JP2022000610A - Voltage measuring device - Google Patents

Voltage measuring device Download PDF

Info

Publication number
JP2022000610A
JP2022000610A JP2020105734A JP2020105734A JP2022000610A JP 2022000610 A JP2022000610 A JP 2022000610A JP 2020105734 A JP2020105734 A JP 2020105734A JP 2020105734 A JP2020105734 A JP 2020105734A JP 2022000610 A JP2022000610 A JP 2022000610A
Authority
JP
Japan
Prior art keywords
voltage
circuit
measuring
measurement
side device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020105734A
Other languages
Japanese (ja)
Inventor
忠 水谷
Tadashi Mizutani
元春 手嶋
Motoharu Tejima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aichi Electric Co Ltd
Original Assignee
Aichi Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aichi Electric Co Ltd filed Critical Aichi Electric Co Ltd
Priority to JP2020105734A priority Critical patent/JP2022000610A/en
Publication of JP2022000610A publication Critical patent/JP2022000610A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

To provide a voltage measuring device capable of accurately measuring voltage in a high-voltage distribution system and the like.SOLUTION: A measurement IF circuit A is built in a connector K1 of a high voltage device side X or cable K. As a result, the distance (length) from a capacitor voltage divider C to a terminal load is made extremely short, and the adjustment of the capacitance due to the influence of impedance of the cable K is made unnecessary or minimized.SELECTED DRAWING: Figure 1

Description

本発明は、コンデンサ型計器用変圧器を用いて、高圧配電線の電圧を計測する機器の改良に関する。 The present invention relates to an improvement of a device for measuring a voltage of a high voltage distribution line by using a capacitor type instrument transformer.

送配電系統の電圧測定等に使用される計器用変圧器として、従来から、静電容量による分圧を利用したコンデンサ型計器用変圧器(PD)が知られている。コンデンサ型計器用変圧器は、巻線型計器用変圧器(PT)と比べ小型、軽量で安価な利点を活かし、近年、多くの送配電系統の電圧を測定する機器に使われている。PDは、高電圧を制御回路に使用しやすい電圧に降圧させ、電圧計等を動作させることが可能である。 As an instrument transformer used for voltage measurement of a power transmission and distribution system, a capacitor type instrument transformer (PD) using voltage division by capacitance has been conventionally known. Capacitor-type instrument transformers take advantage of their small size, light weight, and low cost compared to winding-type instrument transformers (PTs), and have been used in many power transmission and distribution system voltage measuring devices in recent years. The PD can step down a high voltage to a voltage that is easy to use in a control circuit and operate a voltmeter or the like.

PDの基本構成は下記非特許文献1に記載されており、コンデンサ分圧器の接続図は図4のように構成されている。図4に示すように、PDは高圧配電系統と大地間に取り付けられ、高電圧を分圧するコンデンサC1,C2と、コンデンサC2に並列接続される終端負荷(電圧計等)1から構成されている。なお、図4のZは終端負荷1のインピーダンスを示している。 The basic configuration of the PD is described in Non-Patent Document 1 below, and the connection diagram of the capacitor voltage divider is configured as shown in FIG. As shown in FIG. 4, the PD is installed between the high-voltage distribution system and the ground, and consists of capacitors C 1 and C 2 that divide the high voltage and a terminal load (voltmeter, etc.) 1 connected in parallel to the capacitor C 2. Has been done. Note that Z in FIG. 4 indicates the impedance of the terminal load 1.

高圧配電系統の電圧を計測する場合、前記コンデンサ型計器用変圧器Dは開閉器などの高圧側機器に設置され、終端負荷1は、例えば、配電線自動化システムを構成する子局などの低圧側機器に用意されることが多い。 When measuring the voltage of a high-voltage distribution system, the transformer D for a capacitor type instrument is installed on a high-voltage side device such as a switch, and the terminal load 1 is, for example, a low-voltage side such as a slave station constituting a distribution line automation system. Often prepared for equipment.

日立評論 1954年 別冊7号 送変電特集号 107頁 結合コンデンサ型計器用変圧器[2]PDの原理Hitachi Review 1954 Separate Volume 7 Transmission and Transformation Special Issue Page 107 Coupling Capacitor Type Instrument Transformer [2] Principle of PD

しかし、このようにして使用されるコンデンサ型計器用変圧器Dは、前記高圧側機器と低圧側機器間のケーブル(配線)のインピーダンス等の影響を受け、低圧側機器で計測する電圧値が、実際の系統電圧値と誤差が生じる問題がある。 However, the voltage transformer D for a capacitor type instrument used in this way is affected by the impedance of the cable (wiring) between the high-voltage side device and the low-voltage side device, and the voltage value measured by the low-voltage side device is determined. There is a problem that an error occurs with the actual system voltage value.

つまり、終端負荷1のインピーダンスZが無限大の場合には、図4に示す終端電圧E2と系統電圧E1の関係は(E2/E1)=C1/(C1+C2)のようになり、理想的な電圧変換が行えるが、終端負荷1のインピーダンスZは一定値をもつため、それに応じた微小電流が流れる。これにより、ケーブル(配線)で電圧降下が発生し、必然的に計測値と実際の電圧値との間に誤差が生じる。 That is, when the impedance Z of the terminal load 1 is infinite, the relationship between the terminal voltage E 2 and the system voltage E 1 shown in FIG. 4 is (E 2 / E 1 ) = C 1 / (C 1 + C 2 ). Therefore, ideal voltage conversion can be performed, but since the impedance Z of the terminal load 1 has a constant value, a minute current corresponding to it flows. This causes a voltage drop in the cable (wiring), which inevitably causes an error between the measured value and the actual voltage value.

また、電圧センサのように計測値に精度が要求される場合は、計測値と実際の電圧値との差が許容差内に収まるよう静電容量の調整が機器毎に必要となる。 Further, when accuracy is required for the measured value as in a voltage sensor, it is necessary to adjust the capacitance for each device so that the difference between the measured value and the actual voltage value is within the tolerance.

このような問題を解決する方法としては、上記非特許文献1の第2図(PD回路説明図)に示されるように、共振リアクトルを設けて上記誤差を小さくしたり、本件出願の図5に示すように、コンデンサC2において、静電容量調整用のコンデンサC22をC21に並列に加減し、所定(所望)の精度に収まるように調節する方法が知られている。 As a method for solving such a problem, as shown in FIG. 2 (PD circuit explanatory diagram) of Non-Patent Document 1, a resonance reactor is provided to reduce the above error, or in FIG. 5 of the present application. As shown, in the capacitor C 2 , a method is known in which the capacitor C 22 for adjusting the capacitance is adjusted in parallel with C 21 so as to be within a predetermined (desired) accuracy.

然るに、前述したように、コンデンサ型計器用変圧器Dを高圧側機器に設置し、終端負荷を低圧側機器に用意した場合、両者間のケーブル(配線)は機器の設置形態(柱上なのか地中なのか等)によって、その長さも大きく異なることになる。 However, as described above, when the capacitor type instrument transformer D is installed in the high-voltage side equipment and the termination load is prepared in the low-voltage side equipment, is the cable (wiring) between the two installed in the equipment installation form (on a pillar?) Depending on whether it is in the ground, etc.), its length will also differ greatly.

また、ケーブル(配線)が長くなることによって周囲のノイズの影響を受けやすくなるので、終端負荷の高インピーダンスも影響して正確な計測ができないことも懸念される。 In addition, since the cable (wiring) becomes long and easily affected by ambient noise, there is a concern that accurate measurement cannot be performed due to the high impedance of the terminal load.

そこで、本発明では、高圧側機器にコンデンサ型計器用変圧器を設置し、終端負荷を低圧側機器に設置し、両者間をケーブル(配線)で接続した場合においても、低圧側機器において計測する電圧値が実際の系統電圧値と誤差を生じることのない電圧計測機器を提供するものである。 Therefore, in the present invention, even when a capacitor-type voltage transformer is installed in the high-voltage side device, the terminal load is installed in the low-voltage side device, and the two are connected by a cable (wiring), the measurement is performed in the low-voltage side device. It provides a voltage measuring device in which the voltage value does not cause an error with the actual system voltage value.

請求項1記載の発明は、高圧配電系統の電圧を計測するための計器用変圧器を備えた高圧側機器内に計測IF回路を備え、当該計測IF回路を通じて低圧側機器に計測した電圧値をデジタル送信することに特徴を有する。 According to the first aspect of the present invention, a measurement IF circuit is provided in a high-voltage side device provided with a voltage transformer for measuring the voltage of a high-voltage distribution system, and a voltage value measured in the low-voltage side device through the measurement IF circuit is obtained. It is characterized by digital transmission.

請求項2記載の発明は、請求項1記載の計測IF回路を、高圧側機器に内蔵して構成したことに特徴を有する。 The invention according to claim 2 is characterized in that the measurement IF circuit according to claim 1 is incorporated in a high-voltage side device.

請求項3記載の発明は、請求項1記載の計測IF回路を、高圧側機器内のコネクタに内蔵して構成したことに特徴を有する。 The invention according to claim 3 is characterized in that the measurement IF circuit according to claim 1 is built in a connector in a high-voltage side device.

請求項4記載の発明は、請求項1記載の計測IF回路を、高圧側機器に接続されるケーブルコネクタに内蔵して構成したことに特徴を有する。 The invention according to claim 4 is characterized in that the measurement IF circuit according to claim 1 is incorporated in a cable connector connected to a high-voltage side device.

請求項5記載の発明は、請求項1乃至請求項4記載の計測IF回路によって、デジタル信号を差動伝送するように構成したことに特徴を有する。 The invention according to claim 5 is characterized in that the digital signal is differentially transmitted by the measurement IF circuit according to claim 1 to 4.

請求項1乃至請求項4記載の発明によれば、終端負荷までの距離(長さ)を極端に短くできるので、ケーブルに応じた静電容量の調整を不要または最小限にすることができる。 According to the first to fourth aspects of the invention, the distance (length) to the terminal load can be made extremely short, so that the adjustment of the capacitance according to the cable can be unnecessary or minimized.

また、計測IF回路が高圧側機器に設置されるので、コンデンサ型計器用変圧器(PD)からのセンサ信号をアナログで受け渡さず、デジタル化して受け渡すことができるので、ケーブルでのノイズの影響を極力抑えることが可能となる。 In addition, since the measurement IF circuit is installed in the high-voltage side equipment, the sensor signal from the capacitor type instrument transformer (PD) can be digitized and passed instead of being passed in analog, so noise in the cable can be passed. It is possible to suppress the influence as much as possible.

請求項5記載の発明によれば、計測IF回路がデジタル信号を差動伝送することによって、ケーブルにおける耐ノイズ性能を向上させることができる。 According to the fifth aspect of the present invention, the noise resistance performance of the cable can be improved by differentially transmitting the digital signal by the measurement IF circuit.

本発明の第1実施例に係る電圧計測機器を示す構成図である。It is a block diagram which shows the voltage measuring apparatus which concerns on 1st Embodiment of this invention. 本発明の第2実施例に係る電圧計測機器を示す構成図である。It is a block diagram which shows the voltage measuring apparatus which concerns on 2nd Embodiment of this invention. 本発明の第3実施例に係る電圧計測機器を示す構成図である。It is a block diagram which shows the voltage measuring apparatus which concerns on 3rd Embodiment of this invention. 従来の電圧計測機器を示す構成図である。It is a block diagram which shows the conventional voltage measuring apparatus. 従来の他の電圧計測機器を示す構成図である。It is a block diagram which shows the other conventional voltage measuring instruments.

本発明の実施例について図1を用いて説明する。図1において、Eは高圧配電系統に設置される開閉器等の高圧側機器X内に設置されるコンデンサ型計器用変圧器(PD)であり、第1のコンデンサC1と第2のコンデンサC2からなるコンデンサ分圧器Cによって構成されている。 Examples of the present invention will be described with reference to FIG. In FIG. 1, E is a capacitor-type voltage transformer (PD) installed in a high-voltage side device X such as a switch installed in a high-voltage distribution system, and is a first capacitor C 1 and a second capacitor C. It is composed of a capacitor C composed of two.

Aは、高圧側機器に設置される計測IF回路であり、A1はサージ電圧から回路を保護したり、ノイズを除去するための保護回路フィルタを示している。ADCはコンデンサ分圧器Cで分圧(降圧)したアナログ電圧値をデジタル変換するA/D変換器であり、A2は接続インターフェース(シリアルインターフェース)を示している。 A is a measurement IF circuit installed in the high-voltage side device, and A1 shows a protection circuit filter for protecting the circuit from surge voltage and removing noise. The ADC is an A / D converter that digitally converts an analog voltage value divided (stepped down) by the capacitor voltage divider C, and A2 indicates a connection interface (serial interface).

A3は過電圧や過電流から計測IF回路Aを保護する保護回路であり、A4は計測IF回路Aに外部機器を接続するための高圧機器側コネクタを示している。 A3 is a protection circuit that protects the measurement IF circuit A from overvoltage and overcurrent, and A4 indicates a high-voltage device-side connector for connecting an external device to the measurement IF circuit A.

Yは低圧側機器を示しており、Y1は低圧機器側コネクタを示している。Kは高圧側機器Xと低圧側機器Y間を接続するケーブルであり、高圧側機器Xに接続される第1のコネクタK1と低圧側機器Yに接続される第2のコネクタK2を備えて構成されている。 Y indicates a low-voltage device side device, and Y1 indicates a low-voltage device side connector. K is a cable connecting between the high-voltage side device X and the low-voltage side device Y, and includes a first connector K1 connected to the high-voltage side device X and a second connector K2 connected to the low-voltage side device Y. Has been done.

このように構成された電圧計測機器において高圧配電系統の電圧値を計測する場合は、コンデンサ分圧器Cによって降圧された電圧信号が計測IF回路Aの保護回路フィルタA1を介してA/D変換器ADCによってアナログ信号からデジタル信号に変換される。 When measuring the voltage value of the high-voltage distribution system in the voltage measuring device configured in this way, the voltage signal stepped down by the capacitor voltage divider C is passed through the protection circuit filter A1 of the measurement IF circuit A to the A / D converter. It is converted from an analog signal to a digital signal by the ADC.

デジタル変換された電圧信号はケーブルKを介して低圧側機器Yに伝送されることで、低圧側機器Yにおいて電圧信号が計測される。 The digitally converted voltage signal is transmitted to the low voltage side device Y via the cable K, so that the voltage signal is measured in the low voltage side device Y.

図1に示す電圧計測機器においては、コンデンサ分圧器Cと終端負荷としての計測IF回路A間の長さを極端に短くすることができる。そのため、計測電圧値がケーブルKのインピーダンスの影響を受けることを極力小さくすることが可能となり、図5の場合とは異なり、ケーブルKに合わせた静電容量の調整が不要になるか、あるいは、分圧コンデンサC1,C2の誤差分のみの調整で済むようになる。 In the voltage measuring device shown in FIG. 1, the length between the capacitor voltage divider C and the measuring IF circuit A as the terminal load can be extremely shortened. Therefore, it is possible to minimize the influence of the measured voltage value on the impedance of the cable K, and unlike the case of FIG. 5, it is not necessary to adjust the capacitance according to the cable K, or Only the error of the voltage dividing capacitors C 1 and C 2 needs to be adjusted.

つまり、図5の場合と比較して、調整用コンデンサC22やC3の加減を要することなく、正確な電圧計測を実現することが可能となる。 That is, as compared with the case of FIG. 5, it is possible to realize accurate voltage measurement without requiring adjustment of the adjusting capacitors C 22 and C 3.

図2は本発明の第2実施例に係る電圧計測機器の構成を示している。図2の構成で図1の構成と異なる部分は、計測IF回路Aが高圧側機器XのコネクタA4内に設置されている点である。コネクタA4内に設置することによって、計測IF回路Aは高圧側機器XからコネクタA4を取り外すことによって、コネクタA4とともに取り外すことが可能となる。 FIG. 2 shows the configuration of the voltage measuring device according to the second embodiment of the present invention. The configuration of FIG. 2 that differs from the configuration of FIG. 1 is that the measurement IF circuit A is installed in the connector A4 of the high-voltage side device X. By installing the connector A4, the measurement IF circuit A can be removed together with the connector A4 by removing the connector A4 from the high-voltage side device X.

図3は本発明の第3実施例に係る電圧計測機器の構成を示している。図3の構成で図1,2の構成と異なる部分は、計測IF回路AがケーブルKの第1のコネクタK1内に設置されている。そのため、計測IF回路Aは高圧側機器XからケーブルKを取り外すことによって、第1のコネクタK1とともに取り外すことが可能となる。 FIG. 3 shows the configuration of the voltage measuring device according to the third embodiment of the present invention. In the configuration of FIG. 3, which is different from the configurations of FIGS. 1 and 2, the measurement IF circuit A is installed in the first connector K1 of the cable K. Therefore, the measurement IF circuit A can be removed together with the first connector K1 by removing the cable K from the high-voltage side device X.

なお、図1乃至図3に示した電圧計測機器において、計測IF回路Aにおいて、デジタル信号を低圧側機器に差動伝送することにより、ケーブルKに外部からノイズが加わったとしても、ノイズをキャンセルすることが可能となり、耐ノイズ性能を向上させて、機器の誤動作を低減することができる。 In the voltage measuring devices shown in FIGS. 1 to 3, the measurement IF circuit A cancels the noise even if noise is added to the cable K by differentially transmitting the digital signal to the low-voltage side device. It is possible to improve the noise resistance performance and reduce the malfunction of the device.

以上説明したように、本発明の電圧計測機器によれば、低圧側機器までのケーブル(配線)のインピーダンスの影響を受けることなく、高圧配電系統の電圧を正確に計測することができる。 As described above, according to the voltage measuring device of the present invention, the voltage of the high voltage distribution system can be accurately measured without being affected by the impedance of the cable (wiring) to the device on the low voltage side.

また、コンデンサ型計器用変圧器(PD)に静電容量調整用のコンデンサを加減する必要性を低減できる。 Further, it is possible to reduce the need to add or remove a capacitor for adjusting the capacitance to the capacitor type instrument transformer (PD).

なお、図1乃至図3に示す計測IF回路Aの構成は一例を示すものであり、電圧値をアナログ値からデジタル値に変換する機能を有していれば、当該構成に拘泥するものではない。また、低圧側機器の構成についても、図1乃至図3に示す構成に限定されないことは当然である。 The configuration of the measurement IF circuit A shown in FIGS. 1 to 3 is an example, and is not limited to the configuration as long as it has a function of converting a voltage value from an analog value to a digital value. .. Further, it is natural that the configuration of the low-voltage side device is not limited to the configuration shown in FIGS. 1 to 3.

本発明は、主に高圧配電系統の電圧を計測する機器に利用される。 The present invention is mainly used for a device for measuring the voltage of a high voltage distribution system.

A 計測IF回路
A1 保護回路およびフィルタ
A2 接続インターフェース
A3 保護回路
A4 高圧機器側コネクタ
ADC A/D変換器
C コンデンサ分圧器
1 第1のコンデンサ
2 第2のコンデンサ
22 静電容量調整用のコンデンサ
D,E コンデンサ型計器用変圧器
X 高圧側機器
Y 低圧側機器
K ケーブル
K1 第1のコネクタ
K2 第2のコネクタ
A Measurement IF circuit A1 Protection circuit and filter A2 Connection interface A3 Protection circuit A4 High voltage equipment side connector ADC A / D converter C Capacitor voltage divider C 1 First capacitor C 2 Second capacitor C 22 For capacitance adjustment Capacitors D, E Capacitor type instrument transformer X High-voltage side equipment Y Low-voltage side equipment K cable K1 1st connector K2 2nd connector

Claims (5)

高圧配電系統の電圧を計測するための計器用変圧器を備えた高圧側機器内に計測IF回路を備え、当該計測IF回路を通じて低圧側機器に計測した電圧値をデジタル送信することを特徴とすることを特徴とする電圧計測機器。 A measurement IF circuit is provided in a high-voltage side device equipped with an instrument transformer for measuring the voltage of the high-voltage distribution system, and the voltage value measured to the low-voltage side device is digitally transmitted through the measurement IF circuit. A voltage measuring device characterized by that. 前記計測IF回路は前記高圧側機器に内蔵されることを特徴とする請求項1記載の電圧計測機器。 The voltage measuring device according to claim 1, wherein the measuring IF circuit is built in the high voltage side device. 前記計測IF回路は前記高圧側機器内のコネクタに内蔵されることを特徴とする請求項1記載の電圧計測機器。 The voltage measuring device according to claim 1, wherein the measuring IF circuit is built in a connector in the high voltage side device. 前記計測IF回路は前記高圧側機器に接続されるケーブルコネクタに内蔵されることを特徴とする請求項1記載の電圧計測機器。 The voltage measuring device according to claim 1, wherein the measuring IF circuit is built in a cable connector connected to the high voltage side device. 前記計測IF回路は、デジタル信号を差動伝送するように構成したことを特徴とする請求項1乃至請求項4の何れかに記載の電圧計測機器。 The voltage measuring device according to any one of claims 1 to 4, wherein the measuring IF circuit is configured to transmit a digital signal differentially.
JP2020105734A 2020-06-19 2020-06-19 Voltage measuring device Pending JP2022000610A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020105734A JP2022000610A (en) 2020-06-19 2020-06-19 Voltage measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020105734A JP2022000610A (en) 2020-06-19 2020-06-19 Voltage measuring device

Publications (1)

Publication Number Publication Date
JP2022000610A true JP2022000610A (en) 2022-01-04

Family

ID=79241974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020105734A Pending JP2022000610A (en) 2020-06-19 2020-06-19 Voltage measuring device

Country Status (1)

Country Link
JP (1) JP2022000610A (en)

Similar Documents

Publication Publication Date Title
CN101526562B (en) Distributed wireless high-voltage equipment insulating live testing system and testing method
EP2853903B1 (en) A high voltage divider
JP4915658B2 (en) Storage cell terminal voltage and internal impedance measurement circuit
CN110749850A (en) Method and system for testing transient step response time of direct-current electronic voltage transformer
Schmid et al. Application of non conventional voltage and currents sensors in high voltage transmission and distribution systems
Li et al. Study of the virtual instrumentation applied to measure pulsed heavy currents
US6437554B1 (en) High current measurement system incorporating an air-core transducer
EP2807664B1 (en) Combined transformer for power system
KR101058319B1 (en) Capacitive Voltage Transformer for GIS Using Disc-shaped Electrode
JP2022000610A (en) Voltage measuring device
CN103558435A (en) 35kV broadband electronic type voltage transformer
CN110320402B (en) Device and method for measuring transient overvoltage of primary side of capacitive voltage transformer
EP4004956A1 (en) Current sensors employing rogowski coils and methods of using same
CN103675433A (en) Current sampling and protecting circuit for electronic current transformer
RU198991U1 (en) NON-INVASIVE DEVICE FOR REMOTE CONVERSION OF CURRENT AND VOLTAGE IN A HIGH-VOLTAGE NETWORK
CN110441575B (en) GIS electronic voltage transformer of common-box type gas-insulated metal-enclosed switchgear
CN115372878A (en) Low-frequency high-precision standard voltage transformer magnitude tracing method and system
CN210982711U (en) Three-phase current detection circuit and electric energy metering chip
CN112816769A (en) Current and voltage combined data acquisition device
US10488908B2 (en) Method of communicating between phases of an AC power system
CN211263745U (en) Transient step response time testing system for direct-current electronic voltage transformer
CN109030909A (en) A kind of distribution one or two times fusions three-phase resistance reactance divided voltage sensor
CN111010179B (en) Signal compensation calibration method and system
RU2678330C1 (en) Currents in the high-voltage oil-filled transformers, auto-transformers or electrical reactors windings measuring device
CN212255422U (en) Novel digital differential probe

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240326

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240425