JP2022006931A - Method of producing fiber-reinforced resin composition - Google Patents

Method of producing fiber-reinforced resin composition Download PDF

Info

Publication number
JP2022006931A
JP2022006931A JP2020109520A JP2020109520A JP2022006931A JP 2022006931 A JP2022006931 A JP 2022006931A JP 2020109520 A JP2020109520 A JP 2020109520A JP 2020109520 A JP2020109520 A JP 2020109520A JP 2022006931 A JP2022006931 A JP 2022006931A
Authority
JP
Japan
Prior art keywords
fiber
extruder
resin composition
reinforced resin
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020109520A
Other languages
Japanese (ja)
Other versions
JP7437106B2 (en
Inventor
佳宏 前田
Yoshihiro Maeda
藍子 納谷
Aiko Naya
好秀 片桐
Yoshihide Katagiri
隆行 平井
Takayuki Hirai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Auto Body Co Ltd
Toyota Central R&D Labs Inc
Original Assignee
Toyota Auto Body Co Ltd
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Auto Body Co Ltd, Toyota Central R&D Labs Inc filed Critical Toyota Auto Body Co Ltd
Priority to JP2020109520A priority Critical patent/JP7437106B2/en
Publication of JP2022006931A publication Critical patent/JP2022006931A/en
Application granted granted Critical
Publication of JP7437106B2 publication Critical patent/JP7437106B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

To mix and knead cellulosic fibers into resin while fibrillating the fibers more appropriately by efficiently using an extruder.SOLUTION: The method of producing a fiber-reinforced resin composition 10 includes a step of mixing and kneading cellulosic fibers 12 and resin 14 by a single extruder (2), in which a region where mixing and kneading can be performed by the extruder (2) is divided into two regions of an upstream region 20 and a downstream region 30 in an extruding direction, and the resin 14 in a molten state is extruded into each of the upstream region 20 and downstream region 30.SELECTED DRAWING: Figure 1

Description

本発明は、繊維強化樹脂組成物の製造方法に関する。 The present invention relates to a method for producing a fiber reinforced resin composition.

この種の繊維強化樹脂組成物は、優れた強度を備えているため、自動車などの多分野で利用されている。そして繊維強化樹脂組成物の製造に際しては、押出機を使用して樹脂と繊維を混練し、この混練物を所定の形状に成形することが多い。例えば特許文献1では、二軸押出機の上流側からガラス繊維と熱可塑性樹脂を投入し、この二軸押出機の中で熱可塑性樹脂を溶融させながらガラス繊維と混練している。 Since this type of fiber-reinforced resin composition has excellent strength, it is used in various fields such as automobiles. When producing a fiber-reinforced resin composition, the resin and the fiber are often kneaded using an extruder, and the kneaded product is often formed into a predetermined shape. For example, in Patent Document 1, glass fiber and a thermoplastic resin are charged from the upstream side of the twin-screw extruder, and the thermoplastic resin is melted and kneaded with the glass fiber in the twin-screw extruder.

特開平11-92672号公報Japanese Unexamined Patent Publication No. 11-92672

ところで繊維強化樹脂組成物の分野では、無機系の素材に代わる素材としてセルロース系繊維が注目されている。そして繊維強化樹脂組成物の強度は、セルロース系繊維の解繊性と相関的な関係にあり、セルロース系繊維が樹脂中で細かく解繊されているほど当該組成物の強度が向上する(図3、図4及び[表1]を参照)。このためセルロース系繊維を使用する場合には、所望の強度を確保する観点等から、セルロース系繊維を可能な限り細かく解繊しつつ樹脂と混練することが望ましい。例えば押出機のスクリューのせん断力によってセルロース系繊維を解繊することが考えられるが、このときスクリュー長が不足していた場合には、セルロース系繊維の解繊が十分に進まないおそれがある。もっともスクリュー長の長い専用の押出機を用いるなどして対応することもできるが、専用の押出機の導入は、繊維強化樹脂組成物の製造コストの増加を招きかねない。本発明は上述の点に鑑みて創案されたものであり、本発明が解決しようとする課題は、押出機を効率良く使用して、セルロース系繊維をより適切に解繊しつつ樹脂と混練することにある。 By the way, in the field of fiber reinforced resin compositions, cellulosic fibers are attracting attention as a material to replace inorganic materials. The strength of the fiber-reinforced resin composition correlates with the defibration property of the cellulosic fiber, and the finer the defibration of the cellulosic fiber in the resin, the higher the strength of the composition (FIG. 3). , Figure 4 and [Table 1]). Therefore, when a cellulosic fiber is used, it is desirable to knead the cellulosic fiber with the resin while defibrating it as finely as possible from the viewpoint of ensuring the desired strength. For example, it is conceivable to defibrate the cellulosic fibers by the shearing force of the screw of the extruder, but if the screw length is insufficient at this time, the defibration of the cellulosic fibers may not proceed sufficiently. Although it is possible to use a dedicated extruder with a long screw length, the introduction of a dedicated extruder may lead to an increase in the manufacturing cost of the fiber-reinforced resin composition. The present invention was invented in view of the above points, and the problem to be solved by the present invention is to efficiently use an extruder to knead the cellulosic fibers with the resin while defibrating them more appropriately. There is something in it.

上記課題を解決するための手段として、第1発明の繊維強化樹脂組成物の製造方法は、セルロース系繊維と樹脂とを混練する工程を、単数の押出機で行う。この種の製造方法では、押出機を効率良く使用して、セルロース系繊維をより適切に解繊しつつ樹脂と混練できることが望ましい。そこで本発明では、押出機の混練可能な領域を、その押出方向において上流領域と下流領域の二領域に分け、上流領域と下流領域に、各々、溶融状態の樹脂を投入する。本発明では、溶融状態の樹脂を上流領域と下流領域の双方に直接投入することにより、押出機の混練可能な領域に樹脂を溶融するための領域を設ける必要がない。このため本発明によれば、上流領域を、専らセルロース系繊維の解繊に用いることができ、下流領域を、専らセルロース系繊維と樹脂の含量調整に用いることができる。 As a means for solving the above problems, in the method for producing a fiber-reinforced resin composition of the first invention, the step of kneading the cellulosic fiber and the resin is performed by a single extruder. In this type of production method, it is desirable that the extruder can be efficiently used to more appropriately defibrate the cellulosic fibers and knead them with the resin. Therefore, in the present invention, the kneadable region of the extruder is divided into two regions, an upstream region and a downstream region, in the extrusion direction, and the molten resin is charged into each of the upstream region and the downstream region. In the present invention, it is not necessary to provide a region for melting the resin in the kneadable region of the extruder by directly charging the molten resin into both the upstream region and the downstream region. Therefore, according to the present invention, the upstream region can be used exclusively for the defibration of the cellulosic fiber, and the downstream region can be used exclusively for adjusting the content of the cellulosic fiber and the resin.

第2発明の繊維強化樹脂組成物の製造方法は、第1発明の繊維強化樹脂組成物の製造方法において、押出機は二軸押出機であり、セルロース系繊維投入後の混練工程のスクリュー長L/スクリュー径D(L/D)を36未満とする。本発明では、溶融した樹脂を上流領域と下流領域に直接投入して、二軸押出機(例えばL/D36未満の汎用の二軸押出機)を効率良く使用することにより、セルロース系繊維をより適切に解繊することが可能となる。 In the method for producing a fiber-reinforced resin composition of the second invention, the extruder is a twin-screw extruder in the method for producing a fiber-reinforced resin composition of the first invention, and the screw length L in the kneading step after charging the cellulosic fibers is L. / The screw diameter D (L / D) is less than 36. In the present invention, the molten resin is directly charged into the upstream region and the downstream region, and a twin-screw extruder (for example, a general-purpose twin-screw extruder having a length of less than L / D36) is efficiently used to further obtain cellulosic fibers. It becomes possible to appropriately extrude.

第3発明の繊維強化樹脂組成物の製造方法は、第1発明又は第2発明の繊維強化樹脂組成物の製造方法において、上流領域における樹脂の投入量は、上流領域中の混練物の総質量に対してセルロース系繊維の含量が30質量%以上となるように調整される。本発明では、上流領域の混練物中のセルロース系繊維の含量を極力多くして、スクリューのせん断力をセルロース系繊維により効果的に作用させることにより、繊維強化樹脂組成物の優れた強度の確保に資する構成となる。 The method for producing the fiber-reinforced resin composition of the third invention is the method for producing the fiber-reinforced resin composition of the first invention or the second invention. The content of the cellulosic fiber is adjusted to be 30% by mass or more. In the present invention, the content of the cellulosic fiber in the kneaded material in the upstream region is increased as much as possible, and the shearing force of the screw is effectively applied to the cellulosic fiber to ensure the excellent strength of the fiber reinforced resin composition. It will be a composition that contributes to.

本発明に係る第1発明によれば、押出機を効率良く使用して、セルロース系繊維をより適切に解繊しつつ樹脂と混練することができる。また第2発明によれば、汎用の押出機を使用したとしても、セルロース系繊維をより適切に解繊しつつ樹脂と混練することができる。そして第3発明によれば、セルロース系繊維を更に適切に解繊しつつ樹脂と混練することができる。 According to the first aspect of the present invention, the extruder can be efficiently used to knead the cellulosic fibers with the resin while defibrating them more appropriately. Further, according to the second invention, even if a general-purpose extruder is used, the cellulosic fibers can be kneaded with the resin while being more appropriately defibrated. According to the third invention, the cellulosic fiber can be kneaded with the resin while being more appropriately defibrated.

二軸押出機の概略図である。It is a schematic diagram of a twin-screw extruder. 上流領域と下流領域を示す二軸押出機の概略図である。It is a schematic diagram of a twin-screw extruder showing an upstream region and a downstream region. 実施例1の繊維強化樹脂組成物の顕微鏡写真である。It is a micrograph of the fiber reinforced resin composition of Example 1. FIG. 比較例3の繊維強化樹脂組成物の顕微鏡写真である。It is a micrograph of the fiber reinforced resin composition of Comparative Example 3.

以下、本発明を実施するための形態を、図1~図4を参照して説明する。本実施形態の繊維強化樹脂組成物10は、セルロース系繊維12と樹脂14とが含まれており、後述するように混練工程を単数の押出機(二軸押出機2)で行うことにより製造することができる(図1では、便宜上、繊維強化樹脂組成物の取出し箇所に対応する符号10を付し、各成分の投入箇所に対応する符号12,14を付す)。そしてこの種の繊維強化樹脂組成物10では、所望の強度を確保する観点等から、セルロース系繊維12をできる限り細かく解繊しつつ樹脂14と混練することが望ましい。そこで本実施形態では、後述するように押出機を効率良く使用して、セルロース系繊維12をより適切に解繊しつつ樹脂14と混練することとした。以下、繊維強化樹脂組成物10の各配合成分と、押出機の構成と、繊維強化樹脂組成物10の製造方法について詳述する。 Hereinafter, embodiments for carrying out the present invention will be described with reference to FIGS. 1 to 4. The fiber-reinforced resin composition 10 of the present embodiment contains a cellulosic fiber 12 and a resin 14, and is produced by performing a kneading step with a single extruder (biaxial extruder 2) as described later. (In FIG. 1, for convenience, reference numerals 10 correspond to the extraction points of the fiber-reinforced resin composition, and reference numerals 12 and 14 correspond to the injection points of each component). In this type of fiber-reinforced resin composition 10, it is desirable to knead the cellulosic fiber 12 with the resin 14 while defibrating it as finely as possible from the viewpoint of ensuring the desired strength. Therefore, in the present embodiment, as will be described later, an extruder is efficiently used to knead the cellulosic fiber 12 with the resin 14 while defibrating the fiber more appropriately. Hereinafter, each compounding component of the fiber-reinforced resin composition 10, the configuration of the extruder, and the method for producing the fiber-reinforced resin composition 10 will be described in detail.

[セルロース系繊維]
図1に示すセルロース系繊維12として、植物系の天然繊維、再生繊維、精製繊維、半合成繊維等の各種のセルロース系繊維を使用できる。そしてセルロース系繊維12の原料は特に限定しないが、原料調達の利便性を考慮すると、各種のパルプを使用することが好ましい。この種のパルプとして、針葉樹や広葉樹から得られる木材パルプ(化学パルプ、機械パルプ、古紙パルプ)や、種子植物などから得られる非木材パルプを例示でき、これらを1種単独で又は2種以上を組み合わせて使用できる。
[Cellulose fiber]
As the cellulosic fiber 12 shown in FIG. 1, various cellulosic fibers such as plant-based natural fibers, regenerated fibers, purified fibers, and semi-synthetic fibers can be used. The raw material of the cellulosic fiber 12 is not particularly limited, but it is preferable to use various types of pulp in consideration of the convenience of procuring the raw material. Examples of this type of pulp include wood pulp (chemical pulp, mechanical pulp, used paper pulp) obtained from coniferous trees and hardwoods, and non-wood pulp obtained from seed plants, etc., and these may be used alone or in combination of two or more. Can be used in combination.

ここで原料中のセルロース系繊維12の繊維径は特に限定されず、パルプ中のセルロース系繊維12のように繊維径がミリメートルオーダーからミクロンメートルオーダーのセルロース系繊維12であってもよい。また原料には、繊維径がナノメートルオーダーのセルロース系繊維12(セルロースナノファイバ)が含まれていてもよい。 Here, the fiber diameter of the cellulosic fiber 12 in the raw material is not particularly limited, and may be a cellulosic fiber 12 having a fiber diameter on the order of millimeters to micrometer, such as the cellulosic fiber 12 in pulp. Further, the raw material may contain cellulose-based fibers 12 (cellulose nanofibers) having a fiber diameter on the order of nanometers.

また原料中のセルロース系繊維12は、その水酸基が化学的に修飾されて疎水化されていること及び相溶化剤を活用した疎水化処理を施すことが好ましい。例えばセルロース系繊維12の水酸基の水素原子をカルボキシル基やアシル基などの疎水基に置換することで、セルロース系繊維12の易解繊性が向上するなどして、後述する樹脂14との均一な混練に資する構成となる。 Further, it is preferable that the cellulosic fiber 12 in the raw material is hydrophobized by chemically modifying its hydroxyl group and is hydrophobized by utilizing a compatibilizer. For example, by substituting the hydrogen atom of the hydroxyl group of the cellulosic fiber 12 with a hydrophobic group such as a carboxyl group or an acyl group, the fragility of the cellulosic fiber 12 is improved, and the fiber is uniform with the resin 14 described later. It will be a composition that contributes to kneading.

[樹脂]
図1に示す樹脂14として、セルロース系繊維12同士を結着可能な各種の熱可塑性樹脂(エラストマを含む)を使用することができる。なかでもメルトフローレイト(MFR)が20g/10min以上の熱可塑性樹脂は、セルロース系繊維12に対する優れた浸透性を備え、セルロース系繊維12の劣化(例えばスクリューとの摩擦による劣化)を好適に抑えることができる。混合物(繊維強化樹脂組成物10)に含まれる樹脂の種類は限定されない。例えば、ポリプロピレン、ポリエチレン等のポリオレフィン樹脂、ABS(アクリロニトリルーブタジエンースチレン)樹脂、アクリル樹脂、ポリエステル樹脂、ポリウレタン樹脂、ポリスチレン樹脂、ポリアミド樹脂、ポリ塩化ビニル樹脂、ポリカーボネート樹脂等の熱可塑性樹脂、及びオレフィン系エラストマー、スチレン系エラストマー、ポリアミド系エラストマー、ポリエステル系エラストマー、ポリウレタン系エラストマー等の熱可塑性エラストマーが挙げられる。これらの中でもポリオレフィン樹脂が好ましい。なお樹脂14のメルトフローレイトは、ISO1133に準拠して測定でき、例えばポリプロピレンの場合には、230℃及び21.18Nの条件でメルトフローレイトを測定できる。
[resin]
As the resin 14 shown in FIG. 1, various thermoplastic resins (including elastomers) capable of binding the cellulosic fibers 12 to each other can be used. Among them, the thermoplastic resin having a melt flow rate (MFR) of 20 g / 10 min or more has excellent permeability to the cellulosic fiber 12, and preferably suppresses deterioration of the cellulosic fiber 12 (for example, deterioration due to friction with a screw). be able to. The type of resin contained in the mixture (fiber reinforced resin composition 10) is not limited. For example, polyolefin resins such as polypropylene and polyethylene, ABS (acrylonitrile-butadiene-styrene) resins, acrylic resins, polyester resins, polyurethane resins, polystyrene resins, polyamide resins, polyvinyl chloride resins, thermoplastic resins such as polycarbonate resins, and olefins. Examples thereof include thermoplastic elastomers such as based elastomers, styrene-based elastomers, polyamide-based elastomers, polyester-based elastomers, and polyurethane-based elastomers. Among these, polyolefin resin is preferable. The melt flow rate of the resin 14 can be measured in accordance with ISO 1133. For example, in the case of polypropylene, the melt flow rate can be measured under the conditions of 230 ° C. and 21.18 N.

[繊維強化樹脂組成物中の各成分の含有率]
ここで図1に示す繊維強化樹脂組成物10では、その利用目的等を考慮して、セルロース系繊維12と樹脂14の含有率を設定できる(製造工程における樹脂14の投入量は後述)。例えば樹脂14の含有率は、繊維強化樹脂組成物10の総質量に対して30質量%~99質量%の範囲から選択してもよく、55質量%~95質量%の範囲から選択してもよい。またセルロース系繊維12の含有率は、繊維強化樹脂組成物10の総質量に対して1質量%~70質量%の範囲から選択してもよく、5質量%~45質量%の範囲から選択してもよい。ここでセルロース系繊維12の含量が1質量%未満であると、セルロース系繊維12による曲げ弾性率(詳細後述)の有意な向上が見られず、繊維強化樹脂組成物10の所定の強度を確保できないおそれがある。またセルロース系繊維12の含量が70質量%を超えると、樹脂14によるセルロース系繊維12の結着が弱まるなどして、繊維強化樹脂組成物10が脆くなるおそれがある。例えば車両の構成部材として繊維強化樹脂組成物10を使用する場合、繊維強化樹脂組成物10の総質量に対して5~70質量%のセルロース系繊維12が含まれるように設定することで、所定の強度を確保することが可能となる。とりわけセルロース系繊維12の含量を10質量%~30質量%に設定することで、繊維強化樹脂組成物10の所望の強度と保形性を確保することができる。
[Content rate of each component in fiber reinforced resin composition]
Here, in the fiber-reinforced resin composition 10 shown in FIG. 1, the content ratios of the cellulosic fibers 12 and the resin 14 can be set in consideration of the purpose of use thereof and the like (the amount of the resin 14 input in the manufacturing process will be described later). For example, the content of the resin 14 may be selected from the range of 30% by mass to 99% by mass or from the range of 55% by mass to 95% by mass with respect to the total mass of the fiber reinforced resin composition 10. good. The content of the cellulosic fiber 12 may be selected from the range of 1% by mass to 70% by mass with respect to the total mass of the fiber reinforced resin composition 10, and may be selected from the range of 5% by mass to 45% by mass. You may. Here, when the content of the cellulosic fiber 12 is less than 1% by mass, the bending elastic modulus (details will be described later) is not significantly improved by the cellulosic fiber 12, and the predetermined strength of the fiber-reinforced resin composition 10 is secured. It may not be possible. Further, if the content of the cellulosic fiber 12 exceeds 70% by mass, the binding of the cellulosic fiber 12 by the resin 14 may be weakened, and the fiber-reinforced resin composition 10 may become brittle. For example, when the fiber-reinforced resin composition 10 is used as a constituent member of a vehicle, it is determined by setting so that 5 to 70% by mass of the cellulosic fiber 12 is contained in the total mass of the fiber-reinforced resin composition 10. It is possible to secure the strength of. In particular, by setting the content of the cellulosic fiber 12 to 10% by mass to 30% by mass, the desired strength and shape retention of the fiber-reinforced resin composition 10 can be ensured.

なお繊維強化樹脂組成物10は、その品質や性能向上に寄与する各種の成分を添加剤として含むことができる。そして各添加剤の含量は特に限定しないが、繊維強化樹脂組成物10の総質量に対して10質量%以下に設定でき、典型的には5質量%以下である。この種の添加剤として、酸変性ポリプロピレン、耐光剤、酸化防止剤、熱安定化剤、難燃剤、金属不活性剤、帯電防止剤、分散剤、滑剤を例示できる。またセルロース系繊維12の原料としてパルプを用いる場合、このパルプには、サイズ剤、乾燥紙力剤や湿潤紙力剤等の紙力増強剤、PH調整剤、濾水性向上剤、消泡剤、嵩高剤、歩留剤、防菌剤、防カビ剤、填料、染料が添加されていてもよい。 The fiber-reinforced resin composition 10 can contain various components that contribute to the improvement of quality and performance as additives. The content of each additive is not particularly limited, but can be set to 10% by mass or less with respect to the total mass of the fiber reinforced resin composition 10, and is typically 5% by mass or less. Examples of this type of additive include acid-modified polypropylene, light-resistant agents, antioxidants, heat stabilizers, flame retardants, metal deactivators, antistatic agents, dispersants, and lubricants. When pulp is used as a raw material for the cellulosic fiber 12, the pulp may be a sizing agent, a paper strength enhancer such as a dry paper strength agent or a wet paper strength agent, a PH adjuster, a drainage improver, a defoaming agent, and the like. Bulking agents, retention agents, antibacterial agents, antifungal agents, fillers, and dyes may be added.

[押出機]
押出機として、一般的な樹脂組成物の混練に使用可能な押出機を使用でき、各種の二軸押出機(同方向回転式または異方向回転式)や各種の単軸押出機から選択することができる。例えば本実施形態では、図1に示す汎用の二軸押出機2(同方向回転式)を使用して、繊維強化樹脂組成物10の製造コストを抑えている。この二軸押出機2は、昇温(保温)機能を備えたシリンダー2aと、シリンダー2a内に回転可能に設置された二つのスクリュー2bとを備え、スクリュー長L/スクリュー径D(L/D)が36未満に設定されている。なお二軸押出機2のL/Dの下限値は特に限定しないが、例えばL/Dが25以上であると、セルロース系繊維12の解繊と含量調整をある程度余裕をもって行うことが可能となる。そして二軸押出機2のスクリュー長Lは特に制限されず、上述のL/Dの値を考慮して600mm~16,000mmの範囲に設定できる。また二軸押出機2のスクリュー径Dも特に制限されず、例えば15mm~400mmの範囲に設定でき、スクリュー径が一定でない場合は最小値をスクリュー径Dとすることができる。また、混練時の温度のシリンダー温度は、150℃~250℃の範囲から選択してもよい。
[Extruder]
As the extruder, an extruder that can be used for kneading a general resin composition can be used, and it is possible to select from various twin-screw extruders (simultaneous rotation type or different direction rotation type) and various single-screw extruders. Can be done. For example, in the present embodiment, the general-purpose twin-screw extruder 2 (rotating in the same direction) shown in FIG. 1 is used to reduce the production cost of the fiber-reinforced resin composition 10. The twin-screw extruder 2 includes a cylinder 2a having a temperature rise (heat retention) function and two screws 2b rotatably installed in the cylinder 2a, and has a screw length L / screw diameter D (L / D). ) Is set to less than 36. The lower limit of the L / D of the twin-screw extruder 2 is not particularly limited, but for example, when the L / D is 25 or more, it becomes possible to defibrate and adjust the content of the cellulosic fiber 12 with some margin. .. The screw length L of the twin-screw extruder 2 is not particularly limited, and can be set in the range of 600 mm to 16,000 mm in consideration of the above-mentioned L / D value. Further, the screw diameter D of the twin-screw extruder 2 is not particularly limited, and can be set in the range of, for example, 15 mm to 400 mm, and when the screw diameter is not constant, the minimum value can be set to the screw diameter D. Further, the cylinder temperature at the time of kneading may be selected from the range of 150 ° C. to 250 ° C.

なお二軸押出機2の適宜の位置にニーディングディスクを配置することもでき、このニーディングディスクの数は特に制限されず任意の数に設定できる。また隣接するニーディングディスクの長軸がなす角度(ずらし角度)は特に制限されず、例えば、30°~90°の範囲から選択してもよい。ニーディングディスクの主面のアスペクト比(長軸の長さ/短軸の長さ)は特に制限されず、例えば、1.2~2.0の範囲から選択してもよい。 The kneading discs can be arranged at appropriate positions of the twin-screw extruder 2, and the number of the kneading discs is not particularly limited and can be set to any number. Further, the angle (shift angle) formed by the major axes of the adjacent kneading discs is not particularly limited, and may be selected from the range of, for example, 30 ° to 90 °. The aspect ratio of the main surface of the kneading disc (length of the major axis / length of the minor axis) is not particularly limited, and may be selected from the range of 1.2 to 2.0, for example.

また二軸押出機2は、その押出方向の最も上流にセルロース系繊維12の投入部3が形成され、最も下流に繊維強化樹脂組成物10の取出部4が形成されている。この二軸押出機2では、二つの投入装置5,6が設置されており、各投入装置5,6から溶融状態の樹脂14をシリンダー2a内に投入することが可能となっている。これら第一の投入装置5と第二の投入装置6として、溶融状態の樹脂14を投入可能な各種の装置を採用できる。例えば本実施形態では、両投入装置5,6として、昇温機能を備える同一構成の単軸押出機を用いており、異なる装置を使用する場合に比して二軸押出機2の構成の簡略化に資する構成となっている。なお第一の投入装置5と第二の投入装置6の設置位置は、後述する上流領域20と下流領域30の長さの割合を考慮して設定することができる。例えばL/D35の二軸押出機2を、その押出方向に十等分して、図2に示すように上流から下流に向けてC1~C10の区画に分けておく。そして第一の投入装置5は、上流側の区画C1、区画C2及び区画C3のいずれかに設置でき、第二の投入装置6は、下流側の区画C6、区画C7及び区画C8のいずれかに設置できる。 Further, in the twin-screw extruder 2, the input portion 3 of the cellulosic fiber 12 is formed at the most upstream in the extrusion direction, and the take-out portion 4 of the fiber reinforced resin composition 10 is formed at the most downstream. In this twin-screw extruder 2, two charging devices 5 and 6 are installed, and it is possible to load the molten resin 14 into the cylinder 2a from each charging device 5 and 6. As the first charging device 5 and the second charging device 6, various devices capable of charging the molten resin 14 can be adopted. For example, in the present embodiment, a single-screw extruder having the same configuration having a temperature raising function is used as both input devices 5 and 6, and the configuration of the twin-screw extruder 2 is simplified as compared with the case where different devices are used. It has a structure that contributes to the conversion. The installation positions of the first loading device 5 and the second loading device 6 can be set in consideration of the ratio of the lengths of the upstream region 20 and the downstream region 30, which will be described later. For example, the twin-screw extruder 2 of L / D35 is divided into ten equal parts in the extrusion direction, and is divided into sections C1 to C10 from upstream to downstream as shown in FIG. The first loading device 5 can be installed in any of the upstream compartments C1, C2 and C3, and the second loading device 6 can be installed in any of the downstream compartments C6, C7 and C8. Can be installed.

[上流領域、下流領域]
そして二軸押出機2では、図1及び図2に示すように、セルロース系繊維12と樹脂14を混練可能な領域(混練領域)を、その押出方向において上流領域20と下流領域30の二領域に分けている。そして上流領域20は、第一の投入装置5から第二の投入装置6までの混練領域であり、後述するようにセルロース系繊維12の解繊が行われる領域となっている。この上流領域20には、第一の投入装置5を用いて溶融状態の樹脂14を投入することが可能となっている。また下流領域30は、第二の投入装置6から取出部4までの混練領域であり、樹脂14に対するセルロース系繊維12の含量調整(希釈化)が行われる領域となっている。この下流領域30にも、第二の投入装置6を用いて溶融状態の樹脂14を投入することが可能となっている。そして上流領域20と下流領域30の押出方向における長さの割合は、使用される二軸押出機2のL/D(性能)に応じて設定できる。例えばL/D35の二軸押出機2の混練領域の全長を10とした場合、上流領域20と下流領域30の長さの割合を5~5:7~3の範囲に設定することで、所望の強度を備えた繊維強化樹脂組成物10を得ることができる。
[Upstream area, downstream area]
Then, in the twin-screw extruder 2, as shown in FIGS. 1 and 2, a region (kneading region) in which the cellulosic fiber 12 and the resin 14 can be kneaded is divided into two regions, an upstream region 20 and a downstream region 30, in the extrusion direction. It is divided into. The upstream region 20 is a kneading region from the first charging device 5 to the second charging device 6, and is a region where the cellulosic fiber 12 is defibrated as described later. The molten resin 14 can be charged into the upstream region 20 by using the first charging device 5. Further, the downstream region 30 is a kneading region from the second charging device 6 to the taking-out portion 4, and is a region where the content of the cellulosic fiber 12 with respect to the resin 14 is adjusted (diluted). It is possible to charge the molten resin 14 into the downstream region 30 by using the second charging device 6. The ratio of the lengths of the upstream region 20 and the downstream region 30 in the extrusion direction can be set according to the L / D (performance) of the twin-screw extruder 2 used. For example, when the total length of the kneading region of the twin-screw extruder 2 of the L / D 35 is 10, the ratio of the lengths of the upstream region 20 and the downstream region 30 can be set in the range of 5 to 5: 7 to 3, which is desired. It is possible to obtain the fiber-reinforced resin composition 10 having the strength of the above.

[繊維強化樹脂組成物の製造方法]
図1を参照して、繊維強化樹脂組成物10の製造方法は、セルロース系繊維12と樹脂14とを単数の押出機(2)にて混練する工程を有し、同工程によって例えばペレット状の繊維強化樹脂組成物10を得ることができる。この種の製造方法では、所望の強度を確保する観点から、押出機(2)を効率良く使用して、セルロース系繊維12をより適切に解繊しつつ樹脂14と混練できることが望ましい。そこで本実施形態では、汎用の二軸押出機2を、上述したように上流領域20と下流領域30の二領域に分け、上流領域20と下流領域30に、各々、溶融状態の樹脂14を投入する。こうして溶融状態の樹脂14を上流領域20と下流領域30の双方に直接投入することで、樹脂14を溶融するための領域を混練領域から省略することが可能となり、二軸押出機2を効率良く使用できる。そこで以下に、上流領域20と下流領域30における二軸押出機2の働きを説明する。
[Manufacturing method of fiber reinforced resin composition]
With reference to FIG. 1, the method for producing the fiber-reinforced resin composition 10 includes a step of kneading the cellulosic fiber 12 and the resin 14 with a single extruder (2), and by the same step, for example, in the form of pellets. The fiber reinforced resin composition 10 can be obtained. In this type of production method, from the viewpoint of ensuring the desired strength, it is desirable that the extruder (2) can be efficiently used to more appropriately defibrate the cellulosic fiber 12 and knead it with the resin 14. Therefore, in the present embodiment, the general-purpose twin-screw extruder 2 is divided into two regions, an upstream region 20 and a downstream region 30, as described above, and the molten resin 14 is charged into each of the upstream region 20 and the downstream region 30. do. By directly charging the molten resin 14 into both the upstream region 20 and the downstream region 30, the region for melting the resin 14 can be omitted from the kneading region, and the twin-screw extruder 2 can be efficiently used. Can be used. Therefore, the operation of the twin-screw extruder 2 in the upstream region 20 and the downstream region 30 will be described below.

[セルロース系繊維の解繊(上流領域での樹脂の投入量)]
ここで以下の説明においては、25質量%以下のセルロース系繊維12を含む繊維強化樹脂組成物10の製造方法を説明する。本実施形態では、例えばパルプ原料(セルロース系繊維12)を用意し、このときのセルロース系繊維12の繊維径はミリメートルオーダーからミクロンメートルオーダーの範囲にある。そこで二軸押出機2の上流領域20に、投入部3からセルロース系繊維12を投入し、第一の投入装置5から溶融状態の樹脂14を投入する。そして上流領域20において、セルロース系繊維12が、スクリュー2bのせん断力によって解繊されながら溶融状態の樹脂14と混練されていく。このように溶融状態の樹脂14を上流領域20に直接投入することで、樹脂14を溶融するための領域を省略することが可能となり、上流領域20を、専らセルロース系繊維12の解繊に用いることができる。そして本実施形態では、上流領域20中の混練物の総質量に対してセルロース系繊維12の含量が30質量%以上に調整され、より好ましくは40質量%以上に調整され、さらに好ましくは45質量%以上に調整される。このようにセルロース系繊維12の含有率を多くして(高濃度として)、スクリュー2bのせん断力を適切に作用させることにより、セルロース系繊維12の繊維径を例えばナノメートルオーダー近くにまで解繊することが可能となる。ここで上流領域20においてセルロース系繊維12の含量が25質量%以下であると、スクリュー2bのせん断力が十分に作用しにくくなり解繊が不十分となりがちである。なお上流領域20中のセルロース系繊維12の含量の上限値は特に限定しないが、例えばセルロース系繊維12の含量が80質量%以下であると、その劣化を樹脂14の作用で好適に抑えることが可能となる。
[Defibration of cellulosic fibers (amount of resin input in the upstream region)]
Here, in the following description, a method for producing the fiber reinforced resin composition 10 containing the cellulosic fiber 12 of 25% by mass or less will be described. In the present embodiment, for example, a pulp raw material (cellulose fiber 12) is prepared, and the fiber diameter of the cellulosic fiber 12 at this time is in the range of millimeter order to micrometer order. Therefore, the cellulosic fiber 12 is charged from the charging unit 3 into the upstream region 20 of the twin-screw extruder 2, and the molten resin 14 is charged from the first charging device 5. Then, in the upstream region 20, the cellulosic fiber 12 is kneaded with the molten resin 14 while being defibrated by the shearing force of the screw 2b. By directly charging the molten resin 14 into the upstream region 20 in this way, it is possible to omit the region for melting the resin 14, and the upstream region 20 is used exclusively for the defibration of the cellulosic fiber 12. be able to. In the present embodiment, the content of the cellulosic fiber 12 is adjusted to 30% by mass or more, more preferably 40% by mass or more, and further preferably 45% by mass with respect to the total mass of the kneaded product in the upstream region 20. It is adjusted to% or more. By increasing the content of the cellulosic fiber 12 (as a high concentration) and appropriately applying the shearing force of the screw 2b in this way, the fiber diameter of the cellulosic fiber 12 is defibrated to, for example, near the nanometer order. It becomes possible to do. Here, when the content of the cellulosic fiber 12 in the upstream region 20 is 25% by mass or less, the shearing force of the screw 2b is difficult to sufficiently act, and the defibration tends to be insufficient. The upper limit of the content of the cellulosic fiber 12 in the upstream region 20 is not particularly limited, but for example, when the content of the cellulosic fiber 12 is 80% by mass or less, the deterioration can be suitably suppressed by the action of the resin 14. It will be possible.

[セルロース系繊維の含量調整(下流領域での樹脂の投入量)]
続いて二軸押出機2の下流領域30に、第二の投入装置6から溶融状態の樹脂14を追加投入して、上流領域20のセルロース系繊維12と樹脂14の混練物に混練していく。このように溶融状態の樹脂14を追加することで、下流領域30中の混練物の総質量に対するセルロース系繊維12の含量を25質量%以下となるように調整する(希釈化する)ことができる。このとき溶融状態の樹脂14を下流領域30に直接投入することにより、下流領域30を、専らセルロース系繊維12と樹脂14の含量調整に用いることができる。こうして製造された繊維強化樹脂組成物10は、二軸押出機2の取出部4から外部に排出されたのちにペレット状に裁断されることとなる。そして本実施形態では、セルロース系繊維12にて強度の高められた繊維強化樹脂組成物10を、汎用の二軸押出機2にて製造することができ、生産性の高い(コスト競争力のある)製品に仕立てることができる。
[Adjusting the content of cellulosic fibers (amount of resin input in the downstream region)]
Subsequently, the molten resin 14 is additionally charged from the second charging device 6 into the downstream region 30 of the twin-screw extruder 2, and is kneaded into the kneaded product of the cellulosic fiber 12 and the resin 14 in the upstream region 20. .. By adding the resin 14 in the molten state in this way, the content of the cellulosic fiber 12 with respect to the total mass of the kneaded material in the downstream region 30 can be adjusted (diluted) to be 25% by mass or less. .. At this time, by directly charging the molten resin 14 into the downstream region 30, the downstream region 30 can be used exclusively for adjusting the contents of the cellulosic fiber 12 and the resin 14. The fiber-reinforced resin composition 10 thus produced is discharged to the outside from the take-out portion 4 of the twin-screw extruder 2 and then cut into pellets. In the present embodiment, the fiber-reinforced resin composition 10 whose strength is enhanced by the cellulose-based fiber 12 can be produced by the general-purpose twin-screw extruder 2, and is highly productive (cost competitive). ) Can be tailored to a product.

以上説明した通り本実施形態では、溶融状態の樹脂14を上流領域20と下流領域30の双方に直接投入することにより、押出機(2)の混練可能な領域に樹脂14を溶融するための領域を設ける必要がない。このため本発明によれば、上流領域20を、専らセルロース系繊維12の解繊に用いることができ、下流領域30を、専らセルロース系繊維12と樹脂14の含量調整に用いることができる。このため本実施形態によれば、押出機(2)を効率良く使用して、セルロース系繊維12をより適切に解繊しつつ樹脂14と混練することができる。 As described above, in the present embodiment, the resin 14 is melted in the kneadable region of the extruder (2) by directly charging the molten resin 14 into both the upstream region 20 and the downstream region 30. There is no need to provide. Therefore, according to the present invention, the upstream region 20 can be used exclusively for defibration of the cellulosic fiber 12, and the downstream region 30 can be used exclusively for adjusting the contents of the cellulosic fiber 12 and the resin 14. Therefore, according to the present embodiment, the extruder (2) can be efficiently used to knead the cellulosic fiber 12 with the resin 14 while more appropriately defibrating the fiber.

さらに本実施形態では、溶融した樹脂14を上流領域20と下流領域30に直接投入して、二軸押出機(例えばL/D36未満の汎用の二軸押出機2)を効率良く使用することにより、セルロース系繊維12をより適切に解繊することが可能となる。そして本実施形態では、上流領域20の混練物中のセルロース系繊維12の含量を極力多くして、スクリュー2bのせん断力をセルロース系繊維12により効果的に作用させることにより、繊維強化樹脂組成物10の優れた強度の確保に資する構成となる。 Further, in the present embodiment, the molten resin 14 is directly charged into the upstream region 20 and the downstream region 30, and a twin-screw extruder (for example, a general-purpose twin-screw extruder 2 having a size of less than L / D36) is efficiently used. , The cellulosic fiber 12 can be more appropriately extruded. In the present embodiment, the content of the cellulosic fiber 12 in the kneaded material in the upstream region 20 is increased as much as possible, and the shearing force of the screw 2b is effectively exerted on the cellulosic fiber 12, so that the fiber-reinforced resin composition is formed. It is a configuration that contributes to ensuring the excellent strength of 10.

[試験例]
以下、本実施形態を試験例に基づいて説明するが、本発明は試験例に限定されない。下記の[表1]には、各実施例と各比較例の繊維強化樹脂組成物の曲げ弾性率を示している。また図3は、実施例1の繊維強化樹脂組成物の顕微鏡写真であり、図4は、比較例3の繊維強化樹脂組成物の顕微鏡写真である。
[Test example]
Hereinafter, the present embodiment will be described based on test examples, but the present invention is not limited to test examples. The following [Table 1] shows the flexural modulus of the fiber-reinforced resin composition of each Example and each Comparative Example. Further, FIG. 3 is a micrograph of the fiber-reinforced resin composition of Example 1, and FIG. 4 is a micrograph of the fiber-reinforced resin composition of Comparative Example 3.

[押出機]
押出機には株式会社日本製鋼所製の二軸押出機(商品名:TEX30、L/D=77、D=30mm)を用い、下流部のみを利用してパルプ解繊、分散、及びパルプ濃度調整を行うL/D=35の押出機として検討を行った。また第一の投入装置及び第二の投入装置として、単軸押出機(コスモテック社製、商品名:CT31N-1)を使用した。そして図2を参照して、押出機の区画C1に第一の投入装置を設置し、押出機の区画C8に第二の投入装置を設置した。これにより押出機には、その押出方向の全長を10とした場合に、上流領域と下流領域が7:3の割合で形成された。また混練条件は、温度170℃、回転数140rpm、吐出量5kg/hに設定した。
[Extruder]
A twin-screw extruder manufactured by Japan Steel Works, Ltd. (trade name: TEX30, L / D = 77, D = 30 mm) is used as the extruder, and pulp defibration, dispersion, and pulp concentration are used only in the downstream portion. The study was carried out as an extruder having L / D = 35 for adjustment. Further, as the first loading device and the second loading device, a single-screw extruder (manufactured by Cosmo Tech Co., Ltd., trade name: CT31N-1) was used. Then, referring to FIG. 2, the first loading device was installed in the extruder section C1 and the second loading device was installed in the extruder section C8. As a result, the extruder was formed with an upstream region and a downstream region at a ratio of 7: 3 when the total length in the extrusion direction was 10. The kneading conditions were set to a temperature of 170 ° C., a rotation speed of 140 rpm, and a discharge rate of 5 kg / h.

[実施例1]
そしてL/D=35の押出機を使用して、ポリプロピレン(株式会社プライムポリマー社製、商品名:J108M、MFR:40)71.7質量%、針葉樹パルプ25質量%、無水マレイン酸変性ポリプロピレン(Addivant社製、商品名:ポリボンド3200)3.3質量%とからなる繊維強化組成物を製造した。このとき実施例1では、押出機の投入口から針葉樹パルプ全量を投入し、第一の投入装置から溶融状態のポリプロピレン35.85質量%と無水マレイン酸変性ポリプロピレン全量を投入した。また押出機の下流領域に、第二の投入装置から溶融状態のポリプロピレン35.85質量%を投入し、繊維強化樹脂組成物中のセルロース系繊維の含量が25質量%となるように調整された。
[Example 1]
Then, using an extruder with L / D = 35, polypropylene (manufactured by Prime Polymer Co., Ltd., trade name: J108M, MFR: 40) 71.7% by mass, coniferous tree pulp 25% by mass, maleic anhydride-modified polypropylene (manufactured by maleic anhydride). A fiber-reinforced composition made of Addivant Co., Ltd., trade name: Polybond 3200) 3.3% by mass was produced. At this time, in Example 1, the total amount of softwood pulp was charged from the charging port of the extruder, and 35.85% by mass of molten polypropylene and the total amount of maleic anhydride-modified polypropylene were charged from the first charging device. Further, 35.85% by mass of molten polypropylene was charged into the downstream region of the extruder from the second charging device, and the content of the cellulosic fiber in the fiber-reinforced resin composition was adjusted to 25% by mass. ..

[実施例2]
実施例2では、溶融状態のポリプロピレンの投入量が異なる以外は、実施例1の押出機を用い且つ同一の条件で繊維強化樹脂組成物を製造した。すなわち実施例2では、押出機の投入口から針葉樹パルプ全量を投入し、第一の投入装置から溶融状態のポリプロピレン26.89質量%と無水マレイン酸変性ポリプロピレン全量を投入した。また押出機の下流領域に、第二の投入装置から溶融状態のポリプロピレン44.81質量%を投入し、繊維強化樹脂組成物中のセルロース系繊維の含量が25質量%となるように調整された。
[Example 2]
In Example 2, the fiber-reinforced resin composition was produced using the extruder of Example 1 and under the same conditions, except that the amount of polypropylene in the molten state was different. That is, in Example 2, the total amount of softwood pulp was charged from the charging port of the extruder, and 26.89% by mass of molten polypropylene and the total amount of maleic anhydride-modified polypropylene were charged from the first charging device. Further, 44.81% by mass of molten polypropylene was charged into the downstream region of the extruder from the second charging device, and the content of the cellulosic fiber in the fiber-reinforced resin composition was adjusted to 25% by mass. ..

[実施例3]
実施例3の繊維強化樹脂組成物の製造に際しては、スクリューの回転数を260rpmに変更し、その他の条件は実施例1と同一とした。
[Example 3]
In the production of the fiber-reinforced resin composition of Example 3, the rotation speed of the screw was changed to 260 rpm, and other conditions were the same as those of Example 1.

[実施例4]
実施例4では、MFR620のポリプロピレン(株式会社プライムポリマー社製、商品名:S13B)を使用した以外は、実施例1と同一の条件で繊維強化樹脂組成物を製造した。
[Example 4]
In Example 4, a fiber-reinforced resin composition was produced under the same conditions as in Example 1 except that polypropylene of MFR620 (manufactured by Prime Polymer Co., Ltd., trade name: S13B) was used.

[比較例1]
比較例1では、実施例1の押出機を用い且つ実施例1と同一配合成分の繊維強化樹脂組成物を製造したが、固体状態のポリプロピレンを用いた点と混練工程を二回行った点が実施例1と異なっている。すなわち比較例1では、押出機の投入口から針葉樹パルプ全量を投入し、第一の投入装置から固体状態のポリプロピレン35.85質量%と無水マレイン酸変性ポリプロピレン全量を投入し、そのまま押出機で混練して中間樹脂組成物を得た。そして押出機の投入口から中間樹脂組成物を全量投入し、第一の投入装置から35.85質量%の固体状態のポリプロピレンを投入し、そのまま押出機で混練して比較例1の繊維強化樹脂組成物を製造した。
[Comparative Example 1]
In Comparative Example 1, a fiber-reinforced resin composition having the same composition as that of Example 1 was produced using the extruder of Example 1, but the point that polypropylene in a solid state was used and the point that the kneading step was performed twice. It is different from Example 1. That is, in Comparative Example 1, the entire amount of softwood pulp was charged from the extruder inlet, 35.85% by mass of solid polypropylene and the total amount of maleic anhydride-modified polypropylene were charged from the first feeder, and kneaded with the extruder as it was. To obtain an intermediate resin composition. Then, the entire amount of the intermediate resin composition is charged from the charging port of the extruder, 35.85% by mass of polypropylene in a solid state is charged from the first charging device, and the polypropylene is kneaded as it is with the extruder to be kneaded with the fiber-reinforced resin of Comparative Example 1. The composition was produced.

[比較例2]
比較例2では、実施例1の押出機を用い且つ実施例1と同一配合成分の繊維強化樹脂組成物を製造したが、固体状態のポリプロピレンを上流領域に投入してセルロース系繊維に混練した点が異なっている。すなわち比較例2では、押出機の投入口から針葉樹パルプ全量を投入し、第一の投入装置から固体状態のポリプロピレン35.85質量%と無水マレイン酸変性ポリプロピレン全量を投入した。また押出機の下流領域に、第二の投入装置から溶融状態のポリプロピレン35.85質量%を投入した。
[Comparative Example 2]
In Comparative Example 2, a fiber-reinforced resin composition having the same composition as that of Example 1 was produced using the extruder of Example 1, but the solid polypropylene was put into the upstream region and kneaded into the cellulosic fibers. Is different. That is, in Comparative Example 2, the total amount of softwood pulp was charged from the charging port of the extruder, and 35.85% by mass of solid polypropylene and the total amount of maleic anhydride-modified polypropylene were charged from the first charging device. Further, 35.85% by mass of molten polypropylene was charged into the downstream region of the extruder from the second charging device.

[比較例3]
比較例3では、ポリプロピレン(株式会社プライムポリマー社製、商品名:J108M、MFR:40)71.7質量%、針葉樹パルプ25質量%、無水マレイン酸変性ポリプロピレン(Addivant社製、商品名:ポリボンド3200)3.3質量%とからなる繊維強化組成物を製造した。そして比較例3では、実施例1の押出機を用いて繊維強化樹脂組成物を製造したが、固体状態のポリプロピレン全量を上流領域に投入した点が異なっている。すなわち比較例3では、押出機の投入口から針葉樹パルプ全量を投入し、第一の投入装置から固体状態のポリプロピレン71.7質量%と無水マレイン酸変性ポリプロピレン全量を投入した。これにより上流領域中の混練物に対するセルロース系繊維の含量が25質量%となるように設定された。そしてポリプロピレンを追加することなく各成分を混練して、比較例3の繊維強化樹脂組成物を製造した。
[Comparative Example 3]
In Comparative Example 3, polypropylene (manufactured by Prime Polymer Co., Ltd., trade name: J108M, MFR: 40) 71.7% by mass, softwood pulp 25% by mass, maleic anhydride-modified polypropylene (manufactured by Addivant, trade name: Polybond 3200) ) A fiber-reinforced composition consisting of 3.3% by mass was produced. In Comparative Example 3, the fiber-reinforced resin composition was produced by using the extruder of Example 1, but the difference is that the entire amount of polypropylene in the solid state was put into the upstream region. That is, in Comparative Example 3, the total amount of softwood pulp was charged from the charging port of the extruder, and 71.7% by mass of solid polypropylene and the total amount of maleic anhydride-modified polypropylene were charged from the first charging device. As a result, the content of the cellulosic fiber with respect to the kneaded product in the upstream region was set to be 25% by mass. Then, each component was kneaded without adding polypropylene to produce the fiber-reinforced resin composition of Comparative Example 3.

[曲げ弾性率の測定]
各実施例及び各比較例の繊維強化樹脂組成物から射出成形機を用いてJIS1A型多目的試験片を作製した。そして各試験片に、万能型試験機(インストロン社、モデル5566)を用いて変位速度2mm/min、支点間距離64mmの条件で曲げ試験を行い、各試験片の曲げ弾性率を測定した。
[Measurement of flexural modulus]
A JIS1A type multipurpose test piece was prepared from the fiber reinforced resin compositions of each Example and each Comparative Example using an injection molding machine. Then, a bending test was performed on each test piece using a universal testing machine (Instron, Model 5566) under the conditions of a displacement speed of 2 mm / min and a distance between fulcrums of 64 mm, and the flexural modulus of each test piece was measured.

Figure 2022006931000002
Figure 2022006931000002

[結果及び考察]
[表1]を参照して、各実施例の繊維強化樹脂組成物はいずれも優れた曲げ弾性率を有していた。この結果は、溶融した樹脂を上流領域と下流領域に直接投入して、L/D35(汎用)の二軸押出機を効率良く使用することにより、セルロース系繊維をより適切に解繊できたためと考えられる。すなわち図3及び図4の顕微鏡写真を比較することにより、各実施例の繊維強化樹脂組成物の優れた曲げ弾性率は、セルロース系繊維が十分に解繊されたためであることが容易に推察される。このことから各実施例によれば、押出機を効率良く使用して、セルロース系繊維をより適切に解繊しつつ樹脂と混練できることが判明した。さらに各実施例の結果から、樹脂の種類や回転数を変更してもセルロース系繊維を十分に解繊できたため、本実施形態の構成は、樹脂選択の自由度及び混練条件の自由度の高い構成であることがわかった。
[Results and discussion]
With reference to [Table 1], the fiber-reinforced resin compositions of each example had excellent flexural modulus. This result is due to the fact that the cellulosic fibers could be defibrated more appropriately by directly feeding the molten resin into the upstream region and the downstream region and efficiently using the L / D35 (general purpose) twin-screw extruder. Conceivable. That is, by comparing the micrographs of FIGS. 3 and 4, it is easily inferred that the excellent flexural modulus of the fiber-reinforced resin composition of each example is due to the sufficient defibration of the cellulosic fibers. To. From this, it was found that according to each embodiment, the extruder can be efficiently used to knead the cellulosic fiber with the resin while defibrating it more appropriately. Further, from the results of each example, the cellulosic fibers could be sufficiently defibrated even if the type and rotation speed of the resin were changed. Therefore, the configuration of this embodiment has a high degree of freedom in resin selection and kneading conditions. It turned out to be a composition.

また[表1]を参照して、比較例2及び比較例3の繊維強化樹脂組成物は、いずれも曲げ弾性率が劣っていた。そして比較例1及び比較例2の結果から、固体状態の樹脂を汎用の二軸押出機に投入する場合、所望の曲げ弾性率を確保するには混練工程を複数回行う必要があることがわかった。また比較例3の結果及び図4から、混練時のセルロース系繊維の含量が低い場合(混練物の総質量に対してセルロース系繊維の含量が25質量%以下の場合)には、セルロース系繊維の解繊が十分に進まないことがわかった。そして上述の実施例1及び比較例3の結果を比較することにより、混練時のセルロース系繊維の含量が高い場合(例えばセルロース系繊維の含量が30質量%以上の場合)にはセルロース系繊維の解繊が進むことが容易に推察された。この推察は、セルロース系繊維の含量が25質量%では複合樹脂(混練物)の溶融粘度が低いが、30質量%以上にすることで溶融粘度が指数関数的に上昇するという効果を考慮すれば容易に導き出すことができる。 Further, referring to [Table 1], the fiber-reinforced resin compositions of Comparative Example 2 and Comparative Example 3 were inferior in bending elastic modulus. From the results of Comparative Example 1 and Comparative Example 2, it was found that when the solid resin is put into a general-purpose twin-screw extruder, it is necessary to perform the kneading step a plurality of times in order to secure the desired flexural modulus. rice field. Further, from the results of Comparative Example 3 and FIG. 4, when the content of the cellulosic fiber at the time of kneading is low (when the content of the cellulosic fiber is 25% by mass or less with respect to the total mass of the kneaded product), the cellulosic fiber It turned out that the defibration did not proceed sufficiently. By comparing the results of Example 1 and Comparative Example 3 described above, when the content of the cellulosic fiber at the time of kneading is high (for example, when the content of the cellulosic fiber is 30% by mass or more), the cellulosic fiber is used. It was easily inferred that defibration would proceed. This estimation is based on the effect that the melt viscosity of the composite resin (kneaded product) is low when the content of the cellulosic fiber is 25% by mass, but the melt viscosity increases exponentially when the content is 30% by mass or more. It can be easily derived.

本実施形態の繊維強化樹脂組成物の製造方法は、上述した実施形態に限定されるものではなく、その他各種の実施形態を取り得る。例えばペレット状の繊維強化樹脂組成物は、射出成形、押出成形、圧縮成形、ブロー成形、トランスファー成形、キャスト成形、インフレーション成形などの各種成形手法にて所定形状に成形することが可能である。また押出機によってセルロース系繊維と樹脂を混練したのち、ペレット化することなく、そのまま射出成形機等に投入することもできる。また本実施形態の繊維強化樹脂組成物は、各種の用途に用いることができ、車両の内装材や外装材などの車両の構成部材のほか、家屋などの各種の構造体に用いることができる。また繊維強化樹脂組成物の形状や寸法も、その用途に応じて設定することができ、板状や柱状や筒状やブロック状などの各種の形状をとり得る。そして本実施形態では、汎用の二軸押出機を使用する例を説明したが、L/Dが36~120の二軸押出機又はその一部(例えばL/D36未満の部分)によって、セルロース系繊維投入後の混練工程を行うことも可能である。また上流領域と下流領域には、各々、樹脂投入用の投入装置を複数設置することもできる。 The method for producing the fiber-reinforced resin composition of the present embodiment is not limited to the above-described embodiment, and various other embodiments may be adopted. For example, the pellet-shaped fiber-reinforced resin composition can be molded into a predetermined shape by various molding methods such as injection molding, extrusion molding, compression molding, blow molding, transfer molding, cast molding, and inflation molding. Further, after the cellulosic fiber and the resin are kneaded by an extruder, they can be directly put into an injection molding machine or the like without being pelletized. Further, the fiber-reinforced resin composition of the present embodiment can be used for various purposes, and can be used for various structures such as houses as well as vehicle components such as vehicle interior materials and exterior materials. Further, the shape and dimensions of the fiber-reinforced resin composition can also be set according to the intended use, and can take various shapes such as a plate shape, a columnar shape, a tubular shape, and a block shape. In the present embodiment, an example of using a general-purpose twin-screw extruder has been described, but a cellulose-based extruder may be used depending on the twin-screw extruder having an L / D of 36 to 120 or a part thereof (for example, a portion having an L / D of less than 36). It is also possible to perform a kneading process after the fibers are added. Further, a plurality of charging devices for charging resin can be installed in each of the upstream region and the downstream region.

2 二軸押出機
2a シリンダー
2b スクリュー
C1~C10 区画
3 投入部
4 取出部
5 第一の投入装置
6 第二の投入装置
10 繊維強化樹脂組成物
12 セルロース系繊維
14 樹脂
20 上流領域
30 下流領域
2 Biaxial extruder 2a Cylinder 2b Screw C1 to C10 Section 3 Input section 4 Extraction section 5 First input device 6 Second input device 10 Fiber reinforced resin composition 12 Cellulose fiber 14 Resin 20 Upstream region 30 Downstream region

Claims (3)

セルロース系繊維と樹脂とを混練する工程を、単数の押出機で行う繊維強化樹脂組成物の製造方法において、
前記押出機の混練可能な領域を、その押出方向において上流領域と下流領域の二領域に分け、前記上流領域と前記下流領域に、各々、溶融状態の前記樹脂を投入する繊維強化樹脂組成物の製造方法。
In the method for producing a fiber-reinforced resin composition, in which the step of kneading the cellulosic fiber and the resin is performed by a single extruder.
A fiber-reinforced resin composition in which a kneadable region of the extruder is divided into two regions, an upstream region and a downstream region, in the extrusion direction, and the resin in a molten state is charged into the upstream region and the downstream region, respectively. Production method.
前記押出機は二軸押出機であり、セルロース系繊維投入後の混練工程のスクリュー長L/スクリュー径D(L/D)を36未満とする請求項1に記載の繊維強化樹脂組成物の製造方法。 The fiber-reinforced resin composition according to claim 1, wherein the extruder is a twin-screw extruder and the screw length L / screw diameter D (L / D) in the kneading step after charging the cellulosic fibers is less than 36. Method. 前記上流領域における前記樹脂の投入量は、前記上流領域中の混練物の総質量に対して前記セルロース系繊維の含量が30質量%以上となるように調整される請求項1又は2に記載の繊維強化樹脂組成物の製造方法。
The amount of the resin added in the upstream region is adjusted according to claim 1 or 2 so that the content of the cellulosic fibers is 30% by mass or more with respect to the total mass of the kneaded material in the upstream region. A method for producing a fiber-reinforced resin composition.
JP2020109520A 2020-06-25 2020-06-25 Method for producing fiber reinforced resin composition Active JP7437106B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020109520A JP7437106B2 (en) 2020-06-25 2020-06-25 Method for producing fiber reinforced resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020109520A JP7437106B2 (en) 2020-06-25 2020-06-25 Method for producing fiber reinforced resin composition

Publications (2)

Publication Number Publication Date
JP2022006931A true JP2022006931A (en) 2022-01-13
JP7437106B2 JP7437106B2 (en) 2024-02-22

Family

ID=80110335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020109520A Active JP7437106B2 (en) 2020-06-25 2020-06-25 Method for producing fiber reinforced resin composition

Country Status (1)

Country Link
JP (1) JP7437106B2 (en)

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6743507B2 (en) 2002-06-07 2004-06-01 Rayonier Products And Financial Services Company Cellulose fiber reinforced composites having reduced discoloration and improved dispersion and associated methods of manufacture
ITMI20022736A1 (en) 2002-12-20 2004-06-21 Maria Massimo De PROCEDURE FOR THE PRODUCTION OF COMPOSITE MATERIALS
US7410687B2 (en) 2004-06-08 2008-08-12 Trex Co Inc Variegated composites and related methods of manufacture
US20060103045A1 (en) 2004-11-17 2006-05-18 O'brien-Bernini Frank C Wet use chopped strand glass as reinforcement in extruded products
JP4846405B2 (en) 2006-03-27 2011-12-28 北越紀州製紙株式会社 Method for producing paper-containing thermoplastic resin composition
US20080093763A1 (en) 2006-10-06 2008-04-24 Douglas Mancosh Multi-color fiber-plastic composites and systems and methods for their fabrication
DE102008010796A1 (en) 2007-10-18 2009-04-23 Reifenhäuser GmbH & Co. KG Maschinenfabrik Method and apparatus for the continuous production of an extrudate of finely divided plant material and a thermoplastic material
US9328231B2 (en) 2012-02-14 2016-05-03 Weyerhaeuser Nr Company Composite polymer
US9574075B2 (en) 2012-08-28 2017-02-21 Upm-Kymmene Corporation Method and a system for manufacturing a composite product and a composite product
JP5660513B1 (en) 2014-05-22 2015-01-28 国立大学法人九州工業大学 Biomass nanofiber manufacturing method and biomass nanofiber / polymer resin composite manufacturing method
EP2995436B1 (en) 2014-09-10 2017-02-22 Starlinger & Co Gesellschaft m.b.H. Device and method for manufacturing a filled polymer composite material
EP3175968A1 (en) 2015-12-02 2017-06-07 Reifenhäuser GmbH & Co. KG Maschinenfabrik Method for the continuous material exploitation of old fractions from fibre and tissue based on thermoplastic plastics
JP7125604B2 (en) 2018-08-30 2022-08-25 学校法人同志社 Reinforced resin molding manufacturing apparatus and manufacturing method

Also Published As

Publication number Publication date
JP7437106B2 (en) 2024-02-22

Similar Documents

Publication Publication Date Title
KR101911660B1 (en) Polymeric composites
US6730249B2 (en) Methods of making composites containing cellulosic pulp fibers
JP4365529B2 (en) Method for continuously producing composite of polymer and cellulose fiber and hybrid material obtained by using the method
TWI417333B (en) Starch-based thermoplastic composites
Fang et al. Effect of fiber treatment on the water absorption and mechanical properties of hemp fiber/polyethylene composites
Shrestha et al. Effects of aspect ratio and crystal orientation of cellulose nanocrystals on properties of poly (vinyl alcohol) composite fibers
KR101309738B1 (en) Polymer/conductive filler composite with high electrical conductivity and the preparation method thereof
Caraschi et al. Woodflour as reinforcement of polypropylene
CN102443194B (en) Starch-based thermoplastic composite material
Saddem et al. Effect of fiber and polymer variability on the rheological properties of wood polymer composites during processing
Abhijit et al. Melt processing of ethylene‐acrylic acid copolymer composites reinforced with nanocellulose
JP2008238626A (en) Manufacturing method for thermoplastic resin composition
JP2017516882A (en) Method for incorporating wet natural fibers and starch into thermoplastics
JP2022006931A (en) Method of producing fiber-reinforced resin composition
JP2009001597A (en) Method for producing thermoplastic resin composition containing cellulose fiber
JPS6166615A (en) Bundled short carbon fiber chip
Agnes et al. Potentialities of Cellulose Nanofibers (CNF) in Low Density Polyethylene (LDPE) Composites
Saloni et al. Design and development of biopolymers for additive manufacturing
JP7192670B2 (en) Fiber raw material for molding fiber-reinforced plastic, raw material for molding fiber-reinforced plastic, and method for producing fiber-reinforced plastic
JP2020063340A (en) Fiber-reinforced resin and its production method
JP7380969B2 (en) Method for producing plant fiber reinforced resin composition
CN109294072B (en) Polypropylene composition, polypropylene material and application thereof
EP4375315A1 (en) Natural fiber polymer composite precursor pellets
JP2023079184A (en) Molding machine for molded product of thermoplastic resin composition, and method for manufacturing molded product
KR20150123370A (en) Fiber reinforced plastic composite material and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231003

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240207

R150 Certificate of patent or registration of utility model

Ref document number: 7437106

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150