JP2022007664A - Voltage management system for low-voltage distribution system - Google Patents

Voltage management system for low-voltage distribution system Download PDF

Info

Publication number
JP2022007664A
JP2022007664A JP2020110755A JP2020110755A JP2022007664A JP 2022007664 A JP2022007664 A JP 2022007664A JP 2020110755 A JP2020110755 A JP 2020110755A JP 2020110755 A JP2020110755 A JP 2020110755A JP 2022007664 A JP2022007664 A JP 2022007664A
Authority
JP
Japan
Prior art keywords
voltage
distribution system
low
voltage distribution
wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020110755A
Other languages
Japanese (ja)
Inventor
泰治 久野
Taiji Kuno
瑛 横井
Akira Yokoi
達矢 寺澤
Tatsuya Terasawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Energy Support Corp
Original Assignee
Energy Support Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Energy Support Corp filed Critical Energy Support Corp
Priority to JP2020110755A priority Critical patent/JP2022007664A/en
Publication of JP2022007664A publication Critical patent/JP2022007664A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/50Arrangements for eliminating or reducing asymmetry in polyphase networks

Abstract

To provide a novel voltage management system for a low-voltage distribution system.SOLUTION: A voltage management system 10 for maintaining a voltage of a low-voltage distribution system 16a within a predetermined range includes: a first voltage adjustment device (a reactive power compensation device) 30 for performing three-phase unbalance suppression control of a high-voltage distribution system 3; and a second voltage adjustment device (a reactive power compensation device) 20 having a reactive power compensation function for controlling a voltage of the low-voltage distribution system connected to the high-voltage distribution system via a transformer Tr to be constant. A plurality of low-voltage distribution systems are connected to the high-voltage distribution system, and a second voltage adjustment device is provided in each low-voltage distribution system.SELECTED DRAWING: Figure 1

Description

本明細書は、低圧配電系統の電圧管理システムに関する技術を開示する。 This specification discloses a technique relating to a voltage management system for a low voltage distribution system.

特許文献1に、配電系統に電圧変動が生じた際、配電系統に無効電力を供給し、配電系統の電圧変動を抑制する(基準電圧に復帰させる)技術が開示されている。特許文献1では、高圧配電系統に複数の低圧配電系統が接続されている配電系統において、各低圧配電系統に電圧調整装置(無効電力補償装置)を配置し、各々の低圧配電系統毎に電圧変動を抑制する技術が開示されている。特許文献1の電圧管理システムの場合、低圧配電系統に電圧調整装置を配置するので、高圧配電系統に電圧調整装置を配置する形態と比較して、電圧調整装置の容量を小さくすることができる。また、低圧配電系統に電圧調整装置を配置することにより、電圧調整装置を構成する部品(半導体素子)の必要耐圧を低減することもできる。特許文献1は、低圧配電系統毎に電圧変動を調整することにより、結果として電圧管理システムのコストを低減している。 Patent Document 1 discloses a technique of supplying reactive power to a distribution system when a voltage fluctuation occurs in the distribution system and suppressing the voltage fluctuation of the distribution system (returning to a reference voltage). In Patent Document 1, in a distribution system in which a plurality of low-voltage distribution systems are connected to a high-voltage distribution system, a voltage regulator (invalid power compensation device) is arranged in each low-voltage distribution system, and voltage fluctuations are made for each low-voltage distribution system. The technology for suppressing the voltage is disclosed. In the case of the voltage management system of Patent Document 1, since the voltage regulator is arranged in the low voltage distribution system, the capacity of the voltage regulator can be reduced as compared with the form in which the voltage regulator is arranged in the high voltage distribution system. Further, by arranging the voltage adjusting device in the low voltage distribution system, it is possible to reduce the required withstand voltage of the component (semiconductor element) constituting the voltage adjusting device. Patent Document 1 reduces the cost of the voltage management system by adjusting the voltage fluctuation for each low voltage distribution system.

特開2013-31362号公報Japanese Unexamined Patent Publication No. 2013-31362

上記したように、特許文献1では、低圧配電系統に電圧調整装置を配置し、低圧配電系統毎に電圧変動を調整している。しかしながら、低圧配電系統の電圧は、負荷等の影響を受けていない状態であっても、低圧配電系統毎に電圧が異なることがある。すなわち、変圧器を介して高圧配電系統から低圧配電系統に供給された電圧自体が、各低圧配電系統で異なることがある。典型的に、低圧配電系統を構成する配線は、高圧配電系統を構成する3相の配線のうちの2相の配線に接続される。そのため、多くの低圧配電系統(配線)が接続されている相(以下、第1相と呼ぶ)の電圧は、第1相より少ない低圧配電系統(配線)が接続されている相(以下、第2相と呼ぶ)の電圧より低くなる。そのため、第2相を選択していない低圧配電系統(以下、第1低圧配電系統と呼ぶ)の電圧は、第2相を選択している低圧配電系統(以下、第2低圧配電系統と呼ぶ)の電圧より低くなる。 As described above, in Patent Document 1, a voltage adjusting device is arranged in the low voltage distribution system, and the voltage fluctuation is adjusted for each low voltage distribution system. However, the voltage of the low-voltage distribution system may differ for each low-voltage distribution system even in a state where it is not affected by a load or the like. That is, the voltage itself supplied from the high-voltage distribution system to the low-voltage distribution system via the transformer may be different in each low-voltage distribution system. Typically, the wiring constituting the low voltage distribution system is connected to the wiring of two of the three phases constituting the high voltage distribution system. Therefore, the voltage of the phase to which many low-voltage distribution systems (wiring) are connected (hereinafter referred to as the first phase) is less than that of the first phase, and the voltage of the phase to which the low-voltage distribution system (wiring) is connected (hereinafter referred to as the first phase). It is lower than the voltage of (called two-phase). Therefore, the voltage of the low voltage distribution system that does not select the second phase (hereinafter referred to as the first low voltage distribution system) is the voltage of the low voltage distribution system that selects the second phase (hereinafter referred to as the second low voltage distribution system). It will be lower than the voltage of.

その結果、第1低圧配電系統では、電圧が管理値(基準電圧)を外れやすくなり、第2低圧配電系統と比較して電圧調整装置の作動頻度が多くなる。そのため、特許文献1の電圧管理システムの場合、第2低圧配電系統に配置する電圧調整装置よりも容量が大きい電圧調整装置を第1低圧電圧配電系統に配置するか、あるいは、第2低圧配電系統の電圧を調整するには過剰な容量を有する電圧調整装置を全ての低圧電圧配電系統に配置することが必要である。そのため、低圧配電系統に複数種類の電圧調整装置を配置したり、容量の大きい高コストの電圧調整装置を配置することが必要となる。よって、新たな電圧管理システムを構築することが必要とされている。本明細書は、低圧配電系統の新たな電圧管理システムを提供することを目的とする。 As a result, in the first low voltage distribution system, the voltage tends to deviate from the control value (reference voltage), and the operation frequency of the voltage regulator becomes higher than that in the second low voltage distribution system. Therefore, in the case of the voltage management system of Patent Document 1, a voltage regulator having a larger capacity than the voltage regulator arranged in the second low voltage distribution system is arranged in the first low voltage distribution system, or the second low voltage distribution system is arranged. It is necessary to arrange a voltage regulator having an excessive capacity in all the low voltage distribution systems in order to regulate the voltage of the voltage. Therefore, it is necessary to arrange a plurality of types of voltage regulators in the low voltage distribution system or to arrange a high-cost voltage regulator having a large capacity. Therefore, it is necessary to construct a new voltage management system. It is an object of the present specification to provide a new voltage management system for a low voltage distribution system.

本明細書で開示する電圧管理システムは、低圧配電系統の電圧を所定範囲内に保持するために用いられる。この電圧管理システムは、高圧配電系統の3相不平衡抑制制御を行う第1電圧調整装置と、変圧器を介して高圧配電系統に接続されている低圧配電系統の電圧を一定にする制御を行う無効電力補償機能を有する第2電圧調整装置を備えていてよい。 The voltage management system disclosed herein is used to keep the voltage of a low voltage distribution system within a predetermined range. This voltage management system controls to keep the voltage of the first voltage regulator that controls the three-phase imbalance suppression of the high-voltage distribution system constant and the voltage of the low-voltage distribution system connected to the high-voltage distribution system via a transformer. A second voltage regulator having an ineffective power compensation function may be provided.

実施例の電圧管理システムの概略図を示す。The schematic diagram of the voltage management system of an Example is shown. 実施例の電圧管理システムの利点を説明するための図を示す。The figure for demonstrating the advantage of the voltage management system of an Example is shown. 実施例の電圧管理システムの利点を説明するための図を示す。The figure for demonstrating the advantage of the voltage management system of an Example is shown.

本明細書で開示する電圧管理システムは、配電系統への負荷接続、分散電源による配電系統への有効電力の供給等により低圧配電系統の電圧が所定範囲外になったときに、低圧配電系統の電圧を所定範囲内に回復(復帰)させ、低圧配電系統の電圧を所定範囲内に保持するために用いられる。なお、分散電源の一例として、太陽光発電装置が挙げられる。発電所(または変電所)から需要家に電力を供給する配電系統には、発電所からの電力が供給される高圧配電系統と、需要家に電力を供給する低圧配電系統が存在する。低圧配電系統は、変圧器を介して高圧配電系統に接続されている。本明細書で開示する電圧管理システムは、高圧配電系統に複数の低圧配電系統が接続されていてよい。低圧配電系統の配線は、高圧配電系統の3相の配線のうちの2相の配線に接続される。各々の低圧配電系統は、高圧配電系統の3相のうちの2相であれば、いずれの相に接続されていてもよい。すなわち、高圧配電系統の3相のうちの特定の相に、他の相と比較して多くの(あるいは、少ない)低圧配電系統が接続されていてよい。 The voltage management system disclosed in the present specification is a low-voltage distribution system when the voltage of the low-voltage distribution system falls out of the predetermined range due to load connection to the distribution system, supply of active power to the distribution system by a distributed power supply, or the like. It is used to restore (restore) the voltage within a predetermined range and keep the voltage of the low-voltage distribution system within a predetermined range. An example of a distributed power source is a photovoltaic power generation device. Distribution systems that supply power from power plants (or substations) to consumers include high-voltage distribution systems that supply power from power plants and low-voltage distribution systems that supply power to consumers. The low voltage distribution system is connected to the high voltage distribution system via a transformer. In the voltage management system disclosed in the present specification, a plurality of low voltage distribution systems may be connected to the high voltage distribution system. The wiring of the low voltage distribution system is connected to the wiring of two of the three phases of the high voltage distribution system. Each low-voltage distribution system may be connected to any phase as long as it is two of the three phases of the high-voltage distribution system. That is, more (or less) low-voltage distribution systems may be connected to a specific phase of the three phases of the high-voltage distribution system as compared to other phases.

電圧管理システムは、高圧配電系統の各相に無効電力を供給したり、配電線に直列に挿入したトランスに補償電圧を誘起したりして各相の電圧差を低減させる(電圧不平衡を抑制する)第1電圧調整装置を備えていてよい。すなわち、第1電圧調整装置は、高圧配電系統の各相の電圧を均一(電圧不平衡を所定範囲内)に調整するために、高圧配電系統に接続されていてよい。第1電圧調整装置は高圧配電系統の各相の電圧を常時監視し、各相の電圧に差異が生じたときに、能動的に各相の電圧を調整してよい。第1電圧調整装置として、例えば、無効電力補償装置、サイリスタ式電圧調整装置等が挙げられる。 The voltage management system reduces the voltage difference between each phase by supplying reactive power to each phase of the high-voltage distribution system or inducing a compensation voltage in a transformer inserted in series with the distribution line (suppressing voltage imbalance). It may be equipped with a first voltage regulator. That is, the first voltage regulator may be connected to the high voltage distribution system in order to uniformly adjust the voltage of each phase of the high voltage distribution system (voltage imbalance within a predetermined range). The first voltage regulator may constantly monitor the voltage of each phase of the high-voltage distribution system and actively adjust the voltage of each phase when a difference occurs in the voltage of each phase. Examples of the first voltage regulator include a static power compensator, a thyristor type voltage regulator, and the like.

また、電圧管理システムは、変圧器を介して高圧配電系統に接続されている低圧配電系統の電圧を一定にする(所定範囲内に保持する)第2電圧調整装置を備えていてよい。すなわち、第2電圧調整装置は、低圧配電系統の電圧が所定範囲外になったときに電圧を所定範囲内に回復するために、低圧配電系統に接続されていてよい。第2電圧調整装置は高圧配電系統の各相の電圧を常時監視し、低圧配電系統の電圧が所定範囲外になったときに、能動的に低圧配電系統の電圧を一定にする制御を行ってよい。具体的には、第2電圧調整装置は、無効電力補償機能を有し、低圧配電系統の電圧を所定範囲内に保持するために、低圧配電系統に無効電力を供給してよい。複数の低圧配電系統の全てに、第2電圧調整装置が接続されていてよい。第2電圧調整装置は、低圧配電系統の電圧が所定範囲外になったときに、数m秒から十数m秒で、低圧配電系統の電圧を所定範囲内に回復(無効電力を供給)してよい。その結果、第2電圧調整装置は、低圧配電系統の電圧が急激に変動した場合であっても、その電圧変動に即座に対応することができる(低圧配電系統の電圧を所定範囲内に回復することができる)。第2電圧調整装置として、例えば、無効電力補償装置、スマートインバータ等が挙げられる。 Further, the voltage management system may include a second voltage regulator that keeps the voltage of the low voltage distribution system connected to the high voltage distribution system via a transformer constant (maintained within a predetermined range). That is, the second voltage regulator may be connected to the low voltage distribution system in order to recover the voltage within the predetermined range when the voltage of the low voltage distribution system goes out of the predetermined range. The second voltage regulator constantly monitors the voltage of each phase of the high-voltage distribution system, and actively controls to keep the voltage of the low-voltage distribution system constant when the voltage of the low-voltage distribution system goes out of the predetermined range. good. Specifically, the second voltage regulator has a reactive power compensation function, and may supply reactive power to the low voltage distribution system in order to keep the voltage of the low voltage distribution system within a predetermined range. A second voltage regulator may be connected to all of the plurality of low voltage distribution systems. When the voltage of the low-voltage distribution system goes out of the predetermined range, the second voltage regulator recovers the voltage of the low-voltage distribution system within the predetermined range (supplyes invalid power) in a few msec to a dozen msec. It's okay. As a result, the second voltage regulator can immediately respond to the voltage fluctuation even when the voltage of the low voltage distribution system suddenly fluctuates (recovers the voltage of the low voltage distribution system within a predetermined range). be able to). Examples of the second voltage adjusting device include a static power compensator, a smart inverter, and the like.

上記したように、電圧管理システムは、第1電圧調整装置によって高圧配電系統の各相の電圧を均一(電圧不平衡を所定範囲内)に調整することができる。その結果、高圧配電系統の各相に接続されている低圧配線数が相違していても、全ての低圧配電系統の電圧を均一にすることができる。なお、仮に電圧管理システムが第1電圧調整装置を備えていない場合、接続している高圧配電系統の相が異なる低圧配電系統において電圧が相違することがある。 As described above, the voltage management system can uniformly adjust the voltage of each phase of the high-voltage distribution system (voltage imbalance within a predetermined range) by the first voltage regulator. As a result, even if the number of low-voltage wirings connected to each phase of the high-voltage distribution system is different, the voltage of all the low-voltage distribution systems can be made uniform. If the voltage management system does not include the first voltage regulator, the voltage may be different in the low voltage distribution system having different phases of the connected high voltage distribution system.

例えば、高圧配電系統の3相の配線に、第1相、第2相、第3相の順に多くの低圧配電系統の配線(低圧配線)が接続されている場合、第1-第2相に接続している低圧配電系統(以下、第1低圧配電系統と称する)の電圧は、第2-第3相に接続している低圧配電系統(以下、第2低圧配電系統と称する)の電圧と比較して小さくなる。そのため、第1低圧配電系統は、第2低圧配電系統と比較して、電圧が管理基準値(所定範囲)より低くなりやすい。その結果、第1低圧配電系統に設けられている第2電圧調整装置は、第2低圧配電系統に設けられている第2電圧調整装置よりも頻繁に作動し、容量が枯渇し易くなる。あるいは、第2低圧配電系統に設けられている第2電圧調整装置よりも容量の大きな第2電圧調整装置を、第1低圧配電系統に配置することが必要である。第1電圧調整装置によって高圧配電系統の各相の電圧を均一に調整する(各相の電圧の不均衡を解消する)ことにより、第1低圧配電系統と第2低圧配電系統の電圧を同一にすることができ、特定の低圧配電系統に配置されている第2電圧調整装置の容量が枯渇し易くなることを抑制することができる。 For example, when many low-voltage distribution system wirings (low-voltage wirings) are connected in the order of the first phase, the second phase, and the third phase to the three-phase wiring of the high-voltage distribution system, the wirings of the first and second phases are connected. The voltage of the connected low voltage distribution system (hereinafter referred to as the first low voltage distribution system) is the voltage of the low voltage distribution system connected to the second and third phases (hereinafter referred to as the second low voltage distribution system). It becomes smaller in comparison. Therefore, the voltage of the first low voltage distribution system tends to be lower than the control reference value (predetermined range) as compared with the second low voltage distribution system. As a result, the second voltage regulator provided in the first low voltage distribution system operates more frequently than the second voltage regulator provided in the second low voltage power distribution system, and the capacity is likely to be exhausted. Alternatively, it is necessary to arrange a second voltage regulator having a larger capacity than the second voltage regulator provided in the second low voltage distribution system in the first low voltage distribution system. By uniformly adjusting the voltage of each phase of the high-voltage distribution system with the first voltage regulator (eliminating the imbalance of the voltage of each phase), the voltage of the first low-voltage distribution system and the second low-voltage distribution system are made the same. It is possible to prevent the capacity of the second voltage regulator arranged in a specific low voltage distribution system from being easily exhausted.

なお、高圧配電系統の各相の電圧にばらつきが生じている場合(第1電圧調整装置が設けられていない場合)であっても、高圧配電系統の各相の電圧を全体的に上昇させれば、第1低圧配電系統の電圧も上昇する。その結果、第1低圧配電系統に設けられている第2電圧調整装置が頻繁に作動することが抑制され、第2電圧調整装置の容量を確保することができる。しかしながら、この場合、発電所(変電所)から高圧配電系統に供給する電圧を上昇させることが必要となり、配電系統に接続可能な太陽光発電システムの容量(ホスティングキャパシティ)が低下する。上記電圧管理システムは、第1電圧調整装置によって高圧配電系統の各相の電圧を均一に調整することにより、配電系統に接続可能な太陽光発電システムの容量を確保することもできる。 Even if the voltage of each phase of the high-voltage distribution system varies (when the first voltage regulator is not provided), the voltage of each phase of the high-voltage distribution system can be increased as a whole. If so, the voltage of the first low voltage distribution system also rises. As a result, it is possible to prevent the second voltage regulator provided in the first low voltage distribution system from operating frequently, and to secure the capacity of the second voltage regulator. However, in this case, it is necessary to increase the voltage supplied from the power plant (substation) to the high-voltage distribution system, and the capacity (hosting capacity) of the photovoltaic power generation system that can be connected to the distribution system decreases. The voltage management system can also secure the capacity of the photovoltaic power generation system that can be connected to the distribution system by uniformly adjusting the voltage of each phase of the high-voltage distribution system by the first voltage regulator.

図1を参照し、電圧管理システム10について説明する。電圧管理システム10は、高圧配電系統3の配線に接続されている無効電力補償装置30と、低圧配電系統12a,14a及び16aに接続されている無効電力補償装置20を備えている。まず、高圧配電系統3と、低圧配電系統12a,14a及び16aの関係について説明する。 The voltage management system 10 will be described with reference to FIG. The voltage management system 10 includes a static power compensation device 30 connected to the wiring of the high voltage distribution system 3 and a static power compensation device 20 connected to the low voltage distribution systems 12a, 14a and 16a. First, the relationship between the high-voltage distribution system 3 and the low-voltage distribution systems 12a, 14a, and 16a will be described.

高圧配電系統3には、発電所2から電力が供給される。また、高圧配電系統3には、変圧器(ポールトランス)Trを介して低圧配線(低圧配電系統)12a,14a及び16aが接続されている。高圧配電系統3は、3本の高圧配線(3相の配線)4,6,8を有している。低圧配電系統12a,14a及び16aは、第1配線(第1相)4,第2配線(第2相)6及び第3配線(第3相)8のうちの2相に接続されている。低圧配電系統12a,14a及び16aは、接続している高圧配線に応じて、3グループに区別することができる。具体的には、第1グループ16の低圧配線(第1低圧配電系統16a)は、第1配線4及び第2配線6に接続されている。第2グループ14の低圧配線(第2低圧配電系統14a)は、第2配線6及び第3配線8に接続されている。第3グループ12の低圧配線(第3低圧配電系統12a)は、第1配線4及び第3配線8に接続されている。図1に示すように、グループ12,14,16のうち、第1グループ16の低圧配線(第1低圧配電系統16a)が最も多く、第2グループ14の低圧配線(第2低圧配電系統14a)が最も少ない。そのため、第1配線4に最も多くの低圧配線が接続されており、第3配線8に最も少ない低圧配線が接続されている。 Electric power is supplied to the high-voltage distribution system 3 from the power plant 2. Further, low voltage wiring (low voltage distribution system) 12a, 14a and 16a are connected to the high voltage distribution system 3 via a transformer (pole transformer) Tr. The high-voltage distribution system 3 has three high-voltage wirings (three-phase wirings) 4, 6 and 8. The low-voltage distribution systems 12a, 14a and 16a are connected to two of the first wiring (first phase) 4, the second wiring (second phase) 6 and the third wiring (third phase) 8. The low voltage distribution systems 12a, 14a and 16a can be divided into three groups according to the connected high voltage wiring. Specifically, the low voltage wiring of the first group 16 (first low voltage distribution system 16a) is connected to the first wiring 4 and the second wiring 6. The low voltage wiring of the second group 14 (second low voltage distribution system 14a) is connected to the second wiring 6 and the third wiring 8. The low voltage wiring of the third group 12 (third low voltage distribution system 12a) is connected to the first wiring 4 and the third wiring 8. As shown in FIG. 1, among the groups 12, 14 and 16, the low voltage wiring of the first group 16 (first low voltage distribution system 16a) is the most, and the low voltage wiring of the second group 14 (second low voltage distribution system 14a). Is the least. Therefore, the most low-voltage wiring is connected to the first wiring 4, and the least low-voltage wiring is connected to the third wiring 8.

高圧配電系統3には、無効電力補償装置30が接続されている。無効電力補償装置30は、第1配線4,第2配線6及び第3配線8に接続されており、各配線4,6,8の電圧を常時検出している。また、無効電力補償装置30は、各配線4,6,8の電圧に相違が生じたときに、各配線4,6,8に無効電力を供給し、各配線4,6,8の電圧を均一に調整する。無効電力補償装置30は、第1電圧調整装置の一例である。 A static power compensator 30 is connected to the high voltage distribution system 3. The static power compensator 30 is connected to the first wiring 4, the second wiring 6, and the third wiring 8, and constantly detects the voltage of each wiring 4, 6, and 8. Further, when the voltage of each wiring 4, 6 and 8 is different, the static power compensator 30 supplies the invalid power to each wiring 4, 6 and 8 and applies the voltage of each wiring 4, 6 and 8. Adjust evenly. The static power compensator 30 is an example of a first voltage regulator.

低圧配電系統12a,14a及び16aには、負荷(電力の需要家等)24が接続されている。また、低圧配電系統12a,14a及び16aの各々に、無効電力補償装置20が接続されている。無効電力補償装置20は、低圧配電系統12a,14a,16aに供給する無効電力の出力を変化させ、低圧配電系統12a,14a,16a2の電圧を所定範囲内に維持する。すなわち、無効電力補償装置20は、低圧配電系統12a,14a,16aの電圧が所定範囲外に変動すると、低圧配電系統12a,14a,16aに無効電力を供給し、低圧配電系統12a,14a,16aの電圧を所定範囲内に維持する(回復させる)。無効電力補償装置20は、第2電圧調整装置の一例である。 A load (such as a consumer of electric power) 24 is connected to the low-voltage distribution systems 12a, 14a, and 16a. Further, the static power compensator 20 is connected to each of the low voltage distribution systems 12a, 14a and 16a. The static power compensator 20 changes the output of the reactive power supplied to the low voltage distribution systems 12a, 14a, 16a, and maintains the voltage of the low voltage distribution systems 12a, 14a, 16a2 within a predetermined range. That is, when the voltage of the low voltage distribution system 12a, 14a, 16a fluctuates outside the predetermined range, the reactive power compensation device 20 supplies the low voltage distribution system 12a, 14a, 16a with the reactive power, and the low voltage distribution system 12a, 14a, 16a. Maintain (recover) the voltage within the specified range. The static power compensator 20 is an example of a second voltage regulator.

図2及び3を参照し、電圧管理システム10の利点について説明する。図2は、負荷24が接続されていない状態の第1低圧配電系統16aの電圧42と第2低圧配電系統14aの電圧40を示している。(a)は高圧配電系統3に無効電力補償装置30が接続されていない場合を示し、(b)は高圧配電系統3に無効電力補償装置30が接続されている場合を示している。 The advantages of the voltage management system 10 will be described with reference to FIGS. 2 and 3. FIG. 2 shows the voltage 42 of the first low voltage distribution system 16a and the voltage 40 of the second low voltage distribution system 14a in a state where the load 24 is not connected. (A) shows the case where the static power compensator 30 is not connected to the high voltage distribution system 3, and (b) shows the case where the static power compensation device 30 is connected to the high voltage distribution system 3.

高圧配電系統3から低圧配電系統14a,16aに供給される電圧は、変圧器Trによって、管理基準値(所定範囲)の下限V1よりも大きくなるように調整される。しかしながら、上記したように、高圧配電系統3に接続されている配線(低電圧系統)は、第2低圧配電系統14aと比較して、第1低圧配電系統16aの方が多い。よって、通常(高圧配電系統3に無効電力補償装置30が接続されていない場合)、(a)に示すように、電圧42は電圧40より小さくなり、電圧40よりも下限V1に近くなる。そのため、低圧配電系統14a,16aに負荷24が接続されると、第1低圧配電系統16aの電圧は、第2低圧配電系統14aの電圧よりも所定範囲外に(下限V1より小さく)なりやすい。その結果、第1低圧配電系統16aでは、第2低圧配電系統14aと比較して、無効電力補償装置20が頻繁に作動し、無効電力補償装置20の容量が枯渇しやすくなる。 The voltage supplied from the high-voltage distribution system 3 to the low-voltage distribution systems 14a and 16a is adjusted by the transformer Tr so as to be larger than the lower limit V1 of the control reference value (predetermined range). However, as described above, the wiring (low voltage system) connected to the high voltage distribution system 3 is larger in the first low voltage distribution system 16a than in the second low voltage distribution system 14a. Therefore, normally (when the static power compensator 30 is not connected to the high voltage distribution system 3), as shown in (a), the voltage 42 is smaller than the voltage 40 and closer to the lower limit V1 than the voltage 40. Therefore, when the load 24 is connected to the low voltage distribution systems 14a and 16a, the voltage of the first low voltage distribution system 16a tends to be outside the predetermined range (smaller than the lower limit V1) than the voltage of the second low voltage distribution system 14a. As a result, in the first low voltage distribution system 16a, the static power compensation device 20 operates more frequently than in the second low voltage distribution system 14a, and the capacity of the static power compensation device 20 is likely to be exhausted.

高圧配電系統3の電圧を高くすると、第1低圧配電系統16aの電圧が高くなり(電圧42→電圧42a)、無効電力補償装置20の容量を確保することができる。換言すると、低圧配電系統16aに設けられている無効電力補償装置20の容量が枯渇することを抑制するためには、高圧配電系統3の電圧を高くし、第1低圧配電系統16aの電圧を高くすることが必要である。しかしながら、この場合、第2低圧配電系統14aの電圧が高くなり(電圧40→電圧40a)、管理基準値の上限(図示省略)に近くなる。なお、図示は省略しているが、第3低圧配電系統12aの電圧も電圧40より小さくなり、その結果、第3低圧配電系統12aに設けられている無効電力補償装置20は、第2低圧配電系統14aと比較して頻繁に作動し、容量が枯渇しやくなる。 When the voltage of the high-voltage distribution system 3 is increased, the voltage of the first low-voltage distribution system 16a becomes high (voltage 42 → voltage 42a), and the capacity of the ineffective power compensation device 20 can be secured. In other words, in order to prevent the capacity of the ineffective power compensating device 20 provided in the low voltage distribution system 16a from being exhausted, the voltage of the high voltage distribution system 3 is increased and the voltage of the first low voltage distribution system 16a is increased. It is necessary to. However, in this case, the voltage of the second low voltage distribution system 14a becomes high (voltage 40 → voltage 40a), and becomes close to the upper limit of the control reference value (not shown). Although not shown, the voltage of the third low voltage distribution system 12a is also smaller than the voltage 40, and as a result, the static power compensator 20 provided in the third low voltage distribution system 12a is the second low voltage distribution system. It operates more frequently than the system 14a, and the capacity is easily exhausted.

一方、(b)に示すように、高圧配電系統3に無効電力補償装置30が接続されている場合、配線(高圧配線)4,6,8の電圧が等しくなるので、低圧配電系統12a,14a,16aの電圧も等しくなる(電圧40b,42b)。その結果、各低圧配電系統12a,14a,16aに接続されている無効電力補償装置20のうち、特定の無効電力補償装置20の容量が枯渇することを抑制することができる。また、高圧配電系統3の電圧を高くする必要がなく、第2低圧配電系統14aの電圧が管理基準値の上限に近くなることを抑制することができる。 On the other hand, as shown in (b), when the invalid power compensation device 30 is connected to the high voltage distribution system 3, the voltages of the wirings (high voltage wirings) 4, 6 and 8 are equal, so that the low voltage distribution systems 12a and 14a , 16a are also equal (voltages 40b, 42b). As a result, it is possible to suppress the exhaustion of the capacity of the specific static power compensator 20 among the static VARs 20 connected to the low voltage distribution systems 12a, 14a, 16a. Further, it is not necessary to increase the voltage of the high voltage distribution system 3, and it is possible to prevent the voltage of the second low voltage distribution system 14a from approaching the upper limit of the control reference value.

図3は、第1低圧配電系統16aに接続されている無効電力補償装置20の容量が枯渇することを避けるために高圧配電系統3の電圧を調整した場合の、第2低圧配電系統14aの電圧を示している。(a)は高圧配電系統3に無効電力補償装置30が接続されていない場合の電圧40aを示し、(b)は高圧配電系統3に無効電力補償装置30が接続されている場合の電圧40bを示している。上記したように、高圧配電系統3に無効電力補償装置30が接続されていない場合、高圧配電系統3の電圧を高くし、第1低圧配電系統16aの電圧を電圧42aに上昇させる(図2も参照)。その結果、第2低圧配電系統14aの電圧40が電圧40aに上昇する。 FIG. 3 shows the voltage of the second low-voltage distribution system 14a when the voltage of the high-voltage distribution system 3 is adjusted in order to avoid running out of the capacity of the ineffective power compensation device 20 connected to the first low-voltage distribution system 16a. Is shown. (A) shows the voltage 40a when the static power compensator 30 is not connected to the high voltage distribution system 3, and (b) shows the voltage 40b when the static power compensation device 30 is connected to the high voltage power distribution system 3. Shows. As described above, when the invalid power compensation device 30 is not connected to the high voltage distribution system 3, the voltage of the high voltage distribution system 3 is increased and the voltage of the first low voltage distribution system 16a is increased to the voltage 42a (also in FIG. 2). reference). As a result, the voltage 40 of the second low-voltage power distribution system 14a rises to the voltage 40a.

一方、高圧配電系統3に無効電力補償装置30が接続されている場合、高圧配電系統3の電圧を高くする必要がないので、第2低圧配電系統14aの電圧40は、配線4,6,8の電圧を均一に調整した分だけしか上昇しない(電圧40→電圧40b)。そのため、高圧配電系統3に無効電力補償装置30が接続されていない場合(図3(a))、管理基準値の上限V2までのホスティングキャパシティC1は、高圧配電系統3に無効電力補償装置30が接続されている場合(図3(b))のホスティングキャパシティC2と比較して小さくなる。すなわち、高圧配電系統3に無効電力補償装置30が接続されている場合、高圧配電系統3に無効電力補償装置30が接続されていない場合と比較して、低圧配電系統に接続可能な太陽光発電システムの数(量)を増加させることができる。 On the other hand, when the invalid power compensation device 30 is connected to the high voltage distribution system 3, it is not necessary to increase the voltage of the high voltage distribution system 3, so that the voltage 40 of the second low voltage distribution system 14a is the wiring 4, 6, 8 It rises only by the amount that the voltage of is adjusted uniformly (voltage 40 → voltage 40b). Therefore, when the static power compensator 30 is not connected to the high-voltage distribution system 3 (FIG. 3A), the hosting capacity C1 up to the upper limit V2 of the management reference value is the static VAR compensator 30 to the high-voltage power distribution system 3. Is smaller than the hosting capacity C2 when is connected (FIG. 3 (b)). That is, when the invalid power compensation device 30 is connected to the high voltage distribution system 3, solar power generation which can be connected to the low voltage distribution system is compared with the case where the invalid power compensation device 30 is not connected to the high voltage distribution system 3. The number (quantity) of systems can be increased.

換言すると、高圧配電系統3に無効電力補償装置30が接続されていない場合、低圧配電系統に接続されている無効電力補償装置20容量を確保するため、発電所2から高圧配電系統3への出力を低下させることができない。太陽光発電システムからの逆潮流により配電系統(高圧配電系統,低圧配電系統)の電圧が過大になることを防止するため、配電系統に接続する太陽光システムの数を制限することが必要である。一方、高圧配電系統3に無効電力補償装置30が接続されている場合、各低圧配電系統12a,14a,16aの電圧を一定にすることができるので、発電所2から高圧配電系統3への出力を低下させることができる。その結果、配電系統に接続する太陽光システムの数を増加させることができる。 In other words, when the invalid power compensation device 30 is not connected to the high voltage distribution system 3, the output from the power plant 2 to the high voltage distribution system 3 in order to secure the capacity of the invalid power compensation device 20 connected to the low voltage distribution system. Cannot be reduced. It is necessary to limit the number of photovoltaic systems connected to the distribution system in order to prevent the voltage of the distribution system (high voltage distribution system, low voltage distribution system) from becoming excessive due to reverse power flow from the photovoltaic power generation system. .. On the other hand, when the invalid power compensation device 30 is connected to the high voltage distribution system 3, the voltage of each low voltage distribution system 12a, 14a, 16a can be made constant, so that the output from the power plant 2 to the high voltage distribution system 3 can be made constant. Can be reduced. As a result, the number of solar systems connected to the distribution system can be increased.

電圧管理システム10は、高圧配電系統3に配線4,6,8の電圧を等しくするための無効電力補償装置30を配置し、低圧配電系統12a,14a,16aに低圧配電系統12a,14a,16aの電圧変化を補償する無効電力補償装置20を配置することにより、低圧配電系統12a,14a,16aの電圧を管理基準値に保持するとともに、配電系統のホスティングキャパシティを確保することができる。 In the voltage management system 10, an ineffective power compensation device 30 for equalizing the voltages of the wirings 4, 6 and 8 is arranged in the high voltage distribution system 3, and the low voltage distribution systems 12a, 14a and 16a are arranged in the low voltage distribution systems 12a, 14a and 16a. By arranging the ineffective power compensating device 20 for compensating for the voltage change of the above, the voltage of the low voltage distribution system 12a, 14a, 16a can be maintained at the control reference value, and the hosting capacity of the distribution system can be secured.

以上、本発明の具体例を詳細に説明したが、これらは例示に過ぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。また、本明細書または図面に説明した技術要素は、単独であるいは各種の組合せによって技術的有用性を発揮するものであり、出願時請求項記載の組合せに限定されるものではない。また、本明細書または図面に例示した技術は複数目的を同時に達成し得るものであり、そのうちの一つの目的を達成すること自体で技術的有用性を持つものである。 Although specific examples of the present invention have been described in detail above, these are merely examples and do not limit the scope of claims. The techniques described in the claims include various modifications and modifications of the specific examples exemplified above. Further, the technical elements described in the present specification or the drawings exhibit technical usefulness alone or in various combinations, and are not limited to the combinations described in the claims at the time of filing. In addition, the techniques exemplified in the present specification or the drawings can achieve a plurality of purposes at the same time, and achieving one of the purposes itself has technical usefulness.

3:高圧配電系統
4:第1配線
6:第2配線
8:第3配線
10:電圧管理システム
12a,14a,16a:低圧配電系統
20:第2電圧調整器
30:第1電圧調整器
3: High voltage distribution system 4: 1st wiring 6: 2nd wiring 8: 3rd wiring 10: Voltage management system 12a, 14a, 16a: Low voltage distribution system 20: 2nd voltage regulator 30: 1st voltage regulator

Claims (2)

低圧配電系統の電圧を所定範囲内に保持するための電圧管理システムであって、
高圧配電系統の3相不平衡抑制制御を行う第1電圧調整装置と、
変圧器を介して高圧配電系統に接続されている低圧配電系統の電圧を一定にする制御を行う無効電力補償機能を有する第2電圧調整装置と、
を備えている電圧管理システム。
A voltage management system for keeping the voltage of a low-voltage distribution system within a predetermined range.
The first voltage regulator that controls the three-phase imbalance suppression of the high-voltage distribution system,
A second voltage regulator with a static power compensation function that controls the voltage of the low-voltage distribution system connected to the high-voltage distribution system via a transformer to be constant.
The voltage management system is equipped with.
高圧配電系統に複数の低圧配電系統が接続されており、
各々の低圧配電系統に、第2電圧調整装置が設けられている請求項1に記載の電圧管理システム。
Multiple low-voltage distribution systems are connected to the high-voltage distribution system,
The voltage management system according to claim 1, wherein a second voltage regulator is provided in each low voltage distribution system.
JP2020110755A 2020-06-26 2020-06-26 Voltage management system for low-voltage distribution system Pending JP2022007664A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020110755A JP2022007664A (en) 2020-06-26 2020-06-26 Voltage management system for low-voltage distribution system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020110755A JP2022007664A (en) 2020-06-26 2020-06-26 Voltage management system for low-voltage distribution system

Publications (1)

Publication Number Publication Date
JP2022007664A true JP2022007664A (en) 2022-01-13

Family

ID=80109958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020110755A Pending JP2022007664A (en) 2020-06-26 2020-06-26 Voltage management system for low-voltage distribution system

Country Status (1)

Country Link
JP (1) JP2022007664A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003209930A (en) * 2002-01-11 2003-07-25 Kansai Electric Power Co Inc:The Power distribution equipment model
JP2013031362A (en) * 2011-06-23 2013-02-07 Central Research Institute Of Electric Power Industry User voltage stabilization system in power distribution system
JP2016129474A (en) * 2015-01-09 2016-07-14 中部電力株式会社 Voltage imbalance suppression device
JP2019004530A (en) * 2017-06-09 2019-01-10 東洋電機製造株式会社 Control device for reactive power compensator
JP2019062660A (en) * 2017-09-27 2019-04-18 富士電機株式会社 Voltage adjusting device
JP2019106791A (en) * 2017-12-12 2019-06-27 一般財団法人電力中央研究所 Voltage control device, voltage control method, voltage control program, and evaluation device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003209930A (en) * 2002-01-11 2003-07-25 Kansai Electric Power Co Inc:The Power distribution equipment model
JP2013031362A (en) * 2011-06-23 2013-02-07 Central Research Institute Of Electric Power Industry User voltage stabilization system in power distribution system
JP2016129474A (en) * 2015-01-09 2016-07-14 中部電力株式会社 Voltage imbalance suppression device
JP2019004530A (en) * 2017-06-09 2019-01-10 東洋電機製造株式会社 Control device for reactive power compensator
JP2019062660A (en) * 2017-09-27 2019-04-18 富士電機株式会社 Voltage adjusting device
JP2019106791A (en) * 2017-12-12 2019-06-27 一般財団法人電力中央研究所 Voltage control device, voltage control method, voltage control program, and evaluation device

Similar Documents

Publication Publication Date Title
Molina et al. Power flow stabilization and control of microgrid with wind generation by superconducting magnetic energy storage
US7773395B2 (en) Uniform converter input voltage distribution power system
Hurley et al. The adverse effects of excitation system var and power factor controllers
US8972068B2 (en) Operation of a power generator in a power supply network
KR20120058021A (en) Control device for reactive power compansator of hvdc system and hvdc system having the same
US7847527B2 (en) Apparatus and method for improved power flow control in a high voltage network
CN110720165A (en) Method for operating a wind power plant
JP5367252B2 (en) AC voltage control method
Dwivedi et al. Reactive power sustainability and voltage stability with different FACTS devices using PSAT
Long et al. Volt-var optimization of distribution systems for coordinating utility voltage control with smart inverters
US20140167726A1 (en) Energy storage arrangement and alternating load consumer
Banjar-Nahor et al. Study on renewable penetration limits in a typical indonesian islanded microgrid considering the impact of variable renewables integration and the empowering flexibility on grid stability
Efkarpidis et al. Coordinated voltage control scheme for Flemish LV distribution grids utilizing OLTC transformers and D-STATCOM's
KR20180064670A (en) Converter of an inactive power compensator and method of controlling the same
Strzelecki et al. Distribution transformer with multi-zone voltage regulation for smart grid system application
Yan et al. Electric springs for improving transient stability of micro-grids in islanding operations
JP2022007664A (en) Voltage management system for low-voltage distribution system
Haesen et al. Hosting capacity for motor starting in weak grids
Hoang et al. State of charge balancing for distributed battery units based on adaptive virtual power rating in a DC microgrid
Bouzid et al. Secondary voltage and frequency restoration control of droop-controlled inverter-based microgrids
Firdaus et al. Stability enhancement of inverter based autonomous microgrid using electric spring
CN112003262B (en) Pseudo-hierarchical control method for direct-current micro-grid system under high photovoltaic permeability
Elhassaneen et al. Cooperative decentralized tertiary based control of DC microgrid with renewable distributed generation
Aboelsoud et al. Cooperative decentralized hierarchical based voltage control of DC microgrids
Hossain et al. Active power control in an islanded microgrid using DC link voltage status

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220325

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20220325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220419

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220608

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220927