JP2022007009A - Fertilization method to plant body by quantitative management method - Google Patents

Fertilization method to plant body by quantitative management method Download PDF

Info

Publication number
JP2022007009A
JP2022007009A JP2020109642A JP2020109642A JP2022007009A JP 2022007009 A JP2022007009 A JP 2022007009A JP 2020109642 A JP2020109642 A JP 2020109642A JP 2020109642 A JP2020109642 A JP 2020109642A JP 2022007009 A JP2022007009 A JP 2022007009A
Authority
JP
Japan
Prior art keywords
growth
culture solution
plant
time
period
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020109642A
Other languages
Japanese (ja)
Inventor
哲 木村
Satoshi Kimura
久志 坂東
Hisashi Bando
修平 飯塚
Shuhei Iizuka
純 羽鳥
Jun Hatori
智子 辻
Tomoko Tsuji
達 丸尾
Tatsu Maruo
祐史 山崎
Yuji Yamazaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yoshinoya Holdings Co Ltd
Original Assignee
Yoshinoya Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yoshinoya Holdings Co Ltd filed Critical Yoshinoya Holdings Co Ltd
Priority to JP2020109642A priority Critical patent/JP2022007009A/en
Publication of JP2022007009A publication Critical patent/JP2022007009A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a fertilization method to a plant body by a quantitative management method in which additional fertilization culture solution adapted for a growth stage can be supplied by determining growth conditions by artificial light and estimating a growth period.SOLUTION: A fertilization method has: a growth conditions determination step 1 of growing a plant body by artificial light, and determining growth conditions including at least light intensity, a light period time and a dark period time of artificial light; a growth period estimation step 2 of estimating a growth period from a settled planting time to cropping time of the plant body in the growth conditions; a fertilizing amount determination step 3 of zoning the growth period into a plurality of growth stages and determining a required amount of nutrient required by the plant body on each growth stage; an additional fertilization culture solution creating step 4 of adding a required amount of nutrient for each the growth stage to starter culture solution for the growth stage, and creating additional fertilization culture solution; and a fertilizer feeding step 5 of feeding additional fertilization culture solution to a culture solution space in which the plant body is arranged, for each prescribed time.SELECTED DRAWING: Figure 1

Description

本発明は、量的管理法による植物体への施肥方法に関する。 The present invention relates to a method of fertilizing a plant by a quantitative control method.

一般に植物工場における循環式養液栽培システムでは、EC(電気伝導度、Electric Conductivity)をもとに培養液濃度を一定に維持することで培養液成分を管理する濃度管理が行われている(濃度管理法)。
また、従来から植物体の生育ステージごとの養分要求量に応じて一定時間ごとに施肥をすることで培養液を管理する量的管理法がある。量的管理法では、植物体の養分必要量を安定的に供給できるため、培養液中の養分不足を防ぎ、植物体の養分吸収を安定させることが可能である。
これらの濃度管理法や量的管理法については、特許文献1にも記載されており、特許文献1では、量的管理法であれ濃度管理法であれ、基本的に、ある程度の生育段階までは作物の生育に応じて施肥量を増加させることが好ましいが、施肥量を作物の生育状態に応じてその都度変化させることは煩雑な作業であることを課題とし、作物の生育状態に応じた施肥量の管理を簡便且つ適切に行うことが可能な施肥制御装置及び施肥制御プログラムを提案している。
特許文献1では、作物の定植からの経過日数に応じて変化する施肥量データ列に基づいてその日の施肥量の設定を行うとともに、作業者が入力する生育アシスト情報により施肥量データ列と実際に栽培している作物の生育状態のズレを修正する。
Generally, in a circulating nutrient solution cultivation system in a plant factory, concentration control is performed to control the culture solution components by keeping the culture solution concentration constant based on EC (Electric Conductivity) (concentration). Management method).
Further, conventionally, there is a quantitative control method for managing a culture solution by applying fertilizer at regular intervals according to the nutrient requirement amount for each growth stage of a plant. In the quantitative management method, since the required amount of nutrients in the plant can be stably supplied, it is possible to prevent the shortage of nutrients in the culture solution and stabilize the absorption of nutrients in the plant.
These concentration control methods and quantitative control methods are also described in Patent Document 1, and in Patent Document 1, whether it is a quantitative control method or a concentration control method, basically, up to a certain growth stage. It is preferable to increase the amount of fertilizer applied according to the growth of the crop, but changing the amount of fertilizer each time according to the growth state of the crop is a complicated task, and fertilization according to the growth state of the crop is a problem. We are proposing a fertilizer application control device and a fertilizer application control program that can manage the amount easily and appropriately.
In Patent Document 1, the fertilizer application amount for the day is set based on the fertilizer application amount data string that changes according to the number of days elapsed from the planting of the crop, and the fertilizer application amount data string and the actual fertilizer application amount data string are actually set based on the growth assist information input by the worker. Correct the deviation of the growing condition of the cultivated crop.

特開2012-179006号公報Japanese Unexamined Patent Publication No. 2012-179006

しかし、特許文献1においても日々の施肥量設定を行う必要があるとともに作業者による修正を必要とする。 However, also in Patent Document 1, it is necessary to set the daily fertilizer application amount and to make corrections by the operator.

そこで本発明は、人工光による生育条件を決定することによって生育期間を推定することで、生育ステージに合わせた追肥培養液を供給できる量的管理法による植物体への施肥方法を提供することを目的とする。 Therefore, the present invention provides a method for fertilizing a plant by a quantitative control method capable of supplying a topdressing culture solution according to the growth stage by estimating the growth period by determining the growth condition by artificial light. The purpose.

請求項1記載の本発明の量的管理法による植物体への施肥方法は、植物体の生育ステージごとの養分の要求量に応じて所定時間ごとに施肥を行うことで培養液を管理する量的管理法による植物体への施肥方法であって、前記植物体を、人工光によって生育し、前記人工光の光強度、明期時間、及び暗期時間を少なくとも含む生育条件を決定する生育条件決定ステップ1と、前記生育条件決定ステップ1で決定された前記生育条件における前記植物体の定植時から収穫時までの生育期間を推定する生育期間推定ステップ2と、前記生育期間推定ステップ2で推定した前記生育期間を複数の前記生育ステージに区分し、それぞれの前記生育ステージで前記植物体が必要とする前記養分の前記要求量を決定する施肥量決定ステップ3と、前記施肥量決定ステップ3で決定した前記生育ステージ別の前記養分の前記要求量を、前記生育ステージに合わせて、スターター培養液に添加させ、追肥培養液を作成する追肥培養液作成ステップ4と、前記追肥培養液作成ステップ4で作成した前記追肥培養液を、前記所定時間ごとに、前記植物体を配置する培養液スペースに供給する施肥供給ステップ5とを有することを特徴とする。
請求項2記載の本発明は、請求項1に記載の量的管理法による植物体への施肥方法において、前記生育ステージを前記定植時からの第1決定時間で区分し、前記施肥供給ステップにおける前記所定時間を、前記第1決定時間よりも短い第2決定時間としたことを特徴とする。
請求項3記載の本発明は、請求項2に記載の量的管理法による植物体への施肥方法において、前記生育条件決定ステップ1で決定した1回の前記明期時間と1回の前記暗期時間との合計時間を前記第1決定時間とし、前記第2決定時間を、1回の前記明期時間を複数に区分して決定することを特徴とする。
請求項4記載の本発明は、請求項1から請求項3のいずれか1項に記載の量的管理法による植物体への施肥方法において、前記定植時から前記収穫時までの間、前記追肥培養液の前記養分の前記要求量が一定となるように、前記培養液スペースに、前記生育ステージを異ならせた第1植物体群から第N植物体群(Nは2以上の整数)を混在させることを特徴とする。
請求項5記載の本発明は、請求項1から請求項4のいずれか1項に記載の量的管理法による植物体への施肥方法において、前記植物体を、葉菜類、イチゴ、又はトマトとしたことを特徴とする。
請求項6記載の本発明は、請求項1から請求項5のいずれか1項に記載の量的管理法による植物体への施肥方法において、前記植物体をレタスとし、前記スターター培養液には、K、Mg2+、Ca2+、NO 、H2PO 及びSO 2-を含有し、前記追肥培養液には、K、NH 、Mg2+、Ca2+、NO 、HPO 及びSO 2-を含有させたことを特徴とする。
請求項7記載の本発明は、請求項1から請求項6のいずれか1項に記載の量的管理法による植物体への施肥方法において、前記スターター培養液、及び前記追肥培養液の培養液EC(電気伝導度、Electric Conductivity)を、1.4~0.1(dS・m-1)の範囲としたことを特徴とする。
請求項8記載の本発明は、請求項1から請求項7のいずれか1項に記載の量的管理法による植物体への施肥方法において、前記収穫時に近い前記生育ステージにおける前記培養液では、その他の前記生育ステージにおける前記培養液から一部の成分の含有量を減らし、又は一部の前記成分を除外することを特徴とする。
The method of fertilizing a plant according to the quantitative control method of the present invention according to claim 1 is an amount for controlling a culture solution by applying fertilizer at predetermined time intervals according to the required amount of nutrients for each growth stage of the plant. It is a method of fertilizing a plant by a specific management method, and is a growth condition in which the plant is grown by artificial light and the growth conditions including at least the light intensity, the light period time, and the dark period time of the artificial light are determined. Estimated by the determination step 1, the growth period estimation step 2 for estimating the growth period from the planting time to the harvest time of the plant under the growth conditions determined in the growth condition determination step 1, and the growth period estimation step 2. In the fertilizer application amount determination step 3 and the fertilizer application amount determination step 3 in which the growth period is divided into a plurality of the growth stages and the required amount of the nutrient required by the plant is determined in each of the growth stages. The topdressing culture solution preparation step 4 and the topdressing culture solution preparation step 4 in which the required amount of the nutrient for each growth stage determined is added to the starter culture solution in accordance with the growth stage to prepare a topdressing culture solution. It is characterized by having a fertilizer supply supply step 5 for supplying the topdressing culture solution prepared in 1 to the culture solution space in which the plant is arranged at the predetermined time intervals.
According to the second aspect of the present invention, in the method of fertilizing a plant by the quantitative control method according to the first aspect, the growth stage is classified by the first determination time from the time of planting, and the fertilizer application step. The predetermined time is set to a second determination time shorter than the first determination time.
According to the third aspect of the present invention, in the method of fertilizing a plant by the quantitative control method according to the second aspect, one time of the light period and one time of the darkness determined in the growth condition determination step 1. The total time with the period time is defined as the first determination time, and the second determination time is determined by dividing one time of the light period into a plurality of times.
The present invention according to claim 4 is the method of fertilizing a plant by the quantitative control method according to any one of claims 1 to 3, wherein the topdressing is performed from the time of planting to the time of harvesting. The first plant group to the Nth plant group (N is an integer of 2 or more) having different growth stages are mixed in the culture solution space so that the required amount of the nutrient in the culture solution becomes constant. It is characterized by letting it.
The present invention according to claim 5 uses the plant as a leaf vegetable, strawberry, or tomato in the method for fertilizing a plant according to the quantitative control method according to any one of claims 1 to 4. It is characterized by that.
The present invention according to claim 6 is a method for fertilizing a plant according to the quantitative control method according to any one of claims 1 to 5, wherein the plant is lettuce and the starter culture solution is used. , K + , Mg 2+ , Ca 2+ , NO 3 , H 2 PO 4 and SO 4-2 , and the topdressing culture medium contains K + , NH 4 + , Mg 2+ , Ca 2+ , NO 3 - , H 2 PO 4 - and SO 4-2- are contained.
The present invention according to claim 7 is the method for applying fertilizer to a plant by the quantitative control method according to any one of claims 1 to 6, wherein the starter culture solution and the top dressing culture solution are used. It is characterized in that the EC (Electric Conductivity) is in the range of 1.4 to 0.1 (dS ・ m -1 ).
The present invention according to claim 8 is the method for fertilizing a plant by the quantitative control method according to any one of claims 1 to 7, wherein the culture solution at the growth stage near the time of harvesting is used. It is characterized in that the content of some components is reduced or some of the components are excluded from the culture solution in other growth stages.

本発明によれば、人工光による生育条件を決定することで生育期間を推定し、推定した生育期間を区分した生育ステージ別に養分の要求量を決定することで、生育ステージに合わせた追肥培養液を植物体に与えることができる。 According to the present invention, the growth period is estimated by determining the growth conditions by artificial light, and the nutrient requirement amount is determined for each growth stage in which the estimated growth period is divided, so that the topdressing culture solution according to the growth stage is determined. Can be given to plants.

本発明の一実施例の量的管理法による植物体への施肥方法を示すフロー図The flow chart which shows the fertilization method to the plant body by the quantitative management method of one Example of this invention. レタスを用いた場合の生育条件と生育期間の関係を示す図The figure which shows the relationship between the growth condition and the growth period when lettuce is used. 生育ステージごとでの植物体が必要とする養分の要求量を示す図A diagram showing the amount of nutrients required by a plant for each growth stage. 生育ステージごとの養分の要求量を示す図Diagram showing nutrient requirements for each growth stage

本発明の第1の実施の形態の量的管理法による植物体への施肥方法は、植物体を、人工光によって生育し、人工光の光強度、明期時間、及び暗期時間を少なくとも含む生育条件を決定する生育条件決定ステップと、生育条件決定ステップで決定された生育条件における植物体の定植時から収穫時までの生育期間を推定する生育期間推定ステップと、生育期間推定ステップで推定した生育期間を複数の生育ステージに区分し、それぞれの生育ステージで植物体が必要とする養分の要求量を決定する施肥量決定ステップと、施肥量決定ステップで決定した生育ステージ別の養分の要求量を、生育ステージに合わせて、スターター培養液に添加させ、追肥培養液を作成する追肥培養液作成ステップと、追肥培養液作成ステップで作成した追肥培養液を、所定時間ごとに、植物体を配置する培養液スペースに供給する施肥供給ステップとを有するものである。
本実施の形態によれば、人工光による生育条件を決定することで生育期間を推定し、推定した生育期間を区分した生育ステージ別に養分の要求量を決定することで、生育ステージに合わせた追肥培養液を植物体に与えることができる。
The method of fertilizing a plant according to the quantitative control method according to the first embodiment of the present invention causes the plant to grow by artificial light and includes at least the light intensity, light period time, and dark period time of the artificial light. Estimated by the growth condition determination step that determines the growth condition, the growth period estimation step that estimates the growth period from the planting time to the harvest time of the plant under the growth condition determined in the growth condition determination step, and the growth period estimation step. The growth period is divided into a plurality of growth stages, and the fertilizer application amount determination step for determining the nutrient requirement required by the plant at each growth stage and the nutrient requirement amount for each growth stage determined in the fertilizer application amount determination step. Is added to the starter culture solution according to the growth stage, and the topdressing culture solution preparation step for creating the topdressing culture solution and the topdressing culture solution created in the topdressing culture solution preparation step are arranged at predetermined time intervals. It has a fertilizer application step to supply to the culture solution space to be supplied.
According to this embodiment, the growth period is estimated by determining the growth conditions by artificial light, and the nutrient requirement amount is determined for each growth stage in which the estimated growth period is divided, so that topdressing according to the growth stage is performed. The culture solution can be given to the plant body.

本発明の第2の実施の形態は、第1の実施の形態の量的管理法による植物体への施肥方法において、生育ステージを定植時からの第1決定時間で区分し、施肥供給ステップにおける所定時間を、第1決定時間よりも短い第2決定時間としたものである。
本実施の形態によれば、追肥培養液を、生育ステージごとに1回ではなく、生育ステージを複数回に分けて供給することで、培養液の濃度変化量を小さくすることができる。
In the second embodiment of the present invention, in the method of fertilizing a plant by the quantitative control method of the first embodiment, the growth stage is divided by the first determination time from the time of planting, and in the fertilization supply step. The predetermined time is defined as the second determination time, which is shorter than the first determination time.
According to this embodiment, the amount of change in the concentration of the culture solution can be reduced by supplying the topdressing culture solution not once for each growth stage but in a plurality of growth stages.

本発明の第3の実施の形態は、第2の実施の形態の量的管理法による植物体への施肥方法において、生育条件決定ステップで決定した1回の明期時間と1回の暗期時間との合計時間を第1決定時間とし、第2決定時間を、1回の明期時間を複数に区分して決定するものである。
本実施の形態によれば、生育ステージの生育条件を、明期時間と暗期時間とで決め、更に供給タイミングを明期時間に合わせて複数回に区分することで、植物体の養分吸収量に合わせた供給タイミングを決定することができ、必要最低限の養分供給量とすることができる。
In the third embodiment of the present invention, in the method of fertilizing a plant by the quantitative control method of the second embodiment, one light period and one dark period determined in the growth condition determination step. The total time with the time is defined as the first determination time, and the second determination time is determined by dividing one light period time into a plurality of times.
According to the present embodiment, the growth conditions of the growth stage are determined by the light period time and the dark period time, and the supply timing is further divided into a plurality of times according to the light period time, so that the amount of nutrients absorbed by the plant is absorbed. The supply timing can be determined according to the above, and the minimum required nutrient supply amount can be obtained.

本発明の第4の実施の形態は、第1から第3のいずれかの実施の形態の量的管理法による植物体への施肥方法において、定植時から収穫時までの間、追肥培養液の養分の要求量が一定となるように、培養液スペースに、生育ステージを異ならせた第1植物体群から第N植物体群(Nは2以上の整数)を混在させるものである。
本実施の形態によれば、生育ステージに応じて追肥培養液を作る必要が無く常に一定の成分濃度の追肥培養液を用いることができる。
The fourth embodiment of the present invention is the method of fertilizing a plant by the quantitative control method of any one of the first to the third embodiments, in which the topdressing culture solution is prepared from the time of planting to the time of harvesting. In order to keep the required amount of nutrients constant, the first to Nth plant groups (N is an integer of 2 or more) having different growth stages are mixed in the culture solution space.
According to this embodiment, it is not necessary to prepare a top dressing culture solution according to the growth stage, and a top dressing culture solution having a constant component concentration can always be used.

本発明の第5の実施の形態は、第1から第4のいずれかの実施の形態の量的管理法による植物体への施肥方法において、植物体を、葉菜類、イチゴ、又はトマトとしたものである。
本実施の形態によれば、葉菜類、イチゴ、又はトマトに適用することで適切な施肥を行うことができる。
In the fifth embodiment of the present invention, the plant body is a leafy vegetable, strawberry, or tomato in the method of fertilizing the plant body by the quantitative control method of any one of the first to fourth embodiments. Is.
According to this embodiment, appropriate fertilization can be performed by applying it to leafy vegetables, strawberries, or tomatoes.

本発明の第6の実施の形態は、第1から第5のいずれかの実施の形態の量的管理法による植物体への施肥方法において、植物体をレタスとし、スターター培養液には、K、Mg2+、Ca2+、NO 、H2PO 及びSO 2-を含有し、追肥培養液には、K、NH 、Mg2+、Ca2+、NO 、HPO 及びSO 2-を含有させたものである。
本実施の形態によれば、レタスに適した追肥培養液とすることができる。
In the sixth embodiment of the present invention, in the method of fertilizing a plant body by the quantitative control method of any one of the first to fifth embodiments, the plant body is used as lettuce, and the starter culture solution contains K. + , Mg 2+ , Ca 2+ , NO 3 , H 2 PO 4 and SO 4 2- are contained, and the top dressing culture medium contains K + , NH 4 + , Mg 2+ , Ca 2+ , NO 3 , H. 2 It contains PO 4-2 and SO 4-2 .
According to this embodiment, a topdressing culture solution suitable for lettuce can be obtained.

本発明の第7の実施の形態は、第1から第6のいずれかの実施の形態の量的管理法による植物体への施肥方法において、スターター培養液、及び追肥培養液の培養液EC(電気伝導度、Electric Conductivity)を、1.4~0.1(dS・m-1)の範囲としたものである。
本実施の形態によれば、低濃度の培養液で十分な施肥を行える。
A seventh embodiment of the present invention is a method for applying fertilizer to a plant according to the quantitative control method of any one of the first to sixth embodiments, wherein the starter culture solution and the culture solution EC of the topdressing culture solution are used. The electrical conductivity (Electric Conductivity) is in the range of 1.4 to 0.1 (dSm- 1 ).
According to this embodiment, sufficient fertilization can be performed with a low-concentration culture solution.

本発明の第8の実施の形態は、第1から第7のいずれかの実施の形態の量的管理法による植物体への施肥方法において、収穫時に近い生育ステージにおける培養液では、その他の生育ステージにおける培養液から一部の成分の含有量を減らし、又は一部の成分を除外するものである。
本実施の形態によれば、例えば、硝酸態窒素が少ない野菜、又はおいしい野菜のように、目的に合わせた栽培ができる。
Eighth embodiment of the present invention is the method of fertilizing a plant by the quantitative control method of any one of the first to seventh embodiments, in which other growth is carried out in the culture medium at the growth stage near the time of harvest. The content of some components is reduced or some components are excluded from the culture medium at the stage.
According to this embodiment, for example, vegetables having a low nitrate nitrogen content or delicious vegetables can be cultivated according to the purpose.

以下本発明の一実施例の量的管理法による植物体への施肥方法について説明する。
図1は本実施例の量的管理法による植物体への施肥方法を示すフロー図である。
Hereinafter, a method of fertilizing a plant by a quantitative control method according to an embodiment of the present invention will be described.
FIG. 1 is a flow chart showing a method of fertilizing a plant body by the quantitative management method of this embodiment.

本実施例の施肥方法は、植物体を人工光によって生育し、植物体の生育ステージごとの養分の要求量に応じて所定時間ごとに施肥を行うことで培養液を管理する。
本実施例の施肥方法は、生育条件決定ステップ1と、生育期間推定ステップ2と、施肥量決定ステップ3と、追肥培養液作成ステップ4と、施肥供給ステップ5とを有する。
生育条件決定ステップ1では、人工光の光強度、明期時間、及び暗期時間を少なくとも含む生育条件を決定する。
生育期間推定ステップ2では、生育条件決定ステップ1で決定された生育条件における植物体の定植時から収穫時までの生育期間を推定する。
施肥量決定ステップ3では、生育期間推定ステップ2で推定した生育期間を複数の生育ステージに区分し、それぞれの生育ステージで植物体が必要とする養分の要求量を決定する。
追肥培養液作成ステップ4では、施肥量決定ステップ3で決定した生育ステージ別の養分の要求量を、生育ステージに合わせて、スターター培養液に添加させ、追肥培養液を作成する。
施肥供給ステップ5では、追肥培養液作成ステップ4で作成した追肥培養液を、所定時間ごとに、植物体を配置する培養液スペースに供給する。
In the fertilization method of this embodiment, the culture solution is managed by growing the plant body by artificial light and applying fertilizer at predetermined time intervals according to the nutrient requirement for each growth stage of the plant body.
The fertilizer application method of this embodiment includes a growth condition determination step 1, a growth period estimation step 2, a fertilizer application amount determination step 3, a topdressing culture solution preparation step 4, and a fertilizer application supply step 5.
In the growth condition determination step 1, the growth conditions including at least the light intensity of the artificial light, the light period time, and the dark period time are determined.
In the growth period estimation step 2, the growth period from the time of planting to the time of harvest of the plant under the growth conditions determined in the growth condition determination step 1 is estimated.
In the fertilizer application amount determination step 3, the growth period estimated in the growth period estimation step 2 is divided into a plurality of growth stages, and the required amount of nutrients required by the plant at each growth stage is determined.
In the top dressing culture solution preparation step 4, the required amount of nutrients for each growth stage determined in the fertilizer application amount determination step 3 is added to the starter culture solution according to the growth stage to prepare the top dressing culture solution.
In the fertilizer application supply step 5, the top dressing culture solution prepared in the top dressing culture solution preparation step 4 is supplied to the culture solution space in which the plants are arranged at predetermined time intervals.

このように、人工光による生育条件を決定することで生育期間を推定し、推定した生育期間を区分した生育ステージ別に養分の要求量を決定することで、生育ステージに合わせた追肥培養液を植物体に与えることができる。
例えば、レタスとして「フリルアイス(雪印種苗)」を用いた場合には、生育条件を、気温21℃、CO濃度1,500μmol・mol-1、明期/暗期16/8h、PPFD 200μmol・m-2・s-1とし、一次育苗は16~17日間、その後、11~12日間二次育苗を行った場合には、定植から収穫までの生育期間は12、13日間であった。
レタスを用いた場合の生育条件と生育期間の関係を図2に示す。
このように、生育条件を決定すると、生育期間を推定することができる。
In this way, the growth period is estimated by determining the growth conditions by artificial light, and the nutrient requirement amount is determined for each growth stage in which the estimated growth period is divided, so that the topdressing culture solution suitable for the growth stage can be obtained from the plant. Can be given to the body.
For example, when "frill ice (Snow Brand Seed)" is used as the lettuce, the growth conditions are as follows: temperature 21 ° C., CO 2 concentration 1,500 μmol · mol -1 , light / dark period 16 / 8h, PPFD 200 μmol ·. When m -2 and s -1 were used, the primary seedlings were raised for 16 to 17 days, and then the secondary seedlings were raised for 11 to 12 days, the growth period from planting to harvest was 12 to 13 days.
Figure 2 shows the relationship between the growing conditions and the growing period when lettuce is used.
By determining the growth conditions in this way, the growth period can be estimated.

図3は、生育ステージごとでの植物体が必要とする養分の要求量を示す図である。
図3では、植物体としてレタス「フリルアイス(雪印種苗)」を用い、生育期間が12日の場合で、各生育ステージを1日としている。
図3に示すように、12日の生育期間を、1日毎の生育ステージに区分し、それぞれの生育ステージで植物体が必要とする養分の要求量を決定することができる。従って、決定した生育ステージ別の養分の要求量を、生育ステージに合わせて、スターター培養液に添加させることができる。
FIG. 3 is a diagram showing the required amount of nutrients required by the plant at each growth stage.
In FIG. 3, lettuce "frill ice (Snow Brand Seed)" is used as a plant, and the growth period is 12 days, and each growth stage is 1 day.
As shown in FIG. 3, the 12-day growth period can be divided into daily growth stages, and the amount of nutrients required by the plant can be determined at each growth stage. Therefore, the determined amount of nutrients required for each growth stage can be added to the starter culture solution according to the growth stage.

生育ステージは、定植時からの第1決定時間(例えば24H)で区分し、施肥供給ステップ5における所定時間を、第1決定時間よりも短い第2決定時間とする。
このように、追肥培養液を、生育ステージ(例えば1日)ごとに1回ではなく、生育ステージ(例えば1日)を複数回に分けて供給することで培養液の濃度変化量を小さくすることができる。
第1決定時間(例えば24H)を、生育条件決定ステップ1で決定した1回の明期時間(例えば16H)と1回の暗期時間(例えば8H)との合計時間とし、第2決定時間を、1回の明期時間を複数(例えば4回)に区分して決定する(例えば4Hに決定する)。
このように、生育ステージの生育条件を、明期時間と暗期時間とで決め、更に供給タイミングを明期時間に合わせて複数回に区分することで、植物体の養分吸収量に合わせた供給タイミングを決定することができ、必要最低限の養分供給量とすることができる。
The growth stage is divided by the first determination time (for example, 24H) from the time of planting, and the predetermined time in the fertilization supply step 5 is set as the second determination time shorter than the first determination time.
In this way, the amount of change in the concentration of the culture solution is reduced by supplying the topdressing culture solution not once for each growth stage (for example, one day) but for each growth stage (for example, one day) in a plurality of times. Can be done.
The first determination time (for example, 24H) is the total time of one light period time (for example, 16H) and one dark period time (for example, 8H) determined in the growth condition determination step 1, and the second determination time is defined as. One light period time is divided into a plurality of (for example, 4 times) and determined (for example, 4H is determined).
In this way, the growth conditions of the growth stage are determined by the light period time and the dark period time, and the supply timing is further divided into multiple times according to the light period time, so that the supply is matched to the nutrient absorption amount of the plant. The timing can be determined and the minimum required nutrient supply can be achieved.

定植時から収穫時までの間、追肥培養液の養分の要求量が一定となるように、培養液スペースに、生育ステージを異ならせた第1植物体群から第N植物体群(Nは2以上の整数)を混在させることで、生育ステージに応じて追肥培養液を作る必要が無く常に一定の成分濃度の追肥培養液を用いることができる。 From the time of planting to the time of harvesting, the first to Nth plant groups (N is 2) in different growth stages in the culture solution space so that the nutrient requirement of the topdressing culture solution is constant. By mixing the above integers), it is not necessary to prepare a topdressing culture medium according to the growth stage, and a topdressing culture medium having a constant component concentration can always be used.

図4は生育ステージごとの養分の要求量を示す図であり、図4(a)は1日当たり24株ずつ新たに定植した場合の養分の要求量、図4(b)は288株を同時に定植した場合の養分の要求量を示している。
図4では、植物体としてレタス「フリルアイス(雪印種苗)」を用い、生育期間が12日の場合で、各生育ステージを1日としている。
FIG. 4 is a diagram showing the required amount of nutrients for each growth stage, FIG. 4 (a) shows the required amount of nutrients when 24 new plants are planted per day, and FIG. 4 (b) shows the required amount of nutrients when 288 plants are planted at the same time. It shows the required amount of nutrients when
In FIG. 4, lettuce "frill ice (Snow Brand Seed)" is used as a plant, and the growth period is 12 days, and each growth stage is 1 day.

図4(a)では、13日目では定植1日目の28株を収穫するが、新たに28株定植するため、11日目までは養分の要求量は増加するが、12日目以降は12日目の養分と同じ要求量となる。
図4(b)では、同時に288株を定植するため、生育ステージに応じて養分の要求量は増加する。
植物体をレタスとした場合には、スターター培養液には、K、Mg2+、Ca2+、NO 、H2PO 及びSO 2-を含有し、追肥培養液には、K、NH 、Mg2+、Ca2+、NO 、HPO 及びSO 2-を含有させる。なお、収穫時に近い生育ステージにおける培養液では、その他の生育ステージにおける培養液から一部の成分の含有量を減らし、又は一部の成分を除外することで、例えば、硝酸態窒素が少ない野菜、又はおいしい野菜のように、目的に合わせた栽培ができる。
レタスを用いた実験結果では、スターター培養液、及び追肥培養液の培養液EC(電気伝導度、Electric Conductivity)を、1.4~0.1(dS・m-1)の範囲とすることができ、低濃度の培養液で十分な施肥を行える。
In FIG. 4A, 28 plants are harvested on the first day of planting on the 13th day, but since 28 new plants are planted, the nutrient requirement increases until the 11th day, but after the 12th day, the nutrient requirement increases. The required amount is the same as the nutrient on the 12th day.
In FIG. 4 (b), since 288 strains are planted at the same time, the amount of nutrients required increases depending on the growth stage.
When the plant is lettuce, the starter culture medium contains K + , Mg 2+ , Ca 2+ , NO 3- , H 2 PO 4- and SO 4-2 , and the top dressing culture solution contains K. It contains + , NH 4+ , Mg 2+ , Ca 2+ , NO 3- , H 2 PO 4- and SO 4-2 . In addition, in the culture solution at the growth stage near the time of harvest, by reducing the content of some components or excluding some components from the culture solution at other growth stages, for example, vegetables with low nitrate nitrogen. Or, like delicious vegetables, it can be cultivated according to the purpose.
According to the experimental results using lettuce, the culture solution EC (Electric Conductivity) of the starter culture solution and the top dressing culture solution can be in the range of 1.4 to 0.1 (dS ・ m -1 ). It is possible to apply sufficient fertilizer with a low-concentration culture solution.

図4(a)では、幅120cm、長さ720cmの培養液槽に、スターター培養液を培養液槽底面から3cmの高さとなるように貯留して、幅30cm、長さ60cmの栽培パネルに6株のレタスを定植し、12日までは1日4パネル(24株)ずつ培養液槽に浮かべて栽培し、13日目からは1日4パネル(24株)ずつ培養液槽に浮かべて栽培するとともに、1日4パネル(24株)ずつ収穫する。養液槽の総培養液量は、計算上約260Lであるが、栽培パネルを浮かべることで培養液槽中の培養液の一部(およそ50L程度)はオーバーフローして減少するが、培養液槽とは別に培養液循環タンク(およそ50L)を設ける必要があるので、総液量はおよそ260L程度となる。この場合では、スターター培養液のECはEC0.7(dS・m-1)程度であり、追肥培養液のECはEC0.1.4(dS・m-1)程度であった。
なお、本実施例の量的管理法による植物体への施肥方法は、植物体として、葉菜類、イチゴ、又はトマトに適用できる。
In FIG. 4A, the starter culture solution is stored in a culture solution tank having a width of 120 cm and a length of 720 cm so as to be at a height of 3 cm from the bottom surface of the culture solution tank, and 6 in a cultivation panel having a width of 30 cm and a length of 60 cm. Strains of lettuce are planted and cultivated by floating 4 panels (24 strains) per day in the culture solution tank until the 12th, and from the 13th day, they are cultivated by floating 4 panels (24 strains) per day in the culture solution tank. At the same time, 4 panels (24 strains) are harvested daily. The total amount of culture solution in the nutrient solution tank is calculated to be about 260 L, but a part of the culture solution (about 50 L) in the culture solution tank overflows and decreases by floating the cultivation panel, but the culture solution tank Since it is necessary to provide a culture solution circulation tank (about 50 L) separately, the total amount of the solution is about 260 L. In this case, the EC of the starter culture solution was about EC 0.7 (dS ・ m -1 ), and the EC of the topdressing culture solution was about EC0.1.4 (dS ・ m -1 ).
The method of fertilizing a plant by the quantitative management method of this example can be applied to leafy vegetables, strawberries, or tomatoes as a plant.

本発明は、LEDなどの人工光を用いた水耕栽培に利用できる。 The present invention can be used for hydroponics using artificial light such as LED.

1 生育条件決定ステップ
2 生育期間推定ステップ
3 施肥量決定ステップ
4 追肥培養液作成ステップ
5 施肥供給ステップ
1 Growth condition determination step 2 Growth period estimation step 3 Fertilization amount determination step 4 Topdressing culture solution preparation step 5 Fertilization supply step

Claims (8)

植物体の生育ステージごとの養分の要求量に応じて所定時間ごとに施肥を行うことで培養液を管理する量的管理法による植物体への施肥方法であって、
前記植物体を、人工光によって生育し、
前記人工光の光強度、明期時間、及び暗期時間を少なくとも含む生育条件を決定する生育条件決定ステップと、
前記生育条件決定ステップで決定された前記生育条件における前記植物体の定植時から収穫時までの生育期間を推定する生育期間推定ステップと、
前記生育期間推定ステップで推定した前記生育期間を複数の前記生育ステージに区分し、それぞれの前記生育ステージで前記植物体が必要とする前記養分の前記要求量を決定する施肥量決定ステップと、
前記施肥量決定ステップで決定した前記生育ステージ別の前記養分の前記要求量を、前記生育ステージに合わせて、スターター培養液に添加させ、追肥培養液を作成する追肥培養液作成ステップと、
前記追肥培養液作成ステップで作成した前記追肥培養液を、前記所定時間ごとに、前記植物体を配置する培養液スペースに供給する施肥供給ステップと
を有する
ことを特徴とする量的管理法による植物体への施肥方法。
It is a method of fertilizing plants by a quantitative management method that manages the culture solution by applying fertilizer at predetermined time intervals according to the amount of nutrients required for each growth stage of the plant.
The plant is grown by artificial light and
A growth condition determination step for determining a growth condition including at least the light intensity, light period time, and dark period time of the artificial light, and
A growth period estimation step for estimating the growth period from the time of planting to the time of harvest of the plant under the growth conditions determined in the growth condition determination step, and
A fertilizer application amount determination step in which the growth period estimated in the growth period estimation step is divided into a plurality of the growth stages, and the required amount of the nutrient required by the plant in each of the growth stages is determined.
The top dressing culture solution preparation step of adding the required amount of the nutrient for each growth stage determined in the fertilizer application amount determination step to the starter culture solution in accordance with the growth stage to prepare the top dressing culture solution, and the top dressing culture solution preparation step.
A plant according to a quantitative management method, which comprises a fertilizer supply step of supplying the topdressing culture solution prepared in the topdressing culture solution preparation step to the culture medium space in which the plant body is arranged at the predetermined time intervals. How to apply fertilizer to the body.
前記生育ステージを前記定植時からの第1決定時間で区分し、
前記施肥供給ステップにおける前記所定時間を、前記第1決定時間よりも短い第2決定時間とした
ことを特徴とする請求項1に記載の量的管理法による植物体への施肥方法。
The growth stage is divided by the first determination time from the time of planting.
The method for fertilizing a plant according to the quantitative control method according to claim 1, wherein the predetermined time in the fertilization supply step is set to a second determination time shorter than the first determination time.
前記生育条件決定ステップで決定した1回の前記明期時間と1回の前記暗期時間との合計時間を前記第1決定時間とし、
前記第2決定時間を、1回の前記明期時間を複数に区分して決定する
ことを特徴とする請求項2に記載の量的管理法による植物体への施肥方法。
The total time of one light period time and one dark period time determined in the growth condition determination step is defined as the first determination time.
The method for fertilizing a plant by the quantitative control method according to claim 2, wherein the second determination time is determined by dividing one light period time into a plurality of divisions.
前記定植時から前記収穫時までの間、前記追肥培養液の前記養分の前記要求量が一定となるように、
前記培養液スペースに、前記生育ステージを異ならせた第1植物体群から第N植物体群(Nは2以上の整数)を混在させる
ことを特徴とする請求項1から請求項3のいずれか1項に記載の量的管理法による植物体への施肥方法。
From the time of planting to the time of harvesting, the required amount of the nutrient in the topdressing culture solution is constant.
Any of claims 1 to 3, wherein the culture solution space is mixed with the first plant group to the Nth plant group (N is an integer of 2 or more) having different growth stages. A method for fertilizing a plant by the quantitative management method described in item 1.
前記植物体を、葉菜類、イチゴ、又はトマトとした
ことを特徴とする請求項1から請求項4のいずれか1項に記載の量的管理法による植物体への施肥方法。
The method for fertilizing a plant by the quantitative management method according to any one of claims 1 to 4, wherein the plant is a leafy vegetable, a strawberry, or a tomato.
前記植物体をレタスとし、
前記スターター培養液には、K、Mg2+、Ca2+、NO 、H2PO 及びSO 2-を含有し、
前記追肥培養液には、K、NH 、Mg2+、Ca2+、NO 、HPO 及びSO 2-を含有させた
ことを特徴とする請求項1から請求項5のいずれか1項に記載の量的管理法による植物体への施肥方法。
Lettuce is used as the plant.
The starter culture medium contains K + , Mg 2+ , Ca 2+ , NO 3- , H 2 PO 4- and SO 4-2 .
Claims 1 to 5 are characterized in that the topdressing culture solution contains K + , NH 4+ , Mg 2+ , Ca 2+ , NO 3- , H 2 PO 4- , and SO 4-2 . A method for fertilizing a plant by the quantitative management method according to any one of the above items.
前記スターター培養液、及び前記追肥培養液の培養液EC(電気伝導度、Electric Conductivity)を、1.4~0.1(dS・m-1)の範囲とした
ことを特徴とする請求項1から請求項6のいずれか1項に記載の量的管理法による植物体への施肥方法。
Claim 1 is characterized in that the culture solution EC (electric conductivity, Electric Conductivity) of the starter culture solution and the topdressing culture solution is in the range of 1.4 to 0.1 (dSm- 1 ). A method for fertilizing a plant by the quantitative management method according to any one of claims 6.
前記収穫時に近い前記生育ステージにおける前記培養液では、その他の前記生育ステージにおける前記培養液から一部の成分の含有量を減らし、又は一部の前記成分を除外することを特徴とする請求項1から請求項7のいずれか1項に記載の量的管理法による植物体への施肥方法。 Claim 1 is characterized in that, in the culture solution at the growth stage near the time of harvesting, the content of some components is reduced or some of the components are excluded from the culture solution at the other growth stages. A method for fertilizing a plant by the quantitative management method according to any one of claims 7.
JP2020109642A 2020-06-25 2020-06-25 Fertilization method to plant body by quantitative management method Pending JP2022007009A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020109642A JP2022007009A (en) 2020-06-25 2020-06-25 Fertilization method to plant body by quantitative management method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020109642A JP2022007009A (en) 2020-06-25 2020-06-25 Fertilization method to plant body by quantitative management method

Publications (1)

Publication Number Publication Date
JP2022007009A true JP2022007009A (en) 2022-01-13

Family

ID=80111118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020109642A Pending JP2022007009A (en) 2020-06-25 2020-06-25 Fertilization method to plant body by quantitative management method

Country Status (1)

Country Link
JP (1) JP2022007009A (en)

Similar Documents

Publication Publication Date Title
US5130925A (en) Apparatus and method for economical continuous, and predictable greenhouse crop production
ATE556585T1 (en) METHOD FOR CULTIVATION OF PLANTS
Badr et al. Effect of fertigation frequency from subsurface drip irrigation on tomato yield grown on sandy soil
Voogt et al. Nutrient management in organic greenhouse production: navigation between constraints
Eissa Nutrition of drip irrigated corn by phosphorus under sandy calcareous soils
Bergstrand et al. Dynamics of nitrogen availability in pot grown crops with organic fertilization
Tan et al. Effects of root-zone temperature on the root development and nutrient uptake of Lactuca sativa L.“Panama” grown in an aeroponic system in the tropics
JP6008535B2 (en) Plant growth method by hydroponics
Kinoshita et al. Effects of controlled-release fertilizer on leaf area index and fruit yield in high-density soilless tomato culture using low node-order pinching
Sharma et al. Pan evaporation and sensor based approaches of irrigation scheduling for crop water requirement, growth and yield of okra
Papadopoulos et al. Tomato production in open or closed rockwool culture systems with NFT or rockwool nutrient feedings
CN108353599B (en) Organic material quantitative recommended fertilization method for preventing and treating non-point source pollution of vegetable field
JP7072711B1 (en) Fertilization method for plants by quantitative management method
JP2022007009A (en) Fertilization method to plant body by quantitative management method
CN103650730B (en) Method for carrying out fertilizer application in accordance with crop projection area and plant height
Olzhabayeva et al. Effect of Irrigation and Fertilizers on Rice Yield in Conditions of Kyzylorda Irrigation Array
Jaswal et al. Effect of drip irrigation and NK fertigation on soil water dynamics and water productivity of strawberry under protected conditions
Chabite et al. Mode of managing nutrient solution based on N use efficiency for lettuce (Lactuca sativa L.)
Papadopoulos Seasonal fertigation schedules for greenhouse tomatoes-concepts and delivery systems
Ting et al. Decision support system for single truss tomato production
Kläring et al. Control of nutrient solution concentration depending on greenhouse climate in a sweet pepper crop
Kailashkumar et al. Hydroponic Cultivation: Factors Affecting Its Success and Efficacy
Khalsa et al. Principles of Nitrogen Cycling and Management
Tüzel et al. Evapotranspiration of tomato plants grown in different soilless culture systems
Fisher et al. The nutrition of tomato cell transplants