JP2022002436A - Image force driven electrostatic generator using rechargeable charge injection method - Google Patents

Image force driven electrostatic generator using rechargeable charge injection method Download PDF

Info

Publication number
JP2022002436A
JP2022002436A JP2020106623A JP2020106623A JP2022002436A JP 2022002436 A JP2022002436 A JP 2022002436A JP 2020106623 A JP2020106623 A JP 2020106623A JP 2020106623 A JP2020106623 A JP 2020106623A JP 2022002436 A JP2022002436 A JP 2022002436A
Authority
JP
Japan
Prior art keywords
charge
charge carrier
recovery
charging
recovery electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020106623A
Other languages
Japanese (ja)
Inventor
捷夫 酒井
Toshio Sakai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2020106623A priority Critical patent/JP2022002436A/en
Publication of JP2022002436A publication Critical patent/JP2022002436A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electrostatic Separation (AREA)

Abstract

To solve the problem that a transformer for ultra high voltage is required, a device becomes large and cost becomes high although voltage is to be reduced in the transformer since voltage is high, current is small and a charging system is not suitable for general use although output can remarkably be increased if the charging system is adopted as an injection system of a charge to a charge carrier in an electrostatic generator using asymmetric electrostatic force as driving force for the charge carrier.SOLUTION: When a size of each component is reduced to 1/100, voltage becomes low and current becomes high. The voltage can be used in general by converting it into 100 V by a regular coil transformer, and is made into AC by an inverter.EFFECT: The voltage is lowered, the current is increased and a generator for general use can be obtained only by reducing component sizes without using a transformer for ultra high voltage in which the device becomes large and cost becomes high.SELECTED DRAWING: Figure 14

Description

本発明は、電荷搬送体への電荷の注入を充電方式で行い、非対称鏡像力を電荷搬送体の駆動力とする静電発電機における出力を、コイル変圧器を使用せず電圧を下げて電流を増加する鏡像力駆動型静電発電機に関する。 In the present invention, the electric charge is injected into the charge carrier by a charging method, and the output in the electrostatic generator using the asymmetric mirror image force as the driving force of the charge carrier is reduced in voltage without using a coil transformer to generate a current. With regard to increasing mirror image force driven electrostatic generators.

通常、非対称静電力を駆動力とする静電発電機において、電荷搬送体に電荷を注入する方法には、誘導方式と充電方式がある。そのうち、充電電荷量が多くなるのは充電方式であることが報告されている。 Usually, in an electrostatic generator using an asymmetric electrostatic force as a driving force, there are an inductive method and a charging method as a method of injecting a charge into a charge carrier. Among them, it is reported that the charging method has a large amount of charging charge.

しかしながら、充電方式により出力を高めることは可能であるが、その内容は高電圧小電流である。たとえば、充電電位源(以下、実施例に応じて充電エレクトレットと表示し、エレクトレットというときは、人工的に外部から電荷を注入保持させるエレクトレットのみならず、自然に電荷を保持している強誘電体も含むものとする)の電位が、180,000Vの時、シミュレーション結果によれば、電圧140,000V、電流18mAである。交流化して、コイル変圧器を使用して、電圧を下げて、電流を増やすことも可能だが、100VのAC電源にするためには、一次二次コイルの巻き数の比が1:1000でなければならず、大掛かりな変圧器になり、家庭用には適しない電源となる。 However, although it is possible to increase the output by the charging method, the content is high voltage and small current. For example, a charging potential source (hereinafter referred to as a charging electret according to an embodiment, and the term electret is not only an electret that artificially injects and holds an electric charge from the outside, but also a strong dielectric that naturally holds an electric charge. When the potential of (including) is 180,000V, the voltage is 140,000V and the current is 18mA according to the simulation results. It is possible to make it AC and use a coil transformer to lower the voltage and increase the current, but in order to make it a 100V AC power supply, the ratio of the number of turns of the primary and secondary coils must be 1: 1000. It must be a large-scale transformer and a power source that is not suitable for home use.

[特許文献1] 特開2020-065353号公報 [Patent Document 1] Japanese Unexamined Patent Publication No. 2020-065353

[非特許文献1]2019年米国静電気学会年次大会予稿集A-4
[非特許文献2][Asymmetric Electrostatic Forces and a New Electrostatic Generator], Nova Science Publishers, New York, 2010
[Non-Patent Document 1] Proceedings of the 2019 Annual Meeting of the American Society of Electrostatics A-4
[Non-Patent Document 2] [Asymmetric Electrostatic Forces and a New Electrostatic Generator], Nova Science Publishers, New York, 2010

本発明の目的は、電荷搬送体への電荷の注入を充電方式で行い、電荷搬送体を非対称静電力で駆動する静電発電機の出力を、コイル変圧器を使用せずに、電圧を下げて電流を増加させることにある。 An object of the present invention is to reduce the voltage of the output of an electrostatic generator that injects charge into a charge carrier by a charging method and drives the charge carrier with asymmetric electrostatic force without using a coil transformer. To increase the current.

課題を解決する為の手段Means to solve problems

上記本発明の目的は、装置全体の大きさは変えず、充電エレクトレット、回収電極、電荷搬送体の各主要部品およびそれらの間隔の寸法を、たとえば、1/100に縮めることで達成できる。 The above object of the present invention can be achieved by reducing the dimensions of the main parts of the charging electret, the recovery electrode, the charge carrier, and their spacing to, for example, 1/100 without changing the size of the entire device.

装置の設置面積を変えずに、高すぎる出力を適正化し、低すぎる出力電流を高めることができる。さらに、装置の体積当たりの出力を大幅に高めることができる。 It is possible to optimize the output that is too high and increase the output current that is too low without changing the footprint of the device. In addition, the output per volume of the device can be significantly increased.

図1は、クーロンの法則を説明する模式図である。FIG. 1 is a schematic diagram illustrating Coulomb's law. 図2は、横向き樋型導体を用いた非対称静電力(クーロン力)を説明する模式図である。FIG. 2 is a schematic diagram illustrating an asymmetric electrostatic force (Coulomb force) using a horizontal gutter-shaped conductor. 図3は、接地導体平板に近接した点電荷に作用する鏡像力を説明する模式図である。FIG. 3 is a schematic diagram illustrating a mirror image force acting on a point charge in the vicinity of the ground conductor flat plate. 図4は、接地導体平板に近接した横置き樋型導電性帯電体に作用する非対称鏡像力を説明する模式図である。FIG. 4 is a schematic diagram illustrating an asymmetric mirror image force acting on a horizontally placed gutter-shaped conductive charged body close to a grounding conductor flat plate. 図5は、鏡像力駆動型静電発電機の基本構造を示す縦断面図である。FIG. 5 is a vertical cross-sectional view showing the basic structure of a mirror image force driven electrostatic generator. 図6は、充電電極を使用する鏡像力駆動型静電発電装置のより詳細な縦断面図である。FIG. 6 is a more detailed vertical sectional view of a mirror image force driven electrostatic generator using a charging electrode. 図7は、電荷搬送体を載せた電荷搬送体円板の斜視図である。FIG. 7 is a perspective view of a charge carrier disk on which a charge carrier is mounted. 図8は、装置全体の斜視図である。FIG. 8 is a perspective view of the entire device. 図9は、電荷が注入された電荷搬送体が、充電エレクトレットを抜けて、その先端が回収電極に到達するまでに受ける静電力を示すグラフである。FIG. 9 is a graph showing the electrostatic force that a charge carrier into which an electric charge is injected passes through a charging electret and its tip reaches a recovery electrode. 図10は、充電エレクトレットと回収電極が放射状に形成された固定電極円板の平面図である。FIG. 10 is a plan view of a fixed electrode disk in which a charging electret and a recovery electrode are formed radially. 図11は、複数の電荷搬送体が、中心から円周にかけて放射状に配置された電荷搬送体円板の平面図である。FIG. 11 is a plan view of a charge carrier disk in which a plurality of charge carriers are arranged radially from the center to the circumference. 図12は、縮小された電荷搬送体が、充電エレクトレットを抜けて、その先端が回収電極に到達するまでに受ける静電力を示すグラフである。FIG. 12 is a graph showing the electrostatic force that the reduced charge carrier receives until it passes through the charging electret and its tip reaches the recovery electrode. 図13は、電荷搬送体を電荷搬送体ベルト上に互いに平行に配して、上下固定電極板の間を循環させる装置の縦断面図である。FIG. 13 is a vertical cross-sectional view of a device in which charge carriers are arranged parallel to each other on a charge carrier belt and circulated between the upper and lower fixed electrode plates. 図14は、電荷搬送体を電荷搬送体円筒上に互いに平行に配して、内外固定電極円筒の間を回転させる装置の縦断面図である。FIG. 14 is a vertical sectional view of a device in which charge carriers are arranged parallel to each other on a charge carrier cylinder and rotated between the inner and outer fixed electrode cylinders.

出力電圧を下げ、電流を増加させて一般用途用の発電機とするという目的を、主要部品のサイズを1/100に縮小することで達成した。 The purpose of lowering the output voltage and increasing the current to make it a generator for general use was achieved by reducing the size of the main parts to 1/100.

非対称静電力を電荷搬送体の駆動力とする静電発電方法はいくつかあるが、その中で装置がもっとも簡単な鏡像力駆動型静電発電機で、出力の低電圧高電流化方法を説明する。 There are several electrostatic power generation methods that use asymmetric electrostatic force as the driving force of the charge carrier, but among them, the simplest mirror image power driven electrostatic generator explains how to increase the output voltage and current. do.

通常、電界E中に置かれた電荷qに働く静電力は、(1)式で計算され、クーロン力と呼ばれる。
F = qE
(1)
Normally, the electrostatic force acting on the electric charge q placed in the electric field E is calculated by Eq. (1) and is called Coulomb force.
F = qE
(1)

図1において、参照番号1は高圧電極、参照番号2は接地された第一対向電極、参照番号3は点電荷、参照番号4は点電荷に作用する静電力のベクトル、参照番号5は電界(電気力線)、及び参照番号6は、接地された第二対向電極を示している。つまり、図1の中央左側において、例えば、電界の強さが106 V/mで、点電荷の電荷量が10-7Cの時、点電荷に作用する静電力は0.100Nになる。一方、図1の中央右側のように、電界の方向が反転した時、該点電荷に作用する静電力の方向も反転するが、その大きさ(絶対値)は0.100Nであり、変わらない。
しかし、クーロンの法則は、点電荷又は点電荷とみなせる球形の帯電体にしか適用できない。
In FIG. 1, reference numeral 1 is a high-voltage electrode, reference numeral 2 is a grounded first counter electrode, reference numeral 3 is a point charge, reference numeral 4 is a vector of electrostatic force acting on the point charge, and reference numeral 5 is an electric field (reference number 5). (Electrical line of force) and reference numeral 6 indicate a grounded second counter electrode. That is, on the left side of the center of FIG. 1, for example, when the electric field strength is 10 6 V / m and the charge amount of the point charge is 10 -7 C, the electrostatic force acting on the point charge is 0.100 N. On the other hand, as shown on the right side of the center of FIG. 1, when the direction of the electric field is reversed, the direction of the electrostatic force acting on the point charge is also reversed, but its magnitude (absolute value) is 0.100N and does not change.
However, Coulomb's law applies only to point charges or spherical charged bodies that can be regarded as point charges.

これに対して、出願人は、電界中に置かれた非球形の帯電した導体に作用する静電力を求める際、クーロンの法則ではその計算ができないので、特許文献1に記載する二次元差分法を使って、電界の方向が反転する前と後の、当該導体に作用する静電力をシミュレーションした。具体的には、図2に示すように、参照番号7で示す帯電した導体の形状を樋型とし、その帯電量と電界の強さは図1と各同じとした。
その結果、電界の方向が反転すると、静電力の強さは、0.083Nから、0.038Nと半分以下になることが分かった。以下、これを非対称クーロン力という。
On the other hand, when the applicant obtains the electrostatic force acting on a non-spherical charged conductor placed in an electric field, the calculation cannot be performed by Coulomb's law, and therefore the two-dimensional difference method described in Patent Document 1 is described. Was used to simulate the electrostatic force acting on the conductor before and after the direction of the electric field was reversed. Specifically, as shown in FIG. 2, the shape of the charged conductor shown by reference number 7 is a gutter shape, and the amount of charge and the strength of the electric field are the same as those in FIG.
As a result, it was found that when the direction of the electric field was reversed, the strength of the electrostatic force decreased from 0.083N to 0.038N, which was less than half. Hereinafter, this is referred to as an asymmetric Coulomb force.

図3に示すように、点電荷3が、接地導電性平板2から距離rにあるとき、該点電荷には、(2)式で計算される静電気力が働く。以下、これを鏡像力という。
F = q2/4πε0(2r)2
(2)
この式が適用されるのは、やはり点電荷の場合である。そこで、図4に示すように、導電性帯電体の形状が樋型の場合に、該樋型導電性帯電7に働く静電力をシミュレーションで求めた。その結果、帯電量qが10-6C、間隔rが1.0mmの時、樋型7開口部を平板2に対向させた場合32.4Nだったが、その底面部を対向させた場合、倍以上の69.0Nになった。以下、これを非対称鏡像力という。
As shown in FIG. 3, when the point charge 3 is at a distance r from the ground conductive flat plate 2, the electrostatic force calculated by the equation (2) acts on the point charge. Hereinafter, this is referred to as mirror image power.
F = q 2 / 4πε 0 (2r) 2
(2)
This equation also applies to point charges. Therefore, as shown in FIG. 4, when the shape of the conductive charged body is a gutter type, the electrostatic force acting on the gutter-shaped conductive charged body 7 is obtained by simulation. As a result, when the charge amount q was 10 -6 C and the interval r was 1.0 mm, it was 32.4 N when the gutter-shaped 7 opening was opposed to the flat plate 2, but when the bottom surface was opposed, it was more than doubled. It became 69.0N. Hereinafter, this is referred to as asymmetric mirror image force.

そこで、鏡像力駆動型静電発電機では、非対称クーロン力と非対称鏡像力の両方の効果を使用する。図5に、その鏡像力駆動型静電発電機の基本構造を示す。
主要部品は、充電電位源8(通常はエレクトレットを使用する(以下、充電エレクトレットという))、横置き樋型電荷搬送体7と回収電極9の3点のみである。実際は、そこに図6に示すように、回収電極コンデンサー10、電荷注入導電性端子11と電荷回収導電性端子12が加わるが、以下、説明の簡略化のため、主に主要部品3点のみで行う。
Therefore, in the mirror image force drive type electrostatic generator, the effects of both the asymmetric Coulomb force and the asymmetric mirror image force are used. Figure 5 shows the basic structure of the mirror image force driven electrostatic generator.
The main components are only three points: the charging potential source 8 (usually an electret is used (hereinafter referred to as the charging electret)), the horizontal gutter type charge carrier 7, and the recovery electrode 9. Actually, as shown in FIG. 6, a recovery electrode capacitor 10, a charge injection conductive terminal 11 and a charge recovery conductive terminal 12 are added, but for the sake of simplification of the explanation below, mainly only three main parts are used. conduct.

電荷搬送体7が左から、充電エレクトレット8に入り、図6に示される位置に来たとき、電荷搬送体7の上下平板72と、充電エレクトレット8間に空気コンデンサーが形成される。この時、電荷注入端子11により電荷搬送体7が接地されると、該空気コンデンサーへの充電電荷が大地より電荷搬送体7に注入される。その後、帯電された電荷搬送体7はさらに右方向に進み、回収電極9の中に入る。そこで、電荷回収端子12により回収電極9と電気的に連結され、帯電電荷は回収電極9を通って、回収電極コンデンサー10に蓄積され、さらに図示しない回路を通じて外部負荷に流れる。 When the charge carrier 7 enters the charging electret 8 from the left and reaches the position shown in FIG. 6, an air condenser is formed between the upper and lower flat plates 72 of the charge carrier 7 and the charging electret 8. At this time, when the charge carrier 7 is grounded by the charge injection terminal 11, the charge charge to the air condenser is injected into the charge carrier 7 from the ground. After that, the charged charge carrier 7 goes further to the right and enters the recovery electrode 9. Therefore, the electric charge is electrically connected to the recovery electrode 9 by the charge recovery terminal 12, the charged charge is accumulated in the recovery electrode capacitor 10 through the recovery electrode 9, and further flows to an external load through a circuit (not shown).

充電エレクトレット8が負帯電の場合、電荷搬送体7は正帯電される。その結果、充電エレクトレット8と回収電極9の間を右に進む電荷搬送体7には、負帯電エレクトレットにより左向きにクーロン力が働く。またエレクトレットの背面電極により、やはり左向きに鏡像力が働く。
一方、回収電極により右向きの鏡像力が働く。充電エレクトレット8を出た直後は、左向きのクーロン力と鏡像力の合力が強いが、回収電極に接近すると右向きの鏡像力が強くなる。
When the charging electret 8 is negatively charged, the charge carrier 7 is positively charged. As a result, a Coulomb force acts to the left by the negatively charged electret on the charge carrier 7 traveling to the right between the charging electret 8 and the recovery electrode 9. In addition, the back electrode of the electret also exerts a mirror image force to the left.
On the other hand, the recovery electrode exerts a mirror image force pointing to the right. Immediately after leaving the charging electret 8, the resultant force of the leftward Coulomb force and the mirror image force is strong, but when approaching the recovery electrode, the rightward mirror image force becomes stronger.

非対称効果で、横置き樋型電荷搬送体7の後方上下水平板72のエッジに働く、左向きのクーロン力および鏡像力は弱く、水平板72の表裏に垂直に働く静電力は、上方向と下方向が同じ強さで相殺され、前方垂直板部71に働く右向きの鏡像力は強い。この結果、右向きの静電力が左向きの静電力より強くなり、電荷搬送体7は、充電エレクトレット8から回収電極9に到達することができる。そこで、電荷搬送体7により搬送された電荷が回収電極9に回収されれば、この装置は静電発電機になる。回収されなければ、静電モーターになる。 Due to the asymmetric effect, the leftward Coulomb force and mirror image force acting on the edge of the rear upper and lower horizontal plate 72 of the horizontal gutter type charge carrier 7 are weak, and the electrostatic force acting vertically on the front and back of the horizontal plate 72 is upward and downward. The directions are offset by the same strength, and the rightward mirror image force acting on the front vertical plate portion 71 is strong. As a result, the rightward electrostatic force becomes stronger than the leftward electrostatic force, and the charge carrier 7 can reach the recovery electrode 9 from the charging electret 8. Therefore, if the charge transferred by the charge carrier 7 is recovered by the recovery electrode 9, this device becomes an electrostatic generator. If not recovered, it becomes an electrostatic motor.

そこで、静電発電機としての電気的出力すなわち電力をシミュレーションで求めてみる。
該鏡像力駆動型静電発電機の装置構成を図7と図8で示す。図7は電荷搬送体を載せた電荷搬送体円板の斜視図で、図8は装置全体の斜視図である。両図において、参照番号8は、充電エレクトレット、7は電荷搬送体、9は回収電極、14は電荷搬送体7を載せた回転可能な電荷搬送体円板、13と15は、向かい合わせの同じ位置に、充電エレクトレット8と回収電極9が設置され固定された充電回収円板、16は回転軸である。なお、この1組の装置を以下1ユニットと呼ぶ。
Therefore, let's find the electrical output, that is, the electric power, as an electrostatic generator by simulation.
The device configuration of the mirror image force drive type electrostatic generator is shown in FIGS. 7 and 8. FIG. 7 is a perspective view of a charge carrier disk on which a charge carrier is mounted, and FIG. 8 is a perspective view of the entire device. In both figures, reference numeral 8 is a charging electret, 7 is a charge carrier, 9 is a recovery electrode, 14 is a rotatable charge carrier disk on which the charge carrier 7 is mounted, and 13 and 15 are the same facing each other. The charge recovery disk 8 and the recovery electrode 9 are installed and fixed at the positions, and the charge recovery disk 16 is a rotation axis. This set of devices will be referred to as one unit below.

半径100mmの電荷搬送体円板14に、中心から35mm乃至95mmに、長さ60mmの樋型電荷搬送体7を60度おきに6個配置する。電荷搬送体7の幅と高さは10mmである。電荷搬送体7の長さ方向の真ん中は中心から65mm、ゆえにその円周は408mmである。102mm置きに、充電エレクトレット8と回収電極9の組を4個置く。前の回収電極9’と充電エレクトレット8の間隔は20mm、充電エレクトレット8の幅は20mm、回収電極9までの距離は32mm、回収電極4の幅は30mmである。電荷搬送体7の後方平板72と充電エレクトレット8の間隔は1.0mmで、上下充電回収円板間の間隔は20mmである。 Six gutter-shaped charge carriers 7 having a length of 60 mm are arranged at intervals of 60 degrees on a charge carrier disk 14 having a radius of 100 mm at 35 mm to 95 mm from the center. The width and height of the charge carrier 7 is 10 mm. The center of the charge carrier 7 in the length direction is 65 mm from the center, and therefore its circumference is 408 mm. Place four pairs of charging electret 8 and recovery electrode 9 every 102 mm. The distance between the front recovery electrode 9'and the charging electret 8 is 20 mm, the width of the charging electret 8 is 20 mm, the distance to the recovery electrode 9 is 32 mm, and the width of the recovery electrode 4 is 30 mm. The distance between the rear flat plate 72 of the charge carrier 7 and the charging electret 8 is 1.0 mm, and the distance between the upper and lower charge recovery disks is 20 mm.

充電エレクトレットの電荷密度を、現状で入手可能な最高値、-2.0mC/m2 とし、テフロン(登録商標)樹脂で構成されるエレクトレット層の厚さが、1.6mm、その比誘電率が2.0の時、エレクトレットの表面電位は180,709Vになる。
実際には、該高電位は、大気中では空気の絶縁破壊が発生して維持できないので、真空中を仮定している。また、該高電位を真空中で形成するためには特殊な工法が必要になるがここでは省略する。
この状態で、電荷搬送体7が図6に示す位置に来て、充電接地端子11により接地されたとき、1.47μCの電荷が充電され、注入される。
The charge density of the charging electret is set to the highest value currently available, -2.0 mC / m 2 , the thickness of the electret layer made of Teflon (registered trademark) resin is 1.6 mm, and its relative permittivity is 2.0. At that time, the surface potential of the electret becomes 180,709V.
In reality, the high potential is assumed to be in vacuum because the insulation breakdown of air occurs and cannot be maintained in the atmosphere. Further, a special construction method is required to form the high potential in a vacuum, but this is omitted here.
In this state, when the charge carrier 7 comes to the position shown in FIG. 6 and is grounded by the charging ground terminal 11, 1.47 μC of charge is charged and injected.

ここで、1.47μCの電荷が注入された電荷搬送体7が、充電エレクトレット7を抜けて、その先端が回収電極9に到達するまでに受ける静電力を、特許文献1にその詳細を示す二次元差分法でシミュレーションして求め、その結果を図9に示す。
同図より、電荷搬送体7が充電エレクトレット8を出た後、約7.5mmの間は、該電荷搬送体7に働く静電力はマイナス、すなわち左向きであるが、7.5mmを越えるとプラス、すなわち右向きに転じ、しかもその絶対値がより大きくなることが明らかである。
Here, patent document 1 shows the details of the electrostatic force received by the charge carrier 7 into which a charge of 1.47 μC is injected until the tip of the charge carrier 7 passes through the charging electret 7 and reaches the recovery electrode 9. It is obtained by simulation by the difference method, and the result is shown in FIG.
From the figure, after the charge carrier 7 exits the charging electret 8, the electrostatic force acting on the charge carrier 7 is negative, that is, leftward for about 7.5 mm, but positive, that is, when it exceeds 7.5 mm. It is clear that it turns to the right and its absolute value becomes larger.

この結果、回収電極9に到達した電荷搬送体7には、0.205Jの余剰な運動エネルギーが残されている。仮に、真空中の移動で空気抵抗がなく、また機械的な摩擦もないと仮定すれば、この余剰な運動エネルギーは、すべて、搬送電荷を電気的により高いポテンシャルに持ち上げるのに使用できる。
余剰エネルギーWで、電荷qを、持ち上げられるポテンシャルVは(3)式で求められる。
V = W/q
(3)
すなわち139,632Vになる。これが、回収可能な、すなわち発電可能な最高電位である(以下、回収電位と言う)。
As a result, the charge carrier 7 that has reached the recovery electrode 9 is left with an excess kinetic energy of 0.205J. Assuming that there is no drag in vacuum and no mechanical friction, all of this extra kinetic energy can be used to lift the carrier charge to a higher electrical potential.
The potential V at which the charge q can be lifted by the surplus energy W can be obtained by Eq. (3).
V = W / q
(3)
That is, it becomes 139,632V. This is the highest potential that can be recovered, that is, that can generate electricity (hereinafter referred to as the recovered potential).

ここで、1個の電荷搬送体7が1回転するときに、4回、充電エレクトレット8と回収電極9を通過するので、その間に搬送回収される電荷量は、計算式1.47μC × 4 = 5.88μCで表わされる。
電荷搬送体円板14上には、6個の電荷搬送体7があるので、電荷搬送体円板14が1回転するときに搬送する電荷量は、5.88μC × 6= 35.28μCである。
電荷搬送体円板14の回転数が、使用するボールベアリングの最大回転数30,000rpmとすると、1秒間に500回転になる。ゆえに1秒間に搬送される電荷量は35.28μC × 500 = 17640μC、すなわち、17.64mAになる。
この結果、発電量Pは電流iと電圧Vの積であり、(4)式で計算され、2458Wになる。
P = I * V
(4)
依って、例えば、20cm × 20cm、厚さ2cmのCDカセットのような装置で2kW以上も発電できる。
しかしながら、汎用電源としては、電圧140,000Vが高すぎ、電流17.6mAは低すぎる。交流にして、コイル変圧器を使用し電圧を下げて電流を増やすことは可能だが、コイル変圧器の一次側と二次側巻線の比が、1000:1にもなるので、実用的ではない。
Here, when one charge carrier 7 makes one rotation, it passes through the charging electret 8 and the recovery electrode 9 four times, so that the amount of charge transferred and recovered during that time is calculated by the formula 1.47 μC × 4 = 5.88. Represented by μC.
Since there are six charge carriers 7 on the charge carrier disk 14, the amount of charge carried when the charge carrier disk 14 makes one rotation is 5.88 μC × 6 = 35.28 μC.
Assuming that the maximum rotation speed of the ball bearing used is 30,000 rpm, the rotation speed of the charge carrier disk 14 is 500 rotations per second. Therefore, the amount of charge transferred per second is 35.28 μC × 500 = 17640 μC, that is, 17.64 mA.
As a result, the amount of power generation P is the product of the current i and the voltage V, which is calculated by Eq. (4) and becomes 2458W.
P = I * V
(Four)
Therefore, for example, a device such as a 20 cm × 20 cm, 2 cm thick CD cassette can generate more than 2 kW.
However, for a general-purpose power supply, the voltage of 140,000V is too high and the current of 17.6mA is too low. It is possible to use an alternating current and use a coil transformer to lower the voltage and increase the current, but this is not practical because the ratio of the primary and secondary windings of the coil transformer is as high as 1000: 1. ..

そこで、第一の実施例として、回収電位を140,000Vから1,400Vに下げるために、従来例の装置サイズを、XYZの3方向とも1/100に縮める。
すなわち、電荷搬送体7の幅と高さを10mmから0.1mmに、長さを60mmより0.6mmに縮める。また、充電エレクトレット8の幅と長さをそれぞれ20mm、60mmから、0.2mm、0.6mmにし、回収電極9の幅と長さを、それぞれ30mm、60mmから0.3mm、0.6mmにし、充電エレクトレット8と回収電極9の間隔も32mmから0.32mmに縮める。
Therefore, as the first embodiment, in order to reduce the recovery potential from 140,000V to 1,400V, the device size of the conventional example is reduced to 1/100 in all three directions of XYZ.
That is, the width and height of the charge carrier 7 are reduced from 10 mm to 0.1 mm, and the length is reduced from 60 mm to 0.6 mm. In addition, the width and length of the charging electlet 8 are changed from 20 mm and 60 mm to 0.2 mm and 0.6 mm, respectively, and the width and length of the recovery electrode 9 are changed from 30 mm and 60 mm to 0.3 mm and 0.6 mm, respectively. The distance between the recovery electrodes 9 is also reduced from 32 mm to 0.32 mm.

そして、これら縮小した充電エレクトレット8と回収電極9を、図10に示すように、半径100mmの充電回収円板15の表面、および同径の充電回収円板13の裏面にそれぞれ放射状に形成する。
縮小した充電エレクトレット8の長さは0.6mmなので、半径方向に0.8mm間隔で、中心より16.8mmの地点より96.0mmの地点まで、100個、図のように並べる。尚、同図では簡略化のため5個のみ表示している。
そして、該充電エレクトレット8の横方向には、0.32mm離して回収電極9を置く。すなわち、円周方向に充電エレクトレット8と回収電極9が交互に配置される。なお、同図では簡略化のためその一部のみ表示している。
Then, the reduced charge electret 8 and the recovery electrode 9 are formed radially on the front surface of the charge recovery disk 15 having a radius of 100 mm and the back surface of the charge recovery disk 13 having the same diameter, respectively, as shown in FIG.
Since the length of the reduced charging electret 8 is 0.6 mm, 100 pieces are arranged at intervals of 0.8 mm in the radial direction from the point 16.8 mm to the point 96.0 mm from the center as shown in the figure. In the figure, only 5 are displayed for simplification.
Then, the recovery electrode 9 is placed in the lateral direction of the charging electret 8 at a distance of 0.32 mm. That is, the charging electret 8 and the recovery electrode 9 are alternately arranged in the circumferential direction. In the figure, only a part of it is shown for simplification.

ここで、この充電エレクトレット8と回収電極9が交互に配置された100個の円環を外側から、中心点に向かって、第1周、第2周、乃至第100周とする。この場合、第1周の半径は96mmなので、その円周長は603mmである。前の回収電極9’と充電エレクトレット8の間隔を0.24mmだけ取ると、充電エレクトレット8の幅は0.20mm、回収電極9までの距離は0.32mm、回収電極4の幅は0.30mmなので、これら1組で1.06mmになり、570組が第1周に並ぶ。
また、第2周の円周長は598mmなので、564組が並ぶ。そして、第100周では、円周長が106mmなので、100組が並ぶ。
Here, the 100 annulus in which the charging electret 8 and the recovery electrode 9 are alternately arranged is referred to as the first circumference, the second circumference, or the 100th circumference from the outside toward the center point. In this case, the radius of the first circumference is 96 mm, so its circumference is 603 mm. If the distance between the front recovery electrode 9'and the charging electret 8 is 0.24 mm, the width of the charging electret 8 is 0.20 mm, the distance to the recovery electrode 9 is 0.32 mm, and the width of the recovery electrode 4 is 0.30 mm. The set will be 1.06mm, and 570 sets will line up on the first lap.
Also, since the circumference of the second circumference is 598 mm, 564 pairs are lined up. And on the 100th lap, since the circumference is 106 mm, 100 pairs are lined up.

又、縮小された電荷搬送体7も、図11に示すように、第1周から第100周にかけて放射状に配置される。隣り合う電荷搬送体7間の間隔は、0.55mmなので、第一周、第2周、及び第100周に、それぞれ1097、1088、及び192個の電荷搬送体7が置かれる。 Further, as shown in FIG. 11, the reduced charge carrier 7 is also arranged radially from the first circumference to the 100th circumference. Since the distance between adjacent charge carriers 7 is 0.55 mm, 1097, 1088, and 192 charge carriers 7 are placed on the first, second, and 100th laps, respectively.

充電エレクトレット8のテフロン(登録商標)層81の厚さも、1.6mmから0.016mmに縮められ、充電エレクトレット8と、電荷搬送体7の後方平板72との間隔も、1.0mmから0.01mmに縮められる。テフロン層の比誘電率たる2.0と、その電荷密度たる-2.0mC/m2は、そのまま変わらない。この結果、充電エレクトレット8の表面電位は、-180,000Vから-1,800Vに下がる。ただし、充電され電荷注入された電荷搬送体の帯電電荷密度は変わらない。なんとなれば、テフロン(登録商標)層の誘電厚み(厚さを比誘電率で除した値)と、充電エレクトレット8と電荷搬送体7の後方平板72の間隔との比が、変わらないからである。しかし、電荷搬送体7の面積は1/10,000に減少しているので、帯電量も、1.47μCの1/10,000の1.47E-10[C]に減少している。 The thickness of the Teflon® layer 81 of the charging electret 8 is also reduced from 1.6 mm to 0.016 mm, and the distance between the charging electret 8 and the rear flat plate 72 of the charge carrier 7 is also reduced from 1.0 mm to 0.01 mm. .. The relative permittivity of the Teflon layer, 2.0, and its charge density, -2.0 mC / m 2 , remain unchanged. As a result, the surface potential of the charging electret 8 drops from -180,000V to -1,800V. However, the charge density of the charged and charged charge carrier does not change. This is because the ratio between the dielectric thickness of the Teflon (registered trademark) layer (the value obtained by dividing the thickness by the relative permittivity) and the distance between the charging electret 8 and the rear flat plate 72 of the charge carrier 7 does not change. be. However, since the area of the charge carrier 7 is reduced to 1 / 10,000, the amount of charge is also reduced to 1.47E-10 [C], which is 1 / 10,000 of 1.47 μC.

以上の条件で、1.47E-10[C]に充電された縮小電荷搬送体7が、縮小された充電エレクトレット8から縮小された回収電極9に移動する間に受ける静電力を従来例と同様にシミュレーションした。その結果を、図12に示す。
図示する通り、充電エレクトレット7を抜けた直後は、マイナスの、すなわち左向きの力を受けているが、電荷搬送体7の後端が充電エレクトレット8より75μm離れると、プラスに、すなわち右向きの力に変わり、左向きの力よりかなり強くなることが分かる。この結果、回収電極9に到達した電荷搬送体7には0.205μJの運動エネルギーが保持されている。よって、該余剰エネルギーで、1.47E-10[C]の電荷の電気的ポテンシャルは1396Vに高めることができる。すなわち、回収電位は1396Vになる。
Under the above conditions, the reduced charge carrier 7 charged in 1.47E-10 [C] receives the electrostatic force while moving from the reduced charging electret 8 to the reduced recovery electrode 9 in the same manner as in the conventional example. I simulated it. The results are shown in FIG.
As shown in the figure, immediately after exiting the charging electret 7, a negative, that is, a leftward force is received, but when the rear end of the charge carrier 7 is 75 μm away from the charging electret 8, a positive, that is, a rightward force is applied. It turns out that it is much stronger than the leftward force. As a result, the charge carrier 7 that has reached the recovery electrode 9 holds 0.205 μJ of kinetic energy. Therefore, with the surplus energy, the electrical potential of the charge of 1.47E-10 [C] can be increased to 1396V. That is, the recovery potential is 1396V.

よって、第1周には、597組の充電エレクトレット8と回収電極9があり、また1097個の電荷搬送体7があり、各電荷搬送体7には、1.47E-10[C]の電荷が充電されているので、電荷搬送体円板14の1回転で、597個の回収電極9に回収される電荷の量は、597 * 1097 * 1.47E-10[C] = 9.17E-5[C]になる。
電荷搬送体円板14が、ベアリングの最高回転数30,000rpmで回転するとすると、1秒間には500回転する。ゆえに、1秒間に、9.17E-5[C] * 500 = 0.0459[C]の電荷が回収される。すなわち、回収(発電)電流は0.0459Aである。回収電位が1396Vなので、発電量は0.0459A * 1396V = 64.0Wになる。以下同様に計算していくと、第100周の電流は0.0014Aで、発電量は2.0Wになる。
Therefore, on the first lap, there are 597 sets of charging electrets 8 and recovery electrodes 9, and 1097 charge carriers 7, and each charge carrier 7 has a charge of 1.47E-10 [C]. Since it is charged, the amount of charge recovered by the 597 recovery electrodes 9 in one rotation of the charge carrier disk 14 is 597 * 1097 * 1.47E-10 [C] = 9.17E-5 [C. ]become.
Assuming that the charge carrier disk 14 rotates at the maximum rotation speed of the bearing of 30,000 rpm, it rotates 500 times per second. Therefore, the charge of 9.17E-5 [C] * 500 = 0.0459 [C] is recovered in 1 second. That is, the recovery (power generation) current is 0.0459A. Since the recovery potential is 1396V, the amount of power generation is 0.0459A * 1396V = 64.0W. When calculated in the same manner, the current on the 100th lap is 0.0014A and the amount of power generation is 2.0W.

第1周から第100周まですべて足し合わせると、電流は1.85A、電圧は1396V、出力は2581Wになる。つまり、縮小する前の装置では、電流0.0176A、電圧139,600V、出力2458Wだったので、電圧が1/100になり、電流が105倍、出力も105倍になったことが分かる。そして、この電圧であれば、コイル変圧器の一次・二次巻線数比は10:1で、140V、18.5Aに変換容易である。 When all the laps 1 to 100 are added together, the current is 1.85A, the voltage is 1396V, and the output is 2581W. In other words, in the device before reduction, the current was 0.0176A, the voltage was 139,600V, and the output was 2458W, so the voltage was reduced to 1/100, the current was 105 times, and the output was 105 times. With this voltage, the ratio of the number of primary and secondary windings of the coil transformer is 10: 1, and it is easy to convert to 140V, 18.5A.

なお、電荷搬送体7の帯電電荷密度が同じで、電荷搬送体円板14上の電荷搬送体面積がほぼ同じ(従来例で3600mm2、本実施例で3866mm2)なのに、電流が105倍にもなったのは、充電エレクトレット8と回収電極9間の距離が、32mmから0.32mmと1/100になり、充電から回収までの時間が1/100になったためである。すなわち、本実施例では、従来例で1回充電・回収が行われる間に、100回も充電・回収が行われたためである。 Incidentally, the charge density of the charge carrier 7 is the same, (3600 mm 2 in the conventional example, 3866Mm 2 in this embodiment) about the same charge carrier area on the charge carrier disc 14 Nevertheless, current is 105 times This is because the distance between the charging electret 8 and the recovery electrode 9 has been reduced from 32 mm to 0.32 mm, which is 1/100, and the time from charging to recovery has been reduced to 1/100. That is, in this embodiment, the charging / recovery was performed 100 times while the charging / recovery was performed once in the conventional example.

この結果から、電荷搬送体7の進行方向のサイズが関係し、直角(上下)方向のサイズは関係ないことは明らかである。そのため、電荷搬送体7の長さを0.6mm以上にすることが可能である。ただし、従来例のように60mmに戻した場合、電荷搬送体7間の間隔が、電荷搬送体円板14の中心近くでは狭く、円周部分では広くなり不都合である。ゆえに、例えば、その長さを6.0mmとして、円周から中心に向けて、10周に分けて配置するのが適当と思われる。 From this result, it is clear that the size in the traveling direction of the charge carrier 7 is related, and the size in the right angle (up and down) direction is not related. Therefore, the length of the charge carrier 7 can be set to 0.6 mm or more. However, when it is returned to 60 mm as in the conventional example, the distance between the charge carriers 7 is narrow near the center of the charge carrier disk 14 and wide at the circumferential portion, which is inconvenient. Therefore, for example, it seems appropriate to set the length to 6.0 mm and arrange it in 10 laps from the circumference to the center.

なお、上記において、上記長さが6.0mmの場合、第一周のみでも、発電量は約600wあり、以下に記すように、多層化も可能なので、製法が簡単になる第一周のみも選択枝である。 In the above, when the above length is 6.0 mm, the amount of power generation is about 600 w even with only the first lap, and as described below, multi-layering is possible, so only the first lap that simplifies the manufacturing method is selected. It is a branch.

さらに、この場合、電荷搬送体7を互いに導通し、電荷搬送体間の間隔を、充電エレクトレット8間、及び回収電極9間の間隔と同じにすれば、個々の充電エレクトレット8の電荷注入導電性端子11と、個々の回収電極9の電荷回収導電性端子12は不要となる。即ち、その代わりに、電荷搬送体7と大地をつなぐ高速スイッチングトランジスタおよび電荷搬送体7と回収電極9をつなぐ高速スイッチングトランジスタを置き、電荷搬送体7が、充電エレクトレットに入った時、および回収電極に入ったとき、それぞれ瞬間的にONにすればよい。 Further, in this case, if the charge carriers 7 are electrically connected to each other and the spacing between the charge carriers is the same as the spacing between the charging electrets 8 and the recovery electrodes 9, the charge injection conductivity of the individual charging electrets 8 is set. The terminal 11 and the charge recovery conductive terminal 12 of each recovery electrode 9 are not required. That is, instead, a high-speed switching transistor connecting the charge carrier 7 and the ground and a high-speed switching transistor connecting the charge carrier 7 and the recovery electrode 9 are placed, and when the charge carrier 7 enters the charging electret and the recovery electrode When you enter, you can turn it on momentarily.

更に、XYZの3方向を1/100に縮小したので、装置の高さも、20mmから0.2mmに薄くなっている。よって、従来例の装置の200 * 200 * 20mmのCDカセットサイズであれば、100ユニット積層できるので、その出力は、計算上258kW(1400V、185A)にもなる。 Furthermore, since the three directions of XYZ have been reduced to 1/100, the height of the device has also been reduced from 20 mm to 0.2 mm. Therefore, if the CD cassette size of 200 * 200 * 20 mm of the conventional device is used, 100 units can be stacked, and the output is calculated to be 258 kW (1400 V, 185 A).

また、電荷搬送体7の単位質量あたりに働く静電力が大幅に増えた。つまり、従来例の電荷搬送体7の質量は0.972gであった。これに対して、本実施例の電荷搬送体7の質量は、1/100.000の0.972E-6gであった。
一方、これに作用する静電力は、その最大値で、従来例は51.36N、本実施例は、その1/1.000の0.005136Nであった。この結果、単位質量あたりに作用する静電力の大きさは、本実施例においては従来例の100倍になった。この結果、装置内を真空にしなくとも、空気抵抗に打ち勝って、電荷搬送体7を駆動できるようになった。
In addition, the electrostatic force acting per unit mass of the charge carrier 7 has increased significantly. That is, the mass of the charge carrier 7 of the conventional example was 0.972 g. On the other hand, the mass of the charge carrier 7 of this example was 0.972E-6g of 1 / 100.000.
On the other hand, the electrostatic force acting on this was the maximum value of 51.36N in the conventional example and 0.005136N of 1 / 1.000 in this example. As a result, the magnitude of the electrostatic force acting per unit mass is 100 times that of the conventional example in this embodiment. As a result, the charge carrier 7 can be driven by overcoming the air resistance without creating a vacuum inside the device.

以下、第二の実施例を説明する。コイル変圧器を使用せずに、直接140Vを実現するためには、理論上は、従来例のサイズを、1/100ではなく、1/1000にすればよい。しかし、この場合充電エレクトレット8の幅は20μmに、その厚さは1.6μmになってしまう。よって、製造上困難である。
そこで、実施例2において、充電エレクトレット8の電荷密度を、実施例1の-2.0mC/m2 から、1/10の-0.2mC/m2 に下げた。即ち、静電エアーフイルター等で通常使用されている値である。
Hereinafter, the second embodiment will be described. In order to realize 140V directly without using a coil transformer, theoretically, the size of the conventional example should be 1/1000 instead of 1/100. However, in this case, the width of the charging electret 8 is 20 μm and the thickness is 1.6 μm. Therefore, it is difficult to manufacture.
Therefore, in Example 2, the charge density of the charge electret 8, from -2.0MC / m 2 of Example 1, was reduced to -0.2MC / m 2 of 1/10. That is, it is a value normally used in an electrostatic air filter or the like.

この結果、1個の電荷搬送体7に充電され注入される電荷量は、1/10の1.47E-11[C]になり、回収電極9に到達した時の余剰エネルギーは、1/100の2.05E-9Jになった。この結果、(1)式で求められる回収電位は、1/10の140Vになった。
そして、実施例1と同様に、第1周から第100周までの電流と発電量を計算し合計したところ、0.184A、25.8Wになった。従って、CDカセットサイズに100ユニットを積層した場合、18.4A、2.58kWとになる。よって、DCの140Vなので、低価格のトランジスター製インバーターで容易にACの100Vに変換でき、家庭用電源として使える。
As a result, the amount of charge charged and injected into one charge carrier 7 becomes 1.47E-11 [C], which is 1/10, and the surplus energy when reaching the recovery electrode 9 is 1/100. It became 2.05E-9J. As a result, the recovery potential obtained by Eq. (1) was 1/10 of 140V.
Then, as in Example 1, when the current and the amount of power generation from the first lap to the 100th lap were calculated and totaled, they were 0.184A and 25.8W. Therefore, when 100 units are stacked on a CD cassette size, the output is 18.4A and 2.58kW. Therefore, since it is DC 140V, it can be easily converted to AC 100V with a low-priced transistor inverter and can be used as a household power supply.

以下、第三の実施例について説明する。実施例1および2では、電荷搬送体7を電荷搬送体円板14上に、放射状に配して、電荷搬送体円板14を、充電回収円板13、15の間を回転させたが、図13に模式的に示すように、電荷搬送体7を電荷搬送体ベルト14上に互いに平行に配して、上下固定電極板13、15の間を、非対称鏡像力で走行させてもよい。
具体的には、実施例1と2で使用した電荷搬送体7、充電エレクトレット8、回収電極9の幅はそのままで、長さのみ、0.6mmから、300倍の180mmに伸ばし、幅190mmの電荷搬送体ベルト14及び上下固定電極板13、15上に、進行方向に直角に、互いに平行に配した。
Hereinafter, the third embodiment will be described. In Examples 1 and 2, the charge carrier 7 was arranged radially on the charge carrier disk 14, and the charge carrier disk 14 was rotated between the charge recovery disks 13 and 15. As schematically shown in FIG. 13, the charge carrier 7 may be arranged parallel to each other on the charge carrier belt 14 and run between the upper and lower fixed electrode plates 13 and 15 with an asymmetric mirror image force.
Specifically, the widths of the charge carrier 7, the charging electret 8, and the recovery electrode 9 used in Examples 1 and 2 remain the same, and only the length is extended from 0.6 mm to 180 mm, which is 300 times larger, and the charge has a width of 190 mm. They were arranged on the carrier belt 14 and the upper and lower fixed electrode plates 13 and 15 at right angles to the traveling direction and parallel to each other.

かかる構成において、実施例2と同様に、電荷搬送体7に充電される電荷量を二次元差分法シミュレーション(特許文献1)で求めたところ、300倍の、4.402E-9[C]になった。また、該帯電した電荷搬送体に作用する静電力も300倍となり、余剰エネルギーも300倍となった。この結果、回収電圧は140Vと同じになった。 In such a configuration, the amount of charge charged in the charge carrier 7 was obtained by a two-dimensional difference method simulation (Patent Document 1) in the same manner as in Example 2, and the result was 4.402E-9 [C], which was 300 times larger. rice field. Further, the electrostatic force acting on the charged charge carrier is also increased by 300 times, and the surplus energy is also increased by 300 times. As a result, the recovery voltage became the same as 140V.

ここで、上下固定電極板13、15および電荷搬送体ベルト14の幅は180mmなので、1周で360mmである。ここに、充電エレクトレット8と回収電極9の1組が、1.06mm間隔で並ぶので、340個の組がある。また、0.55mm間隔で、電荷搬送体7が配されているので、その数は655個である。
故に、ベルト14の1回転で、340 * 655 = 222,700回の、充電・回収、すなわち発電がおこなわれる。1回の充電・回収で、4.402E-9[C]の電荷が搬送されるので、ベルト14の1回転で、4.402E-9[C] * 222,700 = 9.8E-4[C]の電荷が、0Vから140Vに高められる。
ベルト14の線速を、36m/sとすると、ベルト14は1秒間に100回転する。この結果、発電電流は9.8E-2(A)になる。回収電圧が140Vなので、発電量は13.7Wになる。筐体18の幅を200mm、高さを1mmとすると、CDカセットサイズに20段重ねられるので、その出力は140V、1.96A、274Wになる。
Here, since the widths of the upper and lower fixed electrode plates 13 and 15 and the charge carrier belt 14 are 180 mm, it is 360 mm in one round. Here, one set of the charging electret 8 and the recovery electrode 9 is lined up at intervals of 1.06 mm, so there are 340 sets. Further, since the charge carriers 7 are arranged at intervals of 0.55 mm, the number is 655.
Therefore, one rotation of the belt 14 causes 340 * 655 = 222,700 times of charging / recovery, that is, power generation. Since the charge of 4.402E-9 [C] is transferred by one charge / recovery, the charge of 4.402E-9 [C] * 222,700 = 9.8E-4 [C] is transferred by one rotation of the belt 14. , Increased from 0V to 140V.
Assuming that the linear velocity of the belt 14 is 36 m / s, the belt 14 rotates 100 times per second. As a result, the generated current is 9.8E-2 (A). Since the recovery voltage is 140V, the amount of power generation is 13.7W. Assuming that the width of the housing 18 is 200 mm and the height is 1 mm, 20 stages can be stacked in the size of a CD cassette, so the output is 140V, 1.96A, 274W.

なお、電荷搬送体ベルト14を循環させる代わりに、電荷搬送体板として、往復運動させてもよい。この場合、戻り工程で働く力は、例えばバネ力である。磁力や重力等でもよい。 Instead of circulating the charge carrier belt 14, the charge carrier plate may be reciprocated. In this case, the force acting in the return process is, for example, a spring force. It may be magnetic force, gravity, or the like.

以下、第四の実施例について説明する。実施例3では、長尺の電荷搬送体7を、循環するベルトに配置したが、これに替えて、図14に示すように回転する円筒14に配置してもよい。なお、同図では、電荷搬送体7が6個、充電エレクトレット8および回収電極9の組が3個づつしか表示されていないが、実際には次に記載するように、1028個と、533個づつ配置されている。
この場合、電荷搬送体7、充電エレクトレット8、回収電極9の各サイズとそれらの間隔、および充電エレクトレット7の電荷密度は、実施例3と同じなので、充電電荷量及びそれに働く静電力も実施例3と同じになり、回収電極に到達した余剰エネルギーも同じで、回収電位は同じく140Vになる。
Hereinafter, the fourth embodiment will be described. In the third embodiment, the long charge carrier 7 is arranged on the circulating belt, but instead of this, it may be arranged on the rotating cylinder 14 as shown in FIG. In the figure, only 6 charge carriers 7 and 3 sets of charging electret 8 and recovery electrode 9 are displayed, but in reality, 1028 and 533 are shown as described below. Have been placed.
In this case, the sizes of the charge carrier 7, the charging electret 8, and the recovery electrode 9 and their intervals, and the charge density of the charging electret 7 are the same as in the third embodiment, so that the amount of charge charged and the electrostatic force acting on the charge are also in the embodiment. It becomes the same as 3, and the surplus energy that reaches the recovery electrode is also the same, and the recovery potential is also 140V.

ただし、ベルト14の周囲長と、円筒14の周囲長は異なり、両者の周速も異なるので、発電量は異なってくる。即ち、内外固定電極円筒13、15および電荷搬送体円筒14の直径を180±0.1mmとすると、1周で565mmである。ここに、充電エレクトレット8と回収電極の組が1.06mm間隔で並ぶので、533個の組がある。また、0.55mm間隔で電荷搬送体7が配されているので、その数は1028個である。故に、円筒14の1回転で、533 * 1028 = 548,502回の、充電・回収、すなわち発電がおこなわれる。
1回の充電・回収で、4.402E-9[C]の電荷が搬送されるので、円筒14の1回転で、4.402E-9[C] * 548,502 = 1.33E-3[C]の電荷が、0Vから140Vに高められる。
円筒14の回転数を、これを保持するボールベアリングの最高回転数30,000rpmとすると、円筒14は1秒間に500回転する。この結果、発電電流は1.2Aになる。回収電圧が140Vなので、発電量は168Wになる。
However, since the peripheral length of the belt 14 and the peripheral length of the cylinder 14 are different and the peripheral speeds of both are different, the amount of power generation is different. That is, assuming that the diameters of the inner / outer fixed electrode cylinders 13 and 15 and the charge carrier cylinder 14 are 180 ± 0.1 mm, the diameter is 565 mm in one circumference. Here, since the sets of the charging electret 8 and the recovery electrode are lined up at intervals of 1.06 mm, there are 533 sets. Further, since the charge carriers 7 are arranged at intervals of 0.55 mm, the number is 1028. Therefore, one rotation of the cylinder 14 causes 533 * 1028 = 548,502 times of charging / recovery, that is, power generation.
Since the charge of 4.402E-9 [C] is transferred by one charge / recovery, the charge of 4.402E-9 [C] * 548,502 = 1.33E-3 [C] is transferred by one rotation of the cylinder 14. , Increased from 0V to 140V.
Assuming that the rotation speed of the cylinder 14 is 30,000 rpm, which is the maximum rotation speed of the ball bearing that holds the cylinder 14, the cylinder 14 rotates 500 times per second. As a result, the generated current becomes 1.2A. Since the recovery voltage is 140V, the amount of power generation is 168W.

この装置の筐体18のサイズは200 * 200 * 200mmなので、充電エレクトレットの電荷密度が-0.2mC/m2となり、同じである実施例2や3に比較して、体積当たりの発電量は桁違いに小さい。この原因は、電荷搬送体円筒14の内部に大きなムダな空間があるためである。
ここに、電極円筒13、15および電荷搬送体円筒14の直径を少しづつ小さくして多数入れることで、発電量は大幅に増大できる。
Since the size of the housing 18 of this device is 200 * 200 * 200 mm, the charge density of the charging electret is -0.2 mC / m 2 , and the amount of power generation per volume is an order of magnitude compared to Examples 2 and 3 which are the same. The difference is small. This is because there is a large wasteful space inside the charge carrier cylinder 14.
By gradually reducing the diameters of the electrode cylinders 13 and 15 and the charge carrier cylinder 14 and inserting a large number of them, the amount of power generation can be significantly increased.

また、内部のムダな空間を残したままでも、充電エレクトレットの電荷密度を、現在製造可能な最大値、-2.0mC/m2とするだけで、発電電流は12A、回収電圧は1400V、発電量は16.8kWになる。
回収電圧は回収可能最高電圧なので、1400V以下ならどの値でも取りうる。例えば、140Vにすれば、12Aで1.68kWの発電機になる。故に、該発電装置を3個重ねれば、36A、5.0kWになり、一般家庭用電源になる。
In addition, even if the internal wasteful space is left, the charge density of the charging electret can be set to the maximum value that can be manufactured at present, -2.0mC / m2, and the power generation current is 12A, the recovery voltage is 1400V, and the power generation amount is. It will be 16.8kW.
Since the recovery voltage is the maximum recoverable voltage, any value of 1400V or less can be taken. For example, if it is 140V, it will be a 1.68kW generator at 12A. Therefore, if three power generation devices are stacked, the power generation will be 36A and 5.0kW, which will be a general household power source.

以上、4実施例とも、充電方式による電荷注入を使用する鏡像力駆動型静電発電機で説明したが、同静電モーターおよび静電加速器の場合は、電荷注入された電荷搬送体7に作用する静電力の大きさのみが問題で、充電エレクトレットの電位がいかに高くとも問題なく、サイズダウンする必要はない。 In the above, all four examples have been described with a mirror image force driven electrostatic generator using charge injection by a charging method, but in the case of the same electrostatic motor and electrostatic accelerator, they act on the charge carrier 7 in which the charge is injected. The only problem is the magnitude of the electrostatic force that is applied, no matter how high the potential of the charging electlet is, there is no need to reduce the size.

1: 高圧電極
2: 第一対向電極
3: 点電荷
4: 点電荷に作用する静電力のベクトルを示す矢印
5: 電界の方向を示す矢印
6: 第二対向電極
7: 電界の方向に前後非対称な形状(樋型)を有する導体(電荷搬送体)
71:非対称電荷搬送体の前方垂直板
72:非対称電荷搬送体の後方上下水平板
8: 充電電位源(充電エレクトレット)
81:充電エレクトレットの樹脂層
82:充電エレクトレットの背面電極層
9: 電荷回収電極
10: 電荷回収電極に接続されたコンデンサー
11: 電荷注入導電性端子
12: 電荷回収導電性端子
13: その裏面に、充電電位源と回収電極が配置された充電回収基板
14: 横置き樋型電荷搬送体が配置された電荷搬送体基板
15: その表面に、充電電位源と回収電極が配置された固定電極基板
16: 電荷搬送体円板の支柱
17: ベアリング
18: 発電機の筐体

1: High-voltage electrode 2: First counter electrode 3: Point charge 4: Arrow 5 indicating the vector of the electrostatic force acting on the point charge: Arrow 6: Second counter electrode 7: Anteroposterior asymmetry in the direction of the electric field Conductor (charge carrier) with a unique shape (hi-shaped)
71: Front vertical plate of asymmetric charge carrier 72: Rear upper and lower horizontal plate of asymmetric charge carrier 8: Charging potential source (charging electret)
81: Resin layer of the charging electlet 82: Back electrode layer of the charging electlet 9: Charge recovery electrode 10: Condenser connected to the charge recovery electrode 11: Charge injection conductive terminal 12: Charge recovery conductive terminal 13: On the back surface thereof, Charge recovery substrate 14 on which the charge potential source and recovery electrode are arranged: Charge carrier substrate 15 on which the horizontal gutter type charge carrier is arranged: Fixed electrode substrate 16 on which the charge potential source and recovery electrode are arranged on the surface. : Charge carrier disk support 17: Bearing 18: Generator housing

Claims (5)

電荷搬送体に対する電荷の注入方式として充電方式を使用し且つ非対称鏡像力を当該電荷搬送体の駆動力とする静電発電機において、
当該電荷搬送体、充電電位源、および回収電極の各々の幅、当該電荷搬送体の高さ、および当該充電電位源と当該回収電極の間隔を5.0mm以下としたことを特徴とする静電発電機。
In an electrostatic generator that uses a charging method as a charge injection method for a charge carrier and uses an asymmetric mirror image force as the driving force of the charge carrier.
Electrostatic power generation characterized in that the width of each of the charge carrier, the charging potential source, and the recovery electrode, the height of the charge carrier, and the distance between the charging potential source and the recovery electrode are 5.0 mm or less. Machine.
電荷搬送体に対する電荷の注入方式として充電方式を使用し且つ非対称鏡像力を当該電荷搬送体の駆動力とする静電発電機において、
当該電荷搬送体、充電電位源、及び回収電極の各々の幅、当該電荷搬送体の高さ、および当該充電電位源と当該回収電極の間隔を5.0mm以下とし、当該電荷搬送体を、回転する電荷搬送体円板上に放射状に配置し、当該充電電位源、および当該回収電極を、前記電荷搬送体円板を挟む充電回収円板上に、それぞれ放射状に配したことを特徴とする静電発電機。
In an electrostatic generator that uses a charging method as a charge injection method for a charge carrier and uses an asymmetric mirror image force as the driving force of the charge carrier.
The width of each of the charge carrier, the charge potential source, and the recovery electrode, the height of the charge carrier, and the distance between the charge potential source and the recovery electrode are set to 5.0 mm or less, and the charge carrier is rotated. Electrostatics characterized in that they are arranged radially on a charge carrier disk, and the charge potential source and the recovery electrode are arranged radially on the charge recovery disk sandwiching the charge carrier disk. Generator.
電荷搬送体に対する電荷の注入方式として充電方式を使用し且つ非対称鏡像力を当該電荷搬送体の駆動力とする静電発電機において、
当該電荷搬送体、充電電位源、及び回収電極の各々の幅、当該電荷搬送体の高さ、および当該充電電位源と当該回収電極の間隔を5.0mm以下とし、当該電荷搬送体を、回転するベルトまたは円筒の電荷搬送体基板に、進行方向に直角に、且つ互いに平行に配置し、前記充電電位源及び回収電極を、電荷搬送体基板を挟む充電回収円板または固定電極円筒に平行に配したことを特徴とする静電発電機。
In an electrostatic generator that uses a charging method as a charge injection method for a charge carrier and uses an asymmetric mirror image force as the driving force of the charge carrier.
The width of each of the charge carrier, the charge potential source, and the recovery electrode, the height of the charge carrier, and the distance between the charge potential source and the recovery electrode are set to 5.0 mm or less, and the charge carrier is rotated. The charge potential source and the recovery electrode are arranged on the charge carrier substrate of the belt or cylinder at right angles to the traveling direction and parallel to each other, and the charge potential source and the recovery electrode are arranged parallel to the charge recovery disk or the fixed electrode cylinder sandwiching the charge carrier substrate. An electrostatic generator characterized by the fact that it was done.
請求項2及び3において、前記電荷搬送体同士を導通し、これら電荷搬送体間の間隔を、前記充電電位源および前記回収電極間の間隔と同じにして、当該電荷搬送体が前記充電電位源に入った時に、当該電荷搬送体を接地し、前記回収電極に入った時に、当該電荷搬送体を当該回収電極と導通させることを特徴とする静電発電機。 In claims 2 and 3, the charge carriers are conductive to each other, the distance between the charge carriers is set to be the same as the distance between the charge potential source and the recovery electrode, and the charge carrier is the charge potential source. An electrostatic generator characterized in that the charge carrier is grounded when it enters, and the charge carrier is made conductive with the recovery electrode when it enters the recovery electrode. 請求項4において、前記電荷搬送体の接地および前記回収電極との導通を高速スイッチング回路で行うことを特徴とする静電発電機。

The electrostatic generator according to claim 4, wherein the grounding of the charge carrier and conduction with the recovery electrode are performed by a high-speed switching circuit.

JP2020106623A 2020-06-19 2020-06-19 Image force driven electrostatic generator using rechargeable charge injection method Pending JP2022002436A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020106623A JP2022002436A (en) 2020-06-19 2020-06-19 Image force driven electrostatic generator using rechargeable charge injection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020106623A JP2022002436A (en) 2020-06-19 2020-06-19 Image force driven electrostatic generator using rechargeable charge injection method

Publications (1)

Publication Number Publication Date
JP2022002436A true JP2022002436A (en) 2022-01-06

Family

ID=79244513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020106623A Pending JP2022002436A (en) 2020-06-19 2020-06-19 Image force driven electrostatic generator using rechargeable charge injection method

Country Status (1)

Country Link
JP (1) JP2022002436A (en)

Similar Documents

Publication Publication Date Title
US11239715B2 (en) Electromagnetic device
CN102939705B (en) Apparatus for use as motor or generator
US8264121B2 (en) Electrostatic generator/motor configurations
US20140175941A1 (en) Variable capacitive electrostatic machinery with macro pressure-gap product
US9899937B2 (en) Peg-style electrostatic rotating machine
KR101153148B1 (en) Electric power source apparatus having electric connection device and power transmitting method using the apparatus
CN106208801A (en) A kind of rotary friction nanometer power generator
CN104753387B (en) Hybrid wind power generation machine
CN105932899A (en) Electrostatic generator with substrate electrode-free electret and method for producing electret
JPS63186570A (en) Electric field machine
CN113162460B (en) Electrostatic rotary and linear reciprocating motion coupling energy collector
RU2471283C1 (en) Method of electromechanical conversion of energy and electrostatic capacitance motor on its basis
JP2022002436A (en) Image force driven electrostatic generator using rechargeable charge injection method
JP2009232667A (en) Electrostatic motor power generator which tub-shaped electrode in perpendicular and level electric field
US9614462B2 (en) Rippled disc electrostatic generator/motor configurations utilizing magnetic insulation
KR101907771B1 (en) Triboelectric energy generator using induced charge
CN207801780U (en) A kind of triboelectricity device based on independent layer model
KR20100007359A (en) Electric generator with fixing plate comprising segmented magnets and rotary disk having segmented coil
RU2214033C2 (en) Electrostatic induction generator with multiplication of charges
RU2182398C2 (en) Method for electromechanical energy conversion (alternatives)
Zhao et al. Design and optimization of a dielectric-gas-based single-phase electrostatic motor
KR20110116371A (en) Disc type electric power module which serves as generator
CN108322082A (en) A kind of single-phase capacitance type variable electrostatic motor
JP2022030044A (en) Image force driving-type electrostatic power generator formed of minute component, and manufacturing method for the same
JP2022084111A (en) Structure of novel electret and using method thereof