JP2022002352A - 画像処理装置および方法 - Google Patents

画像処理装置および方法 Download PDF

Info

Publication number
JP2022002352A
JP2022002352A JP2018178411A JP2018178411A JP2022002352A JP 2022002352 A JP2022002352 A JP 2022002352A JP 2018178411 A JP2018178411 A JP 2018178411A JP 2018178411 A JP2018178411 A JP 2018178411A JP 2022002352 A JP2022002352 A JP 2022002352A
Authority
JP
Japan
Prior art keywords
transformation
conversion
unit
matrix
dimensional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018178411A
Other languages
English (en)
Inventor
健史 筑波
Kenji Tsukuba
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Group Corp
Original Assignee
Sony Group Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Group Corp filed Critical Sony Group Corp
Priority to JP2018178411A priority Critical patent/JP2022002352A/ja
Priority to PCT/JP2019/035818 priority patent/WO2020066641A1/ja
Publication of JP2022002352A publication Critical patent/JP2022002352A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/60Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)

Abstract

【課題】1次元変換または逆1次元変換をより容易に行うことができるようにする。【解決手段】係数データの1次元信号列に対して符号反転操作を行い、その符号反転操作された1次元信号列に対して、第1の変換タイプの1次元変換を実現する場合、FTS操作により第1の変換タイプの1次元変換を実現する第2の変換タイプの変換行列をベース変換行列とし、第3の変換タイプの1次元変換を実現する場合、FTS操作により第3の変換タイプの1次元変換を実現する第4の変換タイプの、かつ、対称行列である変換行列をベース変換行列とし、そのベース変換行列を用いて行列演算を行い、その行列演算が行われた1次元信号列に対してフリップ操作を行う。本開示は、例えば、画像処理装置、画像符号化装置、または画像復号装置等に適用することができる。【選択図】図6

Description

本開示は、画像処理装置および方法に関し、特に、1次元変換または逆1次元変換をより容易に行うことができるようにした画像処理装置および方法に関する。
従来、輝度について、TU(Transform Unit)単位毎の、水平方向のプライマリ変換PThor(プライマリ水平変換とも称する)および垂直方向のプライマリ変換PTver(プライマリ垂直変換とも称する)毎に、適応的に複数の異なる直交変換から、プライマリ変換を選択する適応プライマリ変換(AMT: Adaptive Multiple Core Transforms)が開示された(例えば、非特許文献1参照)。非特許文献1では、プライマリ変換の候補として、DCT-II, DST-VII, DCT-VIII, DST-I, DST-VIIの5つの1次元変換(1次元直交変換とも称する)がある。
また、さらに、DST-IVおよびIDT(Identity Transform: 1次元変換スキップ)の2つの1次元直交変換を追加し、計7つの1次元直交変換をプライマリ変換の候補とすることが提案された(例えば、非特許文献2参照)。
また、AMTで用いる直交変換を{DCT4/DST4/DCT2/DST2}とするtype2/type4 AMTが提案された(例えば、非特許文献3参照)。非特許文献3においては、さらに、2^N-pt DCT2の変換行列をサンプリング/符号反転/フリップにより、2^N-ptより小さい2^M-ptの DCT4/DST4/DCT2/DST2の変換行列を導出することが提案された。
さらに、DST4をDCT4のSTF操作、DST2をDCT2のFTS操作により実現することが提案された(例えば、非特許文献4参照)。
Jianle Chen, Elena Alshina, Gary J. Sullivan, Jens-Rainer, Jill Boyce, "Algorithm Description of Joint Exploration Test Model 4", JVET-G1001_v1, Joint Video Exploration Team (JVET) of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11 7th Meeting: Torino, IT, 13-21 July 2017 V. Lorcy, P. Philippe, "Proposed improvements to the Adaptive multiple Core transform", JVET-C0022, Joint Video Exploration Team (JVET) of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11 3rd Meeting: Geneva, CH, 26 May -1 June 2016 Takeshi Tsukuba, Masaru Ikeda, Teruhiko Suzuki, "CE6-related: AMT with only type2/type4 DCT/DST", JVET-K0394-v2, Joint Video Experts Team (JVET) of ITU-T SG16 WP3 and ISO/IEC JTC 1/SC29/WG11 11th Meeting: Ljubljana, SI, 10-18 July 2018 K. Naser, F. Le Leannec, E. Francois, "CE6-related: Reduction of the number of core transforms in AMT", JVET-K0265, Joint Video Experts Team (JVET) of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11
例えば、非特許文献4に記載のFTS操作やSTF操作を用いて実現するDST2やDST4を、非特許文献3に記載のtype2/type4 AMTに適用することにより、FTS操作やSTF操作を用いたプライマリ変換(逆プライマリ変換)を実現することができる。
しかしながら、その場合、行列演算の入力側のプリ処理と出力側のポスト処理の両方において、フリップ操作と符号反転操作とを行うことができるようにする必要があり、1次元変換(または逆1次元変換)の処理や回路の構成がより複雑になってしまうおそれがあった。
本開示は、このような状況に鑑みてなされたものであり、1次元変換または逆1次元変換をより容易に行うことができるようにするものである。
本技術の一側面の画像処理装置は、ビットストリームを復号して、画像に関する係数データを生成する復号部と、前記復号部により生成された前記係数データの1次元信号列に対して、各係数の順序を逆順に並び替えるフリップ操作を行うフリップ部と、前記フリップ部により前記フリップ操作された前記1次元信号列に対して、第1の変換タイプの逆1次元変換を実現する場合、STF操作により前記第1の変換タイプの逆1次元変換を実現する第2の変換タイプの変換行列をベース変換行列とし、第3の変換タイプの逆1次元変換を実現する場合、FTS操作により前記第3の変換タイプの逆1次元変換を実現する第4の変換タイプの、かつ、対称行列である変換行列をベース変換行列とし、前記ベース変換行列の転置行列を用いて行列演算を行う行列演算部と、前記行列演算部により前記行列演算が行われた前記1次元信号列に対して、前記1次元信号列の奇数番目の信号の符号を反転する符号反転操作を行う符号反転部とを備える画像処理装置である。
本技術の一側面の画像処理方法は、ビットストリームを復号して、画像に関する係数データを生成し、生成された前記係数データの1次元信号列に対して、各係数の順序を逆順に並び替えるフリップ操作を行い、前記フリップ操作された前記1次元信号列に対して、第1の変換タイプの逆1次元変換を実現する場合、STF操作により前記第1の変換タイプの逆1次元変換を実現する第2の変換タイプの変換行列をベース変換行列とし、第3の変換タイプの逆1次元変換を実現する場合、FTS操作により前記第3の変換タイプの逆1次元変換を実現する第4の変換タイプの、かつ、対称行列である変換行列をベース変換行列とし、前記ベース変換行列の転置行列を用いて行列演算を行い、前記行列演算が行われた前記1次元信号列に対して、前記1次元信号列の奇数番目の信号の符号を反転する符号反転操作を行う画像処理方法である。
本技術の他の側面の画像処理装置は、画像に関する係数データの1次元信号列に対して、前記1次元信号列の奇数番目の信号の符号を反転する符号反転操作を行う符号反転部と、前記符号反転部により前記符号反転操作された前記1次元信号列に対して、第1の変換タイプの1次元変換を実現する場合、FTS操作により前記第1の変換タイプの1次元変換を実現する第2の変換タイプの変換行列をベース変換行列とし、第3の変換タイプの1次元変換を実現する場合、STF操作により前記第3の変換タイプの1次元変換を実現する第4の変換タイプの、かつ、対称行列である変換行列をベース変換行列とし、前記ベース変換行列を用いて行列演算を行う行列演算部と、前記行列演算部により前記行列演算が行われた前記1次元信号列に対して、各係数の順序を逆順に並び替えるフリップ操作を行うフリップ部と、前記フリップ部により前記フリップ操作が行われた前記1次元信号列を含む係数データを符号化し、ビットストリームを生成する符号化部とを備える画像処理装置である。
本技術の他の側面の画像処理方法は、画像に関する係数データの1次元信号列に対して、前記1次元信号列の奇数番目の信号の符号を反転する符号反転操作を行い、前記符号反転操作された前記1次元信号列に対して、第1の変換タイプの1次元変換を実現する場合、FTS操作により前記第1の変換タイプの1次元変換を実現する第2の変換タイプの変換行列をベース変換行列とし、第3の変換タイプの1次元変換を実現する場合、STF操作により前記第3の変換タイプの1次元変換を実現する第4の変換タイプの、かつ、対称行列である変換行列をベース変換行列とし、前記ベース変換行列を用いて行列演算を行い、前記行列演算が行われた前記1次元信号列に対して、各係数の順序を逆順に並び替えるフリップ操作を行い、前記フリップ操作が行われた前記1次元信号列を含む係数データを符号化し、ビットストリームを生成する画像処理方法である。
本技術の一側面の画像処理装置および方法においては、ビットストリームを復号して、画像に関する係数データが生成され、その生成された係数データの1次元信号列に対して、各係数の順序を逆順に並び替えるフリップ操作が行われ、そのフリップ操作された1次元信号列に対して、第1の変換タイプの逆1次元変換を実現する場合、STF操作により第1の変換タイプの逆1次元変換を実現する第2の変換タイプの変換行列がベース変換行列とされ、第3の変換タイプの逆1次元変換を実現する場合、FTS操作により第3の変換タイプの逆1次元変換を実現する第4の変換タイプの、かつ、対称行列である変換行列がベース変換行列とされ、そのベース変換行列の転置行列を用いて行列演算が行われ、その行列演算が行われた1次元信号列に対して、その1次元信号列の奇数番目の信号の符号を反転する符号反転操作が行われる。
本技術の他の側面の画像処理装置および方法においては、画像に関する係数データの1次元信号列に対して、その1次元信号列の奇数番目の信号の符号を反転する符号反転操作が行われ、その符号反転操作された1次元信号列に対して、第1の変換タイプの1次元変換を実現する場合、FTS操作により第1の変換タイプの1次元変換を実現する第2の変換タイプの変換行列がベース変換行列とされ、第3の変換タイプの1次元変換を実現する場合、STF操作により第3の変換タイプの1次元変換を実現する第4の変換タイプの、かつ、対称行列である変換行列がベース変換行列とされ、そのベース変換行列を用いて行列演算が行われ、その行列演算が行われた1次元信号列に対して、各係数の順序を逆順に並び替えるフリップ操作が行われ、そのフリップ操作が行われた1次元信号列を含む係数データが符号化され、ビットストリームが生成される。
DST2の1次元変換の例について説明する図である。 DST4の1次元変換の例について説明する図である。 STF操作・FTS操作を用いた1次元変換の例について説明する図である。 変換装置の主な構成例を示すブロック図である。 変換処理の流れの例を説明するフローチャートである。 FTS操作を用いた1次元変換の例について説明する図である。 変換装置の主な構成例を示すブロック図である。 変換処理の流れの例を説明するフローチャートである。 STF操作を用いた逆1次元変換の例について説明する図である。 逆変換装置の主な構成例を示すブロック図である。 逆変換処理の流れの例を説明するフローチャートである。 ベース変換行列の導出の例について説明する図である。 DCT2のベース変換行列の導出の例について説明する図である。 DCT4のベース変換行列の導出の例について説明する図である。 変換装置の主な構成例を示すブロック図である。 ベース変換行列導出部の主な構成例を示すブロック図である。 変換処理の流れの例を説明するフローチャートである。 ベース変換行列導出処理の流れの例を説明するフローチャートである。 逆変換装置の主な構成例を示すブロック図である。 逆変換処理の流れの例を説明するフローチャートである。 画像符号化装置の主な構成例を示すブロック図である。 直交変換部の主な構成例を示すブロック図である。 プライマリ変換部の主な構成例を示すブロック図である。 プライマリ水平変換部の主な構成例を示すブロック図である。 プライマリ垂直変換部の主な構成例を示すブロック図である。 画像符号化処理の流れの例を示すフローチャートである。 直交変換処理の流れの例を説明するフローチャートである。 プライマリ変換処理の流れの例を説明するフローチャートである。 プライマリ水平変換処理の流れの例を説明するフローチャートである。 プライマリ垂直変換処理の流れの例を説明するフローチャートである。 画像復号装置の主な構成例を示すブロック図である。 逆直交変換部の主な構成例を示すブロック図である。 逆プライマリ変換部の主な構成例を示すブロック図である。 逆プライマリ垂直変換部の主な構成例を示すブロック図である。 逆プライマリ水平変換部の主な構成例を示すブロック図である。 画像復号処理の流れの例を説明するフローチャートである。 逆直交変換処理の流れの例を説明するフローチャートである。 逆プライマリ変換処理の流れの例を説明するフローチャートである。 逆プライマリ垂直変換処理の流れの例を説明するフローチャートである。 逆プライマリ水平変換処理の流れの例を説明するフローチャートである。 コンピュータの主な構成例を示すブロック図である。
以下、本開示を実施するための形態(以下実施の形態とする)について説明する。なお、説明は以下の順序で行う。
1.技術内容・技術用語をサポートする文献等
2.適応プライマリ変換
3.コンセプト
4.第1の実施の形態(変換装置)
5.第2の実施の形態(逆変換装置)
6.第3の実施の形態(変換装置(ベース変換行列導出))
7.第4の実施の形態(逆変換装置(ベース変換行列導出))
8.第5の実施の形態(応用例)
9.第6の実施の形態(画像符号化装置)
10.第7の実施の形態(画像復号装置)
11.付記
<1.技術内容・技術用語をサポートする文献等>
本技術で開示される範囲は、実施例に記載されている内容だけではなく、出願当時において公知となっている以下の非特許文献に記載されている内容も含まれる。
非特許文献1:(上述)
非特許文献2:(上述)
非特許文献3:(上述)
非特許文献4:(上述)
非特許文献5:TELECOMMUNICATION STANDARDIZATION SECTOR OF ITU(International Telecommunication Union), "Advanced video coding for generic audiovisual services", H.264, 04/2017
非特許文献6:TELECOMMUNICATION STANDARDIZATION SECTOR OF ITU(International Telecommunication Union), "High efficiency video coding", H.265, 12/2016
つまり、上述の非特許文献に記載されている内容もサポート要件を判断する際の根拠となる。例えば、非特許文献6に記載されているQuad-Tree Block Structure、非特許文献1に記載されているQTBT(Quad Tree Plus Binary Tree) Block Structureが実施例において直接的な記載がない場合でも、本技術の開示範囲内であり、特許請求の範囲のサポート要件を満たすものとする。また、例えば、パース(Parsing)、シンタックス(Syntax)、セマンティクス(Semantics)等の技術用語についても同様に、実施例において直接的な記載がない場合でも、本技術の開示範囲内であり、特許請求の範囲のサポート要件を満たすものとする。
また、本明細書において、画像(ピクチャ)の部分領域や処理単位として説明に用いる「ブロック」(処理部を示すブロックではない)は、特に言及しない限り、ピクチャ内の任意の部分領域を示し、その大きさ、形状、および特性等は限定されない。例えば、「ブロック」には、上述の非特許文献1、非特許文献5、および非特許文献6に記載のTB(Transform Block)、TU(Transform Unit)、PB(Prediction Block)、PU(Prediction Unit)、SCU(Smallest Coding Unit)、CU(Coding Unit)、LCU(Largest Coding Unit)、CTB(Coding Tree Block)、CTU(Coding Tree Unit)、変換ブロック、サブブロック、マクロブロック、タイル、またはスライス等、任意の部分領域(処理単位)が含まれるものとする。
また、このようなブロックのサイズを指定するに当たって、直接的にブロックサイズを指定するだけでなく、間接的にブロックサイズを指定するようにしてもよい。例えばサイズを識別する識別情報を用いてブロックサイズを指定するようにしてもよい。また、例えば、基準となるブロック(例えばLCUやSCU等)のサイズとの比または差分によってブロックサイズを指定するようにしてもよい。例えば、シンタックス要素等としてブロックサイズを指定する情報を伝送する場合に、その情報として、上述のような間接的にサイズを指定する情報を用いるようにしてもよい。このようにすることにより、その情報の情報量を低減させることができ、符号化効率を向上させることができる場合もある。また、このブロックサイズの指定には、ブロックサイズの範囲の指定(例えば、許容されるブロックサイズの範囲の指定等)も含む。
また、本明細書において、符号化とは、画像をビットストリームに変換する全体の処理だけではなく、一部の処理も含む。例えば、予測処理、直交変換、量子化、算術符号化等を包括した処理を含むだけではなく、量子化と算術符号化とを総称した処理、予測処理と量子化と算術符号化とを包括した処理、などを含む。同様に、復号とは、ビットストリームを画像に変換する全体の処理だけではなく、一部の処理も含む。例えば、逆算術復号、逆量子化、逆直交変換、予測処理等を包括した処理を含むだけではなく、逆算術復号と逆量子化とを包括した処理、逆算術復号と逆量子化と予測処理とを包括した処理、などを含む。
<2.適応プライマリ変換>
<変換タイプの設定>
非特許文献1に記載のテストモデル(JEM4(Joint Exploration Test Model 4))においては、輝度の変換ブロックについて、水平方向のプライマリ変換PThor(プライマリ水平変換とも称する)、および垂直方向のプライマリ変換PTver(プライマリ垂直変換とも称する)毎に、適応的に複数の異なる1次元直交変換から、プライマリ変換を選択する適応プライマリ変換(AMT(Adaptive Multiple core Transforms))が開示されている。なお、AMTは、EMT(Explicit Multiple core Transforms)とも称する。
具体的には、輝度の変換ブロックについて、適応プライマリ変換を実施するか否かを示す適応プライマリ変換フラグapt_flagが0(偽)の場合には、プライマリ変換として、DCT(Discrete Cosine Transform)-II、またはDST(Discrete Sine Transform)-VIIがモード情報によって一意に決定される(TrSetIdx = 4)。
適応プライマリ変換フラグapt_flagが1(真)の場合であって、処理対象の輝度の変換ブロックを含むカレントCU(Coding Unit)がイントラCUである場合、水平方向(x方向)と垂直方向(y方向)のそれぞれについてのプライマリ変換の候補となる直交変換を含む変換セットTrSetが、3つの変換セットTrSet(TrSetIdx = 0,1,2)の中から選択される。なお、上述したDST-VIIやDCT-VIII等は、直交変換のタイプを示している。
この変換セットTrSetは、モード情報と変換セットの対応表(のイントラ予測モード情報)に基づいて一意に決定される。例えば、以下の式(1)および式(2)のように、各変換セットTrSetH, TrSetVに対して、対応する変換セットTrSetを指定する変換セット識別子TrSetIdxを設定するように実施される。
Figure 2022002352
ここで、TrSetHは、プライマリ水平変換PThorの変換セットを示し、TrSetVは、プライマリ垂直変換PTverの変換セットを示し、ルックアップテーブルLUT_IntraModeToTrSetは、モード情報と変換セットの対応表である。ルックアップテーブルLUT_IntraModeToTrSet[][]の1番目の配列は、イントラ予測モードIntraModeを引数とし、2番目の配列は、{H=0, V=1}を引数とする。
例えば、イントラ予測モード番号19(IntraMode == 19)の場合、プライマリ水平変換PThorの変換セットTrSetH(プライマリ水平変換セットとも称する)として、変換セット識別子TrSetIdx = 0の変換セットが選択され、プライマリ垂直変換PTverの変換セットTrSetV(プライマリ垂直変換セットとも称する)として、変換セット識別子TrSetIdx=2の変換セットが選択される。
なお、適応プライマリ変換フラグapt_flagが1(真)の場合であって、処理対象の輝度の変換ブロックを含むカレントCUがインターCUである場合、プライマリ水平変換の変換セットTrSetHおよびプライマリ垂直変換の変換セットTrSetVには、インターCU専用の変換セットInterTrSet(TrSetIdx = 3)を割り当てる。
続いて、水平方向と垂直方向のそれぞれについて、選択された変換セットTrSetのうち、どの直交変換を適用するかを、プライマリ水平変換指定フラグpt_hor_flagおよびプライマリ垂直変換指定フラグpt_ver_flagの内の対応する方によって選択する。
例えば、以下の式(3)および式(4)のように、プライマリ{水平,垂直}変換セットTrSet{H,V}と、プライマリ{水平,垂直}変換指定フラグpt_{hor,ver}_flagとを引数として、所定の変換セットの定義表(LUT_TrSetToTrTypeIdx)から導出する。
Figure 2022002352
なお、プライマリ水平変換指定フラグpt_hor_flagおよびプライマリ垂直変換指定フラグpt_ver_flagからプライマリ変換識別子pt_idxが、以下の式(5)に基づいて導出される。すなわち、プライマリ変換識別子pt_idxの上位1bitは、プライマリ垂直変換指定フラグの値に対応し、下位1bitは、プライマリ水平変換指定フラグの値に対応する。
Figure 2022002352
導出されたプライマリ変換識別子pt_idxのbin列に対して、算術符号化を適用して、ビット列を生成することで、符号化が実施される。なお、適応プライマリ変換フラグapt_flag、およびプライマリ変換識別子pt_idxは、輝度の変換ブロックにおいてシグナルされる。
以上のように、非特許文献1では、プライマリ変換の候補として、DCT-II(DCT2), DST-VII(DST7), DCT-VIII(DCT8), DST-I(DST1), DCT-V(DCT5)の5つの1次元直交変換が提案された。この方法においては、AMTが適用される場合、予測モードで決まる変換セットの中から、水平/垂直にどの直交変換を適用するかを表す2ビットのインデックスがシグナルされ、方向毎に2つの候補から1つの変換が選択される。
また、非特許文献2では、それらに加えて、さらに、DST-IV(DST4)およびIDT(Identity Transform:1次元変換スキップ)の2つの1次元直交変換が追加され、計7つの1次元直交変換をプライマリ変換の候補とすることが提案された。
<type2/type4 AMT>
また、非特許文献3では、そのAMTで用いる直交変換を{DCT4/DST4/DCT2/DST2}とするtype2/type4 AMTが提案された。さらに、2^N-pt DCT2の変換行列をサンプリング/符号反転/フリップにより、2^N-ptより小さい2^M-ptの DCT4/DST4/DCT2/DST2の変換行列を導出することも提案された。
<FTS操作・STF操作>
さらに、非特許文献4では、DST4をDCT4のSTF操作、DST2をDCT2のFTS操作により実現することが提案された。
FTS操作とは、入力信号の奇数位置にある信号を符号反転する符号反転操作(S)、符号反転操作後の入力信号の直交変換(T)、および、直交変換後の変換係数の順序を逆順に並び替えるフリップ操作(F)の3つの処理(S→T→Fの順に処理)を行うことを示す。
例えば図1のAに示されるような、入力信号Xに対して、変換タイプDST(Discrete Sine Transform)2の直交変換処理11を行い、出力信号Yを出力する処理は、図1のBに示されるように、変換タイプDCT(Discrete Cosine Transform)2の直交変換処理13を用いたFTS操作により実現することができる。つまり、入力信号Xに対して符号反転操作(S)12を行い、その符号反転操作された入力信号Xに対して変換タイプDCT2の直交変換処理(T)13を行い、得られた直交変換係数に対してフリップ操作(F)14を行うことにより、変換タイプDST2の直交変換処理11と等価の処理を行うことができる。
したがって、変換タイプDST2の直交変換を表す変換行列TDST2(以下において、変換タイプDST2の変換行列とも称する)は、符号反転操作を表す符号反転行列S、変換タイプDCT2の直交変換を表す変換行列TDCT2(以下において、変換タイプDCT2の変換行列とも称する)、およびフリップ操作を表すフリップ行列Fを用いて以下の式(6)のように表すことができる。
Figure 2022002352
STF操作とは、入力信号の順序を逆順に並び替えるフリップ操作(F)、フリップ操作後の入力信号の直交変換(T)、および、直交変換後の奇数位置にある変換係数を符号反転する符号反転操作(S)の3つの処理(F→T→Sの順に処理)を行うことを示す。
例えば図2のAに示されるような、入力信号Xに対して、変換タイプDST(Discrete Sine Transform)4の直交変換処理21を行い、出力信号Yを出力する処理は、図2のBに示されるように、変換タイプDCT(Discrete Cosine Transform)4の直交変換処理23を用いたSTF操作により実現することができる。つまり、入力信号Xに対してフリップ操作(F)22を行い、そのフリップ操作された入力信号Xに対して変換タイプDCT4の直交変換処理(T)23を行い、得られた直交変換係数に対して符号反転操作(S)24を行うことにより、変換タイプDST4の直交変換処理21と等価の処理を行うことができる。
したがって、変換タイプDST4の直交変換を表す変換行列TDST4(以下において、変換タイプDST4の変換行列とも称する)は、符号反転操作を表す符号反転行列S、変換タイプDCT4の直交変換を表す変換行列TDCT4(以下において、変換タイプDCT4の変換行列とも称する)、およびフリップ操作を表すフリップ行列Fを用いて以下の式(7)のように表すことができる。
Figure 2022002352
なお、フリップ行列Fは、以下の式(8)のように表すことができる。符号反転行列Sは、以下の式(9)のように表すことができる。
Figure 2022002352
<FTS操作やSTF操作を用いたtype2/type4 AMT>
このような非特許文献4に記載のFTS操作やSTF操作を用いて実現する変換タイプDST2やDST4の1次元直交変換を、非特許文献3に記載のtype2/type4 AMTに適用することにより、FTS操作やSTF操作を用いたプライマリ変換(逆プライマリ変換)を実現することができる。例えば、プライマリ変換において、図3の表に示されるように制御する。
図3の表において、例えば、1次元変換(1次元直交変換)の変換タイプを指定する変換タイプ識別子trTypeIdxが0、すなわち、変換タイプDCT2の1次元変換が指定される場合、入力信号に対するプリ処理(入力側の処理)としても、変換係数に対するポスト処理(出力側の処理)としても、フリップ操作(F)も符号反転操作(S)もスキップ(省略)され(False)、変換タイプがDCT2でサイズがnTbSの変換行列transMatrixnTbS,DCT2をベース変換行列Tbaseとして用いた行列演算(1次元変換)のみが行われる。
同様に、変換タイプ識別子trTypeIdxが1、すなわち、変換タイプDCT4の1次元変換が指定される場合、プリ処理としてもポスト処理としても、フリップ操作(F)も符号反転操作(S)もスキップ(省略)され(False)、変換タイプがDCT4でサイズがnTbSの変換行列transMatrixnTbS,DCT4をベース変換行列Tbaseとして用いた行列演算(1次元変換)のみが行われる。
これに対して、変換タイプ識別子trTypeIdxが2、すなわち、変換タイプDST4の1次元変換が指定される場合、プリ処理として、入力信号に対してフリップ操作(F)が実行され(True)、符号反転操作(S)がスキップ(省略)される(False)。そして、フリップ操作された入力信号に対して、変換タイプがDCT4でサイズがnTbSの変換行列transMatrixnTbS,DCT4をベース変換行列Tbaseとして用いた行列演算(1次元変換)が行われる。さらに、ポスト処理として、その行列演算により得られた変換係数に対して符号反転操作(S)が実行され(True)、フリップ操作(F)がスキップ(省略)される(False)。
同様に、変換タイプ識別子trTypeIdxが3、すなわち、変換タイプDST2の1次元変換が指定される場合、プリ処理として、入力信号に対して入力反転操作(S)が実行され(True)、フリップ操作(F)がスキップ(省略)される(False)。そして、入力反転操作された入力信号に対して、変換タイプがDCT2でサイズがnTbSの変換行列transMatrixnTbS,DCT2をベース変換行列Tbaseとして用いた行列演算(1次元変換)が行われる。さらに、ポスト処理として、その行列演算により得られた変換係数に対してフリップ操作(F)が実行され(True)、符号反転操作(S)がスキップ(省略)される(False)。
このような処理を実現するハードウエアの構成例を図4に示す。図4の場合、変換装置50は、制御部51、プリ処理部52、行列演算部53、およびポスト処理部54を有する。
制御部51は、変換タイプ識別子trTypeIdx、入力信号の処理対象ブロックの幅log2TBWidth、および入力信号の処理対象ブロックの高さlog2TBHeight等のパラメータに基づいて、プリ処理やポスト処理として実行する処理や、1次元変換に用いるベース変換行列(つまり変換タイプ)を選択する。制御部51は、プリ処理の選択結果を示すプリ処理選択情報をプリ処理部52に供給する。また、制御部51は、ベース変換行列の選択結果を示すベース変換行列選択情報を行列演算部53に供給する。さらに、制御部51は、ポスト処理の選択結果を示すポスト処理選択情報をポスト処理部54に供給する。
プリ処理部52は、符号反転操作を行う符号反転部61と、フリップ操作を行うフリップ部62とを有し、プリ処理選択情報に従っていずれか一方の処理部を選択し、入力係数データXinに対して符号反転操作またはフリップ操作を行い、係数データX'を生成する(X' = S・Xin、または、X' = F・Xin)。
行列演算部53は、ベース変換行列LUT(Look Up Table)70を有する。ベース変換行列LUT70は、ベース変換行列の候補である変換タイプDCT2の変換行列71と、変換タイプDCT4の変換行列72とを記憶する。行列演算部53は、それらの候補のうち、ベース変換行列選択情報により指定される変換行列をベース変換行列LUT70より読み出し、そのベース変換行列Tbaseを用いて係数データX'に対する行列演算(1次元変換)を行い、係数データX''を生成する(X'' = Tbase・X')。
ポスト処理部54は、フリップ操作を行うフリップ部81と、符号反転操作を行う符号反転部82とを有し、ポスト処理選択情報に従っていずれか一方の処理部を選択し、係数データX''に対してフリップ操作または符号反転操作を行い、出力係数データXoutを生成する(Xout = F・X''、または、Xout = S・X'')。
つまり、上述のような1次元変換を行う変換装置50をハードウエアで構成する場合、プリ処理部52として、符号反転部61およびフリップ部62の両方の構成が必要になる。同様に、ポスト処理部54として、フリップ部81および符号反転部82の両方の構成が必要になる。そのため、回路規模が増大し、実装コストが増大するおそれがあった。
また、このような変換処理の流れの例を図5のフローチャートを参照して説明する。変換処理が開始されると、制御部51は、指定された変換タイプやサイズ(つまり、trTypeIdx, log2TBWidth, log2TBHeight)等に基づいて、ベース変換行列選択情報、プリ処理選択情報、およびポスト処理選択情報を設定する(ステップS51)。
プリ処理部52は、プリ処理選択情報に基づいてプリ処理を行うか否かを判定し(ステップS52)、プリ処理を行う場合は、さらにその処理内容(符号反転操作かフリップ操作か)を判定する(ステップS53)。プリ処理部52は、これらの判定結果に従って、入力係数データXinに対して符号反転操作を行う(ステップS54)か、フリップ操作を行う(ステップS55)か、プリ処理をスキップする。
行列演算部53は、ベース変換行列選択情報に従って、選択したベース変換行列Tbaseを用いて係数データX'に対する行列演算(1次元変換)を行う(ステップS56)。
ポスト処理部54は、ポスト処理選択情報に基づいてポスト処理を行うか否かを判定し(ステップS57)、ポスト処理を行う場合は、さらにその処理内容(フリップ操作か符号反転操作か)を判定する(ステップS58)。ポスト処理部54は、これらの判定結果に従って、係数データX''に対してフリップ操作を行う(ステップS59)か、符号反転操作を行う(ステップS60)か、ポスト処理をスキップする。
以上のように、プリ処理およびポスト処理について、実行するか否かを判定し、実行する場合は、その処理内容(符号反転操作を行うかフリップ操作を行うか)を判定しなければならなかった。そのため、上述のような1次元変換をソフトウエアにより実現する場合も、プリ処理やポスト処理の制御が複雑になり、処理の負荷が増大し、実装コストが増大するおそれがあった。
なお、逆プライマリ変換の場合も、上述したプライマリ変換の場合と同様の制御が必要になる。つまり、プリ処理およびポスト処理としてフリップ操作および符号反転操作の両方を候補とする必要がある。そのため上述したプライマリ変換の場合と同様に、回路規模や処理の負荷が増大し、実装コストが増大するおそれがあった。
<3.コンセプト>
そこで、FTS操作やSTF操作を用いたtype2/type4 AMTを簡略化することにより、実装コストの増大を抑制させる。
変換タイプDCT4の変換行列TDCT4、変換タイプDST4の変換行列TDST4、フリップ行列F、および符号反転行列Sは、以下の式(10)乃至式(13)に示されるような特性を有する。つまり、変換タイプDCT4の変換行列TDCT4、変換タイプDST4の変換行列TDST4、フリップ行列F、および符号反転行列Sは、対称行列である。
Figure 2022002352
したがって、例えば図2のAに示されるような、入力信号Xに対して、変換タイプDST4の直交変換処理21を行い、出力信号Yを出力する処理は、図2のCに示されるように、変換タイプDCT4の直交変換処理26を用いたFTS操作により実現することができる。つまり、入力信号Xに対して符号反転操作(S)25を行い、その符号反転操作された入力信号Xに対して変換タイプDCT4の直交変換処理(T)26を行い、得られた直交変換係数に対してフリップ操作(F)27を行うことにより、変換タイプDST4の直交変換処理21と等価の処理を行うことができる。なお、直交変換処理26と直交変換処理23は等価である。つまり、変換タイプDST4の変換行列TDST4は、フリップ操作を表すフリップ行列F、変換タイプDCT4の変換行列TDCT4、および符号反転操作を表す符号反転行列Sを用いて以下の式(14)のように表すことができる。
Figure 2022002352
このようにすることにより、変換タイプDST4の1次元変換と変換タイプDST2の1次元変換とを選択的に行う場合に、符号反転操作(S)12(図1のB)と、符号反転操作(S)25(図2のC)とを共通化することができる。同様に、フリップ操作(F)14(図1のB)と、フリップ操作(F)27(図2のC)とを共通化することができる。換言するに、直交変換処理の前に行われるプリ処理を(符号反転操作(S)に)統一し、直交変換処理の後に行われるポスト処理を(フリップ操作(F)に)統一することができる。
逆1次元変換の場合も基本的に同様である。例えば、変換タイプDST2の変換行列の転置行列TDST2 tは、上述した式(6)、式(12)、および式(13)等から、符号反転行列S、変換タイプDCT2の変換行列の転置行列TDCT2 t、およびフリップ行列Fを用いて以下の式(15)のように表すことができる。
Figure 2022002352
また、変換タイプDST4の変換行列の転置行列TDST4 tは、上述した式(7)、式(12)、および式(13)等から、符号反転行列S、変換タイプDCT4の変換行列の転置行列TDCT4 t、およびフリップ行列Fを用いて以下の式(16)のように表すことができる。
Figure 2022002352
したがって、式(14)の場合と同様に、以下の式(17)のように変形することができる。
Figure 2022002352
式(15)および式(17)に示されるように、逆1次元変換の場合も、変換タイプDST4の逆1次元変換と変換タイプDST2の逆1次元変換とを選択的に行う場合に、符号反転操作(S)とフリップ操作(F)とをそれぞれ共通化することができる。換言するに、逆直交変換処理の前に行われるプリ処理を(フリップ操作(F)に)統一し、逆直交変換処理の後に行われるポスト処理を(符号反転操作(S)に)統一することができる。
以上のように、プリ処理およびポスト処理における処理内容の選択(符号反転操作(S)を行うかフリップ操作(F)を行うか)を省略することができるので、1次元変換または逆1次元変換の構成の複雑化を抑制する(構成をより簡易化する)ことができ、1次元変換または逆1次元変換をより容易に行うことができる。つまり、回路規模や処理の負荷の増大を抑制し、実装コストの増大を抑制することができる。
<4.第1の実施の形態>
<変換装置>
図6は、本技術を適用した画像処理装置の一態様である変換装置の主な構成の一例を示すブロック図である。図6に示される変換装置100は、入力された係数データに対して、変換タイプDCT2、DST2、DCT4、およびDST4の1次元変換を行う装置である。図6に示されるように、変換装置100は、制御部101、符号反転部102、行列演算部103、およびフリップ部104を有する。
制御部101は、1次元変換の制御に関する処理を行う。例えば、制御部101は、入力された変換タイプ識別子trTypeIdx等のパラメータに基づいて、符号反転を行うか否かを示すフラグ情報である符号反転フラグ(signChangeFlag)を設定し、それを符号反転部102に供給することにより、符号反転操作(S)を制御する。また、例えば、制御部101は、入力された変換タイプ識別子trTypeIdx、入力信号の処理対象ブロックの幅log2TBWidth、および入力信号の処理対象ブロックの高さlog2TBHeight等のパラメータに基づいて、行列演算に用いるベース変換行列Tbaseを指定するベース変換行列選択情報を設定し、それを行列演算部103に供給することにより、ベース変換行列Tbaseを用いた行列演算を制御する。さらに、例えば、制御部101は、入力された変換タイプ識別子trTypeIdx等のパラメータに基づいて、フリップ操作(F)を行うか否かを示すフラグ情報であるフリップフラグ(flipFlag)を設定し、それをフリップ部104に供給することにより、フリップ操作(F)を制御する。
制御部101は、符号反転フラグ設定部111、ベース変換行列選択部112、およびフリップフラグ設定部113を有する。符号反転フラグ設定部111は、変換タイプ識別子trTypeIdx等のパラメータに基づいて、符号反転フラグ(signChangeFlag)を設定する。ベース変換行列選択部112は、変換タイプ識別子trTypeIdx、入力信号の処理対象ブロックの幅log2TBWidth、および入力信号の処理対象ブロックの高さlog2TBHeight等のパラメータに基づいて、ベース変換行列選択情報を設定する。フリップフラグ設定部113は、変換タイプ識別子trTypeIdx等のパラメータに基づいて、フリップフラグ(flipFlag)を設定する。
制御部101は、任意の構成を有する。例えば、制御部101が、上述の処理を実現する論理回路により構成されるようにしてもよい。また、制御部101が、例えばCPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)等を有し、それらを用いてプログラムを実行することにより、上述の処理を実現するようにしてもよい。もちろん、制御部101が、その両方の構成を有し、上述の処理の一部を論理回路により実現し、他を、プログラムを実行することにより実現するようにしてもよい。
符号反転フラグ設定部111、ベース変換行列選択部112、およびフリップフラグ設定部113の各処理部は、任意の構成を有する。例えば、各処理部が、上述の処理を実現する論理回路により構成されるようにしてもよい。また、各処理部が、例えばCPU、ROM、RAM等を有し、それらを用いてプログラムを実行することにより、上述の処理を実現するようにしてもよい。もちろん、各処理部が、その両方の構成を有し、上述の処理の一部を論理回路により実現し、他を、プログラムを実行することにより実現するようにしてもよい。各処理部の構成は互いに独立していてもよく、例えば、一部の処理部が上述の処理の一部を論理回路により実現し、他の一部の処理部がプログラムを実行することにより上述の処理を実現し、さらに他の処理部が論理回路とプログラムの実行の両方により上述の処理を実現するようにしてもよい。
符号反転部102は、符号反転操作(S)に関する処理を行う。例えば、符号反転部102は、入力係数データXinに対して、奇数位置の係数データを符号反転する符号反転操作(S)を行い、係数データX'を生成する。なお、符号反転部102は、符号反転操作(S)をスキップ(省略)することもできる。その場合、入力係数データXinは、そのまま係数データX'とされる。符号反転部102は、制御部101から供給される符号反転フラグ(signChangeFlag)に基づいて、符号反転操作(S)を実行するか否かを選択する。いずれの場合も、符号反転部102は、その係数データX'を行列演算部103に供給する。
符号反転部102は、任意の構成を有する。例えば、符号反転部102が、上述の処理を実現する論理回路により構成されるようにしてもよい。また、符号反転部102が、例えばCPU、ROM、RAM等を有し、それらを用いてプログラムを実行することにより、上述の処理を実現するようにしてもよい。もちろん、符号反転部102が、その両方の構成を有し、上述の処理の一部を論理回路により実現し、他を、プログラムを実行することにより実現するようにしてもよい。
行列演算部103は、行列演算に関する処理を行う。例えば、行列演算部103は、符号反転部102から供給される係数データX'に対して、ベース変換行列Tbaseを用いた行列演算(1次元変換)を行い、係数データX''を生成する。行列演算部103は、制御部101から供給されるベース変換行列選択情報により指定される変換タイプの変換行列を用いて行列演算を行う。行列演算部103は、ベース変換行列LUT120を有する。ベース変換行列LUT120には、変換タイプDCT2の変換行列121と、変換タイプDCT4の変換行列122とが登録されている(記憶されている)。ベース変換行列LUT120には、さらに、変換行列121および変換行列122以外の変換行列が登録されていてもよい。行列演算部103は、ベース変換行列選択情報により指定される変換タイプの変換行列を、そのベース変換行列LUT120から読み出し、ベース変換行列として、係数データX'に対する行列演算に用いる。行列演算部103は、生成した係数データX''をフリップ部104に供給する。
行列演算部103は、任意の構成を有する。例えば、行列演算部103が、上述の処理を実現する論理回路により構成されるようにしてもよい。また、行列演算部103が、例えばCPU、ROM、RAM等を有し、それらを用いてプログラムを実行することにより、上述の処理を実現するようにしてもよい。もちろん、行列演算部103が、その両方の構成を有し、上述の処理の一部を論理回路により実現し、他を、プログラムを実行することにより実現するようにしてもよい。いずれの場合も、行列演算部103は、例えばRAM等の記憶領域を有し、それによりベース変換行列LUT120を形成する。
フリップ部104は、フリップ操作(F)に関する処理を行う。例えば、フリップ部104は、係数データX''に対して、係数データの順序を逆順に並び替えるフリップ操作(F)を行い、出力係数データXoutを生成する。なお、フリップ部104は、フリップ操作(F)をスキップ(省略)することもできる。その場合、係数データX''は、そのまま出力係数データXoutとされる。フリップ部104は、制御部101から供給されるフリップフラグ(flipFlag)に基づいて、フリップ操作(F)を実行するか否かを選択する。いずれの場合も、フリップ部104は、その出力係数データXoutを変換装置100の外部に出力する。
フリップ部104は、任意の構成を有する。例えば、フリップ部104が、上述の処理を実現する論理回路により構成されるようにしてもよい。また、フリップ部104が、例えばCPU、ROM、RAM等を有し、それらを用いてプログラムを実行することにより、上述の処理を実現するようにしてもよい。もちろん、フリップ部104が、その両方の構成を有し、上述の処理の一部を論理回路により実現し、他を、プログラムを実行することにより実現するようにしてもよい。
<制御例>
このような変換装置100において、例えば、制御部101は、図7に示される表のように制御を行う。例えば、入力された変換タイプ識別子trTypeIdxが0の場合、制御部101は、変換タイプ(trType)がDCT2の1次元変換を行うように制御する。すなわち、制御部101は、符号反転フラグ設定部111を用いて、符号反転フラグ(signChangeFlag)を偽(False)(例えば0)に設定する。また、制御部101は、ベース変換行列選択部112を用いて、変換タイプDCT2であり、サイズがnTbS×nTbSであるベース変換行列transMatrixnTbS,DCT2を指定するベース変換行列選択情報を生成する。さらに、制御部101は、フリップフラグ設定部113を用いて、フリップフラグ(flipFlag)を偽(False)(例えば0)に設定する。つまり、この場合、変換タイプDCT2の変換行列を用いた行列演算のみが行われ、入力係数データXinに対する符号反転操作(S)や、直交変換係数である係数データX''に対するフリップ操作(F)はスキップされる。
例えば、入力された変換タイプ識別子trTypeIdxが1の場合、制御部101は、変換タイプ(trType)がDCT4の1次元変換を行うように制御する。すなわち、制御部101は、符号反転フラグ設定部111を用いて、符号反転フラグを偽(False)(例えば0)に設定する。また、制御部101は、ベース変換行列選択部112を用いて、変換タイプDCT4であり、サイズがnTbS×nTbSであるベース変換行列transMatrixnTbS,DCT4を指定するベース変換行列選択情報を生成する。さらに、制御部101は、フリップフラグ設定部113を用いて、フリップフラグを偽(False)(例えば0)に設定する。つまり、この場合、変換タイプDCT4の変換行列を用いた行列演算のみが行われ、入力係数データXinに対する符号反転操作(S)や、直交変換係数である係数データX''に対するフリップ操作(F)はスキップされる。
例えば、入力された変換タイプ識別子trTypeIdxが2の場合、制御部101は、変換タイプ(trType)がDST4の1次元変換を行うように制御する。すなわち、制御部101は、符号反転フラグ設定部111を用いて、符号反転フラグを真(True)(例えば1)に設定する。また、制御部101は、ベース変換行列選択部112を用いて、変換タイプDCT4であり、サイズがnTbS×nTbSであるベース変換行列transMatrixnTbS,DCT4を指定するベース変換行列選択情報を生成する。さらに、制御部101は、フリップフラグ設定部113を用いて、フリップフラグを真(True)(例えば1)に設定する。つまり、この場合、入力係数データXinに対する符号反転操作(S)、変換タイプDCT4の変換行列を用いた行列演算、および、直交変換係数である係数データX''に対するフリップ操作(F)が実行される。
例えば、入力された変換タイプ識別子trTypeIdxが3の場合、制御部101は、変換タイプ(trType)がDST2の1次元変換を行うように制御する。すなわち、制御部101は、符号反転フラグ設定部111を用いて、符号反転フラグを真(True)(例えば1)に設定する。また、制御部101は、ベース変換行列選択部112を用いて、変換タイプDCT2であり、サイズがnTbS×nTbSであるベース変換行列transMatrixnTbS,DCT2を指定するベース変換行列選択情報を生成する。さらに、制御部101は、フリップフラグ設定部113を用いて、フリップフラグを真(True)(例えば1)に設定する。つまり、この場合、入力係数データXinに対する符号反転操作(S)、変換タイプDCT2の変換行列を用いた行列演算、および、直交変換係数である係数データX''に対するフリップ操作(F)が実行される。
以上のように、変換装置100は、符号反転操作(S)およびフリップ操作(F)をスキップすることにより、変換タイプDCT2またはDCT4の1次元変換を行うことができる。また、変換装置100は、符号反転操作(S)およびフリップ操作(F)を実行し、FTS操作によって、変換タイプDST2またはDST4の1次元変換を行うことができる。
つまり、図6に示されるように、変換装置100は、変換タイプDST2用のプリ処理部と変換タイプDST4用のプリ処理部とを符号反転部102に共通化することができる。同様に、変換タイプDST2用のポスト処理部と変換タイプDST4用のポスト処理部とをフリップ部104に共通化することができる。したがって、回路規模の増大を抑制し、実装コストの増大を抑制することができる(回路規模を低減させ、実装コストを低減させることができる)。
<変換処理の流れ>
次に、この変換装置100により実行される変換処理の流れの例を、図8のフローチャートを参照して説明する。
変換処理が開始されると、制御部101(符号反転フラグ設定部111、ベース変換行列選択部112、およびフリップフラグ設定部113)は、ステップS101において、変換装置100の外部から供給される変換タイプtrTypeIdxや、サイズ(log2TBWidth, log2TBHeight)に基づいて、ベース変換行列選択情報、符号反転フラグ(signChangeFlag)、およびフリップフラグ(flipFlag)を上述のように設定する。
ステップS102において、符号反転部102は、ステップS101において設定された符号反転フラグに基づいて、符号反転操作(S)を行うか否かを判定する(signChangeFlag == True ?)。符号反転フラグの値が真(True)であり、符号反転操作(S)を行うと判定された場合、処理はステップS103に進む。
ステップS103において、符号反転部102は、1次元信号列である入力係数データXinに対して符号反転操作(S)を行い、1次元信号列である係数データX'を生成する。この符号反転操作(S)は、例えば、以下の式(18)のように表すことができる。
Figure 2022002352
ステップS103の処理が終了すると処理はステップS104に進む。また、ステップS102において、符号反転フラグの値が偽(False)であり、符号反転操作(S)を行わないと判定された場合、ステップS103の処理はスキップされ、入力係数データXinがそのまま係数データX'とされ、処理はステップS104に進む。
ステップS104において、行列演算部103は、選択されたベース変換行列Tbase、すなわち、ステップS101において設定されたベース変換行列選択情報により指定されるベース変換行列Tbaseをベース変換行列LUT120から取得し、それを用いて1次元信号列である係数データX'に対する行列演算(1次元変換)を行い、1次元信号列である係数データX''を生成する。この行列演算は、例えば、以下の式(19)のように表すことができる。
Figure 2022002352
ステップS105において、フリップ部104は、ステップS101において設定されたフリップフラグに基づいて、フリップ操作(F)を行うか否かを判定する(FlipFlag == True ?)。フリップフラグの値が真(True)であり、フリップ操作(F)を行うと判定された場合、処理はステップS106に進む。
ステップS106において、フリップ部104は、ステップS104において得られた1次元信号列である係数データX''に対してフリップ操作(F)を行い、1次元信号列である出力係数データXoutを生成する。このフリップ操作(F)は、例えば、以下の式(20)のように表すことができる。
Figure 2022002352
フリップ部104は、生成された出力係数データXoutを変換装置100の外部に出力する。ステップS106の処理が終了すると変換処理が終了する。また、ステップS105において、フリップフラグの値が偽(False)であり、フリップ操作(F)を行わないと判定された場合、ステップS106の処理はスキップされ、係数データX''がそのまま出力係数データXoutとされ、変換装置100の外部に出力される。出力係数データXoutが出力されると変換処理が終了する。
つまり、この場合、プリ処理およびポスト処理の内容を確認する必要がなく、符号反転操作(S)およびフリップ操作(F)を実行するか否かのみを制御すればよい。したがって、プリ処理やポスト処理の制御の複雑化を抑制することができる。したがって、処理の負荷の増大を抑制し、実装コストの増大を抑制することができる(処理の負荷を低減させ、実装コストを低減させることができる)。
以上のように、変換装置100は、1次元変換の構成の複雑化を抑制する(構成をより簡易化する)ことができ、1次元変換をより容易に行うことができる。
<変換タイプ>
以上においては、変換装置100が、変換タイプDCT2の1次元変換を含むFTS操作により変換タイプDST2の1次元変換を実現する例と、変換タイプDCT4の1次元変換を含むFTS操作により変換タイプDST4の1次元変換を実現する例について説明したが、変換装置100に適用可能な変換タイプは、上述の例に限定されない。
例えば、第1の変換タイプの変換行列を用いた1次元変換と、その第1の変換タイプとは異なる第2の変換タイプの変換行列を用いた1次元変換を含むFTS操作とが等価である、第1の変換タイプおよび第2の変換タイプを変換装置100に適用することができる。上述の例では、変換タイプDST2が第1の変換タイプであり、変換タイプDCT2が第2の変換タイプである。
このように、第2の変換タイプの変換行列を用いた1次元変換を含むFTS操作により、第1の変換タイプの変換行列を用いた1次元変換を実現することができる関係を「FTS操作により対になる関係」とも称する。また、このような関係の第1の変換タイプと第2の変換タイプのことを、「FTS操作により対になる変換タイプ」とも称する。例えば、第1の変換タイプの、FTS操作により対になる変換タイプは、第2の変換タイプである。したがって、第1の変換タイプの変換行列を用いた1次元変換は、FTS操作により対になる変換タイプである第2の変換タイプの変換行列を用いた1次元変換を含むFTS操作により実現することができる。
また、例えば、第1の変換タイプおよび第2の変換タイプとは異なる第3の変換タイプの変換行列を用いた1次元変換と、第1の変換タイプ乃至第3の変換タイプとは異なる第4の変換タイプの変換行列を用いた1次元変換を含むSTF操作とが等価であり、かつ、第4の変換タイプの変換行列が対称行列である、第3の変換タイプおよび第4の変換タイプも変換装置100に適用することができる。上述の例では、変換タイプDST4が第3の変換タイプであり、変換タイプDCT4が第4の変換タイプである。
このように、第4の変換タイプの変換行列を用いた1次元変換を含むSTF操作により、第3の変換タイプの変換行列を用いた1次元変換を実現することができる関係を「STF操作により対になる関係」とも称する。また、このような関係の第3の変換タイプと第4の変換タイプのことを、「STF操作により対になる変換タイプ」とも称する。例えば、第3の変換タイプの、STF操作により対になる変換タイプは、第4の変換タイプである。したがって、第3の変換タイプの変換行列を用いた1次元変換は、STF操作により対になる変換タイプである第4の変換タイプの、対称行列である変換行列を用いた1次元変換を含むFTS操作により実現することができる。
付言するに、上述した例のように、変換タイプDST4の変換行列を用いた1次元変換は、変換タイプDCT4の変換行列を用いた1次元変換を含むFTS操作により実現することができる。つまり、第3の変換タイプの変換行列を用いた1次元変換は、第4の変換タイプの変換行列を用いた1次元変換を含むFTS操作により実現することができる。すなわち、第4の変換タイプは、第3の変換タイプの、「STF操作により対になる変換タイプ」および「FTS操作により対になる変換タイプ」である。
以上のように変換装置100は、
画像に関する係数データの1次元信号列に対して、1次元信号列の奇数番目の信号の符号を反転する符号反転操作(S)を行う符号反転部と、
その符号反転部により符号反転操作された1次元信号列に対して、
第1の変換タイプの1次元変換を実現する場合、FTS操作により第1の変換タイプの1次元変換を実現する第2の変換タイプの変換行列をベース変換行列とし、
第3の変換タイプの1次元変換を実現する場合、STF操作により第3の変換タイプの1次元変換を実現する第4の変換タイプの、かつ、対称行列である変換行列をベース変換行列とし、
そのベース変換行列を用いて行列演算を行う行列演算部と、
その行列演算部により行列演算が行われた1次元信号列に対して、各係数の順序を逆順に並び替えるフリップ操作(F)を行うフリップ部と
を備えていればよい。
換言するに、
画像に関する係数データの1次元信号列に対して、その1次元信号列の奇数番目の信号の符号を反転する符号反転操作(S)を行い、
その符号反転操作された1次元信号列に対して、
第1の変換タイプの1次元変換を実現する場合、FTS操作により第1の変換タイプの1次元変換を実現する第2の変換タイプの変換行列をベース変換行列とし、
第3の変換タイプの1次元変換を実現する場合、STF操作により第3の変換タイプの1次元変換を実現する第4の変換タイプの、かつ、対称行列である変換行列をベース変換行列とし、
そのベース変換行列を用いて行列演算を行い、
その行列演算が行われた1次元信号列に対して、各係数の順序を逆順に並び替えるフリップ操作(F)を行えばよい。
このようにすることにより、変換装置100は、1次元変換をより容易に行うことができる。
なお、「STF操作により対になる変換タイプ」および「FTS操作により対になる変換タイプ」を互いに区別しないで説明する場合、「対になる変換タイプ」とも称する。
なお、第2の変換タイプまたは第4の変換タイプの1次元変換を実現する場合、変換装置100は、符号反転操作およびフリップ操作(F)をスキップし、係数データの1次元信号列に対して、第2の変換タイプまたは第4の変換タイプの変換行列をベース変換行列として行列演算を行うようにすればよい。このようにすることにより、変換装置100は、第2の変換タイプまたは第4の変換タイプの1次元変換も容易に実現することができる。
また、変換装置100は、指定された1次元変換の変換タイプに基づいて、符号反転操作(S)を行うか否かを示す符号反転フラグを設定する符号反転フラグ設定部を備え、符号反転部が、その符号反転フラグ設定部により設定された符号反転フラグに基づいて、符号反転操作(S)を行うかスキップする(いずれかを選択し、実行する)ようにしてもよい。
また、変換装置100は、指定された1次元変換の変換タイプに基づいて、フリップ操作(F)を行うか否かを示すフリップフラグを設定するフリップフラグ設定部を備え、フリップ部が、そのフリップフラグ設定部により設定されたフリップフラグに基づいて、フリップ操作(F)を行うかスキップする(いずれかを選択、実行する)ようにしてもよい。
このようにすることにより、変換装置100は、1次元変換の変換タイプの指定に基づいて、符号反転操作およびフリップ操作(F)を実行するか、スキップするかを容易に制御することができる。したがって、変換装置100は、第1の変換タイプ乃至第4の変換タイプのそれぞれの1次元変換を、より容易に実現することができる。
また、変換装置100は、指定された1次元変換の変換タイプに基づいて、第2の変換タイプの変換行列と第4の変換タイプの変換行列とのいずれをベース変換行列とするかを選択するベース変換行列選択部を備え、そのベース変換行列選択部により選択されたベース変換行列を用いて、行列演算を行うようにしてもよい。このようにすることにより、変換装置100は、1次元変換の変換タイプの指定に基づいて、使用するベース変換行列を容易に選択することができる。したがって、変換装置100は、第1の変換タイプ乃至第4の変換タイプのそれぞれの1次元変換を、より容易に実現することができる。
<5.第2の実施の形態>
<逆変換装置>
図9は、本技術を適用した画像処理装置の一態様である逆変換装置の主な構成の一例を示すブロック図である。図6に示される逆変換装置150は、入力された係数データ(直交変換係数)に対して、変換タイプDCT2、DST2、DCT4、およびDST4の逆1次元変換を行う装置である。逆変換装置150は、第1の実施の形態において上述した変換装置100に対応する装置であり、変換装置100が行う1次元変換の逆処理である逆1次元変換を行う。図9に示されるように、逆変換装置150は、制御部151、フリップ部152、行列演算部153、および符号反転部154を有する。
制御部151は、逆1次元変換の制御に関する処理を行う。例えば、制御部151は、入力された変換タイプ識別子trTypeIdx等のパラメータに基づいて、フリップ操作(F)を行うか否かを示すフラグ情報であるフリップフラグ(flipFlag)を設定し、それをフリップ部152に供給することにより、フリップ操作(F)を制御する。また、例えば、制御部151は、入力された変換タイプ識別子trTypeIdx、入力信号の処理対象ブロックの幅log2TBWidth、および入力信号の処理対象ブロックの高さlog2TBHeight等のパラメータに基づいて、行列演算に用いるベース変換行列Tbaseを指定するベース変換行列選択情報を設定し、それを行列演算部153に供給することにより、ベース変換行列Tbaseを用いた行列演算を制御する。さらに、例えば、制御部151は、入力された変換タイプ識別子trTypeIdx等のパラメータに基づいて、符号反転を行うか否かを示すフラグ情報である符号反転フラグ(signChangeFlag)を設定し、それを符号反転部154に供給することにより、符号反転操作(S)を制御する。
制御部151は、フリップフラグ設定部161、ベース変換行列選択部162、および符号反転フラグ設定部163を有する。フリップフラグ設定部161は、変換タイプ識別子trTypeIdx等のパラメータに基づいて、フリップフラグ(flipFlag)を設定する。ベース変換行列選択部162は、変換タイプ識別子trTypeIdx、入力信号の処理対象ブロックの幅log2TBWidth、および入力信号の処理対象ブロックの高さlog2TBHeight等のパラメータに基づいて、ベース変換行列選択情報を設定する。符号反転フラグ設定部163は、変換タイプ識別子trTypeIdx等のパラメータに基づいて、符号反転フラグ(signChangeFlag)を設定する。
制御部151は、任意の構成を有する。例えば、制御部151が、上述の処理を実現する論理回路により構成されるようにしてもよい。また、制御部151が、例えばCPU、ROM、RAM等を有し、それらを用いてプログラムを実行することにより、上述の処理を実現するようにしてもよい。もちろん、制御部151が、その両方の構成を有し、上述の処理の一部を論理回路により実現し、他を、プログラムを実行することにより実現するようにしてもよい。
フリップフラグ設定部161、ベース変換行列選択部162、および符号反転フラグ設定部163の各処理部は、任意の構成を有する。例えば、各処理部が、上述の処理を実現する論理回路により構成されるようにしてもよい。また、各処理部が、例えばCPU、ROM、RAM等を有し、それらを用いてプログラムを実行することにより、上述の処理を実現するようにしてもよい。もちろん、各処理部が、その両方の構成を有し、上述の処理の一部を論理回路により実現し、他を、プログラムを実行することにより実現するようにしてもよい。各処理部の構成は互いに独立していてもよく、例えば、一部の処理部が上述の処理の一部を論理回路により実現し、他の一部の処理部がプログラムを実行することにより上述の処理を実現し、さらに他の処理部が論理回路とプログラムの実行の両方により上述の処理を実現するようにしてもよい。
フリップ部152は、フリップ操作(F)に関する処理を行う。例えば、フリップ部152は、入力係数データXinに対して、係数データの順序を逆順に並び替えるフリップ操作(F)を行い、係数データX'を生成する。なお、フリップ部152は、フリップ操作(F)をスキップ(省略)することもできる。その場合、入力係数データXinは、そのまま係数データX'とされる。フリップ部152は、制御部151から供給されるフリップフラグ(flipFlag)に基づいて、フリップ操作(F)を実行するか否かを選択する。いずれの場合も、フリップ部152は、その係数データX'を行列演算部153に供給する。
フリップ部152は、任意の構成を有する。例えば、フリップ部152が、上述の処理を実現する論理回路により構成されるようにしてもよい。また、フリップ部152が、例えばCPU、ROM、RAM等を有し、それらを用いてプログラムを実行することにより、上述の処理を実現するようにしてもよい。もちろん、フリップ部152が、その両方の構成を有し、上述の処理の一部を論理回路により実現し、他を、プログラムを実行することにより実現するようにしてもよい。
行列演算部153は、行列演算に関する処理を行う。例えば、行列演算部153は、フリップ部152から供給される係数データX'に対して、ベース変換行列の転置行列Tbase tを用いた行列演算(逆1次元変換)を行い、係数データX''を生成する。行列演算部153は、制御部151から供給されるベース変換行列選択情報により指定される変換タイプのベース変換行列の転置行列Tbase tを用いて行列演算を行う。行列演算部153は、ベース変換行列LUT170を有する。ベース変換行列LUT170には、変換タイプDCT2の変換行列171と、変換タイプDCT4の変換行列172とが登録されている(記憶されている)。ベース変換行列LUT170には、さらに、変換行列171および変換行列172以外の変換行列が登録されていてもよい。行列演算部153は、ベース変換行列選択情報により指定される変換タイプの変換行列を、そのベース変換行列LUT170から読み出し、ベース変換行列として、係数データX'に対する行列演算に用いる。つまり、行列演算部153は、ベース変換行列LUT170から読み出したベース変換行列の転置行列Tbase tを用いて係数データX'に対する行列演算を行う。行列演算部153は、生成した係数データX''を符号反転部154に供給する。
行列演算部153は、任意の構成を有する。例えば、行列演算部153が、上述の処理を実現する論理回路により構成されるようにしてもよい。また、行列演算部153が、例えばCPU、ROM、RAM等を有し、それらを用いてプログラムを実行することにより、上述の処理を実現するようにしてもよい。もちろん、行列演算部153が、その両方の構成を有し、上述の処理の一部を論理回路により実現し、他を、プログラムを実行することにより実現するようにしてもよい。いずれの場合も、行列演算部153は、例えばRAM等の記憶領域を有し、それによりベース変換行列LUT170を形成する。
符号反転部154は、符号反転操作(S)に関する処理を行う。例えば、符号反転部154は、係数データX''に対して、奇数位置の係数データを符号反転する符号反転操作(S)を行い、出力係数データXoutを生成する。なお、符号反転部154は、符号反転操作(S)をスキップ(省略)することもできる。その場合、係数データX''は、そのまま出力係数データXoutとされる。符号反転部154は、制御部151から供給される符号反転フラグ(signChangeFlag)に基づいて、符号反転操作(S)を実行するか否かを選択する。いずれの場合も、符号反転部154は、その出力係数データXoutを逆変換装置150の外部に出力する。
符号反転部154は、任意の構成を有する。例えば、符号反転部154が、上述の処理を実現する論理回路により構成されるようにしてもよい。また、符号反転部154が、例えばCPU、ROM、RAM等を有し、それらを用いてプログラムを実行することにより、上述の処理を実現するようにしてもよい。もちろん、符号反転部154が、その両方の構成を有し、上述の処理の一部を論理回路により実現し、他を、プログラムを実行することにより実現するようにしてもよい。
<制御例>
このような逆変換装置150において、例えば、制御部151は、図10に示される表のように制御を行う。例えば、入力された変換タイプ識別子trTypeIdxが0の場合、制御部151は、変換タイプ(trType)がDCT2の逆1次元変換を行うように制御する。すなわち、制御部151は、フリップフラグ設定部161を用いて、フリップフラグ(flipFlag)を偽(False)(例えば0)に設定する。また、制御部151は、ベース変換行列選択部162を用いて、変換タイプDCT2であり、サイズがnTbS×nTbSであるベース変換行列transMatrixnTbS,DCT2を指定するベース変換行列選択情報を生成する。さらに、制御部151は、符号反転フラグ設定部163を用いて、符号反転フラグ(signChangeFlag)を偽(False)(例えば0)に設定する。つまり、この場合、変換タイプDCT2の変換行列の転置行列(transMatrixnTbS,DCT2tを用いた行列演算のみが行われ、入力係数データXinに対するフリップ操作(F)や、係数データX''に対する符号反転操作(S)はスキップされる。
例えば、入力された変換タイプ識別子trTypeIdxが1の場合、制御部151は、変換タイプ(trType)がDCT4の逆1次元変換を行うように制御する。すなわち、制御部151は、フリップフラグ設定部161を用いて、フリップフラグを偽(False)(例えば0)に設定する。また、制御部151は、ベース変換行列選択部162を用いて、変換タイプDCT4であり、サイズがnTbS×nTbSであるベース変換行列transMatrixnTbS,DCT4を指定するベース変換行列選択情報を生成する。さらに、制御部151は、符号反転フラグ設定部163を用いて、符号反転フラグを偽(False)(例えば0)に設定する。つまり、この場合、変換タイプDCT4の変換行列の転置行列(transMatrixnTbS,DCT4tを用いた行列演算のみが行われ、入力係数データXinに対するフリップ操作(F)や、係数データX''に対する符号反転操作(S)はスキップされる。
例えば、入力された変換タイプ識別子trTypeIdxが2の場合、制御部151は、変換タイプ(trType)がDST4の逆1次元変換を行うように制御する。すなわち、制御部151は、フリップフラグ設定部161を用いて、フリップフラグを真(True)(例えば1)に設定する。また、制御部151は、ベース変換行列選択部162を用いて、変換タイプDCT4であり、サイズがnTbS×nTbSであるベース変換行列transMatrixnTbS,DCT4を指定するベース変換行列選択情報を生成する。さらに、制御部151は、符号反転フラグ設定部163を用いて、符号反転フラグを真(True)(例えば1)に設定する。つまり、この場合、入力係数データXinに対するフリップ操作(F)、変換タイプDCT4の変換行列の転置行列(transMatrixnTbS,DCT4tを用いた行列演算、および、係数データX''に対する符号反転操作(S)が実行される。
例えば、入力された変換タイプ識別子trTypeIdxが3の場合、制御部151は、変換タイプ(trType)がDST2の逆1次元変換を行うように制御する。すなわち、制御部151は、フリップフラグ設定部161を用いて、フリップフラグを真(True)(例えば1)に設定する。また、制御部151は、ベース変換行列選択部162を用いて、変換タイプDCT2であり、サイズがnTbS×nTbSであるベース変換行列transMatrixnTbS,DCT2を指定するベース変換行列選択情報を生成する。さらに、制御部151は、符号反転フラグ設定部163を用いて、符号反転フラグを真(True)(例えば1)に設定する。つまり、この場合、入力係数データXinに対するフリップ操作(F)、変換タイプDCT2の変換行列の転置行列(transMatrixnTbS,DCT2tを用いた行列演算、および、係数データX''に対する符号反転操作(S)が実行される。
以上のように、逆変換装置150は、フリップ操作(F)および符号反転操作(S)をスキップすることにより、変換タイプDCT2またはDCT4の逆1次元変換を行うことができる。また、逆変換装置150は、フリップ操作(F)および符号反転操作(S)を実行し、STF操作によって、変換タイプDST2またはDST4の逆1次元変換を行うことができる。
つまり、図9に示されるように、逆変換装置150は、変換タイプDST2用のプリ処理部と変換タイプDST4用のプリ処理部とをフリップ部152に共通化することができる。同様に、変換タイプDST2用のポスト処理部と変換タイプDST4用のポスト処理部とを符号反転部154に共通化することができる。したがって、回路規模の増大を抑制し、実装コストの増大を抑制することができる(回路規模を低減させ、実装コストを低減させることができる)。
<逆変換処理の流れ>
次に、この逆変換装置150により実行される変換処理の流れの例を、図11のフローチャートを参照して説明する。
逆変換処理が開始されると、制御部151(フリップフラグ設定部161、ベース変換行列選択部162、および符号反転フラグ設定部163)は、ステップS151において、変換タイプtrTypeIdxや、サイズ(log2TBWidth, log2TBHeight)に基づいて、ベース変換行列選択情報、フリップフラグ(flipFlag)、および符号反転フラグ(signChangeFlag)を上述のように設定する。
ステップS152において、フリップ部152は、ステップS151において設定されたフリップフラグに基づいて、フリップ操作(F)を行うか否かを判定する(FlipFlag == True ?)。フリップフラグの値が真(True)であり、フリップ操作(F)を行うと判定された場合、処理はステップS153に進む。
ステップS153において、フリップ部152は、1次元信号列である入力係数データXinに対してフリップ操作(F)を行い、1次元信号列である係数データX'を生成する。このフリップ操作(F)は、例えば、以下の式(21)のように表すことができる。
Figure 2022002352
ステップS153の処理が終了すると処理はステップS154に進む。また、ステップS152において、フリップフラグの値が偽(False)であり、フリップ操作(F)を行わないと判定された場合、ステップS153の処理はスキップされ、入力係数データXinがそのまま係数データX'とされ、処理はステップS154に進む。
ステップS154において、行列演算部153は、選択されたベース変換行列Tbase、すなわち、ステップS151において設定されたベース変換行列選択情報により指定されるベース変換行列Tbaseをベース変換行列LUT170から取得し、その転置行列を用いて、1次元信号列である係数データX'に対する行列演算(逆1次元変換)を行い、1次元信号列である係数データX''を生成する。この行列演算は、例えば、以下の式(22)のように表すことができる。
Figure 2022002352
ステップS155において、符号反転部154は、ステップS151において設定された符号反転フラグに基づいて、符号反転操作(S)を行うか否かを判定する(signChangeFlag == True ?)。符号反転フラグの値が真(True)であり、符号反転操作(S)を行うと判定された場合、処理はステップS156に進む。
ステップS156において、符号反転部154は、ステップS154において得られた1次元信号列である係数データX''に対して符号反転操作(S)を行い、1次元信号列である出力係数データXoutを生成する。この符号反転操作(S)は、例えば、以下の式(23)のように表すことができる。
Figure 2022002352
符号反転部154は、生成された出力係数データXoutを逆変換装置150の外部に出力する。ステップS156の処理が終了すると変換処理が終了する。また、ステップS155において、符号反転フラグの値が偽(False)であり、符号反転操作(S)を行わないと判定された場合、ステップS156の処理はスキップされ、係数データX''がそのまま出力係数データXoutとされ、逆変換装置150の外部に出力される。出力係数データXoutが出力されると逆変換処理が終了する。
つまり、この場合、プリ処理およびポスト処理の内容を確認する必要がなく、フリップ操作(F)および符号反転操作(S)を実行するか否かのみを制御すればよい。したがって、プリ処理やポスト処理の制御の複雑化を抑制することができる。したがって、処理の負荷の増大を抑制し、実装コストの増大を抑制することができる(処理の負荷を低減させ、実装コストを低減させることができる)。
以上のように、逆変換装置150は、逆1次元変換の構成の複雑化を抑制する(構成をより簡易化する)ことができ、逆1次元変換をより容易に行うことができる。
<変換タイプ>
以上においては、逆変換装置150が、変換タイプDCT2の逆1次元変換を含むSTF操作により変換タイプDST2の逆1次元変換を実現する例と、変換タイプDCT4の逆1次元変換を含むSTF操作により変換タイプDST4の逆1次元変換を実現する例について説明したが、逆変換装置150に適用可能な変換タイプは、上述の例に限定されない。
例えば、第1の変換タイプの変換行列を用いた逆1次元変換と、その第1の変換タイプとは異なる第2の変換タイプの変換行列を用いた逆1次元変換を含むSTF操作とが等価である、第1の変換タイプおよび第2の変換タイプを逆変換装置150に適用することができる。上述の例では、変換タイプDST2が第1の変換タイプであり、変換タイプDCT2が第2の変換タイプである。
この逆1次元変換の場合も第1の実施の形態において説明した1次元変換の場合と同様に、第2の変換タイプの変換行列を用いた逆1次元変換を含むSTF操作により、第1の変換タイプの変換行列を用いた逆1次元変換を実現することができる関係を「STF操作により対になる関係」とも称する。また、このような関係の第1の変換タイプと第2の変換タイプのことを、「STF操作により対になる変換タイプ」とも称する。例えば、この逆1次元変換の場合、第1の変換タイプの、STF操作により対になる変換タイプは、第2の変換タイプである。したがって、第1の変換タイプの変換行列を用いた逆1次元変換は、STF操作により対になる変換タイプである第2の変換タイプの変換行列を用いた逆1次元変換を含むSTF操作により実現することができる。
また、例えば、第1の変換タイプおよび第2の変換タイプとは異なる第3の変換タイプの変換行列を用いた逆1次元変換と、第1の変換タイプ乃至第3の変換タイプとは異なる第4の変換タイプの変換行列を用いた逆1次元変換を含むFTS操作とが等価であり、かつ、第4の変換タイプの変換行列が対称行列である、第3の変換タイプおよび第4の変換タイプも逆変換装置150に適用することができる。上述の例では、変換タイプDST4が第3の変換タイプであり、変換タイプDCT4が第4の変換タイプである。
この逆1次元変換の場合も第1の実施の形態において説明した1次元変換の場合と同様に、第4の変換タイプの変換行列を用いた逆1次元変換を含むFTS操作により、第3の変換タイプの変換行列を用いた逆1次元変換を実現することができる関係を「FTS操作により対になる関係」とも称する。また、このような関係の第3の変換タイプと第4の変換タイプのことを、「FTS操作により対になる変換タイプ」とも称する。例えば、この逆1次元変換の場合、第3の変換タイプの、FTS操作により対になる変換タイプは、第4の変換タイプである。したがって、第3の変換タイプの変換行列を用いた逆1次元変換は、FTS操作により対になる変換タイプである第4の変換タイプの、対称行列である変換行列を用いた逆1次元変換を含むFTS操作により実現することができる。
付言するに、上述した例のように、変換タイプDST4の変換行列を用いた逆1次元変換は、変換タイプDCT4の変換行列を用いた逆1次元変換を含むSTF操作により実現することができる。つまり、第3の変換タイプの変換行列を用いた逆1次元変換は、第4の変換タイプの変換行列を用いた1次元変換を含むSTF操作により実現することができる。すなわち、第4の変換タイプは、第3の変換タイプの、「FTS操作により対になる変換タイプ」および「STF操作により対になる変換タイプ」である。
以上のように逆変換装置150は、画像に関する係数データの1次元信号列に対して、各係数の順序を逆順に並び替えるフリップ操作を行うフリップ部と、
そのフリップ部によりフリップ操作された1次元信号列に対して、
第1の変換タイプの逆1次元変換を実現する場合、STF操作により第1の変換タイプの逆1次元変換を実現する第2の変換タイプの変換行列をベース変換行列とし、
第3の変換タイプの逆1次元変換を実現する場合、FTS操作により第3の変換タイプの逆1次元変換を実現する第4の変換タイプの、かつ、対称行列である変換行列をベース変換行列とし、
そのベース変換行列の転置行列を用いて行列演算を行う行列演算部と、
その行列演算部により行列演算が行われた1次元信号列に対して、1次元信号列の奇数番目の信号の符号を反転する符号反転操作(S)を行う符号反転部と
を備えていればよい。
換言するに、
画像に関する係数データの1次元信号列に対して、各係数の順序を逆順に並び替えるフリップ操作を行い、
そのフリップ操作された1次元信号列に対して、
第1の変換タイプの逆1次元変換を実現する場合、STF操作により第1の変換タイプの逆1次元変換を実現する第2の変換タイプの変換行列をベース変換行列とし、
第3の変換タイプの逆1次元変換を実現する場合、FTS操作により第3の変換タイプの逆1次元変換を実現する第4の変換タイプの、かつ、対称行列である変換行列をベース変換行列とし、
そのベース変換行列の転置行列を用いて行列演算を行い、
その行列演算が行われた1次元信号列に対して、1次元信号列の奇数番目の信号の符号を反転する符号反転操作(S)を行えばよい。
このようにすることにより、逆変換装置150は、逆1次元変換をより容易に行うことができる。
なお、逆1次元変換の場合も、「STF操作により対になる変換タイプ」および「FTS操作により対になる変換タイプ」を互いに区別しないで説明する場合、「対になる変換タイプ」とも称する。
なお、第2の変換タイプまたは第4の変換タイプの逆1次元変換を実現する場合、逆変換装置150は、フリップ操作(F)および符号反転操作(S)をスキップし、係数データの1次元信号列に対して、第2の変換タイプまたは第4の変換タイプの変換行列をベース変換行列として行列演算を行うようにすればよい。このようにすることにより、逆変換装置150は、第2の変換タイプまたは第4の変換タイプの逆1次元変換も容易に実現することができる。
また、逆変換装置150は、指定された逆1次元変換の変換タイプに基づいて、フリップ操作を行うか否かを示すフリップフラグを設定するフリップフラグ設定部を備え、フリップ部が、そのフリップフラグ設定部により設定されたフリップフラグに基づいて、フリップ操作を行うかスキップする(いずれかを選択、実行する)ようにしてもよい。
また、逆変換装置150は、指定された逆1次元変換の変換タイプに基づいて、符号反転操作(S)を行うか否かを示す符号反転フラグを設定する符号反転フラグ設定部を備え、符号反転部が、その符号反転フラグ設定部により設定された符号反転フラグに基づいて、符号反転操作(S)を行うかスキップする(いずれかを選択し、実行する)ようにしてもよい。
このようにすることにより、逆変換装置150は、逆1次元変換の変換タイプの指定に基づいて、フリップ操作(F)および符号反転操作(S)を実行するか、スキップするかを容易に制御することができる。したがって、逆変換装置150は、第1の変換タイプ乃至第4の変換タイプのそれぞれの逆1次元変換を、より容易に実現することができる。
また、逆変換装置150は、指定された逆1次元変換の変換タイプに基づいて、第2の変換タイプの変換行列と第4の変換タイプの変換行列とのいずれをベース変換行列とするかを選択するベース変換行列選択部を備え、そのベース変換行列選択部により選択されたベース変換行列を用いて、行列演算を行うようにしてもよい。このようにすることにより、逆変換装置150は、逆1次元変換の変換タイプの指定に基づいて、使用するベース変換行列を容易に選択することができる。したがって、逆変換装置150は、第1の変換タイプ乃至第4の変換タイプのそれぞれの逆1次元変換を、より容易に実現することができる。
<6.第3の実施の形態>
<ベース変換行列の導出>
第1の実施の形態および第2の実施の形態においては、ベース変換行列LUTに登録されている変換タイプDCT2の変換行列と、変換タイプDCT4の変換行列とのいずれかが選択されて行列演算に用いられるように説明したが、これに限らず、ベース変換行列を導出するようにしてもよい。
例えば、変換タイプDCT2の変換行列および変換タイプDCT4の変換行列は、それぞれ、それらよりも大きなサイズの変換タイプDCT2の変換行列から、所定の方法で行列要素をサンプリングする(抽出する)ことにより、導出することができる。したがって、この大きなサイズの変換タイプDCT2の変換行列を予め記憶しておけば、その変換行列から、行列演算に用いるベース変換行列(変換タイプDCT2の変換行列または変換タイプDCT4の変換行列)を導出することができる。
例えば、変換ブロックの最大サイズ(例えば64)をmaxTbSとし、AMTが適用可能な変換ブロックの最大サイズ(例えば32)をmaxTbAMTとし、1次元変換(1D変換とも称する)のサイズnTbSがnTbS<=maxTbAMT<maxTbSであるとする。この場合、導出するベース変換行列のサイズは(nTbS)×(nTbS)であり、(maxTbS)×(maxTbS)の変換タイプDCT2の変換行列を予め記憶する(用意する)ようにすればよい。
このように用意した(maxTbS)×(maxTbS)の変換タイプDCT2の変換行列(導出元変換行列maxTbS-pt DCT2)を、所定のサンプリングパラメータに基づいてサンプリングすることにより、行列演算に用いるベース変換行列((nTbS)×(nTbS)の変換タイプDCT2または変換タイプDCT4の変換行列)を部分行列として導出することができる。
<サンプリングパラメータ>
ここでサンプリングパラメータについて説明する。サンプリングパラメータは、どのようなものであってもよい。例えば、サンプリングする行間隔を示すサンプリング間隔stepsizeと、サンプリングのオフセット(行位置)を示す行オフセットoffsetColと、サンプリングのオフセット(列位置)を示す列オフセットoffsetRowとを含むようにしてもよい。
このサンプリング間隔stepsizeは、何行おきにサンプリングするかを示すパラメータである。また、行オフセットoffsetColは、サンプリングを開始する最初の行の位置(何行目にするか)を表すパラメータである。また、列オフセットoffsetRowは、サンプリングを開始する最初の列の位置(何列目にするか)を表すパラメータである。なお、本明細書において、変換行列の行番号および列番号は、「0」(つまり、0行、0列)から開始される。
<変換タイプ毎の導出例>
サンプリングの方法(すなわち、サンプリングパラメータの値)は、図12に示される表のように、導出する変換行列の変換タイプによって決まる。例えば、図12に示される表の下から2番目の行のように、用意した導出元変換行列maxTbS-pt DCT2から、変換タイプtrTypeがDCT2のベース変換行列nTbS-pt DCT2を導出する場合、サンプリング間隔stepsizeは「1 << (Log2(maxTbS)-Log2(nTbS))」に、行オフセットoffsetColは「0」に、列オフセットoffsetRowは「0(低次)」に、それぞれ設定すればよい。このようにすることにより、ベース変換行列maxTbS-pt DCT2から、変換行列nTbS-pt DCT2を導出することができる。
また、例えば、図12に示される表の下から1番目の行のように、用意した導出元変換行列maxTbS-pt DCT2から、変換タイプtrTypeがDCT4のベース変換行列nTbS-pt DCT4を導出する場合、サンプリング間隔stepsizeは「1 << (Log2(maxTbS)-Log2(nTbS))」に、行オフセットoffsetColは「stepsize >> 1(つまり、stepsizeの2分の1)」に、列オフセットoffsetRowは「0(低次)」に、それぞれ設定すればよい。このようにすることにより、ベース変換行列maxTbS-pt DCT2から、変換行列nTbS-pt DCT4を導出することができる。
<各導出方法の詳細>
<変換タイプDCT2の場合>
次に、各変換タイプの変換行列の導出方法について、より具体的に説明する。まず変換タイプtrTypeがDCT2のベース変換行列nTbS-pt DCT2の導出方法について説明する。図13のAに示されるように、用意した導出元変換行列maxTbS-pt DCT2のサイズを16×16とする。
この場合、図13のAに示される導出元変換行列maxTbS-pt DCT2のグレーの部分の行列要素をサンプリングすることにより、図13のBに示されるような変換タイプDCT2、サイズ8×8の変換行列(8-pt DCT2)が得られる。また、図13のAに示される導出元変換行列maxTbS-pt DCT2の太線枠で囲まれた行列要素をサンプリングすることにより、図13のCに示されるような変換タイプDCT2、サイズ4×4の変換行列(4-pt DCT2)が得られる。
このように、DCT2の変換行列の導出方法の場合、サンプリング間隔stepsizeは、8×8の場合2行おきとなり(2行毎に1行がサンプリングされる)、4×4の場合4行おきとなる(4行毎に1行がサンプリングされる)。つまり、サンプリング間隔stepsizeは、変換ブロックの最大サイズmaxTbSの2を底とする対数値と、導出対象の変換行列のサイズnTbSの2を底とする対数値との差分でべき乗した値である。なお、行オフセットoffsetColと列オフセットoffsetRowは、どちらの場合も「0」である。
つまり、図13のDの式(X1)により表されるような導出処理により、変換行列nTbS-pt DCT2を導出することができる。以下にもこの式(X1)を示す。
transMatrixDCT2,nTbS[j][i]
= transMatrixDCT2,maxTbS[j * stepsize + offsetCol][i + offsetRow]
= transMatrixDCT2,maxTbS[j * stepsize][i] ・・・(X1)
ただし、
stepsize = 1 << (log2(maxTbS) - log2(nTbS))
offsetCol = 0
offsetRow = 0
すなわち、(nTbS)x(nTbS)のDCT2変換行列の第j行第i列の要素は、(maxTbS)x(maxTbS)のDCT2変換行列の第(j * stepsize)行第i列の要素である。換言するに、(maxTbS)x(maxTbS)のDCT2変換行列を、サンプリング間隔stepsize = (1 << (log2(maxTbS) - log2(nTbS)))、行オフセットoffsetCol = 0、列オフセットoffsetRow = 0でサンプリングして得られる部分行列は、(nTbS)x(nTbS)のDCT2変換行列である。
このように導出処理を行うことにより、ベース変換行列maxTbS-pt DCT2から、変換行列nTbS-pt DCT2を導出することができる。
<変換タイプDCT4の場合>
次に、変換タイプtrTypeがDCT4のベース変換行列nTbS-pt DCT4の導出方法について説明する。図14のAに示されるように、用意した導出元変換行列maxTbS-pt DCT2のサイズを16×16とする。
この場合、図14のAに示される導出元変換行列maxTbS-pt DCT2のグレーの部分の行列要素をサンプリングすることにより、図14のBに示されるような変換タイプDCT4、サイズ8×8の変換行列(8-pt DCT4)が得られる。また、図14のAに示される導出元変換行列maxTbS-pt DCT2の太線枠で囲まれた行列要素をサンプリングすることにより、図14のCに示されるような変換タイプDCT4、サイズ4×4の変換行列(4-pt DCT4)が得られる。
このように、DCT4の変換行列の導出方法の場合、サンプリング間隔stepsizeは、8×8の場合2行おきとなり(2行毎に1行がサンプリングされる)、4×4の場合4行おきとなる(4行毎に1行がサンプリングされる)。つまり、サンプリング間隔stepsizeは、変換ブロックの最大サイズmaxTbSの2を底とする対数値と、導出対象の変換行列のサイズnTbSの2を底とする対数値との差分でべき乗した値である。また、行オフセットoffsetColは、8×8の場合「1」(すなわち1行)となり、4×4の場合「2」(すなわち2行)となる。つまり、図中垂直方向については、8×8の場合2行目(行番号「1」の行)からサンプリングが開始され、4×4の場合3行目(行番号「2」の行)からサンプリングが開始される。つまり、行オフセットoffsetColは、サンプリング間隔stepsizeの2分の1となる。なお、列オフセットoffsetRowは、どちらの場合も「0」である。
つまり、図14のDの式(X2)で表されるような導出処理により、変換行列nTbS-pt DCT4を導出することができる。以下にもこの式(X2)を示す。
transMatrixDCT4,nTbS[j][i]
= transMatrixDCT2,maxTbS[j * stepsize + offsetCol][i + offsetRow]
= transMatrixDCT2,maxTbS[j * stepsize + offsetCol][i] ・・・(X2)
ただし、
stepsize = 1 << (log2(maxTbS) - log2(nTbS))
offsetCol = stepsize >> 1
offsetRow = 0
すなわち、(nTbS)x(nTbS)のDCT4変換行列の第j行第i列の要素は、(maxTbS)x(maxTbS)のDCT2変換行列の第(j * stepsize + offsetCol)行第i列の要素である。換言するに、(maxTbS)x(maxTbS)のDCT2変換行列を、サンプリング間隔stepsize = (1 << (log2(maxTbS) - log2(nTbS)))、行オフセットoffsetCol = (stepsize >> 1)、列オフセットoffsetRow = 0でサンプリングして得られる部分行列は、(nTbS)x(nTbS)のDCT4変換行列である。
このように導出処理を行うことにより、ベース変換行列maxTbS-pt DCT2から、変換行列nTbS-pt DCT4を導出することができる。
<変換装置>
次に、このようにベース変換行列を導出する場合の変換装置100について説明する。図15は、この場合の変換装置100の主な構成例を示すブロック図である。図15に示されるように、この場合も変換装置100は、第1の実施の形態の場合(図6)と基本的に同様の構成を有する。ただし、この場合、行列演算部103は、ベース変換行列導出部220を有する。
ベース変換行列導出部220は、ベース変換行列の導出に関する処理を行う。例えば、ベース変換行列導出部220は、制御部101から供給されるベース変換行列選択情報により指定される変換行列(行列演算に用いられるベース変換行列)を、予め用意された変換行列(導出元変換行列)をサンプリングすることにより導出する。行列演算部103は、ベース変換行列導出部220により導出されたベース変換行列を用いて、例えば上述した式(19)のような、係数データX'に対する行列演算を行う。
つまり、ベース変換行列導出部220は、指定された逆1次元変換の変換タイプに基づいて、ベース変換行列を導出する。行列演算部103は、そのベース変換行列導出部220により導出されたベース変換行列を用いて、行列演算を行う。
例えば、ベース変換行列導出部220は、導出するベース変換行列以上のサイズの第2の変換タイプ(例えばDCT2)の導出元変換行列を用いて、そのベース変換行列を導出する。
例えば、ベース変換行列導出部220は、その導出するベース変換行列以上のサイズの第2の変換タイプ(例えばDCT2)の導出元変換行列をサンプリングすることにより、第2の変換タイプ(例えばDCT2)または第4の変換タイプ(例えばDCT4)のベース変換行列を導出する。
なお、ベース変換行列導出部220は、任意の構成を有する。例えば、ベース変換行列導出部220が、上述の処理を実現する論理回路により構成されるようにしてもよい。また、ベース変換行列導出部220が、例えばCPU、ROM、RAM等を有し、それらを用いてプログラムを実行することにより、上述の処理を実現するようにしてもよい。もちろん、ベース変換行列導出部220が、その両方の構成を有し、上述の処理の一部を論理回路により実現し、他を、プログラムを実行することにより実現するようにしてもよい。
<ベース変換行列導出部>
図16は、図15のベース変換行列導出部220の主な構成例を示すブロック図である。図16に示されるように、ベース変換行列導出部220は、サンプリング部231および導出元変換行列LUT232を有する。
サンプリング部231は、サンプリングに関する処理を行う。例えば、サンプリング部231は、ベース変換行列選択情報に応じてサンプリングパラメータを設定し、そのサンプリングパラメータに応じた方法で、導出元変換行列maxTbS-pt DCT2から変換タイプtrTypeサイズ(nTbS)×(nTbS)のベース変換行列Tbaseを導出し、それを行列演算部103に供給する。また、サンプリング部231は、サンプリングパラメータ導出部241および部分行列抽出部242を有する。
サンプリングパラメータ導出部241は、サンプリングパラメータの導出に関する処理を行う。例えば、サンプリングパラメータ導出部241は、ベース変換行列選択情報を取得する。ベース変換行列選択情報は、行列演算に使用するベース変換行列を指定する情報である。つまり、ベース変換行列選択情報により、変換タイプtrType、変換ブロックの最大サイズmaxTbS、導出対象のベース変換行列のサイズnTbS等が指定される。サンプリングパラメータ導出部241は、このようなベース変換行列選択情報により指定されるこれらの情報に基づいて、サンプリング間隔stepsize、行オフセットoffsetCol、列オフセットoffsetRow等のサンプリングパラメータを設定する。例えば、サンプリングパラメータ導出部241は、図12の表を参照して説明したように、サンプリングパラメータを設定する。サンプリングパラメータ導出部241は、導出したサンプリングパラメータを部分行列抽出部242に供給する。
部分行列抽出部242は、部分行列の抽出に関する処理を行う。例えば、部分行列抽出部242は、サンプリングパラメータ導出部241により導出されたサンプリングパラメータを取得する。また、部分行列抽出部242は、導出元変換行列LUT232に登録されている導出元変換行列(maxTbS-pt DCT2)251を取得する。そして、部分行列抽出部242は、そのサンプリングパラメータに応じた方法で、導出元変換行列(maxTbS-pt DCT2)251をサンプリングする。部分行列抽出部242は、このサンプリングにより、ベース変換行列選択情報により指定される変換タイプtrType、サイズ(nTbS)×(nTbS)の部分行列を得る。部分行列抽出部242は、その部分行列を、ベース変換行列Tbaseとして行列演算部103に供給する。
導出元変換行列LUT232には、変換タイプDCT2、サイズ(maxTbS)×(maxTbS)の導出元変換行列(maxTbS-pt DCT2)251が登録されている(記憶されている)。導出元変換行列LUT232は、部分行列抽出部242の要求に応じて、その導出元変換行列(maxTbS-pt DCT2)251を部分行列抽出部242に供給する。
サンプリング部231は、任意の構成を有する。例えば、サンプリング部231が、上述の処理を実現する論理回路により構成されるようにしてもよい。また、サンプリング部231が、例えばCPU、ROM、RAM等を有し、それらを用いてプログラムを実行することにより、上述の処理を実現するようにしてもよい。もちろん、サンプリング部231が、その両方の構成を有し、上述の処理の一部を論理回路により実現し、他を、プログラムを実行することにより実現するようにしてもよい。
導出元変換行列LUT232は、RAM等により形成される記憶領域を有し、そこに導出元変換行列(maxTbS-pt DCT2)251を記憶する。
サンプリングパラメータ導出部241は、任意の構成を有する。例えば、サンプリングパラメータ導出部241が、上述の処理を実現する論理回路により構成されるようにしてもよい。また、サンプリングパラメータ導出部241が、例えばCPU、ROM、RAM等を有し、それらを用いてプログラムを実行することにより、上述の処理を実現するようにしてもよい。もちろん、サンプリングパラメータ導出部241が、その両方の構成を有し、上述の処理の一部を論理回路により実現し、他を、プログラムを実行することにより実現するようにしてもよい。
部分行列抽出部242は、任意の構成を有する。例えば、部分行列抽出部242が、上述の処理を実現する論理回路により構成されるようにしてもよい。また、部分行列抽出部242が、例えばCPU、ROM、RAM等を有し、それらを用いてプログラムを実行することにより、上述の処理を実現するようにしてもよい。もちろん、部分行列抽出部242が、その両方の構成を有し、上述の処理の一部を論理回路により実現し、他を、プログラムを実行することにより実現するようにしてもよい。
このような構成とすることにより、ベース変換行列導出部220は、ベース変換行列選択情報により指定されるベース変換行列を導出することができる。つまり、導出元変換行列LUT232に1つの導出元変換行列(maxTbS-pt DCT2)251を記憶すればよいので、このLUTのサイズの増大を抑制する(LUTのサイズを削減する)ことができる。また、(maxTbS)×(maxTbS)の変換行列の行列演算と、変換タイプtrTypeの(nTbS)×(nTbS)の変換行列の行列演算とを共有することができる。つまり、行列演算部103は、各変換タイプtrTypeのベース変換行列を用いた行列演算を、同一の演算回路を用いて行うことができる。したがって、回路規模の増大を抑制する(回路規模を削減する)ことができる。
<変換処理の流れ>
次に、この場合の変換処理の流れの例を、図17のフローチャートを参照して説明する。
変換処理が開始されると、制御部101(符号反転フラグ設定部111、ベース変換行列選択部112、およびフリップフラグ設定部113)は、ステップS201において、変換装置100の外部から供給される変換タイプtrTypeIdxや、サイズ(log2TBWidth, log2TBHeight)に基づいて、ベース変換行列選択情報、符号反転フラグ(signChangeFlag)、およびフリップフラグ(flipFlag)を上述のように設定する。
ステップS202において、符号反転部102は、ステップS201において設定された符号反転フラグに基づいて、符号反転操作を行うか否かを判定する(signChangeFlag == True ?)。符号反転フラグの値が真(True)であり、符号反転操作を行うと判定された場合、処理はステップS203に進む。
ステップS203において、符号反転部102は、例えば上述した式(18)のように、1次元信号列である入力係数データXinに対して符号反転操作(S)を行い、1次元信号列である係数データX'を生成する。
ステップS203の処理が終了すると処理はステップS204に進む。また、ステップS202において、符号反転フラグの値が偽(False)であり、符号反転操作を行わないと判定された場合、ステップS203の処理はスキップされ、入力係数データXinがそのまま係数データX'とされ、処理はステップS204に進む。
ステップS204において、ベース変換行列導出部220は、ベース変換行列導出処理を実行し、ステップS201において設定されたベース変換行列選択情報に基づいて、ベース変換行列Tbaseを導出する。
ステップS205において、行列演算部103は、例えば上述した式(19)のように、ステップS204において導出されたベース変換行列Tbaseを用いて1次元信号列である係数データX'に対する行列演算(1次元変換)を行い、1次元信号列である係数データX''を生成する。
ステップS206において、フリップ部104は、ステップS201において設定されたフリップフラグに基づいて、フリップ操作を行うか否かを判定する(FlipFlag == True ?)。フリップフラグの値が真(True)であり、フリップ操作を行うと判定された場合、処理はステップS207に進む。
ステップS207において、フリップ部104は、例えば上述した式(20)のように、ステップS205において得られた1次元信号列である係数データX''に対してフリップ操作(F)を行い、1次元信号列である出力係数データXoutを生成する。
フリップ部104は、生成した出力係数データXoutを変換装置100の外部に出力する。ステップS207の処理が終了すると変換処理が終了する。また、ステップS206において、フリップフラグの値が偽(False)であり、フリップ操作を行わないと判定された場合、ステップS207の処理はスキップされ、係数データX''がそのまま出力係数データXoutとされ、変換装置100の外部に出力される。出力係数データXoutが出力されると変換処理が終了する。
<ベース変換行列導出処理の流れ>
次に、図17のステップS204において実行されるベース変換行列導出処理の流れの例を、図18のフローチャートを参照して説明する。
ベース変換行列導出処理が開始されると、ベース変換行列導出部220のサンプリングパラメータ導出部241は、ステップS221において、ベース変換行列選択情報により指定される変換タイプtrTypeとブロックサイズ(nTbS)とに対応するサンプリングパラメータを導出する。
ステップS222において、部分行列抽出部242は、導出元変換行列LUT232から導出元変換行列(maxTbS-pt DCT2)251を読み出す。
ステップS223において、部分行列抽出部242は、ステップS221において導出したサンプリングパラメータを用いて、ステップS222において読み出した導出元変換行列(maxTbS-pt DCT2)251から部分行列を抽出する。
ステップS224において、部分行列抽出部242は、ステップS223において抽出した部分行列をベース変換行列として行列演算部103に供給する。
ステップS224の処理が終了すると、ベース変換行列導出処理が終了し、処理は図17に戻る。
以上のように各処理を実行することにより、ベース変換行列選択情報により指定されるベース変換行列を導出することができる。つまり、導出元変換行列LUT232に1つの導出元変換行列(maxTbS-pt DCT2)251を記憶すればよいので、このLUTのサイズの増大を抑制する(LUTのサイズを削減する)ことができる。また、(maxTbS)×(maxTbS)の変換行列の行列演算と、変換タイプtrTypeの(nTbS)×(nTbS)の変換行列の行列演算とを共有することができる。つまり、行列演算部103は、各変換タイプtrTypeのベース変換行列を用いた行列演算を、同一の演算回路を用いて行うことができる。したがって、回路規模の増大を抑制する(回路規模を削減する)ことができる。
<7.第4の実施の形態>
<逆変換装置>
第3の実施の形態において説明したベース変換行列の導出は、第2の実施の形態において説明した逆1次元変換にも同様に適用することができる。
図19は、この場合の逆変換装置150の主な構成例を示すブロック図である。図15に示されるように、この場合も逆変換装置150は、第2の実施の形態の場合(図9)と基本的に同様の構成を有する。ただし、この場合、行列演算部153は、ベース変換行列導出部270を有する。
このベース変換行列導出部270は、第3の実施の形態において説明したベース変換行列導出部220と同様の構成を有し、同様の処理を行う。したがって、図16を参照して説明したベース変換行列導出部220の構成例は、このベース変換行列導出部270の説明にも適用することができる。
つまり、ベース変換行列導出部270は、指定された逆1次元変換の変換タイプに基づいて、ベース変換行列を導出する。行列演算部153は、そのベース変換行列導出部270により導出されたベース変換行列を用いて、行列演算を行う。
例えば、ベース変換行列導出部270は、導出するベース変換行列以上のサイズの第2の変換タイプ(例えばDCT2)の導出元変換行列を用いて、そのベース変換行列を導出する。
例えば、ベース変換行列導出部270は、その導出するベース変換行列以上のサイズの第2の変換タイプ(例えばDCT2)の導出元変換行列をサンプリングすることにより、第2の変換タイプ(例えばDCT2)または第4の変換タイプ(例えばDCT4)のベース変換行列を導出する。
このような構成とすることにより、ベース変換行列導出部270は、ベース変換行列選択情報により指定されるベース変換行列を導出することができる。つまり、導出元変換行列LUT232に1つの導出元変換行列(maxTbS-pt DCT2)251を記憶すればよいので、このLUTのサイズの増大を抑制する(LUTのサイズを削減する)ことができる。また、(maxTbS)×(maxTbS)の変換行列の行列演算と、変換タイプtrTypeの(nTbS)×(nTbS)の変換行列の行列演算とを共有することができる。つまり、行列演算部153は、各変換タイプtrTypeのベース変換行列を用いた行列演算を、同一の演算回路を用いて行うことができる。したがって、回路規模の増大を抑制する(回路規模を削減する)ことができる。
<逆変換処理の流れ>
次に、この場合の逆変換処理の流れの例を、図20のフローチャートを参照して説明する。
逆変換処理が開始されると、制御部151(フリップフラグ設定部161、ベース変換行列選択部162、および符号反転フラグ設定部163)は、ステップS251において、変換タイプtrTypeIdxや、サイズ(log2TBWidth, log2TBHeight)に基づいて、ベース変換行列選択情報、フリップフラグ(flipFlag)、および符号反転フラグ(signChangeFlag)を上述のように設定する。
ステップS252において、フリップ部152は、ステップS251において設定されたフリップフラグに基づいて、フリップ操作(F)を行うか否かを判定する(FlipFlag == True ?)。フリップフラグの値が真(True)であり、フリップ操作(F)を行うと判定された場合、処理はステップS253に進む。
ステップS253において、フリップ部152は、例えば上述した式(21)のように、1次元信号列である入力係数データXinに対してフリップ操作(F)を行い、1次元信号列である係数データX'を生成する。
ステップS253の処理が終了すると処理はステップS254に進む。また、ステップS252において、フリップフラグの値が偽(False)であり、フリップ操作(F)を行わないと判定された場合、ステップS253の処理はスキップされ、入力係数データXinがそのまま係数データX'とされ、処理はステップS254に進む。
ステップS254において、ベース変換行列導出部270は、ベース変換行列導出処理を実行し、ステップS251において設定されたベース変換行列選択情報に基づいて、ベース変換行列Tbaseを導出する。このベース変換行列導出処理は、図18のフローチャートの場合と同様の流れで実行される。したがって、その説明を省略する。
ステップS255において、行列演算部153は、例えば上述した式(22)のように、ステップS254において導出したベース変換行列Tbase、すなわち、ステップS251において設定されたベース変換行列選択情報により指定されるベース変換行列Tbaseの転置行列を用いて、1次元信号列である係数データX'に対する行列演算(逆1次元変換)を行い、1次元信号列である係数データX''を生成する。
ステップS256において、符号反転部154は、ステップS251において設定された符号反転フラグに基づいて、符号反転操作(S)を行うか否かを判定する(signChangeFlag == True ?)。符号反転フラグの値が真(True)であり、符号反転操作(S)を行うと判定された場合、処理はステップS257に進む。
ステップS257において、符号反転部154は、例えば上述した式(23)のように、ステップS255において得られた1次元信号列である係数データX''に対して符号反転操作(S)を行い、1次元信号列である出力係数データXoutを生成する。符号反転部154は、生成された出力係数データXoutを逆変換装置150の外部に出力する。ステップS257の処理が終了すると変換処理が終了する。
また、ステップS256において、符号反転フラグの値が偽(False)であり、符号反転操作(S)を行わないと判定された場合、ステップS257の処理はスキップされ、係数データX''がそのまま出力係数データXoutとされ、逆変換装置150の外部に出力される。出力係数データXoutが出力されると逆変換処理が終了する。
以上のように各処理を実行することにより、ベース変換行列選択情報により指定されるベース変換行列を導出することができる。つまり、導出元変換行列LUT232に1つの導出元変換行列(maxTbS-pt DCT2)251を記憶すればよいので、このLUTのサイズの増大を抑制する(LUTのサイズを削減する)ことができる。また、(maxTbS)×(maxTbS)の変換行列の行列演算と、変換タイプtrTypeの(nTbS)×(nTbS)の変換行列の行列演算とを共有することができる。つまり、行列演算部153は、各変換タイプtrTypeのベース変換行列を用いた行列演算を、同一の演算回路を用いて行うことができる。したがって、回路規模の増大を抑制する(回路規模を削減する)ことができる。
<8.第5の実施の形態>
<応用例>
以上においては、変換タイプDST2およびDST4の(逆)1次元変換を、変換タイプDCT2およびDCT4の1次元変換を含むFTS操作またはSTF操作により実現する例について説明した。本技術はこれ以外の例にも適用することができる。
例えば、変換タイプDCT2およびDCT4の(逆)1次元変換を、変換タイプDST2およびDST4の(逆)1次元変換を含むFTS操作またはSTF操作により実現するようにしてもよい。
1次元変換に用いられる変換タイプDCT2の変換行列TDCT2は、変換タイプDST2の変換行列TDST2、フリップ行列F、および符号反転行列Sを用いて、以下の式(24)のように表すことができる。
Figure 2022002352
同様に、1次元変換に用いられる変換タイプDCT4の変換行列TDCT4は、変換タイプDST4の変換行列TDST4、フリップ行列F、および符号反転行列Sを用いて、以下の式(25)のように表すことができる。
Figure 2022002352
したがって、変換タイプDCT2およびDCT4の1次元変換は、変換タイプDST2およびDST4の1次元変換を含むSTF操作により実現することができる。例えば、第1の実施の形態において説明した変換装置100(図6)において、符号反転部102とフリップ部104とを入れ替え、ベース変換行列LUT120が変換タイプDST2の変換行列と変換タイプDST4の変換行列を記憶し、行列演算部103が、それらの変換行列をベース変換行列として用いて行列演算を行うようにすればよい。また、例えば、第3の実施の形態において説明した変換装置100(図15)において、符号反転部102とフリップ部104とを入れ替え、ベース変換行列導出部220が変換タイプDST2のベース変換行列または変換タイプDST4のベース変換行列を導出し、行列演算部103が、その導出されたベース変換行列を用いて行列演算を行うようにすればよい。
このようにすることにより、変換タイプDCT4の1次元変換と変換タイプDCT2の1次元変換とを選択的に行う場合に、直交変換処理の前に行われるプリ処理を(符号反転操作(S)に)統一し、直交変換処理の後に行われるポスト処理を(フリップ操作(F)に)統一することができる。
また、逆1次元変換に用いられる変換タイプDCT2の変換行列の転置行列TDCT2 tは、変換タイプDST2の変換行列の転置行列TDST2 t、フリップ行列F、および符号反転行列Sを用いて、以下の式(26)のように表すことができる。
Figure 2022002352
同様に、逆1次元変換に用いられる変換タイプDCT4の変換行列TDCT4は、変換タイプDST4の変換行列の転置行列TDST4 t、フリップ行列F、および符号反転行列Sを用いて、以下の式(27)のように表すことができる。
Figure 2022002352
したがって、変換タイプDCT2およびDCT4の逆1次元変換は、変換タイプDST2およびDST4の逆1次元変換を含むFTS操作により実現することができる。例えば、第2の実施の形態において説明した逆変換装置150(図9)において、フリップ部152と符号反転部154とを入れ替え、ベース変換行列LUT170が変換タイプDST2の変換行列と変換タイプDST4の変換行列を記憶し、行列演算部153が、それらの変換行列をベース変換行列とし、そのベース変換行列の転置行列を用いて行列演算を行うようにすればよい。また、例えば、第4の実施の形態において説明した変換装置100(図19)において、フリップ部152と符号反転部154とを入れ替え、ベース変換行列導出部270が変換タイプDST2のベース変換行列または変換タイプDST4のベース変換行列を導出し、行列演算部103が、その導出されたベース変換行列を用いて行列演算を行うようにすればよい。
このようにすることにより、変換タイプDCT4の逆1次元変換と変換タイプDCT2の逆1次元変換とを選択的に行う場合に、逆直交変換処理の前に行われるプリ処理を(フリップ操作(F)に)統一し、逆直交変換処理の後に行われるポスト処理を(符号反転操作(S)に)統一することができる。
このようにすることにより、プリ処理およびポスト処理における処理内容の選択(符号反転操作(S)を行うかフリップ操作(F)を行うか)を省略することができるので、1次元変換または逆1次元変換の構成の複雑化を抑制する(構成をより簡易化する)ことができ、1次元変換または逆1次元変換をより容易に行うことができる。つまり、この場合も、第1の実施の形態乃至第4の実施の形態の場合と同様に、回路規模や処理の負荷の増大を抑制し、実装コストの増大を抑制することができる。
<9.第6の実施の形態>
<画像符号化装置>
以上に説明した本技術は、任意の装置、デバイス、システム等に適用することができる。例えば、画像データを符号化する画像符号化装置に、上述した本技術を適用することができる。
図21は、本技術を適用した画像処理装置の一態様である画像符号化装置の構成の一例を示すブロック図である。図21に示される画像符号化装置300は、動画像の画像データを符号化する装置である。例えば、画像符号化装置300は、非特許文献1、非特許文献5、または非特許文献6に記載されている技術を実装し、それらの文献のいずれかに記載された規格に準拠した方法で動画像の画像データを符号化する。
なお、図21においては、処理部やデータの流れ等の主なものを示しており、図21に示されるものが全てとは限らない。つまり、画像符号化装置300において、図21においてブロックとして示されていない処理部が存在したり、図21において矢印等として示されていない処理やデータの流れが存在したりしてもよい。これは、画像符号化装置300内の処理部等を説明する他の図においても同様である。
図21に示されるように画像符号化装置300は、制御部301、並べ替えバッファ311、演算部312、直交変換部313、量子化部314、符号化部315、蓄積バッファ316、逆量子化部317、逆直交変換部318、演算部319、インループフィルタ部320、フレームメモリ321、予測部322、およびレート制御部323を有する。
<制御部>
制御部301は、外部、または予め指定された処理単位のブロックサイズに基づいて、並べ替えバッファ311により保持されている動画像データを処理単位のブロック(CU,PU, 変換ブロックなど)へ分割する。また、制御部301は、各ブロックへ供給する符号化パラメータ(ヘッダ情報Hinfo、予測モード情報Pinfo、変換情報Tinfo、フィルタ情報Finfoなど)を、例えば、RDO(Rate-Distortion Optimization)に基づいて、決定する。
これらの符号化パラメータの詳細については後述する。制御部301は、以上のような符号化パラメータを決定すると、それを各ブロックへ供給する。具体的には、以下の通りである。
ヘッダ情報Hinfoは、各ブロックに供給される。予測モード情報Pinfoは、符号化部315と予測部322とに供給される。変換情報Tinfoは、符号化部315、直交変換部313、量子化部314、逆量子化部317、および逆直交変換部318に供給される。フィルタ情報Finfoは、インループフィルタ部320に供給される。
<並べ替えバッファ>
画像符号化装置300には、動画像データの各フィールド(入力画像)がその再生順(表示順)に入力される。並べ替えバッファ311は、各入力画像をその再生順(表示順)に取得し、保持(記憶)する。並べ替えバッファ311は、制御部301の制御に基づいて、その入力画像を符号化順(復号順)に並べ替えたり、処理単位のブロックに分割したりする。並べ替えバッファ311は、処理後の各入力画像を演算部312に供給する。また、並べ替えバッファ311は、その各入力画像(元画像)を、予測部322やインループフィルタ部320にも供給する。
<演算部>
演算部312は、処理単位のブロックに対応する画像I、および予測部322より供給される予測画像Pを入力とし、画像Iから予測画像Pを以下の式(28)に示されるように減算して、予測残差Dを導出し、それを直交変換部313に供給する。
Figure 2022002352
<直交変換部>
直交変換部313は、演算部312から供給される予測残差Dと、制御部301から供給される変換情報Tinfoとを入力とし、その変換情報Tinfoに基づいて、予測残差Dに対して直交変換を行い、変換係数Coeffを導出する。直交変換部313は、その得られた変換係数Coeffを量子化部314に供給する。
<量子化部>
量子化部314は、直交変換部313から供給される変換係数Coeffと、制御部301から供給される変換情報Tinfoとを入力とし、その変換情報Tinfoに基づいて、変換係数Coeffをスケーリング(量子化)する。なお、この量子化のレートは、レート制御部323により制御される。量子化部314は、このような量子化により得られた量子化後の変換係数、すなわち量子化変換係数レベルlevelを、符号化部315および逆量子化部317に供給する。
<符号化部>
符号化部315は、量子化部314から供給された量子化変換係数レベルlevelと、制御部301から供給される各種符号化パラメータ(ヘッダ情報Hinfo、予測モード情報Pinfo、変換情報Tinfo、フィルタ情報Finfoなど)と、インループフィルタ部320から供給されるフィルタ係数等のフィルタに関する情報と、予測部322から供給される最適な予測モードに関する情報とを入力とする。符号化部315は、量子化変換係数レベルlevelを可変長符号化(例えば、算術符号化)し、ビット列(符号化データ)を生成する。
また、符号化部315は、その量子化変換係数レベルlevelから残差情報Rinfoを導出し、残差情報Rinfoを符号化し、ビット列を生成する。
さらに、符号化部315は、インループフィルタ部320から供給されるフィルタに関する情報をフィルタ情報Finfoに含め、予測部322から供給される最適な予測モードに関する情報を予測モード情報Pinfoに含める。そして、符号化部315は、上述した各種符号化パラメータ(ヘッダ情報Hinfo、予測モード情報Pinfo、変換情報Tinfo、フィルタ情報Finfoなど)を符号化し、ビット列を生成する。
また、符号化部315は、以上のように生成された各種情報のビット列を多重化し、符号化データを生成する。符号化部315は、その符号化データを蓄積バッファ316に供給する。
<蓄積バッファ>
蓄積バッファ316は、符号化部315において得られた符号化データを、一時的に保持する。蓄積バッファ316は、所定のタイミングにおいて、保持している符号化データを、例えばビットストリーム等として画像符号化装置300の外部に出力する。例えば、この符号化データは、任意の記録媒体、任意の伝送媒体、任意の情報処理装置等を介して復号側に伝送される。すなわち、蓄積バッファ316は、符号化データ(ビットストリーム)を伝送する伝送部でもある。
<逆量子化部>
逆量子化部317は、逆量子化に関する処理を行う。例えば、逆量子化部317は、量子化部314から供給される量子化変換係数レベルlevelと、制御部301から供給される変換情報Tinfoとを入力とし、その変換情報Tinfoに基づいて、量子化変換係数レベルlevelの値をスケーリング(逆量子化)する。なお、この逆量子化は、量子化部314において行われる量子化の逆処理である。逆量子化部317は、このような逆量子化により得られた変換係数Coeff_IQを、逆直交変換部318に供給する。
<逆直交変換部>
逆直交変換部318は、逆直交変換に関する処理を行う。例えば、逆直交変換部318は、逆量子化部317から供給される変換係数Coeff_IQと、制御部101から供給される変換情報Tinfoとを入力とし、その変換情報Tinfoに基づいて、変換係数Coeff_IQに対して逆直交変換を行い、予測残差D'を導出する。なお、この逆直交変換は、直交変換部313において行われる直交変換の逆処理である。逆直交変換部318は、このような逆直交変換により得られた予測残差D'を演算部319に供給する。なお、逆直交変換部318は、復号側の逆直交変換部(後述する)と同様であるので、逆直交変換部318については、復号側について行う説明(後述する)を適用することができる。
<演算部>
演算部319は、逆直交変換部318から供給される予測残差D’と、予測部322から供給される予測画像Pとを入力とする。演算部319は、その予測残差D’と、その予測残差D’に対応する予測画像Pとを加算し、局所復号画像Rlocalを導出する。演算部319は、導出した局所復号画像Rlocalをインループフィルタ部320およびフレームメモリ321に供給する。
<インループフィルタ部>
インループフィルタ部320は、インループフィルタ処理に関する処理を行う。例えば、インループフィルタ部320は、演算部319から供給される局所復号画像Rlocalと、制御部301から供給されるフィルタ情報Finfoと、並べ替えバッファ311から供給される入力画像(元画像)とを入力とする。なお、インループフィルタ部320に入力される情報は任意であり、これらの情報以外の情報が入力されてもよい。例えば、必要に応じて、予測モード、動き情報、符号量目標値、量子化パラメータQP、ピクチャタイプ、ブロック(CU、CTU等)の情報等がインループフィルタ部320に入力されるようにしてもよい。
インループフィルタ部320は、そのフィルタ情報Finfoに基づいて、局所復号画像Rlocalに対して適宜フィルタ処理を行う。インループフィルタ部320は、必要に応じて入力画像(元画像)や、その他の入力情報もそのフィルタ処理に用いる。
例えば、インループフィルタ部320は、非特許文献1に記載のように、バイラテラルフィルタ、デブロッキングフィルタ(DBF(DeBlocking Filter))、適応オフセットフィルタ(SAO(Sample Adaptive Offset))、および適応ループフィルタ(ALF(Adaptive Loop Filter))の4つのインループフィルタをこの順に適用する。なお、どのフィルタを適用するか、どの順で適用するかは任意であり、適宜選択可能である。
もちろん、インループフィルタ部320が行うフィルタ処理は任意であり、上述の例に限定されない。例えば、インループフィルタ部320がウィーナーフィルタ等を適用するようにしてもよい。
インループフィルタ部320は、フィルタ処理された局所復号画像Rlocalをフレームメモリ321に供給する。なお、例えばフィルタ係数等のフィルタに関する情報を復号側に伝送する場合、インループフィルタ部320は、そのフィルタに関する情報を符号化部315に供給する。
<フレームメモリ>
フレームメモリ321は、画像に関するデータの記憶に関する処理を行う。例えば、フレームメモリ321は、演算部319から供給される局所復号画像Rlocalや、インループフィルタ部320から供給されるフィルタ処理された局所復号画像Rlocalを入力とし、それを保持(記憶)する。また、フレームメモリ321は、その局所復号画像Rlocalを用いてピクチャ単位毎の復号画像Rを再構築し、保持する(フレームメモリ321内のバッファへ格納する)。フレームメモリ321は、予測部322の要求に応じて、その復号画像R(またはその一部)を予測部322に供給する。
<予測部>
予測部322は、予測画像の生成に関する処理を行う。例えば、予測部322は、制御部301から供給される予測モード情報Pinfoと、並べ替えバッファ311から供給される入力画像(元画像)と、フレームメモリ321から読み出す復号画像R(またはその一部)を入力とする。予測部322は、予測モード情報Pinfoや入力画像(元画像)を用い、インター予測やイントラ予測等の予測処理を行い、復号画像Rを参照画像として参照して予測を行い、その予測結果に基づいて動き補償処理を行い、予測画像Pを生成する。予測部322は、生成した予測画像Pを演算部312および演算部319に供給する。また、予測部322は、以上の処理により選択した予測モード、すなわち最適な予測モードに関する情報を、必要に応じて符号化部315に供給する。
<レート制御部>
レート制御部323は、レート制御に関する処理を行う。例えば、レート制御部323は、蓄積バッファ316に蓄積された符号化データの符号量に基づいて、オーバフローあるいはアンダーフローが発生しないように、量子化部314の量子化動作のレートを制御する。
<直交変換部の詳細>
図22は、直交変換部313の主な構成例を示すブロック図である。図22に示されるように、直交変換部313は、スイッチ351、プライマリ変換部352、およびセカンダリ変換部353を有する。
スイッチ351は、予測残差Dおよびコンポーネント識別子compIDに対応する変換スキップフラグts_flag[compID]を入力とし、変換スキップフラグts_flag[compID]の値がNO_TS(=0)の場合(変換スキップを適用しない場合)、プライマリ変換部352へ予測残差Dを供給する。また、変換スキップフラグts_flag[compID]の値が2D_TS(=1)の場合(2次元変換スキップを適用することを示す場合)、プライマリ変換部352およびセカンダリ変換部353をスキップし、予測残差Dを変換係数Coeffとして直交変換部313の外部に出力する(量子化部314に供給する)。
プライマリ変換部352は、例えば直交変換等の所定の変換処理であるプライマリ変換に関する処理を行う。例えば、プライマリ変換部352は、コンポーネント識別子compID、コンポーネント識別子compIDの適応プライマリ変換フラグapt_flag[compID]、コンポーネント識別子compIDのプライマリ変換識別子pt_idx[compID]、予測モード情報PInfo、変換ブロックのサイズ(横幅の対数値log2TBWSize, 縦幅の対数値log2TBHSize)、および予測残差Dを入力とする。なお、変換ブロックの横幅TBWSizeをTBWidthとも称し、その対数値をlog2TBWidthとも称する。同様に、変換ブロックの縦幅TBHSizeをTBHeightとも称し、その対数値をlog2TBHeightとも称する。
プライマリ変換部352は、その予測モード情報PInfo、コンポーネント識別子compID、コンポーネント識別子compIDの適応プライマリ変換フラグapt_flag[compID]、およびコンポーネント識別子compIDのプライマリ変換識別子pt_idx[compID]を参照して、コンポーネント識別子compIDに対応するプライマリ水平変換の変換タイプTrTypeH(および該変換タイプを示すプライマリ水平変換タイプ識別子TrTypeIdxH)、およびプライマリ垂直変換の変換タイプTrTypeV(および該変換タイプを示すプライマリ垂直変換タイプ識別子TrTypeIdxV)を選択する。
また、プライマリ変換部352は、予測残差Dに対して、そのプライマリ水平変換タイプ識別子TrTypeIdxH(または、プライマリ水平変換タイプTrTypeH)と変換ブロックの横幅log2TBWSizeで定まるプライマリ水平変換と、プライマリ垂直変換タイプ識別子TrTypeIdxV(または、プライマリ垂直変換タイプTrTypeV)と変換ブロックの縦幅log2TBHSizeで定まるプライマリ垂直変換と行い、プライマリ変換後の変換係数Coeff_Pを導出する。プライマリ水平変換は、水平方向の1次元直交変換であり、プライマリ垂直変換は、垂直方向の1次元直交変換である。
プライマリ変換部352は、導出した変換係数Coeff_Pをセカンダリ変換部353に供給する。
セカンダリ変換部353は、例えば直交変換等の所定の変換処理であるセカンダリ変換に関する処理を行う。例えばセカンダリ変換部353は、セカンダリ変換識別子st_idx、変換係数のスキャン方法を示すスキャン識別子scanIdx、および変換係数Coeff_Pを入力とする。セカンダリ変換部353は、セカンダリ変換識別子st_idxおよびスキャン識別子scanIdxに基づいて、変換係数Coeff_Pに対してセカンダリ変換を行い、セカンダリ変換後の変換係数Coeff_Sを導出する。
より具体的には、セカンダリ変換識別子st_idxが、セカンダリ変換を適用することを示す場合(st_idx>0)、セカンダリ変換部353は、変換係数Coeff_Pに対して、セカンダリ変換識別子st_idxに対応するセカンダリ変換の処理を実行し、セカンダリ変換後の変換係数Coeff_Sを導出する。
セカンダリ変換部353は、そのセカンダリ変換係数Coeff_Sを、変換係数Coeffとして直交変換部313の外部に出力する(量子化部314に供給する)。
また、セカンダリ変換識別子st_idxが、セカンダリ変換を適用しないことを示す場合(st_idx==0)、セカンダリ変換部353は、セカンダリ変換をスキップし、プライマリ変換後の変換係数Coeff_Pを変換係数Coeff(セカンダリ変換後の変換係数Coeff_S)として直交変換部313の外部に出力する(量子化部314に供給する)。
<プライマリ変換部>
図23は、図22のプライマリ変換部352の主な構成例を示すブロック図である。図23に示されるように、プライマリ変換部352は、プライマリ変換選択部361、プライマリ水平変換部362、およびプライマリ垂直変換部363を有する。
プライマリ変換選択部361は、予測モード情報PInfo、コンポーネント識別子compID、適応プライマリ変換フラグapt_flag[compID]、およびプライマリ変換識別子pt_idx[compID]を入力とする。プライマリ変換選択部361は、それらの情報を参照して、プライマリ水平変換の変換タイプ識別子TrTypeIdxHおよびプライマリ垂直変換の変換タイプ識別子TrTypeIdxVを導出する。プライマリ変換選択部361は、導出したプライマリ水平変換の変換タイプ識別子TrTypeIdxHをプライマリ水平変換部362に供給する。また、プライマリ変換選択部361は、導出したプライマリ垂直変換の変換タイプ識別子TrTypeIdxVをプライマリ垂直変換部363に供給する。
プライマリ水平変換部362は、予測残差D、プライマリ水平変換の変換タイプ識別子TrTypeIdxH、および変換ブロックのサイズに関する情報(図示せず)を入力とする。この変換ブロックのサイズに関する情報は、変換ブロックの水平方向または垂直方向の大きさ(係数の数)を示す自然数Nであってもよいし、変換ブロックの横幅を示すlog2TBWSize(横幅の対数値)であってもよい(N = 1 << log2TBWSize)。プライマリ水平変換部362は、予測残差Dに対して、変換タイプ識別子TrTypeIdxHと変換ブロックのサイズで定まるプライマリ水平変換Phorを実行し、プライマリ水平変換後の変換係数Coeff_Phorを導出する。プライマリ水平変換部362は、そのプライマリ水平変換後の変換係数Coeff_Phorをプライマリ垂直変換部363に供給する。
プライマリ垂直変換部363は、プライマリ水平変換後の変換係数Coeff_Phor、プライマリ垂直変換の変換タイプ識別子TrTypeIdxV、および変換ブロックのサイズに関する情報(図示せず)を入力とする。この変換ブロックのサイズに関する情報は、変換ブロックの水平方向または垂直方向の大きさ(係数の数)を示す自然数Nであってもよいし、変換ブロックの縦幅を示すlog2TBHSize(縦幅の対数値)であってもよい(N = 1 << log2TBHSize)。プライマリ垂直変換部363は、プライマリ水平変換後の変換係数Coeff_Phorに対して、変換タイプ識別子TrTypeIdxVと変換ブロックのサイズで定まるプライマリ垂直変換Pverを実行し、そのプライマリ垂直変換後の変換係数Coeff_Pverを導出する。プライマリ垂直変換部363は、そのプライマリ垂直変換後の変換係数Coeff_Pverを、プライマリ変換後の変換係数Coeff_Pとして、プライマリ変換部352の外部に出力する(セカンダリ変換部353に供給する)。
<プライマリ水平変換部>
図24は、図23のプライマリ水平変換部362の主な構成例を示すブロック図である。図24に示されるように、プライマリ水平変換部362は、信号列抽出部371、1次元変換部372、スケーリング部373、クリップ部374、および2次元データ列生成部375を有する。
信号列抽出部371は、信号列抽出に関する処理を行う。例えば、信号列抽出部371は、プライマリ水平変換部362に入力される2次元データ列(行列)の入力係数データXin(予測残差D)を取得し、記憶する。信号列抽出部371は、その入力係数データXinの各行を1行ずつ抽出し、1次元信号列X1として1次元変換部372に供給する。
1次元変換部372は、1次元変換に関する処理を行う。例えば、1次元変換部372は、プライマリ変換選択部361から供給される、プライマリ水平変換の変換タイプ識別子TrTypeIdxH、および変換ブロックのサイズに関する情報(log2TBWSizeおよびlog2TBHSize)を取得する。また、1次元変換部372は、信号列抽出部371から供給される1次元信号列X1を取得する。1次元変換部372は、その1次元信号列X1に対して、プライマリ水平変換の変換タイプ識別子TrTypeIdxHや、変換ブロックのサイズに関する情報(log2TBWSizeおよびlog2TBHSize)に対応する1次元変換を行い、1次元信号列X2を生成する。1次元変換部372は、その1次元信号列X2をスケーリング部373に供給する。
例えば、信号列抽出部371は、係数データの処理対象ブロックより1次元信号列X1を抽出する。1次元変換部372の符号反転部102は、信号列抽出部371により抽出された1次元信号列X1に対して、符号反転操作を行う。
また、例えば、2次元データ列生成部375は、1次元変換部372のフリップ部104によりフリップ操作が行われた1次元信号列X2(に対応する1次元信号列X4)を用いて2次元データ列を生成する。
スケーリング部373は、スケーリングに関する処理を行う。例えば、スケーリング部373は、1次元変換部372から供給される1次元信号列X2を取得する。スケーリング部373は、その1次元信号列X2の各係数を、所定のシフト量fwdShift1でスケーリングして1次元信号列X3を生成する。スケーリング部373は、その1次元信号列X3をクリップ部374に供給する。
クリップ部374は、クリップ処理に関する処理を行う。例えば、クリップ部374は、スケーリング部373から供給される1次元信号列X3を取得する。クリップ部374は、その1次元信号列X3の各係数を、最小値minCoefValおよび最大値maxCoefValを用いてクリップし、1次元信号列X4を生成する。クリップ部374は、その1次元信号列X4を2次元データ列生成部375に供給する。
2次元データ列生成部375は、2次元データ列の生成に関する処理を行う。例えば、2次元データ列生成部375は、クリップ部374から供給される1次元信号列X4を記憶する。2次元データ列生成部375は、その1次元信号列X4を所定数ずつまとめて2次元データ列である出力係数データXoutを生成する。2次元データ列生成部375は、その出力係数データXout(プライマリ水平変換後の変換係数Coeff_Phor)をプライマリ水平変換部362の外部に出力する(プライマリ垂直変換部363に供給する)。
信号列抽出部371乃至2次元データ列生成部375の各処理部は、任意の構成を有する。例えば、各処理部が、上述の処理を実現する論理回路により構成されるようにしてもよい。また、各処理部が、例えばCPU、ROM、RAM等を有し、それらを用いてプログラムを実行することにより、上述の処理を実現するようにしてもよい。もちろん、各処理部が、その両方の構成を有し、上述の処理の一部を論理回路により実現し、他を、プログラムを実行することにより実現するようにしてもよい。各処理部の構成は互いに独立していてもよく、例えば、一部の処理部が上述の処理の一部を論理回路により実現し、他の一部の処理部がプログラムを実行することにより上述の処理を実現し、さらに他の処理部が論理回路とプログラムの実行の両方により上述の処理を実現するようにしてもよい。
<プライマリ垂直変換部>
図25は、図23のプライマリ垂直変換部363の主な構成例を示すブロック図である。図25に示されるように、プライマリ垂直変換部363は、信号列抽出部381、1次元変換部382、スケーリング部383、クリップ部384、および2次元データ列生成部385を有する。
信号列抽出部381は、信号列抽出に関する処理を行う。例えば、信号列抽出部381は、プライマリ垂直変換部363に入力される2次元データ列(行列)の入力係数データXin(プライマリ水平変換後の変換係数Coeff_Phor)を取得し、記憶する。信号列抽出部381は、その入力係数データXinの各列を1列ずつ抽出し、1次元信号列X1として1次元変換部382に供給する。
1次元変換部382は、1次元変換に関する処理を行う。例えば、1次元変換部382は、プライマリ変換選択部361から供給される、プライマリ垂直変換の変換タイプ識別子TrTypeIdxV、および変換ブロックのサイズに関する情報(log2TBWSizeおよびlog2TBHSize)を取得する。また、1次元変換部382は、信号列抽出部381から供給される1次元信号列X1を取得する。1次元変換部382は、その1次元信号列X1に対して、プライマリ垂直変換の変換タイプ識別子TrTypeIdxVや、変換ブロックのサイズに関する情報(log2TBWSizeおよびlog2TBHSize)に対応する1次元変換を行い、1次元信号列X2を生成する。1次元変換部382は、その1次元信号列X2をスケーリング部383に供給する。
スケーリング部383は、スケーリングに関する処理を行う。例えば、スケーリング部383は、1次元変換部382から供給される1次元信号列X2を取得する。スケーリング部383は、その1次元信号列X2の各係数を、所定のシフト量fwdShift2でスケーリングして1次元信号列X3を生成する。スケーリング部383は、その1次元信号列X3をクリップ部384に供給する。
クリップ部384は、クリップ処理に関する処理を行う。例えば、クリップ部384は、スケーリング部383から供給される1次元信号列X3を取得する。クリップ部384は、その1次元信号列X3の各係数を、最小値minCoefValおよび最大値maxCoefValを用いてクリップし、1次元信号列X4を生成する。クリップ部384は、その1次元信号列X4を2次元データ列生成部385に供給する。
2次元データ列生成部385は、2次元データ列の生成に関する処理を行う。例えば、2次元データ列生成部385は、クリップ部384から供給される1次元信号列X4を記憶する。2次元データ列生成部385は、その1次元信号列X4を所定数ずつまとめて2次元データ列である出力係数データXoutを生成する。2次元データ列生成部385は、その出力係数データXout(プライマリ変換後の変換係数Coeff_P(プライマリ垂直変換後の変換係数Coeff_Pver))をプライマリ垂直変換部363の外部に出力する(セカンダリ変換部353に供給する)。
信号列抽出部381乃至2次元データ列生成部385の各処理部は、任意の構成を有する。例えば、各処理部が、上述の処理を実現する論理回路により構成されるようにしてもよい。また、各処理部が、例えばCPU、ROM、RAM等を有し、それらを用いてプログラムを実行することにより、上述の処理を実現するようにしてもよい。もちろん、各処理部が、その両方の構成を有し、上述の処理の一部を論理回路により実現し、他を、プログラムを実行することにより実現するようにしてもよい。各処理部の構成は互いに独立していてもよく、例えば、一部の処理部が上述の処理の一部を論理回路により実現し、他の一部の処理部がプログラムを実行することにより上述の処理を実現し、さらに他の処理部が論理回路とプログラムの実行の両方により上述の処理を実現するようにしてもよい。
<本技術の適用>
以上のような構成の画像符号化装置300において、例えば、1次元変換部372(図24)や1次元変換部382(図25)として、第1の実施の形態において説明した変換装置100(図6)を適用するようにしてもよい。また、1次元変換部372(図24)や1次元変換部382(図25)として、第3の実施の形態において説明した変換装置100(図15)を適用するようにしてもよい。さらに、1次元変換部372(図24)や1次元変換部382(図25)として、第5の実施の形態において説明した変換装置100を適用するようにしてもよい。
つまり、例えば、1次元変換部372や1次元変換部382は、1次元信号列X1に対して、図7の表等を参照して説明したように、各変換タイプの1次元変換を行うようにする。また、例えば、1次元変換部372や1次元変換部382は、図12の表等を参照して説明したように、行列演算に用いるベース変換行列を導出するようにする。
このような構成とすることにより、1次元変換部372や1次元変換部382は、符号化される画像データ(の予測残差D)に対するプライマリ変換(における水平方向または垂直方向の1次元変換)において、第1の実施の形態、第3の実施の形態、または第5の実施の形態の場合と同様の効果を得ることができる。つまり、画像符号化装置300は、その1次元変換の構成の複雑化を抑制する(構成をより簡易化する)ことができる。すなわち、画像符号化装置300は、その1次元変換をより容易に行うことができる。したがって、画像符号化装置300は、回路規模や処理の負荷の増大を抑制し、実装コストの増大を抑制することができる。
<画像符号化処理の流れ>
次に、以上のような画像符号化装置300により実行される各処理の流れについて説明する。最初に、図26のフローチャートを参照して、画像符号化処理の流れの例を説明する。
画像符号化処理が開始されると、ステップS301において、並べ替えバッファ311は、制御部301に制御されて、入力された動画像データのフレームの順を表示順から符号化順に並べ替える。
ステップS302において、制御部301は、並べ替えバッファ311が保持する入力画像に対して、処理単位を設定する(ブロック分割を行う)。
ステップS303において、制御部301は、並べ替えバッファ311が保持する入力画像についての符号化パラメータを決定(設定)する。
ステップS304において、予測部322は、予測処理を行い、最適な予測モードの予測画像等を生成する。例えば、この予測処理において、予測部322は、イントラ予測を行って最適なイントラ予測モードの予測画像等を生成し、インター予測を行って最適なインター予測モードの予測画像等を生成し、それらの中から、コスト関数値等に基づいて最適な予測モードを選択する。
ステップS305において、演算部312は、入力画像と、ステップS304の予測処理により選択された最適なモードの予測画像との差分を演算する。つまり、演算部312は、入力画像と予測画像との予測残差Dを生成する。このようにして求められた予測残差Dは、元の画像データに比べてデータ量が低減される。したがって、画像をそのまま符号化する場合に比べて、データ量を圧縮することができる。
ステップS306において、直交変換部313は、ステップS305の処理により生成された予測残差Dに対して直交変換処理を行い、変換係数Coeffを導出する。
ステップS307において、量子化部314は、制御部301により算出された量子化パラメータを用いる等して、ステップS306の処理により得られた変換係数Coeffを量子化し、量子化変換係数レベルlevelを導出する。
ステップS308において、逆量子化部317は、ステップS307の処理により生成された量子化変換係数レベルlevelを、そのステップS307の量子化の特性に対応する特性で逆量子化し、変換係数Coeff_IQを導出する。
ステップS309において、逆直交変換部318は、ステップS308の処理により得られた変換係数Coeff_IQを、ステップS306の直交変換処理に対応する方法で逆直交変換し、予測残差D'を導出する。なお、この逆直交変換処理は、復号側において行われる逆直交変換処理(後述する)と同様であるので、このステップS309の逆直交変換処理については、復号側について行う説明(後述する)を適用することができる。
ステップS310において、演算部319は、ステップS309の処理により導出された予測残差D'に、ステップS304の予測処理により得られた予測画像を加算することにより、局所的に復号された復号画像を生成する。
ステップS311において、インループフィルタ部320は、ステップS310の処理により導出された、局所的に復号された復号画像に対して、インループフィルタ処理を行う。
ステップS312において、フレームメモリ321は、ステップS310の処理により導出された、局所的に復号された復号画像や、ステップS312においてフィルタ処理された、局所的に復号された復号画像を記憶する。
ステップS313において、符号化部315は、ステップS307の処理により得られた量子化変換係数レベルlevelを符号化する。例えば、符号化部315は、画像に関する情報である量子化変換係数レベルlevelを、算術符号化等により符号化し、符号化データを生成する。また、このとき、符号化部315は、各種符号化パラメータ(ヘッダ情報Hinfo、予測モード情報Pinfo、変換情報Tinfo)を符号化する。さらに、符号化部315は、量子化変換係数レベルlevelから残差情報RInfoを導出し、その残差情報RInfoを符号化する。
ステップS314において、蓄積バッファ316は、このようにして得られた符号化データを蓄積し、例えばビットストリームとして、それを画像符号化装置300の外部に出力する。このビットストリームは、例えば、伝送路や記録媒体を介して復号側に伝送される。また、レート制御部323は、必要に応じてレート制御を行う。
ステップS314の処理が終了すると、画像符号化処理が終了する。
<直交変換処理の流れ>
次に図26のステップS306において実行される直交変換処理の流れの例を、図27のフローチャートを参照して説明する。
直交変換処理が開始されると、スイッチ351は、ステップS331において、変換スキップフラグts_flagが2D_TS(2次元変換スキップを示す場合)(例えば1(真))、または、変換量子化バイパスフラグtransquant_bypass_flagが1(真)、であるか否かを判定する。変換スキップフラグts_flagが2D_TS(例えば1(真))、または、変換量子化バイパスフラグが1(真)であると判定された場合、直交変換処理が終了し、処理は図26に戻る。この場合、直交変換処理(プライマリ変換やセカンダリ変換)が省略され、入力された予測残差Dが変換係数Coeffとされる。
また、図27のステップS331において、変換スキップフラグts_flagが2D_TSでなく(2次元変換スキップでなく)(例えば0(偽))、かつ、変換量子化バイパスフラグtransquant_bypass_flagが0(偽)であると判定された場合、処理はステップS332に進む。この場合、プライマリ変換処理およびセカンダリ変換処理が行われる。
ステップS332において、プライマリ変換部352は、入力された予測残差Dに対して、コンポーネント識別子compIDで指定される適応プライマリ変換情報に基づいてプライマリ変換処理を行い、プライマリ変換後の変換係数Coeff_Pを導出する。
ステップS333において、セカンダリ変換部353は、変換係数Coeff_Pに対してセカンダリ変換処理を行い、セカンダリ変換後の変換係数Coeff_S(変換係数Coeff)を導出する。
ステップS333の処理が終了すると直交変換処理が終了する。
<プライマリ変換処理の流れ>
次に、図27のステップS332において実行されるプライマリ変換処理の流れの例を、図28のフローチャートを参照して説明する。
プライマリ変換処理が開始されると、プライマリ変換部352のプライマリ変換選択部361(図23)は、ステップS341において、プライマリ水平変換の変換タイプ識別子TrTypeIdxH(および該識別子で指定される変換タイプTrTypeH)と、プライマリ垂直変換の変換タイプ識別子TrTypeIdxV(および該識別子で指定される変換タイプTrTypeV)とを、それぞれ、上述したように選択する。
ステップS342において、プライマリ水平変換部362は、ステップS341において得られたプライマリ水平変換の変換タイプ識別子TrTypeIdxHに対応するプライマリ水平変換処理を予測残差Dに対して行い、プライマリ水平変換後の変換係数Coeff_Phorを導出する。
ステップS343において、プライマリ垂直変換部363は、ステップS341において得られたプライマリ垂直変換の変換タイプ識別子TrTypeIdxVに対応するプライマリ垂直変換処理をプライマリ水平変換結果(プライマリ水平変換後の変換係数Coeff_Phor)に対して行い、プライマリ垂直変換後の変換係数Coeff_Pver(プライマリ変換後の変換係数Coeff_P)を導出する。
ステップS343の処理が終了すると、プライマリ変換処理が終了し、処理は図27に戻る。
<プライマリ水平変換処理の流れ>
次に、図28のステップS342において実行されるプライマリ水平変換処理の流れの例を、図29のフローチャートを参照して説明する。
プライマリ水平変換処理が開始されると、プライマリ水平変換部362の信号列抽出部371(図24)は、ステップS351において、2次元データ列である入力係数データXin(予測残差D)を取得し、記憶する(保持する)。
ステップS352において、信号列抽出部371は、例えば以下の式(29)のように、保持している入力係数データXinの処理対象の行(j)を1次元信号列X1として抽出する。
Figure 2022002352
ステップS353において、1次元変換部372は、変換処理を実行し、変換タイプ識別子trTypeIdxHと変換サイズ(nTbS)に応じたベース変換行列Tbaseを用いて、1次元信号列X1に対する1次元変換を行う。
ステップS354において、スケーリング部373は、例えば、以下の式(30)のように、1次元信号列X2の各係数X2[i]をシフト量fwdShift1でスケーリングし、1次元信号列X3を導出する。
Figure 2022002352
ステップS355において、クリップ部374は、例えば、以下の式(31)のように、1次元信号列X3の各係数X3[i]を、最小値minCoefValと最大値maxCoefValとの間にクリップし、1次元信号列X4を導出する。
Figure 2022002352
ステップS356において、2次元データ列生成部375は、1次元信号列X4を用いて2次元データ列Xoutを生成する。つまり、2次元データ列生成部375は、1次元信号列X4を保持(記憶)し、所定の列数分の1次元信号列X4をまとめることにより、2次元データ列Xoutを生成する。この処理は、例えば、以下の式(32)のように表すことができる。
Figure 2022002352
ステップS357において、2次元データ列生成部375は、ステップS352乃至ステップS357の各処理を、全ての行に対して行ったか否かを判定する。すなわち、ステップS352乃至ステップS357の各処理は、ステップS351において保持された入力データXinの各行について行われる。2次元データ列生成部375は、その全ての行を処理したか否かを判定する。
未処理の行が存在すると判定された場合、処理はステップS352に戻り、次の未処理の行を処理対象として、それ以降の処理を繰り返す。また、ステップS357において全ての行を処理したと判定された場合、2次元データ列生成部375は、生成した2次元データ列Xout(プライマリ水平変換後の変換係数Coeff_Phor)をプライマリ垂直変換部363の外部に出力する(プライマリ垂直変換部363に供給する)。2次元データ列Xoutが出力されると、プライマリ水平変換処理が終了し、処理は図28に戻る。
<プライマリ垂直変換処理の流れ>
次に、図28のステップS343において実行されるプライマリ垂直変換処理の流れの例を、図30のフローチャートを参照して説明する。
プライマリ垂直変換処理が開始されると、プライマリ垂直変換部363の信号列抽出部381(図25)は、ステップS361において、2次元データ列である入力係数データXin(プライマリ水平変換後の変換係数Coeff_Phor)を取得し、記憶する(保持する)。
ステップS362において、信号列抽出部381は、例えば以下の式(33)のように、保持している入力係数データXinの処理対象の列(j)を1次元信号列X1として抽出する。
Figure 2022002352
ステップS363において、1次元変換部382は、変換処理を実行し、変換タイプ識別子trTypeIdxVと変換サイズ(nTbS)に応じたベース変換行列Tbaseを用いて、1次元信号列X1に対する1次元変換を行う。
ステップS364において、スケーリング部383は、例えば、以下の式(34)のように、1次元信号列X2の各係数X2[i]をシフト量fwdShift2でスケーリングし、1次元信号列X3を導出する。
Figure 2022002352
ステップS365において、クリップ部384は、例えば、上述の式(31)のように、1次元信号列X3の各係数X3[i]を、最小値minCoefValと最大値maxCoefValとの間にクリップし、1次元信号列X4を導出する。
ステップS366において、2次元データ列生成部385は、1次元信号列X4を用いて2次元データ列Xoutを生成する。つまり、2次元データ列生成部385は、1次元信号列X4を保持(記憶)し、所定の列数分の1次元信号列X4をまとめることにより、2次元データ列Xoutを生成する。この処理は、例えば、以下の式(35)のように表すことができる。
Figure 2022002352
ステップS367において、2次元データ列生成部385は、ステップS362乃至ステップS367の各処理を、全ての列に対して行ったか否かを判定する。すなわち、ステップS362乃至ステップS367の各処理は、ステップS361において保持された入力データXinの各列について行われる。2次元データ列生成部385は、その全ての列を処理したか否かを判定する。
未処理の列が存在すると判定された場合、処理はステップS362に戻り、次の未処理の列を処理対象として、それ以降の処理を繰り返す。また、ステップS367において全ての列を処理したと判定された場合、プライマリ垂直変換処理が終了し、処理は図28に戻る。
<本技術の適用>
以上のようなプライマリ水平変換処理(図29)のステップS353において、例えば、1次元変換部372は、第1の実施の形態の場合(図8)と同様の流れで変換処理を実行するようにしてもよい。また、1次元変換部372は、第3の実施の形態の場合(図17)と同様の流れで変換処理を実行するようにしてもよい。さらに、1次元変換部372は、第5の実施の形態の場合と同様の流れで変換処理を実行するようにしてもよい。
また、以上のようなプライマリ垂直変換処理(図30)のステップS363において、例えば、1次元変換部382は、第1の実施の形態の場合(図8)と同様の流れで変換処理を実行するようにしてもよい。また、1次元変換部382は、第3の実施の形態の場合(図17)と同様の流れで変換処理を実行するようにしてもよい。さらに、1次元変換部382は、第5の実施の形態の場合と同様の流れで変換処理を実行するようにしてもよい。
このように各処理を実行することにより、1次元変換部372や1次元変換部382は、符号化される画像データ(の予測残差D)に対するプライマリ変換(における水平方向または垂直方向の1次元変換)において、第1の実施の形態、第3の実施の形態、または第5の実施の形態の場合と同様の効果を得ることができる。つまり、画像符号化装置300は、その1次元変換の構成の複雑化を抑制する(構成をより簡易化する)ことができる。すなわち、画像符号化装置300は、その1次元変換をより容易に行うことができる。したがって、画像符号化装置300は、回路規模や処理の負荷の増大を抑制し、実装コストの増大を抑制することができる。
<10.第7の実施の形態>
<画像復号装置>
図31は、本技術を適用した画像処理装置の一態様である画像復号装置の構成の一例を示すブロック図である。図31に示される画像復号装置400は、AVCやHEVCのように、画像とその予測画像との予測残差が符号化された符号化データを復号する装置である。例えば、画像復号装置400は、非特許文献1、非特許文献5、または非特許文献6に記載されている技術を実装し、それらの文献のいずれかに記載された規格に準拠した方法で動画像の画像データが符号化された符号化データを復号する。例えば、画像復号装置400は、上述の画像符号化装置300により生成された符号化データ(ビットストリーム)を復号する。
なお、図31においては、処理部やデータの流れ等の主なものを示しており、図31に示されるものが全てとは限らない。つまり、画像復号装置400において、図31においてブロックとして示されていない処理部が存在したり、図31において矢印等として示されていない処理やデータの流れが存在したりしてもよい。これは、画像復号装置400内の処理部等を説明する他の図においても同様である。
図31において、画像復号装置400は、蓄積バッファ411、復号部412、逆量子化部413、逆直交変換部414、演算部415、インループフィルタ部416、並べ替えバッファ417、フレームメモリ418、および予測部419を備えている。なお、予測部419は、不図示のイントラ予測部、およびインター予測部を備えている。画像復号装置400は、符号化データ(ビットストリーム)を復号することによって、動画像データを生成するための装置である。
<蓄積バッファ>
蓄積バッファ411は、画像復号装置400に入力されたビットストリームを取得し、保持(記憶)する。蓄積バッファ411は、所定のタイミングにおいて、または、所定の条件が整う等した場合、蓄積しているビットストリームを復号部412に供給する。
<復号部>
復号部412は、画像の復号に関する処理を行う。例えば、復号部412は、蓄積バッファ411から供給されるビットストリームを入力とし、シンタックステーブルの定義に沿って、そのビット列から、各シンタックス要素のシンタックス値を可変長復号し、パラメータを導出する。
シンタックス要素およびシンタックス要素のシンタックス値から導出されるパラメータには、例えば、ヘッダ情報Hinfo、予測モード情報Pinfo、変換情報Tinfo、残差情報Rinfo、フィルタ情報Finfoなどの情報が含まれる。つまり、復号部412は、ビットストリームから、これらの情報をパースする(解析して取得する)。これらの情報について以下に説明する。
<ヘッダ情報Hinfo>
ヘッダ情報Hinfoは、例えば、VPS(Video Parameter Set)/SPS(Sequence ParameterSet)/PPS(Picture Parameter Set)/SH(スライスヘッダ)などのヘッダ情報を含む。ヘッダ情報Hinfoには、例えば、画像サイズ(横幅PicWidth、縦幅PicHeight)、ビット深度(輝度bitDepthY, 色差bitDepthC)、色差アレイタイプChromaArrayType、CUサイズの最大値MaxCUSize/最小値MinCUSize、4分木分割(Quad-tree分割ともいう)の最大深度MaxQTDepth/最小深度MinQTDepth、2分木分割(Binary-tree分割)の最大深度MaxBTDepth/最小深度MinBTDepth、変換スキップブロックの最大値MaxTSSize(最大変換スキップブロックサイズともいう)、各符号化ツールのオンオフフラグ(有効フラグともいう)などを規定する情報が含まれる。
例えば、ヘッダ情報Hinfoに含まれる符号化ツールのオンオフフラグとしては、以下に示す変換、量子化処理に関わるオンオフフラグがある。なお、符号化ツールのオンオフフラグは、該符号化ツールに関わるシンタックスが符号化データ中に存在するか否かを示すフラグとも解釈することができる。また、オンオフフラグの値が1(真)の場合、該符号化ツールが使用可能であることを示し、オンオフフラグの値が0(偽)の場合、該符号化ツールが使用不可であることを示す。なお、フラグ値の解釈は逆であってもよい。
コンポーネント間予測有効フラグ(ccp_enabled_flag):コンポーネント間予測(CCP(Cross-Component Prediction),CC予測とも称する)が使用可能であるか否かを示すフラグ情報である。例えば、このフラグ情報が「1」(真)の場合、使用可能であることが示され、「0」(偽)の場合、使用不可であることが示される。
なお、このCCPは、コンポーネント間線形予測(CCLMまたはCCLMP)とも称する。
<予測モード情報Pinfo>
予測モード情報Pinfoには、例えば、処理対象PB(予測ブロック)のサイズ情報PBSize(予測ブロックサイズ)、イントラ予測モード情報IPinfo、動き予測情報MVinfo等の情報が含まれる。
イントラ予測モード情報IPinfoには、例えば、JCTVC-W1005, 7.3.8.5 Coding Unit syntax中のprev_intra_luma_pred_flag, mpm_idx, rem_intra_pred_mode、およびそのシンタックスから導出される輝度イントラ予測モードIntraPredModeY等が含まれる。
また、イントラ予測モード情報IPinfoには、例えば、コンポーネント間予測フラグ(ccp_flag(cclmp_flag))、多クラス線形予測モードフラグ(mclm_flag)、色差サンプル位置タイプ識別子(chroma_sample_loc_type_idx)、色差MPM識別子(chroma_mpm_idx)、および、これらのシンタックスから導出される輝度イントラ予測モード(IntraPredModeC)等が含まれる。
コンポーネント間予測フラグ(ccp_flag(cclmp_flag))は、コンポーネント間線形予測を適用するか否かを示すフラグ情報である。例えば、ccp_flag==1のとき、コンポーネント間予測を適用することを示し、ccp_flag==0のとき、コンポーネント間予測を適用しないことを示す。
多クラス線形予測モードフラグ(mclm_flag)は、線形予測のモードに関する情報(線形予測モード情報)である。より具体的には、多クラス線形予測モードフラグ(mclm_flag)は、多クラス線形予測モードにするか否かを示すフラグ情報である。例えば、「0」の場合、1クラスモード(単一クラスモード)(例えばCCLMP)であることを示し、「1」の場合、2クラスモード(多クラスモード)(例えばMCLMP)であることを示す。
色差サンプル位置タイプ識別子(chroma_sample_loc_type_idx)は、色差コンポーネントの画素位置のタイプ(色差サンプル位置タイプとも称する)を識別する識別子である。例えば色フォーマットに関する情報である色差アレイタイプ(ChromaArrayType)が420形式を示す場合、色差サンプル位置タイプ識別子は、以下の式(36)のような割り当て方となる。
Figure 2022002352
なお、この色差サンプル位置タイプ識別子(chroma_sample_loc_type_idx)は、色差コンポーネントの画素位置に関する情報(chroma_sample_loc_info())として(に格納されて)伝送される。
色差MPM識別子(chroma_mpm_idx)は、色差イントラ予測モード候補リスト(intraPredModeCandListC)の中のどの予測モード候補を色差イントラ予測モードとして指定するかを表す識別子である。
動き予測情報MVinfoには、例えば、merge_idx, merge_flag, inter_pred_idc, ref_idx_LX, mvp_lX_flag, X={0,1}, mvd等の情報が含まれる(例えば、JCTVC-W1005, 7.3.8.6 Prediction Unit Syntaxを参照)。
もちろん、予測モード情報Pinfoに含まれる情報は任意であり、これらの情報以外の情報が含まれるようにしてもよい。
<変換情報Tinfo>
変換情報Tinfoには、例えば、以下の情報が含まれる。もちろん、変換情報Tinfoに含まれる情報は任意であり、これらの情報以外の情報が含まれるようにしてもよい。
処理対象変換ブロックの横幅サイズTBWSizeおよび縦幅TBHSize(または、2を底とする各TBWSize、TBHSizeの対数値log2TBWSize、log2TBHSizeであってもよい)。変換スキップフラグ(ts_flag):(逆)プライマリ変換および(逆)セカンダリ変換をスキップか否かを示すフラグである。
スキャン識別子(scanIdx)
量子化パラメータ(qp)
量子化マトリックス(scaling_matrix(例えば、JCTVC-W1005, 7.3.4 Scaling list data syntax))
<残差情報Rinfo>
残差情報Rinfo(例えば、JCTVC-W1005の7.3.8.11 Residual Coding syntaxを参照)には、例えば以下のシンタックスが含まれる。
cbf(coded_block_flag):残差データ有無フラグ
last_sig_coeff_x_pos:ラスト非ゼロ係数X座標
last_sig_coeff_y_pos:ラスト非ゼロ係数Y座標
coded_sub_block_flag:サブブロック非ゼロ係数有無フラグ
sig_coeff_flag:非ゼロ係数有無フラグ
gr1_flag:非ゼロ係数のレベルが1より大きいかを示すフラグ(GR1フラグとも呼ぶ)
gr2_flag:非ゼロ係数のレベルが2より大きいかを示すフラグ(GR2フラグとも呼ぶ)
sign_flag:非ゼロ係数の正負を示す符号(サイン符号とも呼ぶ)
coeff_abs_level_remaining:非ゼロ係数の残余レベル(非ゼロ係数残余レベルとも呼ぶ)
など。
もちろん、残差情報Rinfoに含まれる情報は任意であり、これらの情報以外の情報が含まれるようにしてもよい。
<フィルタ情報Finfo>
フィルタ情報Finfoには、例えば、以下に示す各フィルタ処理に関する制御情報が含まれる。
デブロッキングフィルタ(DBF)に関する制御情報
画素適応オフセット(SAO)に関する制御情報
適応ループフィルタ(ALF)に関する制御情報
その他の線形・非線形フィルタに関する制御情報
より具体的には、例えば、各フィルタを適用するピクチャや、ピクチャ内の領域を指定する情報や、CU単位のフィルタOn/Off制御情報、スライス、タイルの境界に関するフィルタOn/Off制御情報などが含まれる。もちろん、フィルタ情報Finfoに含まれる情報は任意であり、これらの情報以外の情報が含まれるようにしてもよい。
復号部212の説明に戻り、復号部212は、残差情報Rinfoを参照して、各変換ブロック内の各係数位置の量子化変換係数レベルlevelを導出する。復号部212は、その量子化変換係数レベルlevelを、逆量子化部213に供給する。
また、復号部412は、パースしたヘッダ情報Hinfo、予測モード情報Pinfo、量子化変換係数レベルlevel、変換情報Tinfo、フィルタ情報Finfoを各ブロックへ供給する。具体的には以下の通りである。
ヘッダ情報Hinfoは、逆量子化部413、逆直交変換部414、予測部419、インループフィルタ部416に供給される。予測モード情報Pinfoは、逆量子化部413および予測部419に供給される。変換情報Tinfoは、逆量子化部413および逆直交変換部414に供給される。フィルタ情報Finfoは、インループフィルタ部416に供給される。
もちろん、上述の例は一例であり、この例に限定されない。例えば、各符号化パラメータが任意の処理部に供給されるようにしてもよい。また、その他の情報が、任意の処理部に供給されるようにしてもよい。
<逆量子化部>
逆量子化部413は、逆量子化に関する処理を行う。例えば、逆量子化部413は、復号部412から供給される変換情報Tinfoおよび量子化変換係数レベルlevelを入力とし、その変換情報Tinfoに基づいて、量子化変換係数レベルlevelの値をスケーリング(逆量子化)し、逆量子化後の変換係数Coeff_IQを導出する。
なお、この逆量子化は、量子化部314による量子化の逆処理として行われる。また、この逆量子化は、逆量子化部317による逆量子化と同様の処理である。つまり、逆量子化部317は、逆量子化部413と同様の処理(逆量子化)を行う。
逆量子化部413は、導出した変換係数Coeff_IQを逆直交変換部414に供給する。
<逆直交変換部>
逆直交変換部414は、逆直交変換に関する処理を行う。例えば、逆直交変換部414は、逆量子化部413から供給される変換係数Coeff_IQ、および、復号部412から供給される変換情報Tinfoを入力とし、その変換情報Tinfoに基づいて、変換係数Coeff_IQに対して逆直交変換処理を行い、予測残差D'を導出する。
なお、この逆直交変換は、直交変換部313による直交変換の逆処理として行われる。また、この逆直交変換は、逆直交変換部318による逆直交変換と同様の処理である。つまり、逆直交変換部318は、逆直交変換部414と同様の処理(逆直交変換)を行う。
逆直交変換部414は、導出した予測残差D'を演算部415に供給する。
<演算部>
演算部415は、画像に関する情報の加算に関する処理を行う。例えば、演算部415は、逆直交変換部414から供給される予測残差D'と、予測部419から供給される予測画像Pとを入力とする。演算部415は、以下の式(37)に示されるように、予測残差D'とその予測残差D'に対応する予測画像P(予測信号)とを加算し、局所復号画像Rlocalを導出する。
Figure 2022002352
演算部415は、導出した局所復号画像Rlocalを、インループフィルタ部416およびフレームメモリ418に供給する。
<インループフィルタ部>
インループフィルタ部416は、インループフィルタ処理に関する処理を行う。例えば、インループフィルタ部416は、演算部415から供給される局所復号画像Rlocalと、復号部412から供給されるフィルタ情報Finfoとを入力とする。なお、インループフィルタ部416に入力される情報は任意であり、これらの情報以外の情報が入力されてもよい。
インループフィルタ部416は、そのフィルタ情報Finfoに基づいて、局所復号画像Rlocalに対して適宜フィルタ処理を行う。
例えば、インループフィルタ部416は、非特許文献1に記載のように、バイラテラルフィルタ、デブロッキングフィルタ(DBF(DeBlocking Filter))、適応オフセットフィルタ(SAO(Sample Adaptive Offset))、および適応ループフィルタ(ALF(Adaptive Loop Filter))の4つのインループフィルタをこの順に適用する。なお、どのフィルタを適用するか、どの順で適用するかは任意であり、適宜選択可能である。
インループフィルタ部416は、符号化側(例えば画像符号化装置300のインループフィルタ部320)により行われたフィルタ処理に対応するフィルタ処理を行う。もちろん、インループフィルタ部416が行うフィルタ処理は任意であり、上述の例に限定されない。例えば、インループフィルタ部416がウィーナーフィルタ等を適用するようにしてもよい。
インループフィルタ部416は、フィルタ処理された局所復号画像Rlocalを並べ替えバッファ417およびフレームメモリ418に供給する。
<並べ替えバッファ>
並べ替えバッファ417は、インループフィルタ部416から供給された局所復号画像Rlocalを入力とし、それを保持(記憶)する。並べ替えバッファ417は、その局所復号画像Rlocalを用いてピクチャ単位毎の復号画像Rを再構築し、保持する(バッファ内に格納する)。並べ替えバッファ417は、得られた復号画像Rを、復号順から再生順に並べ替える。並べ替えバッファ417は、並べ替えた復号画像R群を動画像データとして画像復号装置200の外部に出力する。
<フレームメモリ>
フレームメモリ418は、画像に関するデータの記憶に関する処理を行う。例えば、フレームメモリ418は、演算部415より供給される局所復号画像Rlocalを入力とし、ピクチャ単位毎の復号画像Rを再構築して、フレームメモリ418内のバッファへ格納する。
また、フレームメモリ418は、インループフィルタ部416から供給される、インループフィルタ処理された局所復号画像Rlocalを入力とし、ピクチャ単位毎の復号画像Rを再構築して、フレームメモリ418内のバッファへ格納する。フレームメモリ418は、適宜、その記憶している復号画像R(またはその一部)を参照画像として予測部419に供給する。
なお、フレームメモリ418が、復号画像の生成に係るヘッダ情報Hinfo、予測モード情報Pinfo、変換情報Tinfo、フィルタ情報Finfoなどを記憶するようにしても良い。
<予測部>
予測部419は、予測画像の生成に関する処理を行う。例えば、予測部419は、復号部412から供給される予測モード情報Pinfoを入力とし、その予測モード情報Pinfoによって指定される予測方法により予測を行い、予測画像Pを導出する。その導出の際、予測部419は、その予測モード情報Pinfoによって指定される、フレームメモリ418に格納されたフィルタ前またはフィルタ後の復号画像R(またはその一部)を、参照画像として利用する。予測部419は、導出した予測画像Pを、演算部415に供給する。
<逆直交変換部の詳細>
図32は、図31の逆直交変換部414の主な構成例を示すブロック図である。図32に示されるように、逆直交変換部414は、スイッチ451、逆セカンダリ変換部452、および逆プライマリ変換部453を有する。
スイッチ451は、変換係数Coeff_IQ、および変換スキップフラグts_flag[compID]を入力とする。変換スキップフラグts_flag[compID]の値がNO_TS(=0)の場合、すなわち、変換スキップを適用しない場合、スイッチ451は、変換係数Coeff_IQを、逆セカンダリ変換部452に供給する。また、変換スキップフラグts_flag[compID]の値が2D_TS(=1)の場合、すなわち、2次元変換スキップを適用することを示す場合、スイッチ451は、逆セカンダリ変換部452および逆プライマリ変換部453をスキップし、変換係数Coeff_IQを予測残差D'として逆直交変換部414の外部に出力する(演算部415に供給する)。
逆セカンダリ変換部452は、符号化側(例えば、画像符号化装置300のセカンダリ変換部353)において行われるセカンダリ変換の逆処理である逆セカンダリ変換に関する処理を行う。例えば、逆セカンダリ変換部452は、セカンダリ変換識別子st_idx、変換係数のスキャン方法を示すスキャン識別子scanIdx、および、スイッチ451から供給される変換係数Coeff_IQを入力とする。
逆セカンダリ変換部452は、セカンダリ変換識別子st_idxおよびスキャン識別子scanIdxに基づいて、変換係数Coeff_IQに対して逆セカンダリ変換を行い、逆セカンダリ変換後の変換係数Coeff_ISを導出する。
より具体的には、セカンダリ変換識別子st_idxが、逆セカンダリ変換を適用することを示す場合(st_idx>0)、逆セカンダリ変換部452は、変換係数Coeff_IQに対して、セカンダリ変換識別子st_idxに対応する逆セカンダリ変換の処理を実行し、逆セカンダリ変換後の変換係数Coeff_ISを導出する。逆セカンダリ変換部452は、その逆セカンダリ変換係数Coeff_ISを逆プライマリ変換部453に供給する。
なお、セカンダリ変換識別子st_idxが、逆セカンダリ変換を適用しないことを示す場合(st_idx==0)、逆セカンダリ変換部452は、逆セカンダリ変換をスキップし、変換係数Coeff_IQを逆セカンダリ変換後の変換係数Coeff_ISとして逆プライマリ変換部453に供給する。
逆プライマリ変換部453は、符号化側(例えば、画像符号化装置300のプライマリ変換部352)において行われるプライマリ変換の逆処理である逆プライマリ変換に関する処理を行う。例えば、逆プライマリ変換部453は、コンポーネント識別子compID、コンポーネント識別子compIDの適応プライマリ変換フラグapt_flag[compID]、コンポーネント識別子compIDのプライマリ変換識別子pt_idx[compID]、予測モード情報PInfo、変換ブロックのサイズ(横幅の対数値log2TBWSize, 縦幅の対数値log2TBHSize)および逆セカンダリ変換後の変換係数Coeff_ISを入力とする。
逆プライマリ変換部453は、その予測モード情報PInfo、コンポーネント識別子compID、コンポーネント識別子compIDの適応プライマリ変換フラグapt_flag[compID]、およびコンポーネント識別子compIDのプライマリ変換識別子pt_idx[compID]を参照して、コンポーネント識別子compIDに対応する逆プライマリ水平変換の変換タイプTrTypeH(および該変換タイプを示す逆プライマリ水平変換タイプ識別子TrTypeIdxH)、および逆プライマリ垂直変換の変換タイプTrTypeV(および該変換タイプを示す逆プライマリ垂直変換タイプ識別子TrTypeIdxV)を選択する。
また、逆プライマリ変換部453は、逆セカンダリ後の変換係数Coeff_ISに対して、その逆プライマリ垂直変換タイプ識別子TrTypeIdxV(または、逆プライマリ垂直変換タイプTrTypeV)と変換ブロックの縦幅log2TBHSizeとで定まる逆プライマリ垂直変換と、逆プライマリ水平変換タイプ識別子TrTypeIdxH(または、逆プライマリ水平変換タイプTrTypeH)と変換ブロックの横幅log2TBWSizeとで定まる逆プライマリ水平変換とを行い、逆プライマリ変換後の変換係数Coeff_IPを導出する。逆プライマリ垂直変換は、垂直方向の逆1次元直交変換であり、逆プライマリ水平変換は、水平方向の逆1次元直交変換である。
逆プライマリ変換部453は、その逆プライマリ変換後の変換係数Coeff_IPを、予測残差D'として逆直交変換部414の外部に出力する(演算部415に供給する)。
<逆プライマリ変換部>
図33は、この場合の逆プライマリ変換部453(図32)の主な構成例を示すブロック図である。図33に示されるように、逆プライマリ変換部453は、逆プライマリ変換選択部461、逆プライマリ垂直変換部462、および逆プライマリ水平変換部463を有する。
逆プライマリ変換選択部461は、予測モード情報PInfo、コンポーネント識別子compID、適応プライマリ変換フラグapt_flag[compID]、およびプライマリ変換識別子pt_idx[compID]を入力とする。逆プライマリ変換選択部461は、それらの情報を参照して、逆プライマリ垂直変換の変換タイプ識別子TrTypeIdxVおよび逆プライマリ垂直変換の変換タイプ識別子TrTypeIdxHを導出する。逆プライマリ変換選択部461は、導出した逆プライマリ垂直変換の変換タイプ識別子TrTypeIdxVを逆プライマリ垂直変換部462に供給する。また、逆プライマリ変換選択部461は、導出した逆プライマリ水平変換の変換タイプ識別子TrTypeIdxHを逆プライマリ水平変換部463に供給する。
逆プライマリ垂直変換部462は、逆セカンダリ変換後の変換係数Coeff_IS、逆プライマリ垂直変換の変換タイプ識別子TrTypeIdxV、および変換ブロックのサイズに関する情報を入力とする。この変換ブロックのサイズに関する情報は、変換ブロックの水平方向または垂直方向の大きさ(係数の数)を示す自然数Nであってもよいし、変換ブロックの縦幅を示すlog2TBHSize(縦幅の対数値)であってもよい(N = 1 << log2TBHSize)。逆プライマリ垂直変換部462は、逆セカンダリ変換後の変換係数Coeff_ISに対して、変換タイプ識別子TrTypeIdxVと変換ブロックのサイズで定まる逆プライマリ垂直変換IPverを実行し、逆プライマリ垂直変換後の変換係数Coeff_IPverを導出する。逆プライマリ垂直変換部462は、その逆プライマリ垂直変換後の変換係数Coeff_IPverを逆プライマリ水平変換部463に供給する。
逆プライマリ水平変換部463は、逆プライマリ垂直変換後の変換係数Coeff_IPver、逆プライマリ水平変換の変換タイプ識別子TrTypeIdxH、および変換ブロックのサイズに関する情報を入力とする。この変換ブロックのサイズに関する情報は、変換ブロックの水平方向または垂直方向の大きさ(係数の数)を示す自然数Nであってもよいし、変換ブロックの横幅を示すlog2TBWSize(横幅の対数値)であってもよい(N = 1 << log2TBWSize)。逆プライマリ水平変換部463は、逆プライマリ垂直変換部462から供給される逆プライマリ垂直変換後の変換係数Coeff_IPverに対して、変換タイプ識別子TrTypeIdxHと変換ブロックのサイズで定まる逆プライマリ水平変換IPhorを実行し、その逆プライマリ水平変換後の変換係数Coeff_IPhor(すなわち逆プライマリ変換後の変換係数Coeff_IP)を導出する。逆プライマリ水平変換部463は、その逆プライマリ水平変換後の変換係数Coeff_IPhorを予測残差D'として逆プライマリ変換部453の外部に出力する(演算部415に供給する)。
<逆プライマリ垂直変換部>
図34は、図33の逆プライマリ垂直変換部462の主な構成例を示すブロック図である。図34に示されるように、逆プライマリ垂直変換部462は、信号列抽出部471、逆1次元変換部472、スケーリング部473、クリップ部474、および2次元データ列生成部475を有する。
信号列抽出部471は、信号列抽出に関する処理を行う。例えば、信号列抽出部471は、逆プライマリ垂直変換部462に入力される2次元データ列(行列)の入力係数データXin(逆セカンダリ変換後の変換係数Coeff_IS)を取得し、記憶する。信号列抽出部471は、その入力係数データXinの各列を1列ずつ抽出し、1次元信号列X1として逆1次元変換部472に供給する。
例えば、信号列抽出部471は、復号部412によりビットストリームが復号されて生成された係数データである量子化変換係数レベルlevel(に対応する変換係数Coeff_IS)の処理対象ブロックより1次元信号列X1を抽出する。逆1次元変換部472のフリップ部152は、その信号列抽出部471により抽出された1次元信号列に対して、フリップ操作を行う。
逆1次元変換部472は、逆1次元変換に関する処理を行う。例えば、逆1次元変換部472は、逆プライマリ変換選択部461から供給される、逆プライマリ垂直変換の変換タイプ識別子TrTypeIdxV、および変換ブロックのサイズに関する情報(log2TBWSizeおよびlog2TBHSize)を取得する。また、逆1次元変換部472は、信号列抽出部471から供給される1次元信号列X1を取得する。逆1次元変換部472は、その1次元信号列X1に対して、逆プライマリ垂直変換の変換タイプ識別子TrTypeIdxVや、変換ブロックのサイズに関する情報(log2TBWSizeおよびlog2TBHSize)に対応する逆1次元変換を行い、1次元信号列X2を生成する。逆1次元変換部472は、その1次元信号列X2をスケーリング部473に供給する。
スケーリング部473は、スケーリングに関する処理を行う。例えば、スケーリング部473は、逆1次元変換部472から供給される1次元信号列X2を取得する。スケーリング部473は、その1次元信号列X2の各係数を、所定のシフト量invShift1でスケーリングして1次元信号列X3を生成する。スケーリング部473は、その1次元信号列X3をクリップ部474に供給する。
クリップ部474は、クリップ処理に関する処理を行う。例えば、クリップ部474は、スケーリング部473から供給される1次元信号列X3を取得する。クリップ部474は、その1次元信号列X3の各係数を、最小値minCoefValおよび最大値maxCoefValを用いてクリップし、1次元信号列X4を生成する。クリップ部474は、その1次元信号列X4を2次元データ列生成部475に供給する。
2次元データ列生成部475は、2次元データ列の生成に関する処理を行う。例えば、2次元データ列生成部475は、クリップ部474から供給される1次元信号列X4を記憶する。2次元データ列生成部475は、その1次元信号列X4を所定数ずつまとめて2次元データ列である出力係数データXoutを生成する。2次元データ列生成部475は、その出力係数データXout(逆プライマリ垂直変換後の変換係数Coeff_IPver)を逆プライマリ垂直変換部462の外部に出力する(逆プライマリ水平変換部463に供給する)。
例えば、2次元データ列生成部475は、逆1次元変換部472の符号反転部154により符号反転操作が行われた1次元信号列X2(に対応する1次元信号列X4)を用いて2次元データ列を生成する。
信号列抽出部471乃至2次元データ列生成部475の各処理部は、任意の構成を有する。例えば、各処理部が、上述の処理を実現する論理回路により構成されるようにしてもよい。また、各処理部が、例えばCPU、ROM、RAM等を有し、それらを用いてプログラムを実行することにより、上述の処理を実現するようにしてもよい。もちろん、各処理部が、その両方の構成を有し、上述の処理の一部を論理回路により実現し、他を、プログラムを実行することにより実現するようにしてもよい。各処理部の構成は互いに独立していてもよく、例えば、一部の処理部が上述の処理の一部を論理回路により実現し、他の一部の処理部がプログラムを実行することにより上述の処理を実現し、さらに他の処理部が論理回路とプログラムの実行の両方により上述の処理を実現するようにしてもよい。
<逆プライマリ水平変換部>
図35は、図33の逆プライマリ水平変換部463の主な構成例を示すブロック図である。図35に示されるように、逆プライマリ水平変換部463は、信号列抽出部481、逆1次元変換部482、スケーリング部483、クリップ部484、および2次元データ列生成部485を有する。
信号列抽出部481は、信号列抽出に関する処理を行う。例えば、信号列抽出部481は、逆プライマリ水平変換部463に入力される2次元データ列(行列)の入力係数データXin(逆プライマリ垂直変換後の変換係数Coeff_IPver)を取得し、記憶する。信号列抽出部481は、その入力係数データXinの各行を1行ずつ抽出し、1次元信号列X1として逆1次元変換部482に供給する。
逆1次元変換部482は、逆1次元変換に関する処理を行う。例えば、逆1次元変換部482は、逆プライマリ変換選択部461から供給される、逆プライマリ水平変換の変換タイプ識別子TrTypeIdxH、および変換ブロックのサイズに関する情報(log2TBWSizeおよびlog2TBHSize)を取得する。また、逆1次元変換部482は、信号列抽出部481から供給される1次元信号列X1を取得する。逆1次元変換部482は、その1次元信号列X1に対して、逆プライマリ水平変換の変換タイプ識別子TrTypeIdxHや、変換ブロックのサイズに関する情報(log2TBWSizeおよびlog2TBHSize)に対応する逆1次元変換を行い、1次元信号列X2を生成する。逆1次元変換部482は、その1次元信号列X2をスケーリング部483に供給する。
スケーリング部483は、スケーリングに関する処理を行う。例えば、スケーリング部483は、逆1次元変換部482から供給される1次元信号列X2を取得する。スケーリング部483は、その1次元信号列X2の各係数を、所定のシフト量invShift2でスケーリングして1次元信号列X3を生成する。スケーリング部483は、その1次元信号列X3をクリップ部484に供給する。
クリップ部484は、クリップ処理に関する処理を行う。例えば、クリップ部484は、スケーリング部483から供給される1次元信号列X3を取得する。クリップ部484は、その1次元信号列X3の各係数を、最小値minCoefValおよび最大値maxCoefValを用いてクリップし、1次元信号列X4を生成する。クリップ部484は、その1次元信号列X4を2次元データ列生成部485に供給する。
2次元データ列生成部485は、2次元データ列の生成に関する処理を行う。例えば、2次元データ列生成部485は、クリップ部484から供給される1次元信号列X4を記憶する。2次元データ列生成部485は、その1次元信号列X4を所定数ずつまとめて2次元データ列である出力係数データXoutを生成する。2次元データ列生成部485は、その出力係数データXout(予測残差D'、逆プライマリ水平変換後の変換係数Coeff_IPhor、または、逆プライマリ変換後の変換係数Coeff_IP)を逆プライマリ水平変換部463の外部に出力する(演算部415に供給する)。
信号列抽出部481乃至2次元データ列生成部485の各処理部は、任意の構成を有する。例えば、各処理部が、上述の処理を実現する論理回路により構成されるようにしてもよい。また、各処理部が、例えばCPU、ROM、RAM等を有し、それらを用いてプログラムを実行することにより、上述の処理を実現するようにしてもよい。もちろん、各処理部が、その両方の構成を有し、上述の処理の一部を論理回路により実現し、他を、プログラムを実行することにより実現するようにしてもよい。各処理部の構成は互いに独立していてもよく、例えば、一部の処理部が上述の処理の一部を論理回路により実現し、他の一部の処理部がプログラムを実行することにより上述の処理を実現し、さらに他の処理部が論理回路とプログラムの実行の両方により上述の処理を実現するようにしてもよい。
<本技術の適用>
以上のような構成の画像復号装置400において、例えば、逆1次元変換部472(図34)や逆1次元変換部482(図35)として、第2の実施の形態において説明した逆変換装置150(図9)を適用するようにしてもよい。また、逆1次元変換部472(図34)や逆1次元変換部482(図35)として、第4の実施の形態において説明した逆変換装置150(図19)を適用するようにしてもよい。さらに、逆1次元変換部472(図34)や逆1次元変換部482(図35)として、第5の実施の形態において説明した逆変換装置150を適用するようにしてもよい。
つまり、例えば、逆1次元変換部472や逆1次元変換部482は、1次元信号列X1に対して、図10の表等を参照して説明したように、各変換タイプの逆1次元変換を行う。また、例えば、逆1次元変換部472や逆1次元変換部482は、図12の表等を参照して説明したように、行列演算に用いるベース変換行列を導出する。
このような構成とすることにより、逆1次元変換部472や逆1次元変換部482は、画像データが符号化されたビットストリームを復号して得られる係数データ(逆セカンダリ変換後の変換係数Coeff_IS)に対する逆プライマリ変換(における水平方向または垂直方向の逆1次元変換)において、第2の実施の形態、第4の実施の形態、または第5の実施の形態の場合と同様の効果を得ることができる。つまり、画像復号装置400は、その逆1次元変換の構成の複雑化を抑制する(構成をより簡易化する)ことができる。すなわち、画像復号装置400は、その逆1次元変換をより容易に行うことができる。したがって、画像復号装置400は、回路規模や処理の負荷の増大を抑制し、実装コストの増大を抑制することができる。
<画像復号処理の流れ>
次に、以上のような画像復号装置400により実行される各処理の流れについて説明する。最初に、図36のフローチャートを参照して、画像復号処理の流れの例を説明する。
画像復号処理が開始されると、蓄積バッファ411は、ステップS401において、画像復号装置400の外部から供給される符号化データ(ビットストリーム)を取得して保持する(蓄積する)。
ステップS402において、復号部412は、その符号化データ(ビットストリーム)を復号し、量子化変換係数レベルlevelを得る。また、復号部412は、この復号により、符号化データ(ビットストリーム)から各種符号化パラメータをパースする(解析して取得する)。
ステップS403において、逆量子化部413は、ステップS402の処理により得られた量子化変換係数レベルlevelに対して、符号化側で行われた量子化の逆処理である逆量子化を行い、変換係数Coeff_IQを得る。
ステップS404において、逆直交変換部414は、ステップS403の処理により得られた変換係数Coeff_IQに対して、符号化側で行われた直交変換処理の逆処理である逆直交変換処理を行い、予測残差D'を得る。
ステップS405において、予測部419は、ステップS402においてパースされた情報に基づいて、符号化側より指定される予測方法で予測処理を実行し、フレームメモリ418に記憶されている参照画像を参照する等して、予測画像Pを生成する。
ステップS406において、演算部415は、ステップS404の処理により得られた予測残差D'と、ステップS405の処理により得られた予測画像Pとを加算し、局所復号画像Rlocalを導出する。
ステップS407において、インループフィルタ部416は、ステップS406の処理により得られた局所復号画像Rlocalに対して、インループフィルタ処理を行う。
ステップS408において、並べ替えバッファ417は、ステップS407の処理により得られたフィルタ処理された局所復号画像Rlocalを用いて復号画像Rを導出し、その復号画像R群の順序を復号順から再生順に並べ替える。再生順に並べ替えられた復号画像R群は、動画像として画像復号装置400の外部に出力される。
また、ステップS409において、フレームメモリ418は、ステップS406の処理により得られた局所復号画像Rlocal、および、ステップS407の処理により得られたフィルタ処理後の局所復号画像Rlocalの内、少なくとも一方を記憶する。
ステップS409の処理が終了すると、画像復号処理が終了する。
<逆直交変換の処理の流れ>
次に、図36のステップS404において実行される逆直交変換処理の流れの例を、図37のフローチャートを参照して説明する。逆直交変換処理が開始されると、スイッチ451は、ステップS431において、変換スキップフラグts_flagが2D_TS(2次元変換スキップのモード)(例えば1(真))である、または、変換量子化バイパスフラグtransquant_bypass_flagが1(真)である、か否かを判定する。変換スキップ識別子ts_idxが2D_TSである、または、変換量子化バイパスフラグが1(真)であると判定された場合、逆直交変換処理が終了し、処理は図36に戻る。この場合、逆直交変換処理(逆プライマリ変換や逆セカンダリ変換)が省略され、変換係数Coeff_IQが予測残差D'とされる。
また、ステップS431において、変換スキップ識別子ts_idxが2D_TSでない(2次元変換スキップ以外のモード)(例えば0(偽))であり、かつ、変換量子化バイパスフラグが0(偽)である、と判定された場合、処理はステップS432に進む。この場合、逆セカンダリ変換処理および逆プライマリ変換処理が行われる。
ステップS432において、逆セカンダリ変換部452は、変換係数Coeff_IQに対して、セカンダリ変換識別子st_idxに基づいて逆セカンダリ変換処理を行い、変換係数Coeff_ISを導出し、出力する。
ステップS433において、逆プライマリ変換部453は、変換係数Coeff_ISに対して逆プライマリ変換処理を行い、逆プライマリ変換後の変換係数Coeff_IP(予測残差D')を導出する。
ステップS433の処理が終了すると逆直交変換処理が終了し、処理は図36に戻る。
<逆プライマリ変換処理の流れ>
次に、図37のステップS433において実行される逆プライマリ変換処理の流れの例を、図38のフローチャートを参照して説明する。
逆プライマリ変換処理が開始されると、逆プライマリ変換部453の逆プライマリ変換選択部461(図33)は、ステップS441において、逆プライマリ垂直変換の変換タイプ識別子TrTypeIdxV(または変換タイプTrTypeV)と、逆プライマリ水平変換の変換タイプ識別子TrTypeIdxH(または変換タイプTrTypeH)とを、それぞれ選択する。
ステップS442において、逆プライマリ垂直変換部462は、ステップS441において得られた逆プライマリ垂直変換の変換タイプ識別子TrTypeIdxVに対応する逆プライマリ垂直変換処理を逆セカンダリ変換後の変換係数Coeff_ISに対して行い、逆プライマリ垂直変換後の変換係数Coeff_IPverを導出する。
ステップS443において、逆プライマリ水平変換部463は、ステップS441において得られた逆プライマリ水平変換の変換タイプ識別子TrTypeIdxHに対応する逆プライマリ水平変換処理を逆プライマリ垂直変換後の変換係数Coeff_IPverに対して行い、逆プライマリ水平変換後の変換係数Coeff_IPhor(すなわち、逆プライマリ変換後の変換係数Coeff_IP(予測残差D'))を導出する。
ステップS443の処理が終了すると、逆プライマリ変換処理が終了し、処理は図37に戻る。
<逆プライマリ垂直変換処理の流れ>
次に、図38のステップS442において実行される逆プライマリ垂直変換処理の流れの例を、図39のフローチャートを参照して説明する。
逆プライマリ垂直変換処理が開始されると、逆プライマリ垂直変換部462の信号列抽出部471(図34)は、ステップS451において、2次元データ列である入力係数データXin(逆セカンダリ変換後の変換係数Coeff_IS)を取得し、記憶する(保持する)。
ステップS452において、信号列抽出部471は、例えば上述した式(33)のように、保持している入力係数データXinの処理対象の列(j)を1次元信号列X1として抽出する。
ステップS453において、逆1次元変換部472は、逆変換処理を実行し、変換タイプ識別子trTypeIdxVと変換サイズ(nTbS)に応じたベース変換行列Tbaseを用いて、1次元信号列X1に対する逆1次元変換を行う。
ステップS454において、スケーリング部473は、例えば、以下の式(38)のように、1次元信号列X2の各係数X2[i]をシフト量invShift1でスケーリングし、1次元信号列X3を導出する。
Figure 2022002352
ステップS455において、クリップ部474は、例えば、上述の式(31)のように、1次元信号列X3の各係数X3[i]を、最小値minCoefValと最大値maxCoefValとの間にクリップし、1次元信号列X4を導出する。
ステップS456において、2次元データ列生成部475は、1次元信号列X4を用いて2次元データ列Xoutを生成する。つまり、2次元データ列生成部475は、1次元信号列X4を保持(記憶)し、上述した式(35)のように、所定の列数分の1次元信号列X4をまとめることにより、2次元データ列Xoutを生成する。
ステップS457において、2次元データ列生成部475は、ステップS452乃至ステップS457の各処理を、全ての列に対して行ったか否かを判定する。すなわち、ステップS452乃至ステップS457の各処理は、ステップS451において保持された入力データXinの各列について行われる。2次元データ列生成部475は、その全ての列を処理したか否かを判定する。
未処理の列が存在すると判定された場合、処理はステップS452に戻り、次の未処理の列を処理対象として、それ以降の処理を繰り返す。また、ステップS457において全ての列を処理したと判定された場合、プライマリ垂直変換処理が終了し、処理は図38に戻る。
<逆プライマリ水平変換処理の流れ>
次に、図38のステップS443において実行される逆プライマリ水平変換処理の流れの例を、図40のフローチャートを参照して説明する。
逆プライマリ水平変換処理が開始されると、逆プライマリ水平変換部463の信号列抽出部481(図35)は、ステップS461において、2次元データ列である入力係数データXin(逆プライマリ垂直変換後の変換係数Coeff_IPver)を取得し、記憶する(保持する)。
ステップS462において、信号列抽出部481は、例えば上述した式(29)のように、保持している入力係数データXinの処理対象の行(j)を1次元信号列X1として抽出する。
ステップS463において、逆1次元変換部482は、逆変換処理を実行し、変換タイプ識別子trTypeIdxHと変換サイズ(nTbS)に応じたベース変換行列の転置行列Tbase tを用いて、1次元信号列X1に対する逆1次元変換を行う。
ステップS464において、スケーリング部483は、例えば、以下の式(39)のように、1次元信号列X2の各係数X2[i]をシフト量invShift2でスケーリングし、1次元信号列X3を導出する。
Figure 2022002352
ステップS465において、クリップ部484は、例えば、上述の式(31)のように、1次元信号列X3の各係数X3[i]を、最小値minCoefValと最大値maxCoefValとの間にクリップし、1次元信号列X4を導出する。
ステップS466において、2次元データ列生成部485は、1次元信号列X4を用いて2次元データ列Xoutを生成する。つまり、2次元データ列生成部485は、上述した式(32)のように、1次元信号列X4を保持(記憶)し、所定の列数分の1次元信号列X4をまとめることにより、2次元データ列Xoutを生成する。
ステップS467において、2次元データ列生成部485は、ステップS462乃至ステップS467の各処理を、全ての行に対して行ったか否かを判定する。すなわち、ステップS462乃至ステップS467の各処理は、ステップS461において保持された入力データXinの各行について行われる。2次元データ列生成部485は、その全ての行を処理したか否かを判定する。
未処理の行が存在すると判定された場合、処理はステップS462に戻り、次の未処理の行を処理対象として、それ以降の処理を繰り返す。また、ステップS467において全ての行を処理したと判定された場合、2次元データ列生成部485は、生成した2次元データ列Xout(予測残差D'、逆プライマリ水平変換後の変換係数Coeff_IPhor、または、逆プライマリ変換後の変換係数Coeff_IP)を逆プライマリ水平変換部463の外部に出力する(演算部415に供給する)。2次元データ列Xoutが出力されると、逆プライマリ水平変換処理が終了し、処理は図38に戻る。
<本技術の適用>
以上のような逆プライマリ垂直変換処理(図39)のステップS453において、例えば、逆1次元変換部472は、第2の実施の形態の場合(図11)と同様の流れで逆変換処理を実行するようにしてもよい。また、逆1次元変換部472は、第4の実施の形態の場合(図20)と同様の流れで逆変換処理を実行するようにしてもよい。さらに、逆1次元変換部472は、第5の実施の形態の場合と同様の流れで逆変換処理を実行するようにしてもよい。
また、以上のような逆プライマリ水平変換処理(図40)のステップS463において、例えば、逆1次元変換部482は、第2の実施の形態の場合(図11)と同様の流れで逆変換処理を実行するようにしてもよい。また、逆1次元変換部482は、第4の実施の形態の場合(図20)と同様の流れで逆変換処理を実行するようにしてもよい。さらに、逆1次元変換部482は、第5の実施の形態の場合と同様の流れで逆変換処理を実行するようにしてもよい。
このように各処理を実行することにより、逆1次元変換部472や逆1次元変換部482は、画像データが符号化されたビットストリームを復号して得られる係数データに対する逆プライマリ変換(における水平方向または垂直方向の逆1次元変換)において、第2の実施の形態や第4の実施の形態の場合と同様の効果を得ることができる。つまり、画像復号装置400は、その逆1次元変換の構成の複雑化を抑制する(構成をより簡易化する)ことができる。すなわち、画像復号装置400は、その逆1次元変換をより容易に行うことができる。したがって、画像復号装置400は、回路規模や処理の負荷の増大を抑制し、実装コストの増大を抑制することができる。
なお、上述したように、画像符号化装置300も、逆直交変換部318を有し、画像復号装置400の逆直交変換部414と同様の構成を有し、同様の処理を行う。つまり、その逆直交変換部318も、逆量子化後の変換係数Coeff_IQに対する逆プライマリ変換(における水平方向または垂直方向の逆1次元変換)において、第2の実施の形態、第4の実施の形態、または第5の実施の形態の場合と同様の効果を得ることができる。つまり、画像符号化装置300は、その逆1次元変換の構成の複雑化を抑制する(構成をより簡易化する)ことができる。すなわち、画像符号化装置300は、その逆1次元変換をより容易に行うことができる。したがって、画像符号化装置300は、回路規模や処理の負荷の増大を抑制し、実装コストの増大を抑制することができる。
<11.付記>
<コンピュータ>
上述した一連の処理は、ハードウエアにより実行させることもできるし、ソフトウエアにより実行させることもできる。一連の処理をソフトウエアにより実行する場合には、そのソフトウエアを構成するプログラムが、コンピュータにインストールされる。ここでコンピュータには、専用のハードウエアに組み込まれているコンピュータや、各種のプログラムをインストールすることで、各種の機能を実行することが可能な、例えば汎用のパーソナルコンピュータ等が含まれる。
図41は、上述した一連の処理をプログラムにより実行するコンピュータのハードウエアの構成例を示すブロック図である。
図41に示されるコンピュータ800において、CPU(Central Processing Unit)801、ROM(Read Only Memory)802、RAM(Random Access Memory)803は、バス804を介して相互に接続されている。
バス804にはまた、入出力インタフェース810も接続されている。入出力インタフェース810には、入力部811、出力部812、記憶部813、通信部814、およびドライブ815が接続されている。
入力部811は、例えば、キーボード、マウス、マイクロホン、タッチパネル、入力端子などよりなる。出力部812は、例えば、ディスプレイ、スピーカ、出力端子などよりなる。記憶部813は、例えば、ハードディスク、RAMディスク、不揮発性のメモリなどよりなる。通信部814は、例えば、ネットワークインタフェースよりなる。ドライブ815は、磁気ディスク、光ディスク、光磁気ディスク、または半導体メモリなどのリムーバブルメディア821を駆動する。
以上のように構成されるコンピュータでは、CPU801が、例えば、記憶部813に記憶されているプログラムを、入出力インタフェース810およびバス804を介して、RAM803にロードして実行することにより、上述した一連の処理が行われる。RAM803にはまた、CPU801が各種の処理を実行する上において必要なデータなども適宜記憶される。
コンピュータ(CPU801)が実行するプログラムは、例えば、パッケージメディア等としてのリムーバブルメディア821に記録して適用することができる。その場合、プログラムは、リムーバブルメディア821をドライブ815に装着することにより、入出力インタフェース810を介して、記憶部813にインストールすることができる。
また、このプログラムは、ローカルエリアネットワーク、インターネット、デジタル衛星放送といった、有線または無線の伝送媒体を介して提供することもできる。その場合、プログラムは、通信部814で受信し、記憶部813にインストールすることができる。
その他、このプログラムは、ROM802や記憶部813に、あらかじめインストールしておくこともできる。
<情報・処理の単位>
以上において説明した各種情報が設定されるデータ単位や、各種処理が対象とするデータ単位は、それぞれ任意であり上述した例に限定されない。例えば、これらの情報や処理が、それぞれ、TU(Transform Unit)、TB(Transform Block)、PU(Prediction Unit)、PB(Prediction Block)、CU(Coding Unit)、LCU(Largest Coding Unit)、サブブロック、ブロック、タイル、スライス、ピクチャ、シーケンス、またはコンポーネント毎に設定されるようにしてもよいし、それらのデータ単位のデータを対象とするようにしてもよい。もちろん、このデータ単位は、情報や処理毎に設定され得るものであり、全ての情報や処理のデータ単位が統一されている必要はない。なお、これらの情報の格納場所は任意であり、上述したデータ単位のヘッダやパラメータセット等に格納されるようにしてもよい。また、複数個所に格納されるようにしてもよい。
<制御情報>
以上の各実施の形態において説明した本技術に関する制御情報を符号化側から復号側に伝送するようにしてもよい。例えば、上述した本技術を適用することを許可(または禁止)するか否かを制御する制御情報(例えばenabled_flag)を伝送するようにしてもよい。また、例えば、上述した本技術を適用する対象(または適用しない対象)を示す制御情報を伝送するようにしてもよい。例えば、本技術を適用する(または、適用を許可若しくは禁止する)ブロックサイズ(上限若しくは下限、またはその両方)、フレーム、コンポーネント、またはレイヤ等を指定する制御情報を伝送するようにしてもよい。
<本技術の適用対象>
本技術は、任意の画像符号化・復号方式に適用することができる。つまり、上述した本技術と矛盾しない限り、変換(逆変換)、量子化(逆量子化)、符号化(復号)、予測等、画像符号化・復号に関する各種処理の仕様は任意であり、上述した例に限定されない。また、上述した本技術と矛盾しない限り、これらの処理の内の一部を省略してもよい。
また本技術は、複数の視点(ビュー(view))の画像を含む多視点画像の符号化・復号を行う多視点画像符号化・復号システムに適用することができる。その場合、各視点(ビュー(view))の符号化・復号において、本技術を適用するようにすればよい。
さらに本技術は、所定のパラメータについてスケーラビリティ(scalability)機能を有するように複数レイヤ化(階層化)された階層画像の符号化・復号を行う階層画像符号化(スケーラブル符号化)・復号システムに適用することができる。その場合、各階層(レイヤ)の符号化・復号において、本技術を適用するようにすればよい。
上述した実施の形態に係る画像処理装置、画像符号化装置、および画像復号装置は、例えば、衛星放送、ケーブルTVなどの有線放送、インターネット上での配信、およびセルラー通信による端末への配信などにおける送信機や受信機(例えばテレビジョン受像機や携帯電話機)、または、光ディスク、磁気ディスクおよびフラッシュメモリなどの媒体に画像を記録したり、これら記憶媒体から画像を再生したりする装置(例えばハードディスクレコーダやカメラ)などの、様々な電子機器に応用され得る。
また、本技術は、任意の装置またはシステムを構成する装置に搭載するあらゆる構成、例えば、システムLSI(Large Scale Integration)等としてのプロセッサ(例えばビデオプロセッサ)、複数のプロセッサ等を用いるモジュール(例えばビデオモジュール)、複数のモジュール等を用いるユニット(例えばビデオユニット)、ユニットにさらにその他の機能を付加したセット(例えばビデオセット)等(すなわち、装置の一部の構成)として実施することもできる。
さらに、本技術は、複数の装置により構成されるネットワークシステムにも適用することもできる。例えば、コンピュータ、AV(Audio Visual)機器、携帯型情報処理端末、IoT(Internet of Things)デバイス等の任意の端末に対して、画像(動画像)に関するサービスを提供するクラウドサービスに適用することもできる。
なお、本技術を適用したシステム、装置、処理部等は、例えば、交通、医療、防犯、農業、畜産業、鉱業、美容、工場、家電、気象、自然監視等、任意の分野に利用することができる。また、その用途も任意である。
例えば、本技術は、観賞用コンテンツ等の提供の用に供されるシステムやデバイスに適用することができる。また、例えば、本技術は、交通状況の監理や自動運転制御等、交通の用に供されるシステムやデバイスにも適用することができる。さらに、例えば、本技術は、セキュリティの用に供されるシステムやデバイスにも適用することができる。また、例えば、本技術は、機械等の自動制御の用に供されるシステムやデバイスに適用することができる。さらに、例えば、本技術は、農業や畜産業の用に供されるシステムやデバイスにも適用することができる。また、本技術は、例えば火山、森林、海洋等の自然の状態や野生生物等を監視するシステムやデバイスにも適用することができる。さらに、例えば、本技術は、スポーツの用に供されるシステムやデバイスにも適用することができる。
<その他>
なお、本明細書において「フラグ」とは、複数の状態を識別するための情報であり、真(1)または偽(0)の2状態を識別する際に用いる情報だけでなく、3以上の状態を識別することが可能な情報も含まれる。したがって、この「フラグ」が取り得る値は、例えば1/0の2値であってもよいし、3値以上であってもよい。すなわち、この「フラグ」を構成するbit数は任意であり、1bitでも複数bitでもよい。また、識別情報(フラグも含む)は、その識別情報をビットストリームに含める形だけでなく、ある基準となる情報に対する識別情報の差分情報をビットストリームに含める形も想定されるため、本明細書においては、「フラグ」や「識別情報」は、その情報だけではなく、基準となる情報に対する差分情報も包含する。
また、符号化データ(ビットストリーム)に関する各種情報(メタデータ等)は、符号化データに関連づけられていれば、どのような形態で伝送または記録されるようにしてもよい。ここで、「関連付ける」という用語は、例えば、一方のデータを処理する際に他方のデータを利用し得る(リンクさせ得る)ようにすることを意味する。つまり、互いに関連付けられたデータは、1つのデータとしてまとめられてもよいし、それぞれ個別のデータとしてもよい。例えば、符号化データ(画像)に関連付けられた情報は、その符号化データ(画像)とは別の伝送路上で伝送されるようにしてもよい。また、例えば、符号化データ(画像)に関連付けられた情報は、その符号化データ(画像)とは別の記録媒体(または同一の記録媒体の別の記録エリア)に記録されるようにしてもよい。なお、この「関連付け」は、データ全体でなく、データの一部であってもよい。例えば、画像とその画像に対応する情報とが、複数フレーム、1フレーム、またはフレーム内の一部分などの任意の単位で互いに関連付けられるようにしてもよい。
なお、本明細書において、「合成する」、「多重化する」、「付加する」、「一体化する」、「含める」、「格納する」、「入れ込む」、「差し込む」、「挿入する」等の用語は、例えば符号化データとメタデータとを1つのデータにまとめるといった、複数の物を1つにまとめることを意味し、上述の「関連付ける」の1つの方法を意味する。
また、本技術の実施の形態は、上述した実施の形態に限定されるものではなく、本技術の要旨を逸脱しない範囲において種々の変更が可能である。
また、例えば、1つの装置(または処理部)として説明した構成を分割し、複数の装置(または処理部)として構成するようにしてもよい。逆に、以上において複数の装置(または処理部)として説明した構成をまとめて1つの装置(または処理部)として構成されるようにしてもよい。また、各装置(または各処理部)の構成に上述した以外の構成を付加するようにしてももちろんよい。さらに、システム全体としての構成や動作が実質的に同じであれば、ある装置(または処理部)の構成の一部を他の装置(または他の処理部)の構成に含めるようにしてもよい。
なお、本明細書において、システムとは、複数の構成要素(装置、モジュール(部品)等)の集合を意味し、全ての構成要素が同一筐体中にあるか否かは問わない。したがって、別個の筐体に収納され、ネットワークを介して接続されている複数の装置、および、1つの筐体の中に複数のモジュールが収納されている1つの装置は、いずれも、システムである。
また、例えば、本技術は、1つの機能を、ネットワークを介して複数の装置で分担、共同して処理するクラウドコンピューティングの構成をとることができる。
また、例えば、上述したプログラムは、任意の装置において実行することができる。その場合、その装置が、必要な機能(機能ブロック等)を有し、必要な情報を得ることができるようにすればよい。
また、例えば、上述のフローチャートで説明した各ステップは、1つの装置で実行する他、複数の装置で分担して実行することができる。さらに、1つのステップに複数の処理が含まれる場合には、その1つのステップに含まれる複数の処理は、1つの装置で実行する他、複数の装置で分担して実行することができる。換言するに、1つのステップに含まれる複数の処理を、複数のステップの処理として実行することもできる。逆に、複数のステップとして説明した処理を1つのステップとしてまとめて実行することもできる。
なお、コンピュータが実行するプログラムは、プログラムを記述するステップの処理が、本明細書で説明する順序に沿って時系列に実行されるようにしても良いし、並列に、あるいは呼び出しが行われたとき等の必要なタイミングで個別に実行されるようにしても良い。つまり、矛盾が生じない限り、各ステップの処理が上述した順序と異なる順序で実行されるようにしてもよい。さらに、このプログラムを記述するステップの処理が、他のプログラムの処理と並列に実行されるようにしても良いし、他のプログラムの処理と組み合わせて実行されるようにしても良い。
なお、本明細書において複数説明した本技術は、矛盾が生じない限り、それぞれ独立に単体で実施することができる。もちろん、任意の複数の本技術を併用して実施することもできる。例えば、いずれかの実施の形態において説明した本技術の一部または全部を、他の実施の形態において説明した本技術の一部または全部と組み合わせて実施することもできる。また、上述した任意の本技術の一部または全部を、上述していない他の技術と併用して実施することもできる。
100 変換装置, 101 制御部, 102 符号反転部, 103 行列演算部, 104 フリップ部, 111 符号反転フラグ設定部, 112 ベース変換行列選択部, 113 フリップフラグ設定部, 120 ベース変換行列LUT, 150 逆変換装置, 151 制御部, 152 フリップ部, 153 行列演算部, 154 符号反転部, 161 フリップフラグ設定部, 162 ベース変換行列選択部, 163 符号反転フラグ設定部, 170 ベース変換行列LUT, 220 ベース変換行列導出部, 231 サンプリング部, 232 導出元変換行列LUT, 241 サンプリングパラメータ導出部, 242 部分行列抽出部, 270 ベース変換行列導出部, 300 画像符号化装置, 301 制御部, 313 直交変換部, 315 符号化部, 318 逆直交変換部, 352 プライマリ変換部, 353 セカンダリ変換部, 362 プライマリ水平変換部, 363 プライマリ垂直変換部, 371 信号列抽出部, 372 1次元変換部, 373 スケーリング部, 374 クリップ部, 375 2次元データ列生成部, 381 信号列抽出部, 382 1次元変換部, 383 スケーリング部, 384 クリップ部, 385 2次元データ列生成部, 400 画像復号装置, 412 復号部, 414 逆直交変換部, 452 逆セカンダリ変換部, 453 逆プライマリ変換部, 461 逆プライマリ変換選択部, 462 逆プライマリ垂直変換部, 463 逆プライマリ水平変換部, 471 信号列抽出部, 472 逆1次元変換部, 473 スケーリング部, 474 クリップ部, 475 2次元データ列生成部, 481 信号列抽出部, 482 逆1次元変換部, 483 スケーリング部, 484 クリップ部, 485 2次元データ列生成部

Claims (20)

  1. ビットストリームを復号して、画像に関する係数データを生成する復号部と、
    前記復号部により生成された前記係数データの1次元信号列に対して、各係数の順序を逆順に並び替えるフリップ操作を行うフリップ部と、
    前記フリップ部により前記フリップ操作された前記1次元信号列に対して、
    第1の変換タイプの逆1次元変換を実現する場合、STF操作により前記第1の変換タイプの逆1次元変換を実現する第2の変換タイプの変換行列をベース変換行列とし、
    第3の変換タイプの逆1次元変換を実現する場合、FTS操作により前記第3の変換タイプの逆1次元変換を実現する第4の変換タイプの、かつ、対称行列である変換行列をベース変換行列とし、
    前記ベース変換行列の転置行列を用いて行列演算を行う行列演算部と、
    前記行列演算部により前記行列演算が行われた前記1次元信号列に対して、前記1次元信号列の奇数番目の信号の符号を反転する符号反転操作を行う符号反転部と
    を備える画像処理装置。
  2. 前記第2の変換タイプまたは前記第4の変換タイプの逆1次元変換を実現する場合、
    前記フリップ部は、前記フリップ操作をスキップし、
    前記行列演算部は、前記復号部により生成された前記係数データの1次元信号列に対して、前記第2の変換タイプまたは前記第4の変換タイプの変換行列をベース変換行列として、前記行列演算を行い、
    前記符号反転部は、前記符号反転操作をスキップする
    請求項1に記載の画像処理装置。
  3. 指定された逆1次元変換の変換タイプに基づいて、前記フリップ操作を行うか否かを示すフリップフラグを設定するフリップフラグ設定部と、
    前記変換タイプに基づいて、前記符号反転操作を行うか否かを示す符号反転フラグを設定する符号反転フラグ設定部と
    をさらに備え、
    前記フリップ部は、前記フリップフラグ設定部により設定された前記フリップフラグに基づいて、前記フリップ操作を行うかスキップし、
    前記符号反転部は、前記符号反転フラグ設定部により設定された前記符号反転フラグに基づいて、前記符号反転操作を行うかスキップする
    請求項2に記載の画像処理装置。
  4. 指定された逆1次元変換の変換タイプに基づいて、前記第2の変換タイプの変換行列と前記第4の変換タイプの変換行列とのいずれを前記ベース変換行列とするかを選択するベース変換行列選択部をさらに備え、
    前記行列演算部は、前記ベース変換行列選択部により選択された前記ベース変換行列を用いて、前記行列演算を行う
    請求項1に記載の画像処理装置。
  5. 指定された逆1次元変換の変換タイプに基づいて、前記ベース変換行列を導出するベース変換行列導出部をさらに備え、
    前記行列演算部は、前記ベース変換行列導出部により導出された前記ベース変換行列を用いて、前記行列演算を行う
    請求項1に記載の画像処理装置。
  6. 前記ベース変換行列導出部は、前記ベース変換行列以上のサイズの前記第2の変換タイプの導出元変換行列を用いて、前記ベース変換行列を導出する
    請求項5に記載の画像処理装置。
  7. 前記ベース変換行列導出部は、前記導出元変換行列をサンプリングすることにより、前記第2の変換タイプまたは前記第4の変換タイプの前記ベース変換行列を導出する
    請求項6に記載の画像処理装置。
  8. 前記復号部により生成された前記係数データより1次元信号列を抽出する1次元信号列抽出部と、
    前記符号反転部により前記符号反転操作が行われた前記1次元信号列を用いて2次元データ列を生成する2次元データ列生成部と
    をさらに備え、
    前記フリップ部は、前記1次元信号列抽出部により抽出された前記1次元信号列に対して、前記フリップ操作を行う
    請求項1に記載の画像処理装置。
  9. 前記第1の変換タイプはDST2であり、
    前記第2の変換タイプはDCT2であり、
    前記第3の変換タイプはDST4であり、
    前記第4の変換タイプはDCT4である
    請求項1に記載の画像処理装置。
  10. ビットストリームを復号して、画像に関する係数データを生成し、
    生成された前記係数データの1次元信号列に対して、各係数の順序を逆順に並び替えるフリップ操作を行い、
    前記フリップ操作された前記1次元信号列に対して、
    第1の変換タイプの逆1次元変換を実現する場合、STF操作により前記第1の変換タイプの逆1次元変換を実現する第2の変換タイプの変換行列をベース変換行列とし、
    第3の変換タイプの逆1次元変換を実現する場合、FTS操作により前記第3の変換タイプの逆1次元変換を実現する第4の変換タイプの、かつ、対称行列である変換行列をベース変換行列とし、
    前記ベース変換行列の転置行列を用いて行列演算を行い、
    前記行列演算が行われた前記1次元信号列に対して、前記1次元信号列の奇数番目の信号の符号を反転する符号反転操作を行う
    画像処理方法。
  11. 画像に関する係数データの1次元信号列に対して、前記1次元信号列の奇数番目の信号の符号を反転する符号反転操作を行う符号反転部と、
    前記符号反転部により前記符号反転操作された前記1次元信号列に対して、
    第1の変換タイプの1次元変換を実現する場合、FTS操作により前記第1の変換タイプの1次元変換を実現する第2の変換タイプの変換行列をベース変換行列とし、
    第3の変換タイプの1次元変換を実現する場合、STF操作により前記第3の変換タイプの1次元変換を実現する第4の変換タイプの、かつ、対称行列である変換行列をベース変換行列とし、
    前記ベース変換行列を用いて行列演算を行う行列演算部と、
    前記行列演算部により前記行列演算が行われた前記1次元信号列に対して、各係数の順序を逆順に並び替えるフリップ操作を行うフリップ部と、
    前記フリップ部により前記フリップ操作が行われた前記1次元信号列を含む係数データを符号化し、ビットストリームを生成する符号化部と
    を備える画像処理装置。
  12. 前記第2の変換タイプまたは前記第4の変換タイプの1次元変換を実現する場合、
    前記符号反転部は、前記符号反転操作をスキップし、
    前記行列演算部は、前記係数データの前記1次元信号列に対して、前記第2の変換タイプまたは前記第4の変換タイプの変換行列をベース変換行列として、前記行列演算を行い、
    前記フリップ部は、前記フリップ操作をスキップする
    請求項11に記載の画像処理装置。
  13. 指定された1次元変換の変換タイプに基づいて、前記符号反転操作を行うか否かを示す符号反転フラグを設定する符号反転フラグ設定部と、
    前記変換タイプに基づいて、前記フリップ操作を行うか否かを示すフリップフラグを設定するフリップフラグ設定部と
    をさらに備え、
    前記符号反転部は、前記符号反転フラグ設定部により設定された前記符号反転フラグに基づいて、前記符号反転操作を行うかスキップし、
    前記フリップ部は、前記フリップフラグ設定部により設定された前記フリップフラグに基づいて、前記フリップ操作を行うかスキップする
    請求項12に記載の画像処理装置。
  14. 指定された1次元変換の変換タイプに基づいて、前記第2の変換タイプの変換行列と前記第4の変換タイプの変換行列とのいずれを前記ベース変換行列とするかを選択するベース変換行列選択部をさらに備え、
    前記行列演算部は、前記ベース変換行列選択部により選択された前記ベース変換行列を用いて、前記行列演算を行う
    請求項11に記載の画像処理装置。
  15. 指定された1次元変換の変換タイプに基づいて、前記ベース変換行列を導出するベース変換行列導出部をさらに備え、
    前記行列演算部は、前記ベース変換行列導出部により導出された前記ベース変換行列を用いて、前記行列演算を行う
    請求項11に記載の画像処理装置。
  16. 前記ベース変換行列導出部は、前記ベース変換行列以上のサイズの前記第2の変換タイプの導出元変換行列を用いて、前記ベース変換行列を導出する
    請求項15に記載の画像処理装置。
  17. 前記ベース変換行列導出部は、前記導出元変換行列をサンプリングすることにより、前記第2の変換タイプまたは前記第4の変換タイプの前記ベース変換行列を導出する
    請求項16に記載の画像処理装置。
  18. 前記係数データより1次元信号列を抽出する1次元信号列抽出部と、
    前記フリップ部により前記フリップ操作が行われた前記1次元信号列を用いて2次元データ列を生成する2次元データ列生成部と
    をさらに備え、
    前記符号反転部は、前記1次元信号列抽出部により抽出された前記1次元信号列に対して、前記符号反転操作を行う
    請求項11に記載の画像処理装置。
  19. 前記第1の変換タイプはDST2であり、
    前記第2の変換タイプはDCT2であり、
    前記第3の変換タイプはDST4であり、
    前記第4の変換タイプはDCT4である
    請求項11に記載の画像処理装置。
  20. 画像に関する係数データの1次元信号列に対して、前記1次元信号列の奇数番目の信号の符号を反転する符号反転操作を行い、
    前記符号反転操作された前記1次元信号列に対して、
    第1の変換タイプの1次元変換を実現する場合、FTS操作により前記第1の変換タイプの1次元変換を実現する第2の変換タイプの変換行列をベース変換行列とし、
    第3の変換タイプの1次元変換を実現する場合、STF操作により前記第3の変換タイプの1次元変換を実現する第4の変換タイプの、かつ、対称行列である変換行列をベース変換行列とし、
    前記ベース変換行列を用いて行列演算を行い、
    前記行列演算が行われた前記1次元信号列に対して、各係数の順序を逆順に並び替えるフリップ操作を行い、
    前記フリップ操作が行われた前記1次元信号列を含む係数データを符号化し、ビットストリームを生成する
    画像処理方法。
JP2018178411A 2018-09-25 2018-09-25 画像処理装置および方法 Pending JP2022002352A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018178411A JP2022002352A (ja) 2018-09-25 2018-09-25 画像処理装置および方法
PCT/JP2019/035818 WO2020066641A1 (ja) 2018-09-25 2019-09-12 画像処理装置および方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018178411A JP2022002352A (ja) 2018-09-25 2018-09-25 画像処理装置および方法

Publications (1)

Publication Number Publication Date
JP2022002352A true JP2022002352A (ja) 2022-01-06

Family

ID=69952098

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018178411A Pending JP2022002352A (ja) 2018-09-25 2018-09-25 画像処理装置および方法

Country Status (2)

Country Link
JP (1) JP2022002352A (ja)
WO (1) WO2020066641A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020184314A1 (ja) * 2019-03-11 2020-09-17 ソニー株式会社 画像処理装置および方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014036278A (ja) * 2012-08-07 2014-02-24 Nippon Hoso Kyokai <Nhk> 画像符号化装置、画像復号装置及びプログラム

Also Published As

Publication number Publication date
WO2020066641A1 (ja) 2020-04-02

Similar Documents

Publication Publication Date Title
US11343538B2 (en) Image processing apparatus and method
US20210144376A1 (en) Image processing apparatus and method
US20220400285A1 (en) Image processing apparatus and method
JP7235030B2 (ja) 画像処理装置および方法
WO2021039650A1 (ja) 画像処理装置および方法
WO2019188465A1 (ja) 画像符号化装置、画像符号化方法、画像復号装置、および画像復号方法
US20230179779A1 (en) Image processing device and method
WO2020100672A1 (ja) 画像処理装置および方法
JP7235031B2 (ja) 画像処理装置および方法
WO2019188464A1 (ja) 画像符号化装置、画像符号化方法、画像復号装置、および画像復号方法
WO2021100588A1 (ja) 画像処理装置および方法
WO2020066641A1 (ja) 画像処理装置および方法
WO2021117500A1 (ja) 画像処理装置、ビットストリーム生成方法、係数データ生成方法、および量子化係数生成方法
US20220201305A1 (en) Image processing device and method
WO2020008714A1 (ja) 画像処理装置、画像処理方法及び画像処理プログラム
JPWO2020129698A1 (ja) 画像処理装置および方法
WO2021117866A1 (ja) 画像処理装置および方法
US20220286681A1 (en) Image processing device and method
WO2020129636A1 (ja) 画像符号化装置、画像符号化方法、画像復号装置、および画像復号方法
US20220086489A1 (en) Image processing apparatus and method