JP2022010534A - Battery module - Google Patents

Battery module Download PDF

Info

Publication number
JP2022010534A
JP2022010534A JP2020111176A JP2020111176A JP2022010534A JP 2022010534 A JP2022010534 A JP 2022010534A JP 2020111176 A JP2020111176 A JP 2020111176A JP 2020111176 A JP2020111176 A JP 2020111176A JP 2022010534 A JP2022010534 A JP 2022010534A
Authority
JP
Japan
Prior art keywords
wedge
load
pair
cell
battery module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020111176A
Other languages
Japanese (ja)
Inventor
健太 渡邉
Kenta Watanabe
太朗 松下
Taro Matsushita
忠宏 近藤
Tadahiro Kondo
翔太朗 石川
Shotaro Ishikawa
甲一朗 岸
Koichiro Kishi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2020111176A priority Critical patent/JP2022010534A/en
Publication of JP2022010534A publication Critical patent/JP2022010534A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Mounting, Suspending (AREA)

Abstract

To provide a battery module capable of providing a desired large restraint load.SOLUTION: The battery module includes a restraint member 9, which connects a pair of end plates 7, 8 and restrains single batteries 10 in a stacking direction, a pair of wedge members 30 disposed between the single batteries 10 and applying a restraint load, and a strain member 60, which is disposed between the pair of wedge members 30 and applies a restraint load by transverse strain caused by compressive load.SELECTED DRAWING: Figure 7

Description

本開示は、単電池を積層した電池モジュールに関する。 The present disclosure relates to a battery module in which a cell is laminated.

ニッケル水素電池やリチウムイオン電池等の二次電池においては、充放電や温度変化等によって、電極体内の電極板に膨張・収縮が生じる。電極板間の距離が増大すると、正極活物質層および負極活物質層の電子伝導性が低下するため、内部抵抗が上昇し、電池性能の低下が生じる。このため、電極板間の距離が増大しないよう、単電池(電池セル)を複数積層した電池モジュール(組電池)では、電池モジュールを構成する単電池に圧力(拘束荷重)を付与しておくことが望ましい。 In secondary batteries such as nickel-metal hydride batteries and lithium-ion batteries, the electrode plate inside the electrode expands and contracts due to charge / discharge and temperature changes. When the distance between the electrode plates increases, the electron conductivity of the positive electrode active material layer and the negative electrode active material layer decreases, so that the internal resistance increases and the battery performance deteriorates. For this reason, in a battery module (assembled battery) in which a plurality of cells (battery cells) are stacked so that the distance between the electrode plates does not increase, pressure (constrained load) should be applied to the cells constituting the battery module. Is desirable.

たとえば、特許文献1では、複数の単電池を積層した組電池を製造ロボットのアームで保持し、積層方向に圧縮するよう予圧した状態で筐体に挿入し、予圧を解除することにより、組電池が筐体の内壁間に圧縮された状態で保持している。 For example, in Patent Document 1, an assembled battery in which a plurality of cells are laminated is held by an arm of a manufacturing robot, inserted into a housing in a state of being preloaded so as to be compressed in the laminated direction, and the preloaded battery is released. Holds in a compressed state between the inner walls of the housing.

特開2019-145396号公報Japanese Unexamined Patent Publication No. 2019-145396

この構成では、筐体や単電池の寸法の精度により、組電池(電池モジュール)の拘束荷重が大きくばらつく可能性がある。また、電池モジュールを積層方向に圧縮するよう予圧した状態から、予圧を解除することにより拘束荷重を得る構成のため、電池モジュールに大きな拘束荷重をかけることが難しい。 In this configuration, the constraining load of the assembled battery (battery module) may vary greatly depending on the accuracy of the dimensions of the housing and the cell. Further, since the constraining load is obtained by releasing the preload from the state in which the battery module is preloaded so as to be compressed in the stacking direction, it is difficult to apply a large constraining load to the battery module.

本開示は、所望の大きな拘束荷重を付与することが可能な電池モジュールを提供することを目的とする。 It is an object of the present disclosure to provide a battery module capable of applying a desired large restraining load.

本開示の電池モジュールは、一対のエンドプレートの間に複数の単電池を積層した電池モジュールであり、一対のエンドプレートを連結し、単電池を積層方向に拘束する拘束部材を備える。電池モジュールは、単電池の間に配置され、積層方向と直交する方向に荷重が付与されることにより、積層方向に拘束荷重を付与する、一対のくさび部材と、一対のくさび部材の間に配置され、くさび部材に積層方向と直交する方向に荷重が付与されたときに圧縮荷重を受け、圧縮荷重による横ひずみによって積層方向に拘束荷重を付与する、ひずみ部材と、を備える。 The battery module of the present disclosure is a battery module in which a plurality of cell cells are laminated between a pair of end plates, and includes a restraining member that connects the pair of end plates and restrains the cell cells in the stacking direction. The battery module is arranged between a pair of wedge members and a pair of wedge members that are arranged between the cells and apply a restraining load in the stacking direction by applying a load in a direction orthogonal to the stacking direction. A strain member is provided, which receives a compressive load when a load is applied to the wedge member in a direction orthogonal to the stacking direction and applies a restraining load in the stacking direction by lateral strain due to the compressive load.

この構成によれば、一対のエンドプレート間に積層された複数の単電池は、拘束部材によって拘束される。単電池の間に配置された一対のくさび部材に、積層方向と直交する方向に荷重が付与されることにより、くさび部材から積層方向に拘束荷重が付与される。一対のくさび部材の間に配置されたひずみ部材は、くさび部材に積層方向と直交する方向に荷重が付与されたとき、圧縮荷重を受け、この圧縮荷重による横ひずみによって積層方向に拘束荷重を付与する。一対のくさび部材およびひずみ部材によって拘束荷重を付与するので、大きな拘束荷重を得ることができる。拘束荷重の大きさは、くさび部材に付与する、積層方向と直交する方向の荷重の大きさによって、制御可能であり、所望の拘束荷重を付与することができる。 According to this configuration, the plurality of cells stacked between the pair of end plates are constrained by the restraining member. By applying a load to the pair of wedge members arranged between the cells in the direction orthogonal to the stacking direction, a restraining load is applied from the wedge members in the stacking direction. The strain member arranged between the pair of wedge members receives a compressive load when a load is applied to the wedge member in a direction orthogonal to the stacking direction, and a restraining load is applied in the stacking direction by the lateral strain due to the compressive load. do. Since the restraining load is applied by the pair of wedge members and the strain member, a large restraining load can be obtained. The magnitude of the restraint load can be controlled by the magnitude of the load applied to the wedge member in the direction orthogonal to the stacking direction, and a desired restraint load can be applied.

本開示によれば、所望の大きな拘束荷重を付与することが可能な電池モジュールを提供することを目的とする。 According to the present disclosure, it is an object of the present invention to provide a battery module capable of applying a desired large restraining load.

本実施の形態に係る電池モジュール1の斜視図である。It is a perspective view of the battery module 1 which concerns on this embodiment. 図1のA-A断面図であり、くさび部材30とくさび部材30の両側の単電池10を示した図である。FIG. 1 is a cross-sectional view taken along the line AA of FIG. 1, showing a wedge member 30 and cells 10 on both sides of the wedge member 30. くさび31の三面図である。It is a three-sided view of a wedge 31. くさび受け32の三面図である。It is a three-sided view of a wedge receiver 32. くさび部材30の組み付け方法を示す図である。It is a figure which shows the assembling method of the wedge member 30. くさび31とくさび受け32に加わる力の関係を示した図である。It is a figure which showed the relationship of the force applied to the wedge 31 and the wedge receiver 32. 拘束荷重を説明するための図であり、図2と同様な断面図である。It is a figure for demonstrating the restraint load, and is the same cross-sectional view as FIG. 変形例を説明する図であり、図5(C)に相当する図である。It is a figure explaining the modification, and is the figure corresponding to FIG. 5C.

以下、本開示の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰返さない。 Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings. The same or corresponding parts in the drawings are designated by the same reference numerals and the description thereof will not be repeated.

図1は、本実施の形態に係る電池モジュール1の斜視図である。図1に示すように、電池モジュール1は、一対のエンドプレート7、8と、拘束バンド9と、複数の単電池10と、複数のスペーサ20とを備える。複数の単電池10は、角型電池であり、その積層方向に沿って一列に複数個配置される。また、複数の単電池10は、厚さ方向の端面が隣接する単電池10の厚さ方向の端面と対向するように配置される。複数のスペーサ20は、複数の単電池10の間の各々に設けられる。 FIG. 1 is a perspective view of the battery module 1 according to the present embodiment. As shown in FIG. 1, the battery module 1 includes a pair of end plates 7 and 8, a restraint band 9, a plurality of cell cells 10, and a plurality of spacers 20. The plurality of cells 10 are square batteries, and a plurality of the cells 10 are arranged in a row along the stacking direction thereof. Further, the plurality of cell cells 10 are arranged so that the end faces in the thickness direction face the end faces in the thickness direction of the adjacent cell cells 10. The plurality of spacers 20 are provided in each of the plurality of cell cells 10.

単電池10は、一対のエンドプレート7、8の間に積層されており、エンドプレート7、8には、エンドプレート7、8間の距離が拡大することを抑制するように拘束バンド9が設けられる。 The cell 10 is laminated between the pair of end plates 7 and 8, and the end plates 7 and 8 are provided with a restraint band 9 so as to suppress an increase in the distance between the end plates 7 and 8. Be done.

拘束部材として機能する拘束バンド9は一対のエンドプレート7、8および複数の単電池10の周囲を囲んでおり、拘束バンド9によって一対のエンドプレート7、8が連結されることにより、エンドプレート7、8間の距離が拡大することが抑制される。拘束バンド9は、たとえば、継ぎ目のない環状の金属、あるいは、継ぎ目のない環状の炭素繊維強化プラスチック(CFRP(Carbon Fiber Reinforced Plastics))から構成されている。 The restraint band 9 that functions as a restraint member surrounds the pair of end plates 7 and 8 and the plurality of cell cells 10, and the end plate 7 is connected by the restraint band 9 to connect the pair of end plates 7 and 8. , The increase in the distance between 8 is suppressed. The restraint band 9 is made of, for example, a seamless annular metal or a seamless annular carbon fiber reinforced plastic (CFRP).

単電池10は、密閉型の角型二次電池であり、たとえば、リチウムイオン電池である。単電池10は、上面に開口部を有する直方形状の電池ケース11と、開口部を閉塞(封止)する蓋体13と、電池ケース11内に収容される扁平形状の電極体(図示せず)とを含む。蓋体13には、安全弁13jと、正極外部端子15aと、負極外部端子15bとが設けられる。蓋体13の全周が溶接によって電池ケース11の開口部に接合されている。これにより、単電池10内が密閉状態とされている。安全弁13jは、単電池10の内圧が上昇して開弁圧に達すると、安全弁13jが開裂することで単電池10の密閉状態を解放し、単電池10内のガスを電池外部に排出する。 The cell 10 is a sealed square secondary battery, for example, a lithium ion battery. The cell 10 includes a rectangular battery case 11 having an opening on the upper surface, a lid 13 that closes (seals) the opening, and a flat electrode body (not shown) housed in the battery case 11. ) And. The lid 13 is provided with a safety valve 13j, a positive electrode external terminal 15a, and a negative electrode external terminal 15b. The entire circumference of the lid 13 is joined to the opening of the battery case 11 by welding. As a result, the inside of the cell 10 is sealed. When the internal pressure of the cell 10 rises and the valve opening pressure is reached, the safety valve 13j opens the sealed state of the cell 10 by opening the safety valve 13j, and discharges the gas in the cell 10 to the outside of the battery.

電池モジュール1は、単電池10を直列接続したものであり、積層方向に隣り合う単電池10の正極外部端子15aと負極外部端子15bとが、バスバー3により電気的に接続されている。なお、電池モジュール1は単電池10を並列接続したものであってもよい。 The battery module 1 has the cell 10 connected in series, and the positive electrode external terminal 15a and the negative electrode external terminal 15b of the cell 10 adjacent to each other in the stacking direction are electrically connected by the bus bar 3. The battery module 1 may be a cell module 10 connected in parallel.

電池モジュール1において、単電池10の積層方向の中央部には、くさび部材30が配置されている。くさび部材30は、単電池10と単電池10の間に配置される。くさび部材30の両側には、単電池10と単電池10の間に、弾性体からなる側方部材40が配置されている。 In the battery module 1, a wedge member 30 is arranged at the center of the cell 10 in the stacking direction. The wedge member 30 is arranged between the cell 10 and the cell 10. On both sides of the wedge member 30, side members 40 made of an elastic body are arranged between the cell 10 and the cell 10.

図2は、図1のA-A断面図であり、くさび部材30とくさび部材30の両側の単電池10を示した図である。図2に示すように、くさび部材30は、単電池10と単電池10の間に、上下方向に間隔をおいて一対配置されている。くさび部材30と単電池10の間には金属プレート50が配置され、くさび部材30およびひずみ部材60による拘束荷重を、金属プレート50を介して単電池10に伝達される。 FIG. 2 is a cross-sectional view taken along the line AA of FIG. 1, showing a wedge member 30 and cells 10 on both sides of the wedge member 30. As shown in FIG. 2, a pair of wedge members 30 are arranged between the cell 10 and the cell 10 at intervals in the vertical direction. A metal plate 50 is arranged between the wedge member 30 and the cell 10, and the restraining load by the wedge member 30 and the strain member 60 is transmitted to the cell 10 via the metal plate 50.

くさび部材30は、くさび31と、一対のくさび受け32から構成される。図3は、くさび31の三面図である。図3に示すように、くさび31は、一対の傾斜面31bを備え、側面がほぼ台形形状に形成されているとともに、複数の樹脂注入孔31aが設けられている。図4は、くさび受け32の三面図である。図4に示すように、くさび受け32は、くさび31の傾斜面31bと当接する傾斜面32bと、金属プレート50と当接する垂直面32cを備える。また、くさび受け32の垂直面32cには、接着剤が注入される複数の接着溝32aが形成されている。 The wedge member 30 is composed of a wedge 31 and a pair of wedge receivers 32. FIG. 3 is a three-view view of the wedge 31. As shown in FIG. 3, the wedge 31 is provided with a pair of inclined surfaces 31b, the side surfaces thereof are formed in a substantially trapezoidal shape, and a plurality of resin injection holes 31a are provided. FIG. 4 is a three-view view of the wedge receiver 32. As shown in FIG. 4, the wedge receiver 32 includes an inclined surface 32b that abuts on the inclined surface 31b of the wedge 31, and a vertical surface 32c that abuts on the metal plate 50. Further, a plurality of adhesive grooves 32a into which the adhesive is injected are formed on the vertical surface 32c of the wedge receiver 32.

図5は、くさび部材30の組み付け方法を示す図である。金属プレート50に、くさび受け32の垂直面32cを接着力の小さい接着剤で接着することにより、金属プレート50の上下方向に一対のくさび受け32を仮固定する。くさび受け32が仮固定された一対の金属プレート50を、図5(A)に示すように、単電池10と単電池10の間に配置し、金属プレート50と単電池10を当接させる。拘束バンド9で一対のエンドプレート7、8を連結した後、図5(A)に示すように、治具100によってエンドプレート7、8の方向に予荷重をかける。 FIG. 5 is a diagram showing a method of assembling the wedge member 30. By adhering the vertical surface 32c of the wedge receiver 32 to the metal plate 50 with an adhesive having a small adhesive force, the pair of wedge receivers 32 are temporarily fixed in the vertical direction of the metal plate 50. As shown in FIG. 5A, a pair of metal plates 50 to which the wedge receiver 32 is temporarily fixed are arranged between the cell 10 and the cell 10, and the metal plate 50 and the cell 10 are brought into contact with each other. After connecting the pair of end plates 7 and 8 with the restraint band 9, a preload is applied in the direction of the end plates 7 and 8 by the jig 100 as shown in FIG. 5 (A).

続いて、図5(B)に示すように、上下方向から、左右方向一対のくさび受け32の間にくさび31を挿入し、所定の荷重で保持する。くさび31の傾斜面31b(図3参照)とくさび受け32の傾斜面32b(図4参照)が当接した状態で、上方のくさび31の樹脂注入孔31aから樹脂を注入する。これにより、上下のくさび部材30および左右の金属プレート50で囲まれた空間に樹脂が充填され、当該空間に存在した空気や余剰の樹脂は下方のくさび31の樹脂注入孔31aから排出される。注入する樹脂は、たとえば、ポリウレタン樹脂やポリエチレン樹脂等であってよく、硬化後のポアソン比の大きな樹脂が望ましい。注入された樹脂が硬化すると、ひずみ部材60が形成される。 Subsequently, as shown in FIG. 5B, the wedge 31 is inserted between the pair of wedge receivers 32 in the left-right direction from the vertical direction, and is held by a predetermined load. Resin is injected from the resin injection hole 31a of the upper wedge 31 in a state where the inclined surface 31b of the wedge 31 (see FIG. 3) and the inclined surface 32b of the wedge receiver 32 (see FIG. 4) are in contact with each other. As a result, the space surrounded by the upper and lower wedge members 30 and the left and right metal plates 50 is filled with resin, and the air and excess resin existing in the space are discharged from the resin injection hole 31a of the lower wedge 31. The resin to be injected may be, for example, a polyurethane resin, a polyethylene resin, or the like, and a resin having a large Poisson ratio after curing is desirable. When the injected resin is cured, the strain member 60 is formed.

樹脂が硬化し、ひずみ部材60が形成されると、図5(C)に示すように、くさび31に、上下方向から荷重を付与する(くさび31を打ち込む)。この際、接着力の小さい接着剤で仮固定されていた、金属プレート50とくさび受け32の仮固定が解除され、くさび受け32は金属プレート50と相対移動可能になる。図6は、くさび31とくさび受け32に加わる力の関係を示した図である。図6において、くさび受け32から金属プレート50(単電池10)に加わる拘束荷重の大きさをF0とする。金属プレート50とくさび受け32の間の摩擦係数をμとし、くさび31とくさび受け32の間の摩擦係数をμとすると、金属プレート50とくさび受け32間の摩擦力はμF0となる。くさび31の傾斜面31b(くさび受け32の傾斜面32b)と鉛直方向のなす角度をθとしたとき、くさび受け32の傾斜面32bに加わる垂直抗力はF0cosθとなり、この垂直抗力によるくさび31とくさび受け32の間の摩擦力はμF0cosθとなる。したがって、くさび31に加える荷重をF3とすると、(くさび受け31は一対であるので、)F3/2がμF0cosθより大きく、摩擦係数μと摩擦係数μが、「μ<μcosθ」の関係であれば、くさび31は、くさび受け32に拘束荷重を付与しつつ、くさび31およびくさび受け32(くさび部材30)が金属プレート50に対して相対移動し、ひずみ部材60を圧縮する。摩擦係数μと摩擦係数μは、「μ<μcosθ」の関係が成立するよう、たとえば、くさび部材30(くさび31およびくさび受け32)および金属プレート50の表面粗さを調整してもよい。 When the resin is cured and the strain member 60 is formed, a load is applied to the wedge 31 from the vertical direction (the wedge 31 is driven) as shown in FIG. 5 (C). At this time, the temporary fixing of the metal plate 50 and the wedge receiver 32, which had been temporarily fixed with an adhesive having a small adhesive force, is released, and the wedge receiver 32 becomes movable relative to the metal plate 50. FIG. 6 is a diagram showing the relationship between the force applied to the wedge 31 and the wedge receiver 32. In FIG. 6, the magnitude of the restraining load applied to the metal plate 50 (cell 10) from the wedge receiver 32 is defined as F0. Assuming that the coefficient of friction between the metal plate 50 and the wedge receiver 32 is μ 1 and the coefficient of friction between the wedge 31 and the wedge receiver 32 is μ 2 , the friction force between the metal plate 50 and the wedge receiver 32 is μ 1 F0. Become. When the angle between the inclined surface 31b of the wedge 31 (the inclined surface 32b of the wedge receiver 32) and the vertical direction is θ, the vertical drag applied to the inclined surface 32b of the wedge receiver 32 is F0cosθ, and the wedge 31 and the wedge due to this vertical resistance The frictional force between the receivers 32 is μ 2 F0 cos θ. Therefore, assuming that the load applied to the wedge 31 is F3, F3 / 2 is larger than μ 2 F0cos 2 θ (because the wedge receiver 31 is a pair), and the friction coefficient μ 1 and the friction coefficient μ 2 are “μ 1 <. In the relationship of "μ 2 cos 2 θ", the wedge 31 is strained by the wedge 31 and the wedge receiver 32 (wedge member 30) moving relative to the metal plate 50 while applying a restraining load to the wedge receiver 32. The member 60 is compressed. The friction coefficient μ 1 and the friction coefficient μ 2 are set to, for example, the surface roughness of the wedge member 30 (wedge 31 and wedge receiver 32) and the metal plate 50 so that the relationship of “μ 12 cos 2 θ” is established. You may adjust.

ひずみ部材60がくさび部材30によって圧縮されると、圧縮荷重によって、ひずみ部材60に横ひずみが生じる。この横ひずみにより、ひずみ部材60は、金属プレート50(単電池10)の拘束荷重を付与する。 When the strain member 60 is compressed by the wedge member 30, a lateral strain is generated in the strain member 60 due to the compressive load. Due to this lateral strain, the strain member 60 applies a restraining load to the metal plate 50 (cell 10).

くさび31を打ち込み、くさび部材30およびひずみ部材60により所望の拘束荷重を単電池10(金属プレート50)に付与すると、図5(D)に示すよう、くさび受け32の接着溝32aに接着剤を流し込み、くさび受け32と金属プレート50を固定し、くさび部材30の組み付けが完了する。なお、くさび31はくさび受け32との摩擦力で保持される。 When the wedge 31 is driven in and a desired restraining load is applied to the cell 10 (metal plate 50) by the wedge member 30 and the strain member 60, an adhesive is applied to the adhesive groove 32a of the wedge receiver 32 as shown in FIG. 5 (D). After pouring, the wedge receiver 32 and the metal plate 50 are fixed, and the assembly of the wedge member 30 is completed. The wedge 31 is held by the frictional force with the wedge receiver 32.

図7は、拘束荷重を説明するための図であり、図2と同様な断面図である。図7に示すように、一対のくさび部材30(くさび31、くさび受け32)により、単電池10の積層方向の拘束荷重F1が付与され、ひずみ部材60の横ひずみにより拘束荷重F2が付与される。単電池10(金属プレート50)に加わる、拘束荷重F1および拘束荷重F2の単位面積当たりの大きさがほぼ同じ値となるように、くさび31の傾斜面31bの角度、くさび受け32の大きさ(金属プレート50との接触面積)、ひずみ部材60の大きさ(体積)、および、ひずみ部材60のポアソン比が選定されることが望ましく、これにより、拘束面において、荷重の均一化が図れる。但し、この要件は、必須ではない。 FIG. 7 is a diagram for explaining a restraint load, and is a cross-sectional view similar to FIG. 2. As shown in FIG. 7, a pair of wedge members 30 (wedge 31, wedge receiver 32) applies a restraining load F1 in the stacking direction of the cell 10, and a lateral strain of the strain member 60 imparts a restraining load F2. .. The angle of the inclined surface 31b of the wedge 31 and the size of the wedge receiver 32 so that the sizes of the restraint load F1 and the restraint load F2 applied to the cell 10 (metal plate 50) per unit area are almost the same. It is desirable that the contact area with the metal plate 50), the size (volume) of the strain member 60, and the Poisson's ratio of the strain member 60 be selected, whereby the load can be made uniform on the restraint surface. However, this requirement is not mandatory.

本実施の形態では、一対のくさび部材30およびひずみ部材60によって、単電池10に拘束荷重を付与するので、大きな拘束荷重を得ることができる。拘束荷重の大きさは、くさび部材30に付与する、積層方向と直交する方向の荷重(F4)の大きさによって、制御可能であり、所望の拘束荷重を付与することができる。 In the present embodiment, since the restraint load is applied to the cell 10 by the pair of wedge members 30 and the strain member 60, a large restraint load can be obtained. The magnitude of the restraint load can be controlled by the magnitude of the load (F4) applied to the wedge member 30 in the direction orthogonal to the stacking direction, and a desired restraint load can be applied.

継ぎ目のある(たとえば、継ぎ目を溶接あるいは接着した)拘束バンドでは、継ぎ目の強度確保が難しいため、大きな拘束荷重を付与できないことがあったが、本実施の形態では、拘束バンド9に、継ぎ目のない環状の金属、あるいは、継ぎ目のない環状の炭素繊維強化プラスチックを用いているので、大きな拘束荷重を付与することができる。 In a restraint band having a seam (for example, the seam is welded or bonded), it is difficult to secure the strength of the seam, so that a large restraint load may not be applied. However, in the present embodiment, the restraint band 9 has a seam. Since a non-annular metal or a seamless annular carbon fiber reinforced plastic is used, a large restraining load can be applied.

なお、本実施の形態では、くさび部材30およびひずみ部材60を、単電池10の積層方向の中央部に配置したが、くさび部材30およびひずみ部材60を配置する場所は、中央部に限られない。また、くさび部材30およびひずみ部材60を、複数箇所に設けてもよい。 In the present embodiment, the wedge member 30 and the strain member 60 are arranged in the central portion in the stacking direction of the cell 10, but the place where the wedge member 30 and the strain member 60 are arranged is not limited to the central portion. .. Further, the wedge member 30 and the strain member 60 may be provided at a plurality of places.

(変形例)
上記の実施の形態では、摩擦係数μと摩擦係数μが「μ<μcosθ」の関係になるようにし、くさび31を打ち込むことにより、くさび31がくさび受け32に拘束荷重を付与しつつ、くさび31およびくさび受け32(くさび部材30)が金属プレート50に対して相対移動し、ひずみ部材60を圧縮していた。変形例では、摩擦係数μと摩擦係数μの関係が、「μ<μcosθ」を不成立であっても、くさび31を打ち込むことにより、くさび31がくさび受け32に拘束荷重を付与しつつ、くさび31およびくさび受け32(くさび部材30)が金属プレート50に対して相対移動し、ひずみ部材60を圧縮できるようにする。
(Modification example)
In the above embodiment, the friction coefficient μ 1 and the friction coefficient μ 2 are set to have a relationship of “μ 12 cos 2 θ”, and the wedge 31 is driven into the wedge holder 32 to restrain the load. The wedge 31 and the wedge receiver 32 (wedge member 30) moved relative to the metal plate 50 and compressed the strain member 60. In the modified example, even if the relationship between the friction coefficient μ 1 and the friction coefficient μ 2 does not hold “μ 12 cos 2 θ”, the wedge 31 is constrained to the wedge receiver 32 by driving the wedge 31. The wedge 31 and the wedge receiver 32 (wedge member 30) move relative to the metal plate 50 so that the strain member 60 can be compressed.

図8は、変形例を説明する図であり、図5(C)に相当する図である。図8において、110は、くさび受け32にくさび31打ち込み方向への荷重を加える治具である。くさび31に上下方向から荷重を加える(くさび31を打ち込む)と同時に、治具110によって、くさび受け32に荷重を加える。くさび31に加える荷重およびくさび受け32に加える荷重の大きさを調整することにより、くさび31に加えた荷重で、くさび受け32に拘束荷重を付与しつつひずみ部材60を圧縮し、くさび受け32に加えた荷重によりひずみ部材60を圧縮する。この構成により、摩擦係数μと摩擦係数μの関係が、「μ<μcosθ」を不成立であっても、くさび部材30(くさび31、くさび受け32)によって、ひずみ部材60に圧縮荷重を付与し、ひずみ部材60の横ひずみにより、金属プレート50(単電池10)に拘束荷重を付与することができる。 FIG. 8 is a diagram illustrating a modified example, and is a diagram corresponding to FIG. 5 (C). In FIG. 8, 110 is a jig that applies a load to the wedge receiver 32 in the direction in which the wedge 31 is driven. At the same time as applying a load to the wedge 31 from above and below (driving the wedge 31), a load is applied to the wedge receiver 32 by the jig 110. By adjusting the magnitude of the load applied to the wedge 31 and the load applied to the wedge receiver 32, the strain member 60 is compressed by the load applied to the wedge 31 while applying a restraining load to the wedge receiver 32, and the strain member 60 is compressed into the wedge receiver 32. The strain member 60 is compressed by the applied load. With this configuration, even if the relationship between the friction coefficient μ 1 and the friction coefficient μ 2 does not hold “μ 12 cos 2 θ”, the strain member 60 is provided by the wedge member 30 (wedge 31, wedge receiver 32). A compressive load can be applied to the metal plate 50 (cell 10) due to the lateral strain of the strain member 60.

本開示における実施態様を例示すると、次のような態様を例示できる。 By exemplifying the embodiments in the present disclosure, the following embodiments can be exemplified.

1)一対のエンドプレート(7、8)の間に複数の単電池(10)を積層した電池モジュール(1)であって、一対のエンドプレート(7、8)を連結し、単電池(10)を積層方向に拘束する拘束部材(9)と、単電池(10)の間に配置され、積層方向と直交する方向に荷重が付与されることにより、積層方向に拘束荷重を付与する、一対のくさび部材(30)と、一対のくさび部材(30)の間に配置され、くさび部材(30)に荷重が付与されたときに圧縮荷重を受け、圧縮荷重による横ひずみによって積層方向に拘束荷重を付与する、ひずみ部材(60)と、を備えた電池モジュール。 1) A battery module (1) in which a plurality of cell cells (10) are laminated between a pair of end plates (7, 8), and the pair of end plates (7, 8) are connected to the cell cell (10). ) Is placed between the restraining member (9) that restrains the stacking direction and the cell (10), and the load is applied in the direction orthogonal to the stacking direction to apply the restraining load in the stacking direction. It is placed between the wedge member (30) and the pair of wedge members (30), receives a compressive load when a load is applied to the wedge member (30), and is constrained in the stacking direction due to lateral strain due to the compressive load. A battery module comprising a strain member (60), which imparts.

2)1において、くさび部材(30)は、一対のくさび受け(32)とくさび受け(32)の間に配置されたくさび(31)から構成され、くさび(31)とくさび受け(32)により、ひずみ部材(60)に圧縮荷重を付与する。 2) In 1, the wedge member (30) is composed of a pair of wedge receivers (32) and a wedge (31) arranged between the wedge receivers (32), and is formed by the wedge (31) and the wedge receiver (32). , A compressive load is applied to the strain member (60).

3)2において、くさび受け(32)はプレート(50)に当接しており、プレート(50)を介して、単電池(10)の拘束荷重を付与する。 3) In 2, the wedge receiver (32) is in contact with the plate (50), and a restraining load of the cell (10) is applied via the plate (50).

4)3において、くさび(31)に樹脂注入孔(31a)が形成されており、樹脂注入孔(31a)から注入された樹脂が、一対のくさび部材(30)および一対のプレート(50)の間に形成された空間に充填され、樹脂が硬化することによりひずみ部材(60)が形成されている。 4) In 3, a resin injection hole (31a) is formed in the wedge (31), and the resin injected from the resin injection hole (31a) is formed in the pair of wedge members (30) and the pair of plates (50). The strain member (60) is formed by filling the space formed between them and curing the resin.

この構成によれば、ひずみ部材(60)が、一対のくさび部材(30)および一対のプレート(50)の間に形成された空間を満たすので、ひずみ部材(60)に圧縮荷重により発生する横ひずみを、拘束荷重として、効率的に単電池(10)(プレート(50))に付与できる。 According to this configuration, since the strain member (60) fills the space formed between the pair of wedge members (30) and the pair of plates (50), the lateral force generated by the compressive load on the strain member (60). The strain can be efficiently applied to the cell (10) (plate (50)) as a restraining load.

5)4において、樹脂が硬化した後、くさび(31)を打ち込むことにより、くさび受け(32)に拘束荷重を付与しつつ、くさび部材(30)(くさび(31)およびくさび受け(32))がプレート50に対して相対移動して、ひずみ部材60が圧縮荷重を受けることにより横ひずみが生じ、拘束荷重を付与する。 5) In 4, the wedge member (30) (wedge (31) and wedge holder (32)) while applying a restraining load to the wedge receiver (32) by driving the wedge (31) after the resin is cured. Moves relative to the plate 50, and the strain member 60 receives a compressive load, which causes lateral strain and applies a restraining load.

6)5において、所望の拘束荷重を付与した後、くさび受け(32)とプレート(50)を接着し、固定する。 6) In step 5, after applying the desired restraining load, the wedge receiver (32) and the plate (50) are adhered and fixed.

今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施の形態の説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。 The embodiments disclosed this time should be considered to be exemplary and not restrictive in all respects. The scope of the present invention is shown by the scope of claims rather than the description of the embodiments described above, and is intended to include all modifications within the meaning and scope equivalent to the scope of claims.

1 電池モジュール、7 エンドプレート、8 エンドプレート、9 拘束バンド、10 単電池、20 スペーサ、30 くさび部材、31 くさび、31a 樹脂注入孔、31b 傾斜面、32 くさび受け、32a 接着溝、32b 傾斜面、32c 垂直面、40 側方部材、50 金属プレート、60 ひずみ部材。 1 Battery module, 7 end plate, 8 end plate, 9 restraint band, 10 cell, 20 spacer, 30 wedge member, 31 wedge, 31a resin injection hole, 31b inclined surface, 32 wedge receiving, 32a adhesive groove, 32b inclined surface , 32c vertical plane, 40 side members, 50 metal plates, 60 strain members.

Claims (1)

一対のエンドプレートの間に複数の単電池を積層した電池モジュールであって、
前記一対のエンドプレートを連結し、前記単電池を積層方向に拘束する拘束部材と、
前記単電池の間に配置され、前記積層方向と直交する方向に荷重が付与されることにより、前記積層方向に拘束荷重を付与する、一対のくさび部材と、
前記一対のくさび部材の間に配置され、前記くさび部材に前記荷重が付与されたときに圧縮荷重を受け、前記圧縮荷重による横ひずみによって前記積層方向に拘束荷重を付与する、ひずみ部材と、を備えた、電池モジュール。
A battery module in which multiple cells are stacked between a pair of end plates.
A restraining member that connects the pair of end plates and restrains the cell in the stacking direction.
A pair of wedge members arranged between the cells and applying a restraining load in the stacking direction by applying a load in a direction orthogonal to the stacking direction.
A strain member which is arranged between the pair of wedge members, receives a compressive load when the load is applied to the wedge member, and applies a restraining load in the stacking direction by lateral strain due to the compressive load. Equipped with a battery module.
JP2020111176A 2020-06-29 2020-06-29 Battery module Pending JP2022010534A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020111176A JP2022010534A (en) 2020-06-29 2020-06-29 Battery module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020111176A JP2022010534A (en) 2020-06-29 2020-06-29 Battery module

Publications (1)

Publication Number Publication Date
JP2022010534A true JP2022010534A (en) 2022-01-17

Family

ID=80147657

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020111176A Pending JP2022010534A (en) 2020-06-29 2020-06-29 Battery module

Country Status (1)

Country Link
JP (1) JP2022010534A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024158045A1 (en) * 2023-01-27 2024-08-02 ビークルエナジージャパン株式会社 Battery pack

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024158045A1 (en) * 2023-01-27 2024-08-02 ビークルエナジージャパン株式会社 Battery pack

Similar Documents

Publication Publication Date Title
US8033806B2 (en) Apparatus for manufacturing secondary battery
KR101492019B1 (en) Battery Module Having Venting Guiding Portion
US10938004B2 (en) Battery module with stack restraining member
JP5652316B2 (en) Power storage device
KR20200030967A (en) Battery module with improved insulation structure and Battery Pack comprising the battry module
CN108604655B (en) Belt for battery module, battery module including belt, and jig for compressing belt
JP2009004361A (en) Laminated battery
US20220209282A1 (en) Battery module, and battery pack and vehicle comprising same
JP2022010534A (en) Battery module
KR101400083B1 (en) Unit Module of Improved Safety by Polymer Resin Filling
EP3363058B1 (en) Electrode stack restraint
US20210296745A1 (en) Battery pack production method and battery pack
JP7059882B2 (en) Battery module
KR102389694B1 (en) Method For Battery Module Having Bead Formed at Frame Structure and Battery Module Using the Same
US20230198069A1 (en) Pouch-Shaped Battery Cell Including Foam Layer and Battery Module Including the Pouch-Shaped Battery Cell
KR101825007B1 (en) Pouch type secondary battery and method of fabricating the same
JP6948564B2 (en) Battery module
KR102164973B1 (en) Pouch-typed Secondary Battery Comprising Jelly-Roll Electrode Assembly
KR102267586B1 (en) Battery Module
KR102267587B1 (en) Battery Pack
JPWO2014141525A1 (en) Assembled battery
US20230081338A1 (en) Jig for evaluating buffer pad, and method of evaluating buffer pad using the same
KR20190093993A (en) Flexible battery and the method of manufacturing it
US11848463B2 (en) Power storage device
US20240266590A1 (en) Restraint structure for battery cell