JP2022007832A - Vibration control for rotary sphere frame for unmanned aircraft and shock absorbing device second version - Google Patents

Vibration control for rotary sphere frame for unmanned aircraft and shock absorbing device second version Download PDF

Info

Publication number
JP2022007832A
JP2022007832A JP2020124754A JP2020124754A JP2022007832A JP 2022007832 A JP2022007832 A JP 2022007832A JP 2020124754 A JP2020124754 A JP 2020124754A JP 2020124754 A JP2020124754 A JP 2020124754A JP 2022007832 A JP2022007832 A JP 2022007832A
Authority
JP
Japan
Prior art keywords
shock absorbing
vibration control
screw
frame
sphere frame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020124754A
Other languages
Japanese (ja)
Other versions
JP7295829B2 (en
Inventor
淳史 岩崎
Junji Iwasaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2020124754A priority Critical patent/JP7295829B2/en
Publication of JP2022007832A publication Critical patent/JP2022007832A/en
Application granted granted Critical
Publication of JP7295829B2 publication Critical patent/JP7295829B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/40Weight reduction

Landscapes

  • Vibration Dampers (AREA)

Abstract

To solve such the problem that there is no device that strikes a balance between vibration control and shock absorbing for existing unmanned aircrafts with a rotary sphere frame (except for device produced by this inventor).SOLUTION: There is provided a device that strikes a balance between vibration control and shock absorbing for an unmanned aircraft with a rotary sphere frame. Installing the vibration control and shock absorbing device to an unmanned aircraft with a rotary sphere frame can strikes a balance between vibration control and shock absorbing for an unmanned aircraft with a rotary sphere frame.SELECTED DRAWING: Figure 10

Description

この発明は、無人航空機および無人航空機の周りに設置する回転球体フレームの振動防止かつ衝撃緩衝装置に関する。 The present invention relates to an unmanned aerial vehicle and a vibration-preventing and shock-cushioning device for a rotating spherical frame installed around the unmanned aerial vehicle.

回転球体フレームは、ジャイロスコープを応用したジンバル構造を有する。このため、図1に示すように、内部の無人航空機を水平に保ちながら、回転球体フレームは全方向に回転する。これにより回転球体フレーム付き無人航空機は、対象物へ安全に接近または接着し、搭載カメラで各種インフラ点検を行うことができる。 The rotating sphere frame has a gimbal structure to which a gyroscope is applied. Therefore, as shown in FIG. 1, the rotating sphere frame rotates in all directions while keeping the internal unmanned aerial vehicle horizontal. This allows an unmanned aerial vehicle with a rotating sphere frame to safely approach or adhere to an object and perform various infrastructure inspections with the onboard camera.

本発明者兼特許出願人と同じ発明者兼特許出願人の特願2016-190318。なお本特許願は特願2016-190318の特許請求の範囲外を補完するものである。Japanese Patent Application No. 2016-190318 of the same inventor and patent applicant as the inventor and patent applicant. This patent application complements the scope of claims of Japanese Patent Application No. 2016-190318. 本発明者兼特許出願人の関係サイトPAUI「https://paui.jp/」Related site of the inventor and patent applicant PAUI "https://paui.jp/"

約6年前の本特許出願人製作の回転球体フレームのジンバル接続は、図2に示すように、ジンバルの穴にネジを通すだけで、穴とネジに隙間があるため、無人航空機および回転球体フレームは振動した。
そこで、約5年半前の本特許出願人製作の回転球体フレームのジンバル接続は、図3に示すように、固定ベアリングにネジを接着し、振動防止に成功した。
しかし、ベアリングにネジを接着するため、ジンバルに遊びがなく衝撃を緩衝できず、回転球体フレームが壁などに強く当たると回転球体フレームは一部破損した。
そこで、この発明は、無人航空機および回転球体フレームの振動防止と衝撃緩衝を両立して実現することを課題とする。
As shown in Fig. 2, the gimbal connection of the rotating sphere frame manufactured by the patent applicant about 6 years ago is an unmanned aerial vehicle and a rotating sphere because there is a gap between the hole and the screw just by passing the screw through the hole of the gimbal. The frame vibrated.
Therefore, the gimbal connection of the rotating sphere frame manufactured by the applicant for this patent about five and a half years ago succeeded in preventing vibration by adhering a screw to a fixed bearing as shown in FIG.
However, since the screws were adhered to the bearings, there was no play in the gimbal and the impact could not be cushioned, and when the rotating sphere frame hit a wall or the like strongly, the rotating sphere frame was partially damaged.
Therefore, it is an object of the present invention to realize both vibration prevention and shock cushioning of an unmanned aerial vehicle and a rotating sphere frame.

以上の課題を解決するために、第一発明は、図4の固定ベアリングにほぼ隙間のないネジを通すことで振動を防止し、かつ図5および図6に示すように、ネジがベアリングの軸方向(図5の左右)に動くことで衝撃を緩衝する装置である。 In order to solve the above problems, in the first invention, vibration is prevented by passing a screw having almost no gap through the fixed bearing of FIG. 4, and as shown in FIGS. 5 and 6, the screw is the shaft of the bearing. It is a device that cushions the impact by moving in the direction (left and right in FIG. 5).

また第二発明は、固定ベアリングと同様の機能を有する部位にほぼ隙間のないネジを通すことで振動を防止し、かつ図8および図9に示すように、ネジが部位の軸方向(図7の1と3を結ぶ方向)に動くことで衝撃を緩衝する装置である。
固定ベアリングと同様の機能を有する部位とは、図7の1、2、3、4をいう。図7の右側をひっくり返して左側にかぶせると、1と2および3と4は穴となる。穴の直径は、3Dプリンタ等で精巧に確定できるので、固定ベアリングと同様に、ほぼ隙間のないネジを通すことで振動を防止し、ネジが部位の軸方向(図7の1と3を結ぶ方向)に動くことで衝撃を緩衝することができる。
Further, in the second invention, vibration is prevented by passing a screw having almost no gap through a part having a function similar to that of a fixed bearing, and as shown in FIGS. 8 and 9, the screw is in the axial direction of the part (FIG. 7). It is a device that cushions the impact by moving in the direction connecting 1 and 3 of.
The parts having the same function as the fixed bearing refer to 1, 2, 3 and 4 in FIG. When the right side of FIG. 7 is turned over and put on the left side, 1 and 2 and 3 and 4 become holes. Since the diameter of the hole can be precisely determined with a 3D printer or the like, vibration is prevented by passing a screw with almost no gap, and the screw connects 1 and 3 of the part in the axial direction of the part (connecting 1 and 3 in FIG. 7). The impact can be buffered by moving in the direction).

請求項1の振動防止かつ衝撃緩衝装置とは、図5に図6をかぶせたもの(カーボン棒を除く)を一例とする、ベアリング固定部分、ネジ可動部分、ベアリング、ネジを一体とする装置である。 The vibration prevention and impact shock absorber according to claim 1 is a device that integrates a bearing fixing part, a screw movable part, a bearing, and a screw, for example, a device covered with FIG. 6 in FIG. 5 (excluding a carbon rod). be.

請求項2の振動防止かつ衝撃緩衝装置とは、図8に図9をかぶせたもの(カーボン棒を除く)を一例とする、固定ベアリングと同様の機能を有する部位、ネジ可動部分、ネジを一体とする装置である。 The vibration prevention and impact shock absorber according to claim 2, for example, the one covered with FIG. 9 in FIG. 8 (excluding the carbon rod), has a part having the same function as a fixed bearing, a screw movable part, and a screw. It is a device.

第一発明または第二発明によれば、振動防止かつ衝撃緩衝装置をつけて、無人航空機および回転球体フレームの振動防止と衝撃緩衝を両立して実現することができる。 According to the first invention or the second invention, it is possible to realize both vibration prevention and shock cushioning of an unmanned aerial vehicle and a rotating spherical frame by attaching a vibration prevention and shock shock absorber.

この発明の一実施形態を示す斜視図である。It is a perspective view which shows one Embodiment of this invention. 従来技術を示す部分拡大図である。It is a partially enlarged view which shows the prior art. 従来技術を示す部分拡大図である。It is a partially enlarged view which shows the prior art. この発明の一実施形態を示す部分拡大図である。It is a partially enlarged view which shows one Embodiment of this invention. この発明の一実施形態を示す部分拡大図である。It is a partially enlarged view which shows one Embodiment of this invention. この発明の一実施形態を示す部分拡大図である。It is a partially enlarged view which shows one Embodiment of this invention. この発明の一実施形態を示す部分拡大図である。It is a partially enlarged view which shows one Embodiment of this invention. この発明の一実施形態を示す部分拡大図である。It is a partially enlarged view which shows one Embodiment of this invention. この発明の一実施形態を示す部分拡大図である。It is a partially enlarged view which shows one Embodiment of this invention. この発明の一実施形態を示す斜視図である。It is a perspective view which shows one Embodiment of this invention.

この発明の一実施形態を、図10に示す。
振動防止かつ衝撃緩衝装置を回転球体フレーム内6ヶ所に設置することにより、無人航空機および回転球体フレームの振動防止と衝撃緩衝を両立して実現することができる。
これにより、回転球体フレームが壁などに強く当たっても、衝撃は相当程度緩和され、回転球体フレームは容易に破損しない。
無人航空機とは、飛行機、回転翼航空機等であって人が乗ることができないもののうち、遠隔操作又は自動操縦により飛行させることができるものをいう(超軽量のものなどを除く)。
無人航空機用回転球体フレームとは、ジャイロスコープを応用したジンバル構造を有し、内部の無人航空機を水平に保ちながら、球体フレームは全方向に回転する構造体をいう。
An embodiment of the present invention is shown in FIG.
By installing anti-vibration and shock-cushioning devices at six locations in the rotating sphere frame, it is possible to achieve both vibration prevention and shock-cushioning for unmanned aerial vehicles and rotating sphere frames.
As a result, even if the rotating sphere frame strongly hits a wall or the like, the impact is considerably reduced and the rotating sphere frame is not easily damaged.
An unmanned aerial vehicle is an airplane, a rotary wing aircraft, etc. that cannot be boarded by a person and can be flown by remote control or autopilot (excluding ultra-lightweight aircraft).
The rotating spherical frame for an unmanned aerial vehicle has a gimbal structure to which a gyroscope is applied, and the spherical frame is a structure that rotates in all directions while keeping the unmanned aerial vehicle inside horizontal.

無人航空機および回転球体フレームの振動防止かつ衝撃緩衝装置は、回転球体フレーム付き無人航空機の安全性を高める。このため橋梁、トンネルなどのインフラ点検に広く活用される可能性は高い。
政府は、2015年1月に発表したロボット新戦略の中で、2020年頃までに、国内の重要インフラ・老朽化インフラの20%はセンサー、ロボット、非破壊検査技術等を活用して点検・補修を高効率化する旨、明記している。回転球体フレーム付き無人航空機は、ロボットに該当する。
Anti-vibration and shock shock absorbers for unmanned aerial vehicles and rotating sphere frames enhance the safety of unmanned aerial vehicles with rotating sphere frames. Therefore, it is highly possible that it will be widely used for infrastructure inspections such as bridges and tunnels.
In the new robot strategy announced in January 2015, the government will inspect and repair 20% of domestic important infrastructure and aging infrastructure using sensors, robots, non-destructive inspection technology, etc. by around 2020. It is clearly stated that the efficiency will be improved. An unmanned aerial vehicle with a rotating sphere frame corresponds to a robot.

Claims (2)

固定ベアリングにほぼ隙間のないネジを通すことで振動を防止し、ネジがベアリングの軸方向に対して動くことが可能な構成を有した、無人航空機用回転球体フレームの振動防止かつ衝撃緩衝装置。 A vibration-preventing and shock-absorbing device for a rotating spherical frame for unmanned aerial vehicles, which has a structure that prevents vibration by passing a screw with almost no gap through a fixed bearing and allows the screw to move in the axial direction of the bearing. 固定ベアリングと同様の機能を有する部位にほぼ隙間のないネジを通すことで振動を防止し、ネジが部位の軸方向に対して動くことが可能な構成を有した、無人航空機用回転球体フレームの振動防止かつ衝撃緩衝装置。 A rotating sphere frame for unmanned aerial vehicles that has a structure that prevents vibration by passing a screw with almost no gap through a part that has the same function as a fixed bearing and allows the screw to move in the axial direction of the part. Vibration prevention and shock shock absorber.
JP2020124754A 2020-06-27 2020-06-27 Vibration Prevention and Shock Absorption Device for Rotating Spherical Frame for Unmanned Aerial Vehicle Part 2 Active JP7295829B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020124754A JP7295829B2 (en) 2020-06-27 2020-06-27 Vibration Prevention and Shock Absorption Device for Rotating Spherical Frame for Unmanned Aerial Vehicle Part 2

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020124754A JP7295829B2 (en) 2020-06-27 2020-06-27 Vibration Prevention and Shock Absorption Device for Rotating Spherical Frame for Unmanned Aerial Vehicle Part 2

Publications (2)

Publication Number Publication Date
JP2022007832A true JP2022007832A (en) 2022-01-13
JP7295829B2 JP7295829B2 (en) 2023-06-21

Family

ID=80110011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020124754A Active JP7295829B2 (en) 2020-06-27 2020-06-27 Vibration Prevention and Shock Absorption Device for Rotating Spherical Frame for Unmanned Aerial Vehicle Part 2

Country Status (1)

Country Link
JP (1) JP7295829B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117382941A (en) * 2023-12-11 2024-01-12 山东字节信息科技有限公司 Single rotor unmanned aerial vehicle

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06156394A (en) * 1992-11-26 1994-06-03 Mitsubishi Electric Corp Shock absorber
JP2000142585A (en) * 1998-10-30 2000-05-23 Sikorsky Aircraft Corp Cabin interior assembly and helicopter equipped therewith
CN203680323U (en) * 2013-12-31 2014-07-02 深圳大学 Universal multi-rotor-wing robot framework supporting safety protection system
CN104803000A (en) * 2015-04-29 2015-07-29 吉林大学 Multi-rotor-ring unmanned aerial vehicle protecting device
EP3239048A1 (en) * 2016-04-30 2017-11-01 Flyability SA Unmanned aerial vehicle and protective outer cage therefor
JP2018039488A (en) * 2016-09-08 2018-03-15 淳史 岩崎 Device for vibration prevention and impact damping for rotary sphere frame for unmanned aircraft
JP2018100063A (en) * 2016-12-22 2018-06-28 学校法人早稲田大学 Movable body, and remote inspection system using the same, and remote inspection method in pipe
JP2020163953A (en) * 2019-03-28 2020-10-08 光司商会株式会社 Hanging work assist system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9098226B2 (en) 2012-08-14 2015-08-04 Seiko Epson Corporation ePOS printing over a network

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06156394A (en) * 1992-11-26 1994-06-03 Mitsubishi Electric Corp Shock absorber
JP2000142585A (en) * 1998-10-30 2000-05-23 Sikorsky Aircraft Corp Cabin interior assembly and helicopter equipped therewith
CN203680323U (en) * 2013-12-31 2014-07-02 深圳大学 Universal multi-rotor-wing robot framework supporting safety protection system
CN104803000A (en) * 2015-04-29 2015-07-29 吉林大学 Multi-rotor-ring unmanned aerial vehicle protecting device
EP3239048A1 (en) * 2016-04-30 2017-11-01 Flyability SA Unmanned aerial vehicle and protective outer cage therefor
JP2018039488A (en) * 2016-09-08 2018-03-15 淳史 岩崎 Device for vibration prevention and impact damping for rotary sphere frame for unmanned aircraft
JP2018100063A (en) * 2016-12-22 2018-06-28 学校法人早稲田大学 Movable body, and remote inspection system using the same, and remote inspection method in pipe
JP2020163953A (en) * 2019-03-28 2020-10-08 光司商会株式会社 Hanging work assist system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117382941A (en) * 2023-12-11 2024-01-12 山东字节信息科技有限公司 Single rotor unmanned aerial vehicle
CN117382941B (en) * 2023-12-11 2024-03-05 山东字节信息科技有限公司 Single rotor unmanned aerial vehicle

Also Published As

Publication number Publication date
JP7295829B2 (en) 2023-06-21

Similar Documents

Publication Publication Date Title
US10384772B2 (en) Flying machine frame structural body, flying machine, flying machine usage method
Kim et al. Automatic mass balancing of air-bearing-based three-axis rotational spacecraft simulator
CN109542125B (en) Laser device for measuring vibration of airborne camera of unmanned aerial vehicle
Pipenberg et al. Design and fabrication of the mars helicopter rotor, airframe, and landing gear systems
US4862739A (en) Wind tunnel model support mechanism
JP2022007832A (en) Vibration control for rotary sphere frame for unmanned aircraft and shock absorbing device second version
CN111071471A (en) Combined type damping cloud platform with energy harvesting function
Satoshi et al. Light weight manipulator on UAV system for infrastructure inspection
JP2016043922A (en) Flying body capable of traveling on land
JP6770711B2 (en) Vibration prevention and shock absorbing device for rotating spherical frame for unmanned aerial vehicles
US11828410B2 (en) Actuator and tripod structure equipped therewith
CN105882944B (en) A kind of unmanned plane undercarriage with dual shock absorption function
Lawrence et al. Status update of the AEDC wind tunnel virtual flight testing development program
Myeong et al. Drone-type wall-climbing robot platform for structural health monitoring
US5820079A (en) Mechanism for mounting and actuating a momentum wheel with high vibration isolation
CN116146663A (en) Linear spring vibration isolation system of photoelectric nacelle
JPH09145533A (en) Support device for test model in wind tunnel
JP2020015488A (en) Inspection method using unmanned small flight vehicle, and unmanned small flight vehicle used for the same
JP7174988B2 (en) moving body
JP6990612B2 (en) Assembling method of unmanned flight inspection machine and inspection method of inspection object using unmanned flight inspection machine
Sun et al. An air floating suspension microgravity simulator for multi specification of spaceborne SAR
JP4335772B2 (en) Vibration isolator and displacement detector
WO2020155639A1 (en) Self-propelled omnidirectional rotational inertia drive control system
RU173935U1 (en) USE LOAD STABILIZATION DEVICE FOR ROBOTIC SYSTEMS
Son et al. Analysis of the static behavior of a new landing gear model based on a four-bar linkage mechanism

Legal Events

Date Code Title Description
A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20200914

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20230131

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230516

R150 Certificate of patent or registration of utility model

Ref document number: 7295829

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150