

本発明の実施例1のメカニカルシールの構造を示す断面図である。It is sectional drawing which shows the structure of the mechanical seal of Example 1 of this invention. スリーブと静止密封環と回転密封環を示す一部拡大断面図である。It is a partially enlarged sectional view which shows the sleeve, the rest sealing ring, and the rotary sealing ring. 静止側要素を回転側要素から離間させる態様を示す模式図である。It is a schematic diagram which shows the mode that the stationary side element is separated from the rotating side element. (a)は所定位置に配置された静止密封環と回転密封環とを示す一部拡大断面図であり、(b)は分解時に回転密封環が静止密封環側に追従して移動する態様を示す模式図であり、(c)は回転密封環が突状部に当接し静止密封環と回転密封環が離間した態様を示す模式図である。(A) is a partially enlarged cross-sectional view showing a statically sealed ring and a rotary sealing ring arranged at a predetermined position, and (b) is an embodiment in which the rotary sealing ring moves following the statically sealed ring side at the time of disassembly. It is a schematic diagram which shows, and (c) is a schematic diagram which shows the mode that the rotary seal ring abuts on a protruding portion, and the static seal ring and the rotary seal ring are separated. 本発明の実施例2におけるメカニカルシール構造を示す一部拡大断面図である。It is a partially enlarged sectional view which shows the mechanical seal structure in Example 2 of this invention. (a)は所定位置に配置された静止密封環と回転密封環とを示す一部拡大断面図であり、(b)は分解時に回転密封環が静止密封環側に追従して移動する態様を示す模式図であり、(c)は回転密封環が突状部に当接し静止密封環と回転密封環が離間した態様を示す模式図である。(A) is a partially enlarged cross-sectional view showing a statically sealed ring and a rotary sealing ring arranged at a predetermined position, and (b) is an embodiment in which the rotary sealing ring moves following the statically sealed ring side at the time of disassembly. It is a schematic diagram which shows, and (c) is a schematic diagram which shows the mode that the rotary seal ring abuts on a protruding portion, and the static seal ring and the rotary seal ring are separated. 本発明の実施例3におけるメカニカルシール構造を示す一部拡大断面図である。It is a partially enlarged sectional view which shows the mechanical seal structure in Example 3 of this invention. 本発明の実施例4におけるメカニカルシール構造を示す一部拡大断面図である。It is a partially enlarged sectional view which shows the mechanical seal structure in Example 4 of this invention.

本発明に係るメカニカルシールを実施するための形態を実施例に基づいて以下に説明する。 A mode for carrying out the mechanical seal according to the present invention will be described below based on examples.

実施例1に係るメカニカルシールにつき、図1から図4を参照して説明する。以下、図1の紙面左側を大気領域である機外側、紙面右側を被密封流体領域である機内側として説明する。 The mechanical seal according to the first embodiment will be described with reference to FIGS. 1 to 4. Hereinafter, the left side of the paper surface of FIG. 1 will be described as the outside of the machine which is the atmospheric region, and the right side of the paper surface will be described as the inside of the machine which is the sealed fluid region.

図1に示されるように、本実施例のメカニカルシール1は、静止側要素Sと、回転側要素Rと、から構成されている。静止側要素Sは、ボルト12とナット13によってハウジング3に固定されるフランジ10と、該フランジ10とハウジング3と間に配設される環状のカラー14と、該カラー14に配設されるコイルスプリング15と、該コイルスプリング15の押圧力を静止環保持部材70の背面側に伝達するコンプレッションリング16と、該コンプレッションリング16から回転密封環6に向けて押圧される静止環保持部材70に保持された静止密封環7と、から主に構成されている。 As shown in FIG. 1, the mechanical seal 1 of this embodiment is composed of a stationary side element S and a rotating side element R. The stationary side element S includes a flange 10 fixed to the housing 3 by bolts 12 and nuts 13, an annular collar 14 disposed between the flange 10 and the housing 3, and a coil disposed on the collar 14. The spring 15 is held by the compression ring 16 that transmits the pressing force of the coil spring 15 to the back surface side of the stationary ring holding member 70, and the stationary ring holding member 70 that is pressed from the compression ring 16 toward the rotary sealing ring 6. It is mainly composed of the static sealing ring 7 and the closed ring 7.

回転側要素Rは、回転軸2に固定リング17により固定される円筒状のスリーブ4と、該スリーブ4の外周側に取り付けられる回転環保持部材5と、該回転環保持部材5に保持される回転密封環6と、から主に構成されている。 The rotation side element R is held by a cylindrical sleeve 4 fixed to the rotation shaft 2 by a fixing ring 17, a rotation ring holding member 5 attached to the outer peripheral side of the sleeve 4, and the rotation ring holding member 5. It is mainly composed of a rotary sealing ring 6.

図2に示されるように、本実施例のメカニカルシール1は、回転密封環6が備える摺動面F1と、静止密封環7が備える摺動面F2とで形成される摺動部Tの外径側の外径側室21から摺動部Tの内径側の内径側室20に向けて漏れようとする被密封流体Lを密封するインサイド型かつ静止型である。 As shown in FIG. 2, the mechanical seal 1 of the present embodiment is outside the sliding portion T formed by the sliding surface F1 included in the rotary sealing ring 6 and the sliding surface F2 included in the static sealing ring 7. It is an inside type and a stationary type that seals the sealed fluid L that is about to leak from the outer diameter side chamber 21 on the diameter side toward the inner diameter side chamber 20 on the inner diameter side of the sliding portion T.

回転密封環6には、側面61よりも軸方向に突出する、環状の凸部62が形成されており、該凸部62の静止密封環7と対向する対向面が平坦に形成された摺動面F1となっている。 The rotary sealing ring 6 is formed with an annular convex portion 62 that protrudes in the axial direction from the side surface 61, and a sliding surface of the convex portion 62 facing the static sealing ring 7 is formed flat. It is a surface F1.

回転密封環6は、背面60側に切り欠き部65が形成されており、回転環保持部材5から軸方向に向けて延出するピン50が係合することで回転軸2の回転力が伝達されるようになっている。また、回転密封環6の背面60には、回転環保持部材5に配設された二次シールとしてのOリング71が介在しており、外径側室21の被密封流体Lが回転密封環6の背面60を通じて、回転密封環6の内周面64側に回り込み大気側の内径側室20へ漏出することが防止されている。 The rotary sealing ring 6 has a notch 65 formed on the back surface 60 side, and the rotational force of the rotary shaft 2 is transmitted by engaging the pin 50 extending in the axial direction from the rotary ring holding member 5. It is supposed to be done. Further, an O-ring 71 as a secondary seal disposed on the rotary ring holding member 5 is interposed on the back surface 60 of the rotary seal ring 6, and the sealed fluid L of the outer diameter side chamber 21 is interposed in the rotary seal ring 6. It is prevented from wrapping around to the inner peripheral surface 64 side of the rotary sealing ring 6 and leaking to the inner diameter side chamber 20 on the atmosphere side through the back surface 60 of the rotary sealing ring 6.

また、内周面64の機外側端部には、外径側かつ側面61側に向けて傾斜して形成された環状の傾斜面66と、該傾斜面66の機外側端部から軸方向に延び側面61に直交して連なる周面67とが形成されている。 Further, on the outer side end portion of the inner peripheral surface 64, an annular inclined surface 66 formed so as to be inclined toward the outer diameter side and the side surface 61 side, and an axial direction from the outer side end portion of the inclined surface 66. A peripheral surface 67 is formed so as to be orthogonal to the extending side surface 61.

スリーブ4には外径側に突出する環状の突状部40が形成されている。突状部40は、後述する傾斜面41と、周面42と、傾斜面43とにより区画されている。 The sleeve 4 is formed with an annular protruding portion 40 protruding toward the outer diameter side. The protruding portion 40 is divided by an inclined surface 41, a peripheral surface 42, and an inclined surface 43, which will be described later.

スリーブ4の外周面34は、メカニカルシール1が組み付けられた状態で、回転密封環6の内周面64と僅かに離間して対向する平坦な周面4Aと、該周面4Aの機外側端から外径側かつ機外側に向けて傾斜した環状の傾斜面41と、該傾斜面41の機外側端部から機外側に向けて延びる周面42と、該周面42の機外側端部から延出され内径側かつ機外側に向けて傾斜した傾斜面43と、該傾斜面43の機外側端部から延出され周面4Aよりも内径側に形成された周面4Bと、から主に構成されている。 The outer peripheral surface 34 of the sleeve 4 has a flat peripheral surface 4A facing the inner peripheral surface 64 of the rotary sealing ring 6 slightly separated from the inner peripheral surface 64 in a state where the mechanical seal 1 is assembled, and the outer peripheral end of the peripheral surface 4A. From the annular inclined surface 41 inclined from the outer diameter side to the outside of the machine, the peripheral surface 42 extending from the outer end of the inclined surface 41 toward the outside of the machine, and the outer end of the peripheral surface 42. Mainly from the inclined surface 43 extending to the inner diameter side and inclined toward the outside of the machine, and the peripheral surface 4B extending from the outer end of the inclined surface 43 and formed on the inner diameter side of the peripheral surface 4A. It is configured.

スリーブ4の突状部40における傾斜面41と、回転密封環6の傾斜面66とは、メカニカルシール1が組み付けられた状態で、略平行かつ離間するように配置されている。 The inclined surface 41 of the protruding portion 40 of the sleeve 4 and the inclined surface 66 of the rotary sealing ring 6 are arranged so as to be substantially parallel and separated from each other in a state where the mechanical seal 1 is assembled.

図1に戻り、メカニカルシール1の静止密封環7の摺動面F2の点検について説明する。外径側室21に密封されている被密封流体Lを図示しないドレン口から排出した後、静止側要素Sのナット13を緩めハウジング3からフランジ10を外す。その後、図3に示されるようにカラー14を把持し、カラー14とコイルスプリング15とコンプレッションリング16と静止環保持部材70と静止密封環7とからなる静止環ユニットUを機外側に向けて移動させる。このように、静止密封環7を機外側の空間に移動させて、目視等により摺動面F2を点検している。尚、回転密封環6から静止密封環7を離間させる詳細手順は後述する。 Returning to FIG. 1, the inspection of the sliding surface F2 of the static sealing ring 7 of the mechanical seal 1 will be described. After draining the sealed fluid L sealed in the outer diameter side chamber 21 from a drain port (not shown), the nut 13 of the stationary side element S is loosened and the flange 10 is removed from the housing 3. After that, as shown in FIG. 3, the collar 14 is gripped, and the rest ring unit U including the collar 14, the coil spring 15, the compression ring 16, the rest ring holding member 70, and the rest seal ring 7 is moved toward the outside of the machine. Let me. In this way, the static sealing ring 7 is moved to the space outside the machine, and the sliding surface F2 is inspected visually or the like. The detailed procedure for separating the static sealing ring 7 from the rotary sealing ring 6 will be described later.

静止密封環7の摺動面F2と回転密封環6の摺動面F1は平滑である。また、被密封流体Lをドレン口から排出させた後においても、摺動面F1,F2間には被密封流体Lである液体が介在している。後述するが、一方側の密封環が移動すると、摺動面同士が吸着し、他方側の密封環も一方側の密封環に追従して移動してしまうことがある。特に摺動面間に液体が介在していると摺動面同士が吸着しやすい。 The sliding surface F2 of the static sealing ring 7 and the sliding surface F1 of the rotary sealing ring 6 are smooth. Further, even after the sealed fluid L is discharged from the drain port, the liquid which is the sealed fluid L is interposed between the sliding surfaces F1 and F2. As will be described later, when the sealing ring on one side moves, the sliding surfaces may be attracted to each other, and the sealing ring on the other side may also move following the sealing ring on one side. In particular, if a liquid is present between the sliding surfaces, the sliding surfaces are likely to be adsorbed to each other.

また、図3に示されるように、静止環ユニットUのカラー14の内周面14Aと、スリーブ4の周面4Bとは、径方向に近接しており、かつ径方向に近接している軸方向の長さが長尺であることから、静止環ユニットUを機外側に向けて移動させると内径側室20(図2参照)に負圧が生じ易くなっている。 Further, as shown in FIG. 3, the inner peripheral surface 14A of the collar 14 of the stationary ring unit U and the peripheral surface 4B of the sleeve 4 are close to each other in the radial direction and are close to each other in the radial direction. Since the length in the direction is long, when the stationary ring unit U is moved toward the outside of the machine, a negative pressure is likely to be generated in the inner diameter side chamber 20 (see FIG. 2).

以下、回転密封環6から静止密封環7を離間させる詳細手順について説明する。図4(a)は、メカニカルシール1を分解し点検するために、被密封流体Lをドレン口から排出させた状態を示している。静止側要素Sの静止環ユニットUを機外側へ向けて移動させた場合、摺動面F1,F2同士が吸着した状態で、静止環ユニットUの移動に伴い回転密封環6が静止密封環7に追従する。 Hereinafter, a detailed procedure for separating the static sealing ring 7 from the rotary sealing ring 6 will be described. FIG. 4A shows a state in which the sealed fluid L is discharged from the drain port in order to disassemble and inspect the mechanical seal 1. When the stationary ring unit U of the stationary side element S is moved toward the outside of the machine, the rotary sealing ring 6 becomes the stationary sealing ring 7 as the stationary ring unit U moves while the sliding surfaces F1 and F2 are attracted to each other. Follow.

更に静止環ユニットUを移動させると、図4(b)に示されるように、回転密封環6はスリーブ4の突状部40に当接する。 When the stationary ring unit U is further moved, the rotary sealing ring 6 comes into contact with the protruding portion 40 of the sleeve 4, as shown in FIG. 4 (b).

詳細には、回転密封環6の傾斜面66が、スリーブ4に形成された突状部40の傾斜面41に当接することで、回転密封環6は機外側への移動を規制される。このことから、回転密封環6が静止密封環7に追従移動しても、回転密封環6が回転環保持部材5から離脱することを確実に防止できる。 Specifically, the inclined surface 66 of the rotary sealing ring 6 abuts on the inclined surface 41 of the protruding portion 40 formed on the sleeve 4, so that the rotary sealing ring 6 is restricted from moving to the outside of the machine. From this, even if the rotary sealing ring 6 follows the stationary sealing ring 7, the rotary sealing ring 6 can be reliably prevented from being separated from the rotary ring holding member 5.

また、傾斜面41,66同士が当接することから、回転密封環6とスリーブ4との当接による衝撃力の一部は径方向に逃がされることとなり、当接による衝撃が緩和されるようになっている。さらに、傾斜面41,66は平行であることから、当該緩和作用に優れる。 Further, since the inclined surfaces 41 and 66 come into contact with each other, a part of the impact force due to the contact between the rotary sealing ring 6 and the sleeve 4 is released in the radial direction, so that the impact due to the contact is alleviated. It has become. Further, since the inclined surfaces 41 and 66 are parallel to each other, the relaxation action is excellent.

また、回転密封環6が機外側に移動することで、Oリング51が回転密封環6の背面60に当接したまま僅かに軸方向に伸張し、Oリング51の内径側と回転密封環6の背面60と回転環保持部材5との間に空間23が形成され、Oリング51の外径側と回転密封環6の背面60と回転環保持部材5との間に空間24が形成される。空間23は、内径側室20と連通しており、空間24は、外径側室21と連通している。 Further, as the rotary sealing ring 6 moves to the outside of the machine, the O-ring 51 slightly extends in the axial direction while being in contact with the back surface 60 of the rotary sealing ring 6, and the inner diameter side of the O-ring 51 and the rotary sealing ring 6 A space 23 is formed between the back surface 60 and the rotary ring holding member 5, and a space 24 is formed between the outer diameter side of the O-ring 51 and the back surface 60 of the rotary sealing ring 6 and the rotary ring holding member 5. .. The space 23 communicates with the inner diameter side chamber 20, and the space 24 communicates with the outer diameter side chamber 21.

回転密封環6は、Oリング51によって背面60側の密封状態が維持されたまま突状部40に至る軸方向への移動が許容されており、回転密封環6が移動し突状部40の傾斜面41に当接した際、回転密封環6の背面60側の空間23と空間24がOリング51により密封されている。これにより、外径側室21からの流体が空間24を通じて空間23に流入せず、回転密封環6が静止密封環7側に移動されるにつれ空間23の負圧が高まるようになっている。空間23に生じる負圧により、回転密封環6には回転環保持部材5側への力が作用することから、摺動面F1と摺動面F2とを離間させやすいようになっている。 The rotary sealing ring 6 is allowed to move in the axial direction to the projecting portion 40 while the sealed state on the back surface 60 side is maintained by the O-ring 51, and the rotary sealing ring 6 moves to the projecting portion 40. When abutting on the inclined surface 41, the space 23 and the space 24 on the back surface 60 side of the rotary sealing ring 6 are sealed by the O-ring 51. As a result, the fluid from the outer diameter side chamber 21 does not flow into the space 23 through the space 24, and the negative pressure of the space 23 increases as the rotary sealing ring 6 is moved to the static sealing ring 7 side. Due to the negative pressure generated in the space 23, a force acts on the rotary sealing ring 6 toward the rotary ring holding member 5, so that the sliding surface F1 and the sliding surface F2 can be easily separated from each other.

図4(b)の状態から、更に静止環ユニットUを機外側に移動させると、突状部40による規制力が摺動面F1と摺動面F2との間の吸着力を上回り、摺動面F1,F2同士の吸着状態が解除され、図4(c)に示されるように摺動面F1とF2とが離間された状態となる。 When the stationary ring unit U is further moved to the outside of the machine from the state shown in FIG. 4 (b), the regulatory force of the protruding portion 40 exceeds the suction force between the sliding surface F1 and the sliding surface F2, and the sliding surface F2 slides. The suction state between the surfaces F1 and F2 is released, and the sliding surfaces F1 and F2 are separated from each other as shown in FIG. 4C.

次に、実施例2に係るメカニカルシールにつき、図5を参照して説明する。尚、前記実施例1に示される構成部分と同一構成部分については同一符号を付して重複する説明を省略する。 Next, the mechanical seal according to the second embodiment will be described with reference to FIG. The same components as those shown in the first embodiment are designated by the same reference numerals, and duplicate description will be omitted.

図5に示されるように実施例2に関わるメカニカルシール11は、実施例1におけるスリーブ4の形状を変更し、機内側の周面4Aに環状の凹溝46が形成され、該凹溝46と内径側室20とが連通孔45によって連通されたスリーブ44を用いている。 As shown in FIG. 5, in the mechanical seal 11 according to the second embodiment, the shape of the sleeve 4 in the first embodiment is changed, and an annular concave groove 46 is formed on the peripheral surface 4A inside the machine, and the concave groove 46 and the groove 46 are formed. A sleeve 44 is used in which the inner diameter side chamber 20 is communicated with the communication hole 45.

凹溝46は外径側から内径側に向けて断面略台形を成しており、機外側側面47、底面48、機内側側面49と、により区画されて構成されている。機外側側面47と機内側側面49とは、底面48から外径側に向けて拡がるように傾斜しており、凹溝46の容積が大きくなるように形成されている。 The concave groove 46 has a substantially trapezoidal cross section from the outer diameter side to the inner diameter side, and is partitioned by a machine outer side surface 47, a bottom surface 48, and a machine inner side surface 49. The machine outer side surface 47 and the machine inner side surface 49 are inclined so as to expand from the bottom surface 48 toward the outer diameter side, and are formed so that the volume of the concave groove 46 becomes large.

凹溝46と内径側室20とは、連通孔45により連通されている。詳しくは、連通孔45は、機外側側面47からスリーブ44の内径側かつ機外側に向けて傾斜されて穿設された穴45aと、傾斜面43からスリーブ44の内径側かつ機内側に向けて傾斜されて穿設された穴45bとが連結されて構成されている。 The concave groove 46 and the inner diameter side chamber 20 are communicated with each other by a communication hole 45. Specifically, the communication hole 45 is formed by a hole 45a formed by being inclined from the outer side surface 47 of the machine to the inner diameter side of the sleeve 44 and toward the outside of the machine, and from the inclined surface 43 toward the inner diameter side of the sleeve 44 and toward the inside of the machine. It is configured by connecting with a hole 45b which is inclined and drilled.

連通孔45は、傾斜して穿設された穴45aと穴45bとにより軸方向断面視略V字形に形成されていることから、連通孔45の容積は大きい。 Since the communication hole 45 is formed in a substantially V-shape in the axial cross section by the inclined hole 45a and the hole 45b, the volume of the communication hole 45 is large.

図6(a)は、メカニカルシール11を分解し点検するために、被密封流体Lをドレン口から排出させた状態を示している。静止側要素Sの静止環ユニットUを機外側へ向けて移動させた場合、摺動面F1,F2同士が吸着した状態で、静止環ユニットUの移動に伴い回転密封環6が静止密封環7に追従する。 FIG. 6A shows a state in which the sealed fluid L is discharged from the drain port in order to disassemble and inspect the mechanical seal 11. When the stationary ring unit U of the stationary side element S is moved toward the outside of the machine, the rotary sealing ring 6 becomes the stationary sealing ring 7 as the stationary ring unit U moves while the sliding surfaces F1 and F2 are attracted to each other. Follow.

図6(b)に示されるように、摺動面F1,F2同士が吸着した状態で、静止環ユニットUの静止密封環7が機外側に移動されると、回転密封環6が静止密封環7に追従し機外側へ移動する。 As shown in FIG. 6B, when the static sealing ring 7 of the stationary ring unit U is moved to the outside of the machine while the sliding surfaces F1 and F2 are attracted to each other, the rotary sealing ring 6 becomes the stationary sealing ring. Follow 7 and move to the outside of the machine.

このように、静止環ユニットUを機外側に向けて移動させると、凹溝46内の大気が連通孔45を通じて内径側室20側へ移動し、内径側室20に生じる負圧が軽減されるようになっている。 In this way, when the stationary ring unit U is moved toward the outside of the machine, the atmosphere in the concave groove 46 moves to the inner diameter side chamber 20 side through the communication hole 45, and the negative pressure generated in the inner diameter side chamber 20 is reduced. It has become.

図6(b)に示される回転密封環6がスリーブ4の突状部40に移動を規制されている状態から、更に静止環ユニットUを機外側に移動させると、内径側室20に空間25が連通されていることから、内径側室20に負圧が生じにくく、スムーズに摺動面F1,F2同士の吸着状態が解除され、図6(c)に示される摺動面F1とF2とが離間された状態となる。 When the stationary ring unit U is further moved to the outside of the machine from the state where the rotary sealing ring 6 shown in FIG. 6B is restricted from moving by the protruding portion 40 of the sleeve 4, a space 25 is created in the inner diameter side chamber 20. Since they are communicated with each other, negative pressure is unlikely to occur in the inner diameter side chamber 20, the suction state between the sliding surfaces F1 and F2 is smoothly released, and the sliding surfaces F1 and F2 shown in FIG. 6C are separated from each other. It will be in the state of being.

また、静止環ユニットUの点検後、再度実施例2の静止環ユニットUを組み付ける際においても、スリーブ44に形成された凹溝46と連通孔45に大気の移動が許容されるようになっていることから、ハウジングとスリーブ44との間に形成されている内径側室20内の空気が圧縮されて組み付けを阻害することが防止されている。 Further, even when the stationary ring unit U of the second embodiment is reassembled after the inspection of the stationary ring unit U, the movement of the atmosphere is allowed in the concave groove 46 and the communication hole 45 formed in the sleeve 44. Therefore, it is prevented that the air in the inner diameter side chamber 20 formed between the housing and the sleeve 44 is compressed to hinder the assembly.

次に、実施例3に係るメカニカルシールにつき、図7を参照して説明する。尚、前記実施例1および2に示される構成部分と同一構成部分については同一符号を付して重複する説明を省略する。 Next, the mechanical seal according to the third embodiment will be described with reference to FIG. 7. The same components as those shown in Examples 1 and 2 are designated by the same reference numerals, and duplicate description will be omitted.

図7に示されるように実施例3に関わるメカニカルシール111は、実施例2におけるスリーブ44の形状を変更し、軸方向における突状部40と凹溝46の間に、環状の浅溝91が形成され、該浅溝91内に弾性部材としてのOリング90が配設されるスリーブ144となっている。 As shown in FIG. 7, in the mechanical seal 111 according to the third embodiment, the shape of the sleeve 44 in the second embodiment is changed, and an annular shallow groove 91 is formed between the convex portion 40 and the concave groove 46 in the axial direction. The sleeve 144 is formed and an O-ring 90 as an elastic member is arranged in the shallow groove 91.

浅溝91内にOリング90が配設されていることで、メカニカルシール111の分解時において、回転密封環6が突状部40に当接するまで軸方向へ移動された際に、回転密封環6の内周面64がスリーブ144の外周面144Aに直接接触することを防ぐようになっており、緩衝機能を奏するようになっている。 Since the O-ring 90 is arranged in the shallow groove 91, when the mechanical seal 111 is disassembled, the rotary seal ring 6 is moved in the axial direction until it abuts on the protruding portion 40. The inner peripheral surface 64 of No. 6 is prevented from directly contacting the outer peripheral surface 144A of the sleeve 144, and has a cushioning function.

また、Oリング90は、内径側室20と凹溝46の間に配設されていることから、Oリング90が内径側室20と凹溝46の気体の連通を妨げることがない。 Further, since the O-ring 90 is arranged between the inner diameter side chamber 20 and the concave groove 46, the O-ring 90 does not interfere with the communication between the inner diameter side chamber 20 and the concave groove 46.

次に、実施例4に係るメカニカルシールにつき、図8を参照して説明する。尚、前記実施例1~3に示される構成部分と同一構成部分については同一符号を付して重複する説明を省略する。 Next, the mechanical seal according to the fourth embodiment will be described with reference to FIG. The same components as those shown in the first to third embodiments are designated by the same reference numerals, and duplicate description will be omitted.

図8に示されるように実施例3に関わるメカニカルシール211は、実施例1におけるスリーブ4の形状を変更し、突状部の機外側端部が鉛直方向に垂下する機外側側面140Aを備える突状部140となっている。また、突状部140よりも機内側に、軸方向断面視略凹状の環状の浅溝146が形成されている。 As shown in FIG. 8, the mechanical seal 211 according to the third embodiment has a protrusion having a machine outer side surface 140A in which the shape of the sleeve 4 in the first embodiment is changed and the machine outer end portion of the protrusion portion hangs down in the vertical direction. It is a shape portion 140. Further, an annular shallow groove 146 having a substantially concave shape in the axial cross section is formed inside the machine from the protruding portion 140.

また、機外側側面140Aから軸方向機内側へ向けて直線的に穴145aが穿設され、更に浅溝146の底面から鉛直方向に穴145bが穿設されていることで、穴145aと穴145bが接続され、連通孔145が形成されたスリーブ244となっている。 Further, the hole 145a is formed linearly from the outer side surface 140A of the machine toward the inside of the machine in the axial direction, and the hole 145b is formed vertically from the bottom surface of the shallow groove 146, whereby the hole 145a and the hole 145b are formed. Is connected to form a sleeve 244 in which a communication hole 145 is formed.

連通孔145により、浅溝146と内径側室20とが連通されており、連通孔145と浅溝146とによって内径側室20内の負圧を軽減させるようになっている。 The shallow groove 146 and the inner diameter side chamber 20 are communicated with each other by the communication hole 145, and the negative pressure in the inner diameter side chamber 20 is reduced by the communication hole 145 and the shallow groove 146.

以上、本発明の実施例1~4を図面とともに説明してきたが、具体的な構成はこれら実施例に限られるものではなく、本発明の要旨を逸脱しない範囲における変更や追加があっても本発明に含まれる。 Although Examples 1 to 4 of the present invention have been described above with reference to the drawings, the specific configuration is not limited to these Examples, and the present invention may be changed or added without departing from the gist of the present invention. Included in the invention.

例えば、前記実施例1~4では、回転密封環6が回転環保持部材5に保持されていたがこれに限られず、例えば、回転環保持部材5の構成を省略し、スリーブが直接回転密封環を保持するメカニカルシールであってもよい。 For example, in the first to fourth embodiments, the rotary sealing ring 6 is held by the rotary ring holding member 5, but the present invention is not limited to this. It may be a mechanical seal that holds the.

また、前記実施例1~4では、インサイド型のメカニカルシールを例に説明したがこれに限られず、アウトサイド型のメカニカルシールとしてもよい。 Further, in Examples 1 to 4, the inside type mechanical seal has been described as an example, but the present invention is not limited to this, and an outside type mechanical seal may be used.

また、前記実施例1~4では、機外側に静止密封環が配設されているメカニカルシールを例に説明したが、これに限られず、機内側に静止密封環が配設されているメカニカルシールであってもよい。 Further, in the first to fourth embodiments, the mechanical seal in which the static sealing ring is arranged on the outside of the machine has been described as an example, but the present invention is not limited to this, and the mechanical seal in which the static sealing ring is arranged on the inside of the machine is not limited to this. May be.

また、前記実施例1~4では、突状部40が回転密封環6の内周面64の傾斜面66に対して当接することで軸方向への移動が規制されることを例に説明したがこれに限られず、突状部40が回転密封環6の側面61に当接することで軸方向への移動が規制されるものであってもよい。 Further, in the first to fourth embodiments, it has been described as an example that the protruding portion 40 is in contact with the inclined surface 66 of the inner peripheral surface 64 of the rotary sealing ring 6 to restrict the movement in the axial direction. However, the present invention is not limited to this, and the protruding portion 40 may be restricted from moving in the axial direction by abutting on the side surface 61 of the rotary sealing ring 6.

また、前記実施例1~4では、突状部40の傾斜面41に回転密封環6の内周面64の傾斜面66が当接して軸方向への移動が規制されるもの、すなわち傾斜面同士が当接するものを例に説明したがこれに限られず、回転密封環6の軸方向への移動を規制できればよく、突状部40のみ傾斜面を備えることとしてもよいし、回転密封環6の内周面64のみが傾斜面を備えることとしてもよいし、突状部40と回転密封環6との双方ともに傾斜面を備えず径方向面同士が当接するものであってもよい。 Further, in the first to fourth embodiments, the inclined surface 66 of the inner peripheral surface 64 of the rotary sealing ring 6 abuts on the inclined surface 41 of the protruding portion 40 to restrict the movement in the axial direction, that is, the inclined surface. Although the case where they are in contact with each other has been described as an example, the present invention is not limited to this, as long as the movement of the rotary sealing ring 6 in the axial direction can be restricted, only the protruding portion 40 may be provided with an inclined surface, or the rotary sealing ring 6 may be provided. Only the inner peripheral surface 64 of the above may be provided with an inclined surface, or both the projecting portion 40 and the rotary sealing ring 6 may not have an inclined surface and the radial surfaces may come into contact with each other.

1 メカニカルシール
2 回転軸
3 ハウジング
4 スリーブ
5 回転環保持部材(保持部材)
6 回転密封環
7 静止密封環
11 メカニカルシール
14 カラー
15 コイルスプリング
16 コンプレッションリング
20 内径側室
21 外径側室
34 外周面
40 突状部
41 傾斜面
43 傾斜面
44 スリーブ
45 連通孔
46 凹溝
51 Oリング(2次シール)
70 静止環保持部材
90 Oリング(弾性部材)
111 メカニカルシール
140 突状部
144 スリーブ
145 連通孔
146 浅溝
211 メカニカルシール
244 スリーブ
F1 摺動面
F2 摺動面
L 被密封流体
R 回転側要素
S 静止側要素
U 静止環ユニット
1 Mechanical seal 2 Rotating shaft 3 Housing 4 Sleeve 5 Rotating ring holding member (holding member)
6 Rotating sealed ring 7 Static sealing ring 11 Mechanical seal 14 Color 15 Coil spring 16 Compression ring 20 Inner diameter side chamber 21 Outer diameter side chamber 34 Outer surface 40 Protruding part 41 Inclined surface 43 Inclined surface 44 Sleeve 45 Communication hole 46 Concave groove 51 O-ring (Secondary seal)
70 Resting ring holding member 90 O-ring (elastic member)
111 Mechanical seal 140 Protruding part 144 Sleeve 145 Communication hole 146 Shallow groove 211 Mechanical seal 244 Sleeve F1 Sliding surface F2 Sliding surface L Sealed fluid R Rotating side element S Resting side element U Resting ring unit

Claims (6)

回転機器の回転軸に取り付けられるスリーブとともに回転する回転密封環と、ハウジングに保持される静止密封環と、を有するメカニカルシールであって、
前記スリーブには、外径方向に突出する突状部が形成されており、
前記回転密封環は、前記突状部に当接することで、前記軸方向への移動が規制されるメカニカルシール。
A mechanical seal having a rotary sealing ring that rotates with a sleeve attached to the rotating shaft of a rotating device and a static sealing ring that is held in a housing.
The sleeve is formed with a protruding portion that protrudes in the outer diameter direction.
The rotary sealing ring is a mechanical seal whose axial movement is restricted by abutting on the protruding portion.
前記回転密封環は前記静止密封環へ向けて傾斜する傾斜面を備えており、前記突状部は前記傾斜面に傾斜状態で当接する傾斜面を備えている請求項1に記載のメカニカルシール。 The mechanical seal according to claim 1, wherein the rotary sealing ring has an inclined surface inclined toward the stationary sealing ring, and the protruding portion has an inclined surface that abuts on the inclined surface in an inclined state. 前記回転密封環は、背面側から2次シールを介して保持部材に保持されており、
前記回転密封環は、前記2次シールにより背面側の密封状態が維持されたまま前記突状部に至る軸方向への移動が許容されている請求項1または2に記載のメカニカルシール。
The rotary sealing ring is held by a holding member from the back surface side via a secondary seal.
The mechanical seal according to claim 1 or 2, wherein the rotary sealing ring is allowed to move in the axial direction to the protruding portion while the sealed state on the back side is maintained by the secondary sealing.
前記回転密封環の内周面と前記スリーブの外周面との間には弾性部材が介在されている請求項1ないし3のいずれかに記載のメカニカルシール。 The mechanical seal according to any one of claims 1 to 3, wherein an elastic member is interposed between the inner peripheral surface of the rotary sealing ring and the outer peripheral surface of the sleeve. 前記スリーブには、内径側に凹む環状の凹溝が形成されており、
前記静止密封環及び前記スリーブの間の内径側室と前記凹溝とを連通する連通孔が形成されている請求項1ないし4のいずれかに記載のメカニカルシール。
The sleeve is formed with an annular groove that is recessed on the inner diameter side.
The mechanical seal according to any one of claims 1 to 4, wherein a communication hole for communicating the inner diameter side chamber between the static sealing ring and the sleeve and the concave groove is formed.
前記弾性部材は、前記内径側室と前記凹溝の間に配設されている請求項5に記載のメカニカルシール。 The mechanical seal according to claim 5, wherein the elastic member is arranged between the inner diameter side chamber and the concave groove.
JP2020111998A 2020-06-29 2020-06-29 mechanical seal Active JP7419176B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020111998A JP7419176B2 (en) 2020-06-29 2020-06-29 mechanical seal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020111998A JP7419176B2 (en) 2020-06-29 2020-06-29 mechanical seal

Publications (2)

Publication Number Publication Date
JP2022011102A true JP2022011102A (en) 2022-01-17
JP7419176B2 JP7419176B2 (en) 2024-01-22

Family

ID=80147964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020111998A Active JP7419176B2 (en) 2020-06-29 2020-06-29 mechanical seal

Country Status (1)

Country Link
JP (1) JP7419176B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3792205B2 (en) 2003-03-03 2006-07-05 日本ピラー工業株式会社 mechanical seal
JP2017096373A (en) 2015-11-20 2017-06-01 日本ピラー工業株式会社 End surface contact type mechanical seal

Also Published As

Publication number Publication date
JP7419176B2 (en) 2024-01-22

Similar Documents

Publication Publication Date Title
US8517388B2 (en) Bellows type mechanical seal
CN106605089B (en) Mechanical sealing member
US10883606B2 (en) Mechanical seal
US3588126A (en) Unit-type packing seal for shaft
TWI725228B (en) Seal mechanism
CN111094814B (en) Mechanical sealing element
KR20190117391A (en) Sealing mechanism and apparatus having the sealing mechanism
JP2022011102A (en) mechanical seal
CN108691918B (en) Clutch structure
US5192083A (en) Single ring sector seal
JP4797090B2 (en) Double mechanical seal
US2707135A (en) Cartridge seal
US20220128152A1 (en) Mechanical seal arrangement suitable for pressure reversal
JP2001317637A (en) Shaft seal mechanism for compressor by mechanical seal
US3198530A (en) Outside balanced mechanical seal
KR102584759B1 (en) Apparatus having seal mechanism
JPH0629565Y2 (en) mechanical seal
JP2022119525A (en) mechanical seal
CN111699335B (en) Mechanical seal
CN112513504A (en) Sealing device and sealing structure
US20150130141A1 (en) Component seal
JP2000097349A (en) Bellows type mechanical seal
JP6128600B2 (en) Mechanical seal device
JP2005201313A (en) Valve stem seal
JP2022039205A (en) Plug for closing pipeline port of hydraulic device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231010

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231211

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20231211

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240110

R150 Certificate of patent or registration of utility model

Ref document number: 7419176

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150