JP2021521017A - Resistor spot welded electrode cap - Google Patents

Resistor spot welded electrode cap Download PDF

Info

Publication number
JP2021521017A
JP2021521017A JP2021504557A JP2021504557A JP2021521017A JP 2021521017 A JP2021521017 A JP 2021521017A JP 2021504557 A JP2021504557 A JP 2021504557A JP 2021504557 A JP2021504557 A JP 2021504557A JP 2021521017 A JP2021521017 A JP 2021521017A
Authority
JP
Japan
Prior art keywords
electrode cap
dent
annular
welded
welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021504557A
Other languages
Japanese (ja)
Other versions
JP7256863B2 (en
Inventor
ヤン,シャングルー
ワン,ヤンジュン
タオ,ウー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Optics and Fine Mechanics of CAS
Original Assignee
Shanghai Institute of Optics and Fine Mechanics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Optics and Fine Mechanics of CAS filed Critical Shanghai Institute of Optics and Fine Mechanics of CAS
Publication of JP2021521017A publication Critical patent/JP2021521017A/en
Application granted granted Critical
Publication of JP7256863B2 publication Critical patent/JP7256863B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/30Features relating to electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0205Non-consumable electrodes; C-electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/30Features relating to electrodes
    • B23K11/3009Pressure electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/10Spot welding; Stitch welding
    • B23K11/11Spot welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/16Resistance welding; Severing by resistance heating taking account of the properties of the material to be welded

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Resistance Welding (AREA)

Abstract

本発明は、抵抗スポット溶接電極キャップを開示する。前記電極キャップの溶接接触面の中央にへこみを有し、溶接する場合、へこみの存在により本発明の電極キャップと溶接する金属ワークピースの接触面積が減少し、初期の全体的な発熱が溶接点の外輪に集中し、熱放散が遅くなり、ナゲットが外側から内側に形成するのに有利である。かつ、くぼみの存在により、金属ワークピースは電極中央のくぼみに向けて展開し、それによって溶接点ナゲットを増大し、スパッタと変形を減少する。したがって、ジュライの電極キャップと比較して、本発明の電極キャップを使用して、同じ大きさの溶接点を形成することは、より低い溶接電流を必要とし、電力コストを節約し、同じ電流を使用するときに得られる溶接点強度と安定性がより高く、溶接欠陥がより少ない。The present invention discloses a resistance spot welded electrode cap. When welding has a dent in the center of the welding contact surface of the electrode cap, the presence of the dent reduces the contact area of the metal workpiece to be welded to the electrode cap of the present invention, and the initial overall heat generation is the welding point. Concentrate on the outer ring of the, slowing heat dissipation, which is advantageous for the nugget to form from the outside to the inside. And, due to the presence of the indentation, the metal workpiece unfolds towards the indentation in the center of the electrode, thereby increasing the weld nugget and reducing spatter and deformation. Therefore, as compared to Jurai's electrode caps, using the electrode caps of the present invention to form weld points of the same size requires lower welding currents, saves power costs and delivers the same currents. Higher weld point strength and stability obtained when used, with fewer weld defects.

Description

本発明は、抵抗スポット溶接分野に関し、より具体的には、2層または複数の層の金属ワークピースの間で抵抗スポット溶接を行う場合に使用される溶接電極キャップに関する。 The present invention relates to the field of resistance spot welding, and more specifically to welding electrode caps used when performing resistance spot welding between two or more layers of metal workpieces.

地球温暖化やエネルギー枯渇の進展に伴い、自動車の排気ガスやエネルギー消費量はますます深刻化しており、実験によると、自動車の質量が半減すると、燃料消費量も半減することがわかった。環境保護と省エネの必要性から、自動車の軽量化は世界の自動車開発のトレンドとなっている。アルミニウム合金材料は、高強度、軽量、耐食性に優れ、さまざまな成形方法に適しているという利点があるため、鋼板溶接の代わりにアルミニウム合金を使用すると、構造重量を50%以上削減でき、自動車の車体に広く使用されている。 With the progress of global warming and energy depletion, the exhaust gas and energy consumption of automobiles are becoming more and more serious, and experiments have shown that when the mass of automobiles is halved, the fuel consumption is also halved. Due to the need for environmental protection and energy saving, weight reduction of automobiles has become a trend of automobile development in the world. Aluminum alloy materials have the advantages of high strength, light weight, excellent corrosion resistance, and are suitable for various molding methods. Therefore, using aluminum alloy instead of steel plate welding can reduce the structural weight by 50% or more, and can reduce the structural weight by 50% or more. Widely used in car bodies.

現在、自動車製造におけるボディアルミニウム合金の連結方法は、主にリベッティングの機械的連結方法である。リベッティングは、コストが高く、プロセスが複雑であり、表面品質が低く、ボディの重量を増やす方法である。オールアルミニウムボディまたはハイブリッドボディには、通常、1500本以上のリベットが必要である。抵抗スポット溶接は、ワークピース自体と抵抗熱を利用して材料を溶かし、連結を実現し、連結工程で充填材を必要としないため、生産効率が高く、自動化が容易であるため、前記方法は、エンジンフード、車のドアなどの部品のような車体製造に広く採用されている。自動車にアルミニウム合金を適用するに際し、自動車メーカーはアルミニウム合金を連結するために抵抗スポット溶接を引き続き使用することを期待している。 Currently, the method of connecting body aluminum alloys in automobile manufacturing is mainly the mechanical connection method of riveting. Riveting is a costly, complex process, poor surface quality and a way to increase the weight of the body. An all-aluminum body or hybrid body typically requires 1500 or more rivets. Resistance spot welding uses the workpiece itself and resistance heat to melt the material to achieve connection, and since no filler is required in the connection process, production efficiency is high and automation is easy. Widely used in body manufacturing such as parts such as engine hoods and car doors. In applying aluminum alloys to automobiles, automakers expect to continue to use resistance spot welding to connect aluminum alloys.

しかし、アルミニウム合金自体の物理的性質により、一般的なスポット溶接プロセスで溶接する場合、多くの問題がある。アルミニウム合金は電気伝導率と熱伝導率が高いため、スポット溶接では特に大きな電流と圧力が必要である。しかしながら、大電流と高い電極圧力を使用すると、アルミ合金の溶接には高い製造コストが必要となる。また、アルミ合金の成形温度範囲が狭いため、溶接時に申告なスパッタや内部欠陥、溶接変形の原因となる。表面に高抵抗の酸化皮膜が存在すると、スポット溶接プロセスでの溶接電極の摩耗が早くなり、電極寿命が短くなり、溶接点の強度が低下し、表面品質が低下する。 However, due to the physical properties of the aluminum alloy itself, there are many problems when welding by a general spot welding process. Due to the high electrical and thermal conductivity of aluminum alloys, spot welding requires particularly large currents and pressures. However, the use of high currents and high electrode pressures requires high manufacturing costs for welding aluminum alloys. In addition, since the molding temperature range of the aluminum alloy is narrow, it causes spatter, internal defects, and welding deformation that are declared during welding. The presence of a high resistance oxide film on the surface accelerates the wear of the weld electrode in the spot welding process, shortens the electrode life, reduces the strength of the weld point, and reduces the surface quality.

したがって、より高い溶接強度、より長い電極寿命、低コスト、およびより容易な促進を達成することができるアルミニウム合金の抵抗スポット溶接のための方法が必要とされる。 Therefore, there is a need for methods for resistance spot welding of aluminum alloys that can achieve higher weld strength, longer electrode life, lower cost, and easier acceleration.

本発明は、アルミニウム合金抵抗スポット溶接が有する、大きな溶接電流、溶接スパッタや欠陥が深刻で、溶接強度が比較的低く、溶接品質が不安定で、電極寿命が短いといった問題を解決するために、溶接接触面の中心にへこみを有する電極キャップを提案する。 The present invention solves the problems of aluminum alloy resistance spot welding, such as large welding current, serious welding spatter and defects, relatively low welding strength, unstable welding quality, and short electrode life. We propose an electrode cap with a dent in the center of the weld contact surface.

上記の問題を解決するために、本発明によって採用される一技術的解決策は、抵抗スポット溶接電極キャップであって、
円筒形をなす電極キャップ本体1と、
溶接面31、円周32、へこみ33を有する接触面3と、ここでへこみ33は接触面3の中央に位置し、その上部縁は溶接面31に連結され、円周32は溶接面31の外径であり、
電極キャップ本体1から接触面3への遷移領域であり、その形状が弧面または錐面である側面2とを含み、
側面2の上部表面および下部表面はそれぞれ接触面3および電極キャップ本体1の他端に弧面または面取りの形態で連結される、前記抵抗スポット溶接電極キャップを提供する。
One technical solution adopted by the present invention to solve the above problems is a resistance spot welded electrode cap.
The cylindrical electrode cap body 1 and
A contact surface 3 having a welded surface 31, a circumference 32, and a dent 33, where the dent 33 is located at the center of the contact surface 3, its upper edge is connected to the welded surface 31, and the circumference 32 is the welded surface 31. It is the outer diameter
A transition region from the electrode cap body 1 to the contact surface 3, including a side surface 2 whose shape is an arc surface or a conical surface.
The resistance spot welded electrode cap is provided in which the upper surface and the lower surface of the side surface 2 are connected to the contact surface 3 and the other end of the electrode cap body 1 in the form of an arc surface or a chamfer, respectively.

別の好ましい実施例では、へこみ33の形状は全体として弧面であり、または底部は平坦面で、溶接面31との連結部分は弧面または錐面で遷移し、または中央は弧状のボスで、溶接面31との連結部分は弧面または錐面で遷移した。
別の好ましい実施例では、へこみの形状は球面であり、その外径は2〜15mmであり、好ましくは2〜10mmである。
別の好ましい実施例では、へこみ33と溶接面31は、円弧または面取りによって連結される。
別の好ましい実施例では、側面2と溶接面31および電極キャップ本体1は円弧または面取りによって連結される。
別の好ましい実施例では、側面2が弧面である場合、弧面の曲率半径は、電極キャップ本体1の円周半径以上である。
In another preferred embodiment, the shape of the dent 33 is generally arcuate, or the bottom is flat, the connection with the welded surface 31 transitions at the arc or conical surface, or the center is an arcuate boss. , The connecting portion with the welded surface 31 transitioned at an arc surface or a conical surface.
In another preferred embodiment, the shape of the dent is spherical and its outer diameter is 2 to 15 mm, preferably 2 to 10 mm.
In another preferred embodiment, the dent 33 and the welded surface 31 are connected by an arc or chamfer.
In another preferred embodiment, the side surface 2, the welded surface 31, and the electrode cap body 1 are connected by an arc or chamfer.
In another preferred embodiment, when the side surface 2 is an arc surface, the radius of curvature of the arc surface is equal to or greater than the circumferential radius of the electrode cap body 1.

別の好ましい実施例では、側面2が錐面である場合、錐面の傾斜角は0〜90°であり、好ましくは10〜80°である。
別の好ましい実施例では、へこみ33の深さhは0.1〜2mmであり、またはより好ましくは、0.1〜1.2mmである。
別の好ましい実施例では、へこみ33の弧面の曲率半径は1〜50mmであり、へこみ底部が平坦面である場合、平坦面は半径が0.1〜10mmの円である。
別の好ましい実施例では、溶接面31は環状平坦面であり、または球の中心と電極キャップ本体が同じ側である環状球面であり、または球の中心と電極キャップ本体が反対側である環状球面であり、または上向きに突出された環状弧面である。
別の好ましい実施例では、溶接面31が環状平坦面である場合、その外径は2〜30mmの範囲であり、好ましくは6〜20mmである。
別の好ましい実施例では、溶接面31が環状球面である場合、溶接面31が位置される球の半径は10〜100mmである。
In another preferred embodiment, when the side surface 2 is a conical surface, the angle of inclination of the conical surface is 0 to 90 °, preferably 10 to 80 °.
In another preferred embodiment, the depth h of the dent 33 is 0.1 to 2 mm, or more preferably 0.1 to 1.2 mm.
In another preferred embodiment, the radius of curvature of the arc surface of the dent 33 is 1 to 50 mm, and when the bottom of the dent is a flat surface, the flat surface is a circle with a radius of 0.1 to 10 mm.
In another preferred embodiment, the welded surface 31 is an annular flat surface, or an annular sphere with the center of the sphere and the electrode cap body on the same side, or an annular sphere with the center of the sphere and the electrode cap body on opposite sides. Or an annular arc surface protruding upwards.
In another preferred embodiment, when the welded surface 31 is an annular flat surface, its outer diameter is in the range of 2 to 30 mm, preferably 6 to 20 mm.
In another preferred embodiment, when the welded surface 31 is an annular spherical surface, the radius of the sphere on which the welded surface 31 is located is 10 to 100 mm.

別の好ましい実施例では、溶接面31が上向きに突出された環状弧面である場合、弧の曲率半径は1〜10mmであり、弧面の最高点と最低点が位置される平坦面の垂直距離は0.1〜5mmである。
別の好ましい実施例では、抵抗スポット溶接電極キャップは、溶接面31またはへこみ33に位置される環状隆起4をさらに含み、環状隆起の断面形状は直線または曲線または直線と曲線の組み合わせである。
別の好ましい実施例では、抵抗スポット溶接電極キャップは、隣接する2つの環状隆起4の間に形成された溝43をさらに含む。
別の好ましい実施例では、環状隆起4の突出高さHは20〜500umである。
別の好ましい実施例では、環状隆起4の数は0〜5である。
別の好ましい実施例では、隣接する2つの環状隆起4の間の距離は50〜2000umである。
In another preferred embodiment, when the weld surface 31 is an annular arc surface protruding upwards, the radius of curvature of the arc is 1-10 mm and is perpendicular to the flat surface where the highest and lowest points of the arc surface are located. The distance is 0.1 to 5 mm.
In another preferred embodiment, the resistance spot weld electrode cap further comprises an annular ridge 4 located on the weld surface 31 or dent 33, the cross-sectional shape of the annular ridge being a straight line or a curved line or a combination of straight lines and curves.
In another preferred embodiment, the resistance spot weld electrode cap further comprises a groove 43 formed between two adjacent annular ridges 4.
In another preferred embodiment, the protruding height H of the annular ridge 4 is 20-500 um.
In another preferred embodiment, the number of annular ridges 4 is 0-5.
In another preferred embodiment, the distance between two adjacent annular ridges 4 is 50-2000 um.

本発明の範囲内で、本発明の上記の技術的特徴および以下(例えば、実施例)に具体的に説明する各技術的特徴を互いに組み合わせて、新規または好ましい技術的解決手段を形成することができることを理解されたい。スペースの制限のため、ここでは繰り返さない。 Within the scope of the present invention, the above technical features of the present invention and the technical features specifically described below (eg, Examples) may be combined with each other to form a novel or preferred technical solution. Please understand what you can do. Due to space limitations, we will not repeat it here.

本発明のメカニズムは、以下のとおりである:2層の金属ワークピースの溶接を例として、中央にくぼみを有する溶接面の圧力および電流の作用下で、2層の金属ワークピース外側が最初に接触し、接触された環状電極の影響を受ける一部の領域は抵抗熱を発生し、環状溶融池を形成し、溶接時間の延長と中央領域の接触が緩やかになると、熱伝導作用により環状溶融池が中心に向かって成長する。へこみに対応する2つの金属ワークピースの中心領域の面積(溶接点の内側)が小さく、電極キャップと接触していないため、熱は外側に集中し、接触領域の金属材料が溶けて変形すると、電極中央のくぼみに向かって圧迫、膨張し、中央に新たな接触面が発生し、新たな接触面に抵抗熱が発生し、環状溶融池が環状中心に向かって成長し、へこみに対応する2つの金属材料の接触部分がナゲットを形成し、溶接が完了する。 The mechanism of the present invention is as follows: Taking the welding of a two-layer metal workpiece as an example, under the action of pressure and current on the weld surface with a central recess, the outside of the two-layer metal workpiece is first. Some areas that are in contact and are affected by the contacted annular electrodes generate resistance heat, forming an annular molten pool, and when the welding time is extended and the central region is loosely contacted, the annular melting is caused by heat conduction. The pond grows towards the center. Since the area of the central region (inside the welding point) of the two metal workpieces corresponding to the dent is small and not in contact with the electrode cap, heat is concentrated on the outside, and when the metal material in the contact region melts and deforms, It presses and expands toward the depression in the center of the electrode, a new contact surface is generated in the center, resistance heat is generated in the new contact surface, and the annular molten pool grows toward the annular center, corresponding to the dent. The contact parts of the two metallic materials form a nugget and the welding is completed.

へこみの存在により本発明の電極キャップと溶接する金属ワークピースの初期の接触面積が減少し、全体的な発熱が溶接点の外輪に集中し、熱放散が遅くなり、溶接が進むにつれて、接触面積が大きくなり、熱放散が速くなるので、普通の電極キャップと比較して、同じ大きさの溶接点を形成するために必要な溶接電流が減少し、電力コストが節約され、電極の寿命が向上される。なお、最初に環状溶融池が形成されるため、中央のへこみが存在すると、環状溶融池が外側から内側に向かって成長し、普通の電極キャップ溶融池が内側から外側に向かって成長するのとは逆に、可塑性となった金属材料は、圧力と電流の作用下で電極中央のへこみ領域に向かって圧迫され、溶接点の端での気孔、スパッタの発生、および溶接変形を回避するのに役立ち、それによってナゲットの直径を大きくし、溶接点の強度を向上させる。 The presence of dents reduces the initial contact area of the metal workpiece to be welded to the electrode cap of the invention, the overall heat generation is concentrated on the outer ring of the weld point, the heat dissipation is slowed, and the contact area as the weld progresses. Increases and heat dissipates faster, reducing the welding current required to form weld points of the same size, saving power costs and improving electrode life compared to regular electrode caps. Will be done. Since the annular molten pool is formed first, if there is a dent in the center, the annular molten pool grows from the outside to the inside, and the ordinary electrode cap molten pool grows from the inside to the outside. On the contrary, the plasticized metal material is pressed toward the recessed area in the center of the electrode under the action of pressure and current to avoid pores at the end of the weld, spatter, and weld deformation. Helps, thereby increasing the diameter of the nugget and increasing the strength of the weld point.

環状隆起が存在すると、環状隆起は接触中にアルミニウム合金の表面の酸化膜を貫通することができ、それによって接触抵抗を減少し、接触面積を増大し、熱放散を高め、それによって電極溶接面とアルミニウム合金プレートの接触面の熱を減少することにより、電極の寿命を向上させる。 In the presence of the annular ridge, the annular ridge can penetrate the oxide film on the surface of the aluminum alloy during contact, thereby reducing contact resistance, increasing contact area, increasing heat dissipation, and thereby the electrode welded surface. And by reducing the heat of the contact surface of the aluminum alloy plate, the life of the electrode is improved.

図1は、接触面の中央にへこみを有する1つの電極キャップの模式図を示す。FIG. 1 shows a schematic view of one electrode cap having a dent in the center of the contact surface. 図2は、図1のA−A断面の断面図の1つの実施例を示す。FIG. 2 shows one embodiment of a cross-sectional view taken along the line AA of FIG. 図3は、溶接面が環状平坦面であり、へこみが球面である図1のA−A断面の断面図の1つの実施例を示す。FIG. 3 shows one embodiment of a cross-sectional view taken along the line AA of FIG. 1 in which the welded surface is an annular flat surface and the dent is a spherical surface. 図4は、溶接面が環状平坦面であり、へこみ底部が平坦面で、溶接面とは弧面で遷移した図1のA−A断面の断面図の1つの実施例を示す。FIG. 4 shows one embodiment of the cross-sectional view taken along the line AA of FIG. 1 in which the welded surface is an annular flat surface, the bottom of the dent is a flat surface, and the welded surface is an arc surface. 図5は、溶接面が環状平坦面であり、へこみの中央が弧状のボスで、溶接面との連結部分が弧面で遷移した図1のA−A断面の断面図の1つの実施例を示す。FIG. 5 shows one embodiment of the cross-sectional view taken along the line AA of FIG. 1 in which the welded surface is an annular flat surface, the center of the dent is an arc-shaped boss, and the connecting portion with the welded surface is transitioned by the arc surface. show. 図6は、溶接面が球の中心と電極キャップ本体が同じ側である環状球面であり、へこみが球面である図1のA−A断面の断面図の1つの実施例を示す。FIG. 6 shows one embodiment of a cross-sectional view taken along the line AA of FIG. 1 in which the welded surface is an annular spherical surface on which the center of the sphere and the electrode cap body are on the same side, and the dent is a spherical surface.

図7は、溶接面は球の中心と電極キャップ本体が同じ側である環状球面であり、へこみ底部は平坦面で、溶接面とは弧面で遷移した図1のA−A断面の断面図の1つの実施例を示す。FIG. 7 is a cross-sectional view taken along the line AA of FIG. 1 in which the welded surface is an annular spherical surface on which the center of the sphere and the electrode cap body are on the same side, the bottom of the dent is a flat surface, and the welded surface is an arc surface. An embodiment of the above is shown. 図8は、溶接面が球の中心と電極キャップ本体が同じ側である環状球面であり、へこみの中央が弧状のボスで、溶接面との連結部分は弧面で遷移した図1のA−A断面の断面図の1つの実施例を示す。FIG. 8 shows an annular spherical surface in which the welding surface is on the same side as the center of the sphere and the electrode cap body, the center of the dent is an arc-shaped boss, and the connecting portion with the welding surface is transitioned by the arc surface. An example of the cross-sectional view of the A cross section is shown. 図9は、溶接面が球の中心と電極キャップ本体が反対側である環状球面であり、へこみが球面である図1のA−A断面の断面図の1つの実施例を示す。FIG. 9 shows one embodiment of a cross-sectional view taken along the line AA of FIG. 1 in which the welded surface is an annular spherical surface on which the center of the sphere and the electrode cap body are opposite to each other, and the dent is a spherical surface. 図10は、溶接面が球の中心と電極キャップ本体が反対側である環状球面であり、へこみ底部が平坦面で、溶接面とは弧面で遷移した図1のA−A断面の断面図の1つの実施例を示す。FIG. 10 is a cross-sectional view taken along the line AA of FIG. 1 in which the welded surface is an annular spherical surface on which the center of the sphere and the electrode cap body are opposite to each other, the bottom of the dent is a flat surface, and the welded surface is an arc surface. An embodiment of the above is shown. 図11は、溶接面が球の中心と電極キャップ本体が反対側である環状球面であり、へこみの中央が弧状のボスで、溶接面との連結部分は弧面で遷移した図1のA−A断面の断面図の1つの実施例を示す。FIG. 11 shows an annular spherical surface in which the welding surface is opposite to the center of the sphere and the electrode cap body, the center of the dent is an arc-shaped boss, and the connecting portion with the welding surface is the arc surface. An example of the cross-sectional view of the A cross section is shown.

図12は、溶接面が上向きに突出された環状弧面であり、へこみが球面である図1のA−A断面の断面図の1つの実施例を示す。FIG. 12 shows one embodiment of a cross-sectional view taken along the line AA of FIG. 1 in which the welded surface is an annular arc surface protruding upward and the dent is a spherical surface. 図13は、溶接面が上向きに突出された環状弧面であり、へこみ底部が平坦面で、溶接面とは弧面で遷移した図1のA−A断面の断面図の1つの実施例を示す。FIG. 13 is an embodiment of a cross-sectional view taken along the line AA of FIG. 1, in which the welded surface is an annular arc surface protruding upward, the bottom of the dent is a flat surface, and the welded surface is transitioned to the arc surface. show. 図14は、溶接面が上向きに突出された環状弧面であり、へこみの中央が弧状のボスで、溶接面との連結部分は弧面で遷移した図1のA−A断面の断面図の1つの実施例を示す。FIG. 14 is a cross-sectional view of the AA cross section of FIG. 1 in which the welded surface is an annular arc surface protruding upward, the center of the dent is an arc-shaped boss, and the connecting portion with the welded surface is the arc surface. One embodiment is shown. 図15は、接触面の中央にへこみを有し、溶接面に環状隆起を有する1つの電極キャップの模式図を示す。FIG. 15 shows a schematic view of one electrode cap having a dent in the center of the contact surface and an annular ridge on the welded surface. 図16は、図15の電極キャップの溶接面の領域拡大図を示す。FIG. 16 shows an enlarged view of the area of the welded surface of the electrode cap of FIG. 図17は、図15のB−B断面の部分断面図の1つの実施例を示す。FIG. 17 shows one embodiment of a partial cross-sectional view of the BB cross section of FIG. 図18は、図15のB−B断面の断面図の別の実施例を示す。FIG. 18 shows another embodiment of a cross-sectional view of the BB cross section of FIG. 図19は、両側は直線で、最上部は両側直線に接する円弧である環状隆起の横断面形状の1つの実施例を示す。FIG. 19 shows one embodiment of the cross-sectional shape of an annular ridge, which is a straight line on both sides and an arc tangent to the straight lines on both sides at the top.

図20は、両側は対称的な曲線で、最上部は両側曲線に接する円弧である環状隆起の横断面形状の1つの実施例を示す。FIG. 20 shows one embodiment of a cross-sectional shape of an annular ridge with symmetrical curves on both sides and an arc tangent to the curves on both sides at the top. 図21は、最上部と両側の両方が直線である環状隆起の横断面形状の1つの実施例を示す。FIG. 21 shows one embodiment of the cross-sectional shape of an annular ridge that is straight on both the top and both sides. 図22は、両側は直線で、最上部は両側直線と交差する円弧である環状隆起の横断面形状の1つの実施例を示す。FIG. 22 shows one embodiment of the cross-sectional shape of an annular ridge, which is a straight line on both sides and an arc at the top that intersects the straight lines on both sides. 図23は、両側は異なる曲線で、最上部は両側曲線と連結された曲線である環状隆起の横断面形状の1つの実施例を示す。FIG. 23 shows one embodiment of the cross-sectional shape of the annular ridge, which is a curve with different curves on both sides and a curve connected to the curves on both sides at the top. 図24は、両側は対称的な曲線で、最上部は直線である環状隆起の横断面形状の1つの実施例を示す。FIG. 24 shows one embodiment of the cross-sectional shape of an annular ridge with symmetrical curves on both sides and a straight line at the top. 図25は、一側は直線で、他側は曲線で、最上部は曲線または直線である環状隆起の横断面形状の1つの実施例を示す。FIG. 25 shows one embodiment of a cross-sectional shape of an annular ridge that is straight on one side, curved on the other, and curved or straight at the top.

図26は、横断面全体が弧状である環状隆起の横断面形状の1つの実施例を示す。FIG. 26 shows one embodiment of the cross-sectional shape of an annular ridge whose entire cross-section is arcuate. 図27は、溶接面31が環状平坦面であり、へこみ33が球面である場合、環状隆起が溶接面に位置する図15のB−B断面の断面図の1つの実施例を示す。FIG. 27 shows one embodiment of a cross-sectional view taken along the line BB of FIG. 15 in which the annular ridge is located on the welded surface when the welded surface 31 is an annular flat surface and the dent 33 is a spherical surface. 図28は、溶接面が環状平坦面であり、へこみが球面である場合、環状隆起が溶接面とへこみの両方に位置する図15のB−B断面の断面図の1つの実施例を示す。FIG. 28 shows one embodiment of a cross-sectional view taken along the line BB of FIG. 15 in which the annular ridge is located on both the welded surface and the dent when the welded surface is an annular flat surface and the dent is a spherical surface. 図29は、溶接面が環状平坦面であり、へこみ底部は平坦面で、溶接面とは弧面で遷移する場合、環状隆起が溶接面に位置する図15のB−B断面の断面図の1つの実施例を示す。FIG. 29 is a cross-sectional view of the BB cross section of FIG. 15 in which the annular ridge is located on the welded surface when the welded surface is an annular flat surface, the dent bottom is a flat surface, and the transition from the welded surface to the arc surface. One embodiment is shown.

図30は、溶接面が環状平坦面であり、へこみの中央は弧状のボスで、溶接面との連結部分が弧面で遷移する場合、環状隆起が溶接面に位置する図15のB−B断面の断面図の1つの実施例を示す。In FIG. 30, when the welded surface is an annular flat surface, the center of the dent is an arc-shaped boss, and the connecting portion with the welded surface transitions at the arc surface, the annular ridge is located on the welded surface BB of FIG. An example of a cross-sectional view of a cross section is shown. 図31は、溶接面が球の中心と電極キャップ本体が同じ側である環状球面であり、へこみが球面である場合、環状隆起が溶接面に位置する図15のB−B断面の断面図の1つの実施例を示す。FIG. 31 is a cross-sectional view of the BB cross section of FIG. 15 in which the annular ridge is located on the welded surface when the welded surface is an annular spherical surface on which the center of the sphere and the electrode cap body are on the same side and the dent is a spherical surface. One embodiment is shown. 図32は、溶接面が球の中心と電極キャップ本体が同じ側である環状球面であり、へこみ底部は平坦面で、溶接面とは弧面で遷移する場合、環状隆起が溶接面に位置する図15のB−B断面の断面図の1つの実施例を示す。FIG. 32 shows an annular sphere in which the welding surface is on the same side as the center of the sphere and the electrode cap body, the bottom of the dent is a flat surface, and the annular ridge is located on the welding surface when transitioning from the welding surface to the arc surface. An example of the cross-sectional view of the BB cross section of FIG. 15 is shown.

図33は、溶接面が球の中心と電極キャップ本体が同じ側である環状球面であり、へこみの中央は弧状のボスで、溶接面との連結部分が弧面で遷移する場合、環状隆起が溶接面に位置する図15のB−B断面の断面図の1つの実施例を示す。FIG. 33 shows an annular sphere in which the welding surface is on the same side as the center of the sphere and the electrode cap body, the center of the dent is an arc-shaped boss, and when the connecting portion with the welding surface transitions on the arc surface, the annular ridge is formed. An example of a cross-sectional view of the BB cross section of FIG. 15 located on the welded surface is shown. 図34は、溶接面が上向きに突出された環状弧面であり、へこみが球面である場合、環状隆起が溶接面とへこみの両方に位置する図15のB−B断面の断面図の1つの実施例を示す。FIG. 34 is one of the cross-sectional views of the BB cross section of FIG. 15 in which the welded surface is an annular arc surface protruding upward and the annular ridge is located on both the welded surface and the dent when the dent is spherical. An example is shown. 図35は、溶接面が上向きに突出された環状弧面であり、へこみ底部は平坦面で、溶接面とは弧面で遷移する場合、環状隆起が溶接面とへこみの両方に位置する図15のB−B断面の断面図の1つの実施例を示す。FIG. 35 shows an annular arc surface with the welded surface protruding upward, a flat surface at the bottom of the dent, and an annular ridge located on both the welded surface and the dent when transitioning from the welded surface to the arc surface. An example of the cross-sectional view of the BB cross section of the above is shown. 図36は、金属ワークピース抵抗スポット溶接で溶接する時の全体側面図を示す。FIG. 36 shows an overall side view when welding by metal workpiece resistance spot welding.

図37は、本発明の電極キャップの溶接面に環状隆起設置されていない場合、本発明を使用して溶接した時の溶接初期の1つの横断面模式図を示す。FIG. 37 shows a schematic cross-sectional view of one initial stage of welding when welding is performed using the present invention when the annular ridge is not installed on the welding surface of the electrode cap of the present invention. 図38は、本発明の電極キャップの溶接面に環状隆起が設置された場合、本発明を使用して溶接した時の溶接初期の1つの横断面模式図を示す。FIG. 38 shows a schematic cross-sectional view of one initial stage of welding when an annular ridge is installed on the welded surface of the electrode cap of the present invention and welded using the present invention. 図39は、普通の電極キャップを使用して2つの2mmの5182−Oアルミニウム合金に抵抗スポット溶接した後の溶接点の断面形状を示す。FIG. 39 shows the cross-sectional shape of the weld point after resistance spot welding to two 2 mm 5182-O aluminum alloys using an ordinary electrode cap. 図40は、本発明の実施例1の電極キャップを使用して2つの2mmの5182−Oアルミニウム合金に抵抗スポット溶接した後の溶接点の断面形状を示す。FIG. 40 shows the cross-sectional shape of the weld point after resistance spot welding to two 2 mm 5182-O aluminum alloys using the electrode cap of Example 1 of the present invention.

1−電極キャップ本体、11−電極取り付けチャネル、12−電極キャップ本体円周、2−側面、3−接触面、31−溶接面、32−円周、4−環状隆起、41−実施例2の1つの環状隆起、42−実施例2の別の環状隆起、43−溝、44−環状隆起横断面、45−環状隆起41側面に位置する点、46−環状隆起42側面に位置する点、5−溶接ガン、51−第1の溶接ガンアーム、52−第2の溶接ガンアーム、53−第1の溶接電極キャップ、54−第2の溶接電極キャップ、6,7−溶接ワークピース、8−溶接ワークピース6および7溶接ナゲットゾーン、9−ナゲット、−円周12の直径、−円周32の直径、−へこみが球面である場合の外径サイズ、−隣接する2つの環状隆起の間の距離、−環状隆起の幅、h−へこみの深さ、H−環状隆起突出の高さ。 1-electrode cap body, 11-electrode mounting channel, 12-electrode cap body circumference, 2-side surface, 3-contact surface, 31-welded surface, 32-circumference, 4-annular ridge, 41-Example 2. One annular ridge, another annular ridge of 42-Example 2, 43-groove, 44-annular ridge cross section, 45-annular ridge 41 side surface, 46-annular ridge 42 side surface, 5 -Welding gun, 51-1st welding gun arm, 52-2nd welding gun arm, 53-1st welding electrode cap, 54-2nd welding electrode cap, 6,7-welding workpiece, 8-welding work Pieces 6 and 7 Welded Nugget Zones, 9-Nuggets, -Diameter of Circumference 12; Diameter of Circumference 32,-Outer Diameter Size When Indentation is Spherical, -Distance between Two Adjacent Ring Rises, -Width of the annular ridge, h-Depth depth, H-Height of the annular ridge protrusion.

広範囲にわたる綿密な調査の結果、本発明者らは、多数の実験を通じて、アルミニウム合金の抵抗スポット溶接のための大きな溶接電流を必要とし、溶接スパッタが深刻で溶接強度が比較的低い、電極寿命が短いなどの問題を解決することができる接触面の中央にへこみを有する電極キャップを発見し、本発明はこれに基づいて完成した。
本発明は、具体的な実施例と併せて以下でさらに説明される。これらの実施例は、本発明を説明するためにのみ使用され、本発明の範囲を限定するものではないことを理解されたい。また、図面は模式図であるため、本発明の装置及び設備は、前記模式図のサイズまたは比率によって制限されない。
As a result of extensive scrutiny, we have found through numerous experiments that large welding currents are required for resistance spot welding of aluminum alloys, welding spatter is severe, welding strength is relatively low, and electrode life is long. An electrode cap having a dent in the center of the contact surface, which can solve problems such as shortness, was discovered, and the present invention was completed based on this.
The present invention will be further described below with specific examples. It should be understood that these examples are used only to illustrate the invention and do not limit the scope of the invention. Further, since the drawings are schematic drawings, the apparatus and equipment of the present invention are not limited by the size or ratio of the schematic drawings.

この特許の特許請求の範囲および明細書において、第1および第2などの関係用語は、あるエンティティまたは操作を別のエンティティまたは操作から区別するためにのみ使用され、これらのエンティティまたは操作間のそのような実際の関係または順序を必ずしも必要としないことに留意されたい。なお、用語「含む」、「包含」またはその任意の他の変形は、非排他的な包含をカバーすることを意図しているので、一連の要素を含むプロセス、方法、物品、またはデバイスは、それらの要素だけでなく、明示的にリストされていない他の要素も含まれ、またはこのプロセス、方法、物品、またはデバイスに固有の要素も含まれる。これ以上の制限がない場合、「1つを含む」というフレーズで定義される要素は、その要素を含むプロセス、方法、物品、またはデバイス内に他の同じ要素が存在することを除外しない。 In the claims and specification of this patent, related terms such as first and second are used only to distinguish one entity or operation from another, and that between those entities or operations. Note that it does not necessarily require such an actual relationship or order. It should be noted that the term "contains", "inclusion" or any other variation thereof is intended to cover non-exclusive inclusion, so that a process, method, article, or device that includes a set of elements may be a process, method, article, or device. Not only those elements, but also other elements that are not explicitly listed, or elements that are specific to this process, method, article, or device. Without further restrictions, an element defined by the phrase "contains one" does not preclude the presence of the same other element within the process, method, article, or device that contains the element.

実施例1
図1〜2に示されたように、本実施例の抵抗スポット溶接電極キャップは、おおよそ円筒形をなす電極キャップ本体1と、および電極と溶接金属材料の接触面3とを含む。本体1の一端には電極取り付けチャネル11が備えられ、他端には円周12が備えられる。接触面3は、溶接面31、円周32、へこみ33を含む。前記へこみ33は、接触面3の中央領域に位置する。前記電極キャップは、側面2をさらに含み、側面2は本体1の円周12が接触面3の円周32に遷移する遷移領域であり、側面2の形状は弧面であり、側面2は円錐であってもよいことに留意されたい。側面2が弧面である場合、弧面の曲率半径は電極キャップ本体1の円周半径以上であり、側面2が錐面である場合、錐面の傾斜角は0〜90°であり、好ましくは、10〜80°である。側面2の上面はへこみと接触する部位であり、下面は本体1と接触する部位である。説明すべきのは、円周12の直径と円周32の直径が同じである場合、側面2は電極キャップ本体1の一部となる。ここで説明すべきのは、円周12の直径は電極キャップ本体1の直径であり、円周12の半径は電極キャップ本体1の半径である。側面2はまた、他の適切な形状を有することができる。
Example 1
As shown in FIGS. 1 and 2, the resistance spot welded electrode cap of this embodiment includes an electrode cap body 1 having a substantially cylindrical shape, and a contact surface 3 between the electrode and the weld metal material. An electrode mounting channel 11 is provided at one end of the main body 1, and a circumference 12 is provided at the other end. The contact surface 3 includes a welded surface 31, a circumference 32, and a dent 33. The dent 33 is located in the central region of the contact surface 3. The electrode cap further includes a side surface 2, the side surface 2 is a transition region in which the circumference 12 of the main body 1 transitions to the circumference 32 of the contact surface 3, the shape of the side surface 2 is an arc surface, and the side surface 2 is a cone. Note that it may be. When the side surface 2 is an arc surface, the radius of curvature of the arc surface is equal to or greater than the circumferential radius of the electrode cap body 1, and when the side surface 2 is a conical surface, the inclination angle of the conical surface is 0 to 90 °, which is preferable. Is 10 to 80 °. The upper surface of the side surface 2 is a portion that comes into contact with the dent, and the lower surface is a portion that comes into contact with the main body 1. It should be explained that when the diameter of the circumference 12 and the diameter of the circumference 32 are the same, the side surface 2 becomes a part of the electrode cap main body 1. What should be described here is that the diameter of the circumference 12 is the diameter of the electrode cap body 1, and the radius of the circumference 12 is the radius of the electrode cap body 1. The side surface 2 can also have other suitable shapes.

前記本体1の一端は、抵抗スポット溶接時に、抵抗スポット溶接機に連結される一端を指し、他端は、溶接ワークピース接触面に近い一端を指す。
別の好ましい実施例では、電極取り付けチャネル11の形状は、切頭円錐形または円筒形であり、電極取り付けチャネル11の形状はまたは、他の適切な形状であることができる。
One end of the main body 1 refers to one end connected to the resistance spot welder during resistance spot welding, and the other end refers to one end close to the welding workpiece contact surface.
In another preferred embodiment, the shape of the electrode mounting channel 11 can be truncated conical or cylindrical, and the shape of the electrode mounting channel 11 can be, or any other suitable shape.

前記円周32と円周12は平行であり、円周32は、円周12が本体1に垂直した軸線に沿って上向きに平行移動した後に直径のサイズが変化した円周であり、円周32の円心と円周12の円心の連結線は本体1の軸線を一致し、円周32の直径は円周12の直径以下であることを理解できる。 The circumference 32 and the circumference 12 are parallel, and the circumference 32 is a circumference whose diameter size has changed after the circumference 12 has moved upward along the axis perpendicular to the main body 1. It can be understood that the connecting line between the center of the circle 32 and the center of the circumference 12 coincides with the axis of the main body 1, and the diameter of the circumference 32 is equal to or less than the diameter of the circumference 12.

へこみ33は、接触面3の中央に掘られた特定の形状の穴として理解することができ、前記へこみ33の形状は弧面であり、または中央は平坦面で、環状溶接面31との接触部分は弧面であり、または中央は弧状のボスであり、溶接面31との接触部分は弧面である。へこみ33の深さは0.1〜2mmであり、好ましくは、0.1〜1.2mmである。ここでのへこみ33の深さは、へこみ33上部が溶接面31と接触する縁が位置する平坦面からへこみ33最も底部が位置する平坦面の垂直距離である。 The dent 33 can be understood as a hole of a specific shape dug in the center of the contact surface 3, and the shape of the dent 33 is an arc surface or a flat surface in the center and contacts with the annular weld surface 31. The portion is an arc surface, or the center is an arc-shaped boss, and the contact portion with the welded surface 31 is an arc surface. The depth of the dent 33 is 0.1 to 2 mm, preferably 0.1 to 1.2 mm. The depth of the dent 33 here is the vertical distance from the flat surface where the edge where the upper portion of the dent 33 contacts the welding surface 31 is located to the flat surface where the bottom of the dent 33 is located.

別の好ましい実施例では、へこみ33の形状は球面であり、へこみ33の形状が球面である場合、その外径は2〜15mmであり、好ましくは、4〜12mmである。
前記溶接面31は環状平坦面であり、または球の中心と電極キャップ本体が同じ側である環状球面であり、または球の中心と電極キャップが反対側である環状球面であり、または上向きに突出された環状弧面である。
前記球の中心と電極キャップ本体が同じ側、および球の中心と電極キャップ本体が反対側であるとは、溶接面31を臨界面とし、球の中心が電極キャップ本体1に近づく方向が電極キャップ本体の同じ側の方向であり、球の中心が電極キャップ本体1から離れる方向が電極キャップ本体の反対側の方向を指す。
In another preferred embodiment, when the shape of the dent 33 is spherical and the shape of the dent 33 is spherical, its outer diameter is 2 to 15 mm, preferably 4 to 12 mm.
The welded surface 31 is an annular flat surface, or an annular spherical surface in which the center of the sphere and the electrode cap body are on the same side, or an annular spherical surface in which the center of the sphere and the electrode cap are on opposite sides, or project upward. It is an annular arc surface.
When the center of the sphere and the electrode cap body are on the same side and the center of the sphere and the electrode cap body are on opposite sides, the welding surface 31 is the critical surface, and the direction in which the center of the sphere approaches the electrode cap body 1 is the electrode cap. The direction on the same side of the main body, and the direction in which the center of the sphere is separated from the electrode cap main body 1, indicates the direction on the opposite side of the electrode cap main body.

溶接面31が環状平坦面である場合、その外径範囲、すなわち円周32の直径は2〜30mmであり、好ましくは5〜20mmであり、溶接面31が環状球面である場合、溶接面31が位置する球の半径は10〜100mmであり、溶接面31が上向きに突出された環状弧面である場合、弧の曲率半径は1〜10mmであり、弧面の最高点と最低点が位置する平坦面の垂直距離は0.1〜5mmである。 When the welded surface 31 is an annular flat surface, its outer diameter range, that is, the diameter of the circumference 32 is 2 to 30 mm, preferably 5 to 20 mm, and when the welded surface 31 is an annular spherical surface, the welded surface 31 The radius of the sphere in which is located is 10 to 100 mm, and when the welded surface 31 is an annular arc surface protruding upward, the radius of curvature of the arc is 1 to 10 mm, and the highest and lowest points of the arc surface are located. The vertical distance of the flat surface is 0.1 to 5 mm.

図3〜14は、溶接面31とへこみ33の形状を組み合わせた場合の図1のA−A断面の断面図の各実施例を示した。図1のA−A断面の断面図は、以下のいずれの組み合わせでもよい。例えば、溶接面は環状平坦面であり、へこみは球面(図3)または溶接面は環状平坦面であり、へこみ底部は平坦面で、溶接面とは弧面で遷移(図4)または溶接面は環状平坦面であり、へこみの中央は弧状のボスで、溶接面との連結部分が弧面で遷移(図5)または溶接面は球の中心と電極キャップ本体が同じ側である環状球面であり、へこみは球面(図6)または溶接面は球の中心と電極キャップ本体が同じ側である環状球面であり、へこみ底部は平坦面で、溶接面とは弧面で遷移(図7)または溶接面は球の中心と電極キャップ本体が同じ側である環状球面であり、へこみの中央は弧状のボスで、溶接面との連結部分が弧面で遷移(図8)または溶接面は球の中心と電極キャップ本体が反対側である環状球面であり、へこみは球面(図9)または溶接面は球の中心と電極キャップ本体が反対側である環状球面であり、へこみ底部は平坦面で、溶接面とは弧面で遷移(図10)または溶接面は球の中心と電極キャップ本体が反対側である環状球面であり、へこみの中央は弧状のボス、溶接面との連結部分が弧面で遷移(図11)または溶接面は上向きに突出された環状弧面であり、へこみは球面(図12)または溶接面は上向きに突出された環状弧面であり、へこみ底部は平坦面で、溶接面とは弧面で遷移(図13)または溶接面は上向きに突出された環状弧面であり、へこみの中央は弧状のボスで、溶接面との連結部分が弧面で遷移(図14)の形状であることができる。 3 to 14 show each embodiment of the cross-sectional view taken along the line AA of FIG. 1 when the shapes of the welded surface 31 and the dent 33 are combined. The cross-sectional view of the AA cross section of FIG. 1 may be any combination of the following. For example, the welded surface is an annular flat surface, the dent is a spherical surface (Fig. 3) or the welded surface is an annular flat surface, the bottom of the dent is a flat surface, and the welded surface is an arc surface (Fig. 4) or the welded surface. Is an annular flat surface, the center of the dent is an arc-shaped boss, and the connection part with the welded surface is an arced surface (Fig. 5) or the welded surface is an annular spherical surface where the center of the sphere and the electrode cap body are on the same side. Yes, the dent is a sphere (Fig. 6) or the welded surface is an annular sphere with the center of the sphere and the electrode cap body on the same side, the bottom of the dent is a flat surface, and the welded surface is an arc surface (Fig. 7) or The welded surface is an annular sphere with the center of the sphere and the electrode cap body on the same side, the center of the dent is an arc-shaped boss, and the connecting part with the welded surface transitions to the arced surface (Fig. 8) or the welded surface is a sphere. An annular sphere with the center and electrode cap body on opposite sides, a dent is a sphere (Fig. 9) or a welded surface is an annular sphere with the center of the sphere and the electrode cap body on opposite sides, and the bottom of the dent is a flat surface. The welded surface is an arc surface (Fig. 10) or the welded surface is an annular sphere with the center of the sphere and the electrode cap body on the opposite side, the center of the dent is an arc-shaped boss, and the connecting part with the welded surface is the arc surface. The transition (FIG. 11) or welded surface is an upwardly projecting annular arc, the dent is a spherical surface (FIG. 12) or the welded surface is an upwardly projecting annular arc, and the bottom of the dent is a flat surface. The welded surface is a transition at the arc surface (Fig. 13) or the welded surface is an annular arc surface protruding upward, the center of the dent is an arc-shaped boss, and the connecting part with the welded surface is transitioned at the arc surface (Fig. 14). ) Can be the shape.

注意すべきのは、本発明の電極キャップは、任意の導電性および熱伝導性材料で作ることができ、例えば、銅クロム(CuCr)合金、銅クロムジルコニウム(CuCrZr)合金、アルミナ粒子を含む銅を含む銅合金、電極材料として使用できる他のさまざまな銅合金で作ることができ、前記アルミニウム合金は、変形アルミニウム合金または鋳造アルミニウム合金を含み、アルミニウム−マグネシウム合金、アルミニウム−シリコン合金、アルミニウム−マグネシウム−シリコン合金、アルミニウム−亜鉛合金、およびアルミニウム−銅合金などのアルミニウム合金のようなコーティングまたは非コーティング表面を有するアルミニウム合金基板を含む。また、その材料状態は、アニーリング、ひずみ強化、固液強化などのさまざまな焼き戻しを含む。アルミニウム基板の厚さは、一般に0.3mmから6.0mmの間、好ましくは0.5mmから3.0mmの間である。 It should be noted that the electrode caps of the present invention can be made of any conductive and thermally conductive material, for example copper chromium (CuCr) alloy, copper chromium zirconium (CuCrZr) alloy, copper containing alumina particles. Can be made of copper alloys, including copper alloys, various other copper alloys that can be used as electrode materials, said aluminum alloys, including deformed aluminum alloys or cast aluminum alloys, aluminum-magnesium alloys, aluminum-silicon alloys, aluminum-magnesium. Includes aluminum alloy substrates with coated or uncoated surfaces such as aluminum alloys such as-silicon alloys, aluminum-zinc alloys, and aluminum-copper alloys. In addition, the material state includes various tempering such as annealing, strain strengthening, and solid-liquid strengthening. The thickness of the aluminum substrate is generally between 0.3 mm and 6.0 mm, preferably between 0.5 mm and 3.0 mm.

実施例2
本実施例の抵抗スポット溶接電極キャップは実施例1と類似するが、異なるのは本実施例の溶接面31またはへこみ33は、図15〜16に示したように、突出された環状隆起4を有し、隣接する2つの環状隆起の間では溝43が形成される。前記環状隆起4は、横断面44として特定の形状である平坦面を、電極キャップの中心軸を中心に1周回転して形成された環状構造として理解でき、ここで横断面44の下部は溶接面31と接触し、全体の横断面44は溶接面31と垂直する。前記電極キャップの中心軸は円周12の円心を通過し、円周12に垂直した直線である。注意すべきのは、前記環状隆起の数は2つに限定されず、必要に応じて1つまたは複数であり得る。
Example 2
The resistance spot weld electrode cap of this example is similar to that of Example 1, except that the welded surface 31 or dent 33 of this example has a protruding annular ridge 4 as shown in FIGS. 15-16. A groove 43 is formed between two adjacent annular ridges. The annular ridge 4 can be understood as an annular structure formed by rotating a flat surface having a specific shape as the cross section 44 once around the central axis of the electrode cap, and here, the lower portion of the cross section 44 is welded. In contact with the surface 31, the entire cross section 44 is perpendicular to the welded surface 31. The central axis of the electrode cap is a straight line that passes through the center of the circumference 12 and is perpendicular to the circumference 12. It should be noted that the number of said annular ridges is not limited to two and may be one or more as needed.

図17〜18に示したように、前記突出した環状隆起4は溶接面31で図17および図18に示されたような2つの突出方法があり、溶接面31に対する前記環状隆起4の突出された高さHは20〜500umであり得る。ここでの突出された高さとは、溶接面31またはへこみ表面に垂直した方向における環状隆起4下部から最上部までの垂直距離Hを指す。2つの隣接する環状隆起の間の間隔によって形成される溝43の幅、すなわち2つの環状隆起の間の距離は50〜3000umである。ここでの隣接する2つの環状隆起の間の溝43の幅とは、環状隆起を有する電極キャップの部分断面図が図17に示したように、2つの隣接する環状隆起41、環状隆起42にそれぞれ位置する2つの点45と4点6との間の距離であり、点45と点46は環状隆起41と環状隆起42の隣接する2つの側面に位置し、2つの点の間の連結線は溶接面31に平行する。環状隆起の幅は200〜3000μmであり得、またはより好ましくは500〜2000μmである。ここでの環状隆起の幅とは、同じ環状隆起の2つの側面の2つの点の間の距離を指し、前記2つの点は環状隆起の同じ横断面に位置する。説明すべきのは、環状隆起の数が3以上である場合、隣接する2つの環状隆起の間の溝幅は同じであっても異なっていてもよく、各環状隆起の幅は同じであっても異なっていてもよい。 As shown in FIGS. 17 to 18, the protruding annular ridge 4 has two projecting methods as shown in FIGS. 17 and 18 on the welded surface 31, and the projected annular ridge 4 is projected with respect to the welded surface 31. The height H can be 20-500 um. The protruding height here refers to the vertical distance H from the lower part to the uppermost part of the annular ridge 4 in the direction perpendicular to the welded surface 31 or the dent surface. The width of the groove 43 formed by the spacing between the two adjacent annular ridges, i.e. the distance between the two annular ridges, is 50-3000 um. The width of the groove 43 between two adjacent annular ridges here is defined as the width of the two adjacent annular ridges 41 and 42, as shown in FIG. 17 in a partial cross-sectional view of the electrode cap having the annular ridge. It is the distance between the two points 45 and 4 points 6 located respectively, and the points 45 and 46 are located on two adjacent side surfaces of the annular ridge 41 and the annular ridge 42, and the connecting line between the two points. Is parallel to the welded surface 31. The width of the annular ridge can be 200-3000 μm, or more preferably 500-2000 μm. The width of the annular ridge here refers to the distance between two points on two sides of the same annular ridge, the two points located on the same cross section of the annular ridge. It should be explained that when the number of annular ridges is 3 or more, the groove width between two adjacent annular ridges may be the same or different, and the width of each annular ridge is the same. May also be different.

図19〜26に示したように、環状隆起横断面44の可能な形状と構造(aは横断面の下部、bは横断面の最上部、cは横断面の両側を表す)が示されており、横断面44の形状は以下の構造であり得る:両側は直線で、最上部は両側直線と接する円弧(図19)または両側は対称的な曲線で、最上部は両側曲線と接する円弧(図20)または最上部および両側の両方は直線(図21)または両側は直線で、最上部は両側直線と交差する円弧(図22)または両側は異なる曲線で、最上部は両側曲線に連結する曲線(図23)または両側は対称的な曲線で、最上部は直線(図24)または一側は直線で、他側は曲線で、最上部は曲線または直線(図25)または全体の横断面はが半円形(図26)である。注意すべきことは、上記の環状隆起の横断面構造は、いくつかの好ましい構造にすぎず、環状隆起の断面形状に適した他の構造も使用できることである。 As shown in FIGS. 19-26, the possible shapes and structures of the annular ridge cross section 44 (a represents the bottom of the cross section, b represents the top of the cross section, c represents both sides of the cross section) are shown. The shape of the cross section 44 can be of the following structure: a straight line on both sides and an arc tangent to the straight line on both sides (Fig. 19) or a symmetric curve on both sides and an arc tangent on the curved line on both sides (Fig. 19). FIG. 20) or both the top and both sides are straight lines (FIG. 21) or both sides are straight, the top is an arc that intersects the two-sided straight line (Fig. 22) or both sides are different curves, and the top is connected to the two-sided curve. Curved (FIG. 23) or symmetric on both sides, top is straight (FIG. 24) or straight on one side, other is curved, top is curved or straight (FIG. 25) or overall cross section The shape is semi-circular (Fig. 26). It should be noted that the cross-sectional structure of the annular ridge described above is only a few preferred structures, and other structures suitable for the cross-sectional shape of the annular ridge can also be used.

図27〜35に示したように、溶接面31とへこみ33の形状が異なる場合、環状隆起が溶接面31とへこみ33に位置する状況を示し、説明すべきことは、図は、環状隆起が溶接面とへこみでのいくつかの好ましい位置のみを示し、環状隆起は溶接面31のみ、またはへこみ33のみ、または溶接面31およびへこみ33の両方に位置することができ、溶接面31およびへこみ33に位置される環状隆起の数は使用状況に応じてランダムに選択できるということである。 As shown in FIGS. 27 to 35, when the shapes of the welded surface 31 and the dent 33 are different, the situation where the annular ridge is located on the welded surface 31 and the dent 33 is shown. Only some preferred positions on the weld surface and dents are shown, and the annular ridge can be located on the weld surface 31 only, or only the dent 33, or both the weld surface 31 and the dent 33, the weld surface 31 and the dent 33. The number of annular ridges located in can be randomly selected according to usage.

実施例3
本実施例は、本発明電極キャップ溶接アルミニウム合金ワークピースの装置およびプロセスを開示し、図36に示したように、5は第1のアルミニウム合金ワークピース6および第2のアルミニウム合金ワークピース7を連結するための抵抗スポット溶接に使用できる溶接位置8の溶接ガンであり、溶接ガン5は、第1の溶接ガンアーム51、第2の溶接ガンアーム52、第1の溶接電極キャップ53および第2の溶接電極キャップ54を含む。第1のアルミニウム合金ワークピース6および第2のアルミニウム合金ワークピース7は、アルミニウム−マグネシウム合金、アルミニウム−シリコン合金、アルミニウム−マグネシウム−シリコン合金、またはアルミニウム−銅合金などのアルミニウム合金で構成され、アルミニウム合金ワークピースの厚さは0.5〜3mmである。より好ましくは、アルミニウム合金ワークピースは厚さ2.0mmの5182−Oアルミニウム合金であり得る。溶接時に、アルミニウム合金ワークピースは、2つ(例えば、6と7のみ)であっても、2つ以上の組み合わせであってもよく、各アルミニウム合金ワークピースの厚さは同じであっても異なってもよい。説明すべきことは、本明細書で使用される用語「ワークピース」とは、金属シート層、突起部、鋳造物および抵抗スポット溶接できる他のアルミニウム合金部品または鋼およびマグネシウム合金ワークピースを指すということである。溶接ガンアーム51、52は通常、より大きな自動溶接操作の一部であり、一般にCタイプ、Xタイプ、およびその他のタイプの構造形状を含み、通常、当技術分野でよく理解されているロボットまたは自動コンポーネントによって実現される。
Example 3
The present embodiment discloses an apparatus and process of the electrode cap welded aluminum alloy work piece of the present invention, and as shown in FIG. 36, 5 is a first aluminum alloy work piece 6 and a second aluminum alloy work piece 7. It is a welding gun at a welding position 8 that can be used for resistance spot welding for connecting, and the welding gun 5 is a first welding gun arm 51, a second welding gun arm 52, a first welding electrode cap 53, and a second welding. Includes electrode cap 54. The first aluminum alloy work piece 6 and the second aluminum alloy work piece 7 are composed of an aluminum alloy such as an aluminum-magnesium alloy, an aluminum-silicon alloy, an aluminum-magnesium-silicon alloy, or an aluminum-copper alloy, and are made of aluminum. The thickness of the alloy workpiece is 0.5 to 3 mm. More preferably, the aluminum alloy workpiece can be a 2.02-O aluminum alloy with a thickness of 2.0 mm. At the time of welding, the aluminum alloy workpieces may be two (eg, only 6 and 7) or a combination of two or more, and the thickness of each aluminum alloy workpiece may be the same or different. You may. It should be explained that the term "workpiece" as used herein refers to metal sheet layers, protrusions, castings and other aluminum alloy parts or steel and magnesium alloy workpieces that can be spot welded. That is. Welding gun arms 51, 52 are usually part of a larger automatic welding operation, generally including C-type, X-type, and other types of structural shapes, and are usually well-understood robotic or automatic in the art. Realized by components.

第1の溶接ガンアーム51および第2の溶接ガンアーム52には、実施例1および実施例2に記載されたように取り付けられた第1の溶接電極キャップ53および第2の溶接電極キャップ54を備えている。スポット溶接時に、電極キャップ53、54がワークピース6、7に精密に張り付けるように、溶接ガンアームは操作され、溶接ガンアームおよび電極キャップを介してやつ力及び電流を伝導し、ワークピース6、7の張り合い部位8を溶融し、スポット溶接継手が形成されるようにする。2つの電極キャップ53、54は、実施例1および実施例2に記載の様々な構造を有し得、53および54の構造は、同じであっても異なってもよい。 The first welding gun arm 51 and the second welding gun arm 52 are provided with a first welding electrode cap 53 and a second welding electrode cap 54 attached as described in Examples 1 and 2. There is. The welding gun arm is operated so that the electrode caps 53 and 54 are precisely attached to the workpieces 6 and 7 during spot welding, and conducts a force and an electric current through the welding gun arm and the electrode cap to conduct the work pieces 6 and 7. The abutting portion 8 of the is melted so that a spot welded joint is formed. The two electrode caps 53, 54 may have the various structures described in Examples 1 and 2, and the structures of 53 and 54 may be the same or different.

図37は、本発明の実施例1の電極キャップを使用して溶接する時の溶接初期の1つの横断面模式図を示す。電極53、54は、同じ構造サイズを有し、溶接時に溶接ガンは溶接面31を介して圧力及び電流を伝導し、2層の金属材料6、7の接触部分が環状電極作用を受ける領域は抵抗熱を発生し、それによりナゲット9を形成し、次いで環状溶融池を形成する。2層の金属ワークピースの外側が最初に接触し、接触部分が環状電極作用を受ける領域は抵抗熱を発生し、それに環状溶融池を形成し、溶接時間の延長と中央領域の緩やかな接触により、環状溶融池は熱伝導の作用で中央に向かって成長し、へこみに対応する2つの金属ワークピースの中央領域の面積(溶接点の内側)が比較的に小さく、電極キャップに接触していないため、熱は外側に集中し、接触領域の金属材料の溶融と塑性変形により、電極中央のくぼみに向けて押して展開し、次に中央に新しい接触面が生成され、新しい接触面に抵抗熱が発生してリングになり、溶融池はリングの中心に向かって成長し、新しい接触面に抵抗熱が発生して、環状溶融池が環状中央に向かって成長し、次にへこみに対応する2つの金属材料の接触部分がナゲットを形成するようにし、溶接を完了した。へこみの存在により、本発明の電極キャップは金属ワークピースとの初期接触面積が減少し、全体の発熱が集中し、熱放散が遅くなり、溶接が進むにつれて、接触面積が大きくなり、熱放散が速くなる。したがって、普通の電極キャップと比較して、同じサイズの溶接点を形成するために必要な溶接電流が減少し、電力コストが節約され、電極の寿命が向上される。なお、最初に環状溶融池が形成されるため、中央のへこみが存在すると、環状溶融池が外側から内側に向かって成長し、普通の電極キャップ溶融池が内側から外側に向かって成長するのとは逆に、プラスチック金属材料は、圧力と電流の作用下で電極中央のへこみ領域に向かって圧迫され、溶接点の端での気孔、スパッタの発生、および溶接変形を回避するのに役立ち、それによってナゲットの直径を大きくし、溶接点の強度を向上させる。 FIG. 37 shows a schematic cross-sectional view of one initial stage of welding when welding is performed using the electrode cap of the first embodiment of the present invention. The electrodes 53 and 54 have the same structural size, and the welding gun conducts pressure and current through the welding surface 31 during welding, and the region where the contact portions of the two layers of metal materials 6 and 7 are subjected to the annular electrode action is It generates resistance heat, which forms the nugget 9 and then the annular molten pool. The area where the outside of the two-layer metal workpiece first contacts and the contact area is subjected to the annular electrode action generates resistance heat, which forms an annular molten pool, due to the extension of the welding time and the gentle contact of the central region. The annular molten pool grows toward the center due to the action of heat conduction, and the area of the central region (inside the welding point) of the two metal workpieces corresponding to the dents is relatively small and does not contact the electrode cap. Therefore, the heat is concentrated on the outside, and due to the melting and plastic deformation of the metal material in the contact area, it is pushed toward the recess in the center of the electrode and expanded, then a new contact surface is generated in the center, and resistance heat is generated on the new contact surface. Generates and forms a ring, the molten pool grows toward the center of the ring, resistance heat is generated at the new contact surface, the annular molten pool grows toward the center of the ring, and then two corresponding dents. Welding was completed by allowing the contact parts of the metal material to form a nugget. Due to the presence of dents, the electrode cap of the present invention has a reduced initial contact area with the metal workpiece, concentrated overall heat generation, slowed heat dissipation, and increased contact area as welding progressed, resulting in heat dissipation. It will be faster. Therefore, compared to ordinary electrode caps, the welding current required to form weld points of the same size is reduced, power costs are saved, and electrode life is extended. Since the annular molten pool is formed first, if there is a dent in the center, the annular molten pool grows from the outside to the inside, and the ordinary electrode cap molten pool grows from the inside to the outside. On the contrary, the plastic metal material is compressed toward the recessed area in the center of the electrode under the action of pressure and current, which helps to avoid pores, spatter, and welding deformation at the edge of the weld point. Increases the diameter of the nugget and improves the strength of the weld point.

環状隆起が存在する場合、接触時に、環状隆起は可以刺破アルミニウム合金表面の酸化膜を貫通することができ、それによって接触抵抗を減少し、接触面積を増大し、熱放散を高め、それによって電極溶接面とアルミニウム合金プレートの接触面の熱を減少することにより、電極の寿命を向上させる。
図38は、本発明の実施例2の電極キャップを使用して溶接した時の溶接初期の1つの横断面模式図を示す。溶接原理は、図37の溶接原理と類する。
In the presence of annular ridges, upon contact, the annular ridges can penetrate the oxide film on the surface of the piercing aluminum alloy, thereby reducing contact resistance, increasing contact area and increasing heat dissipation, thereby increasing heat dissipation. The life of the electrode is improved by reducing the heat of the contact surface between the electrode welded surface and the aluminum alloy plate.
FIG. 38 shows a schematic cross-sectional view of one initial stage of welding when welding is performed using the electrode cap of the second embodiment of the present invention. The welding principle is similar to the welding principle of FIG. 37.

実施例4
図39は、普通の電極キャップを使用して、2つの2mm颯佐の5182−Oアルミニウム合金に抵抗スポット溶接した後の溶接点の断面形状を示す。図から分かるように、ナゲットの直径はわずか6.08mmであり、内部に明らかな収縮欠陥が存在し、スパッタが深刻で、エッジ溶接変形が大きく、これにより、溶接点強度の低下をもたらした。
Example 4
FIG. 39 shows the cross-sectional shape of the weld point after resistance spot welding to two 2 mm Sasa 5182-O aluminum alloys using an ordinary electrode cap. As can be seen from the figure, the nugget diameter is only 6.08 mm, there are obvious shrinkage defects inside, spatter is severe, and edge weld deformation is large, resulting in a decrease in weld point strength.

実施例5
図40は、本発明の実施例1の電極キャップを使用し、かつ実施例3の溶接装置および溶接原理を採用して2つの2mm厚さの5182−Oアルミニウム合金に抵抗スポット溶接した後の2つのアルミニウム合金溶接点の断面形状を示す。図から分かるように、ナゲットの直径は8.23mmに達し、内部に明らかな溶接欠陥がなく、スパッタが発生せず、溶接点のエッジに明らかな変形がなく、これにより、溶接点の強度が大幅に向上した。
Example 5
FIG. 40 shows 2 after resistance spot welding to two 2 mm thick 5182-O aluminum alloys using the electrode cap of Example 1 of the present invention and adopting the welding apparatus and welding principle of Example 3. The cross-sectional shape of one aluminum alloy welding point is shown. As can be seen from the figure, the nugget diameter reaches 8.23 mm, there are no obvious weld defects inside, no spatter, no obvious deformation at the edges of the weld point, which increases the strength of the weld point. Greatly improved.

本発明は、好ましい実施例において上記のように開示されたが、本発明を限定することを意図するものではない。当技術分野の当業者は、本発明の精神および範囲から逸脱することなく、様々な同等の変更または置換を行うことができ、すべてが本発明の保護範囲に属する。したがって、本発明の保護範囲は、本出願の添付の特許請求の範囲によって定義される範囲に従うものとする。 The present invention has been disclosed as described above in preferred embodiments, but is not intended to limit the invention. One of ordinary skill in the art can make various equivalent modifications or substitutions without departing from the spirit and scope of the invention, all within the scope of the invention. Therefore, the scope of protection of the present invention shall be in accordance with the scope defined by the claims of the attachment of this application.

Claims (10)

抵抗スポット溶接電極キャップであって、
円筒形をなす電極キャップ本体(1)と、
溶接面(31)、円周(32)、へこみ(33)を有する接触面(3)と、ここでへこみ(33)は接触面(3)の中央に位置し、へこみ(33)の上部縁は溶接面(31)に連結され、円周(32)は溶接面(31)の外径であり、
電極キャップ本体(1)から接触面(3)への遷移領域であり、その形状が弧面または錐面である側面(2)とを含み、
側面(2)の上部表面および下部表面はそれぞれ接触面(3)および電極キャップ本体(1)のひとつの端部に弧面または面取りの形態で連結されることを特徴とする、前記抵抗スポット溶接電極キャップ。
Resistor spot welded electrode cap
The cylindrical electrode cap body (1) and
A contact surface (3) having a welded surface (31), a circumference (32), and a dent (33), where the dent (33) is located in the center of the contact surface (3) and is the upper edge of the dent (33). Is connected to the welded surface (31), and the circumference (32) is the outer diameter of the welded surface (31).
It is a transition region from the electrode cap body (1) to the contact surface (3), and includes a side surface (2) whose shape is an arc surface or a conical surface.
The resistance spot welding is characterized in that the upper surface and the lower surface of the side surface (2) are connected to one end of the contact surface (3) and the electrode cap body (1), respectively, in the form of an arc surface or a chamfer. Electrode cap.
へこみ(33)の形状は全体として弧面であり、または底部は平坦面で、溶接面(31)との連結部分は弧面または錐面で遷移し、または中央は弧状のボスで、溶接面(31)との連結部分は弧面または錐面で遷移していることを特徴とする、 請求項1に記載の抵抗スポット溶接電極キャップ。 The shape of the dent (33) is an arc surface as a whole, or the bottom is a flat surface, the connection part with the weld surface (31) transitions with an arc surface or a conical surface, or the center is an arc-shaped boss, and the weld surface. The resistance spot welded electrode cap according to claim 1, wherein the connecting portion with (31) is transitioned at an arc surface or a conical surface. へこみ(33)の深さhは0.1〜2mmであることを特徴とする、 請求項1または3に記載の抵抗スポット溶接電極キャップ。 The resistance spot welded electrode cap according to claim 1 or 3, wherein the depth h of the dent (33) is 0.1 to 2 mm. へこみ(33)が全体として弧面である場合、へこみ(33)弧面の曲率半径は1〜50mmであり、へこみ底部が平坦面である場合、平坦面は半径が0.1〜10mmの円であることを特徴とする、 請求項1または3に記載の抵抗スポット溶接電極キャップ。 When the dent (33) is an arc surface as a whole, the radius of curvature of the dent (33) arc surface is 1 to 50 mm, and when the bottom of the dent is a flat surface, the flat surface is a circle with a radius of 0.1 to 10 mm. The resistance spot welded electrode cap according to claim 1 or 3, wherein the resistance spot welded electrode cap is characterized by the above. 溶接面(31)は環状平坦面であり、または球の中心と電極キャップ本体が同じ側である環状球面であり、または球の中心と電極キャップ本体が反対側である環状球面であり、または上向きに突出された環状弧面であることを特徴とする、 請求項1に記載の抵抗スポット溶接電極キャップ。 The welded surface (31) is an annular flat surface, or an annular sphere with the center of the sphere and the electrode cap body on the same side, or an annular sphere with the center of the sphere and the electrode cap body on opposite sides, or upwards. The resistance spot welded electrode cap according to claim 1, wherein the annular arc surface is projected on the surface. 溶接面(31)またはへこみ(33)に位置された環状隆起(4)をさらに含み、環状隆起(4)の断面形状は直線または曲線または直線と曲線の組み合わせであることを特徴とする、 請求項1に記載の抵抗スポット溶接電極キャップ。 Claimed, further comprising an annular ridge (4) located on a welded surface (31) or a dent (33), wherein the cross-sectional shape of the annular ridge (4) is a straight line or a curved line or a combination of straight lines and curves. Item 2. The resistance spot weld electrode cap according to Item 1. 隣接する2つの環状隆起(4)の間に形成された溝(43)をさらに含むことを特徴とする、 請求項1に記載の抵抗スポット溶接電極キャップ。 The resistance spot weld electrode cap according to claim 1, further comprising a groove (43) formed between two adjacent annular ridges (4). 環状隆起(4)の突出高さHが20〜500μmであることを特徴とする、 請求項7に記載の抵抗スポット溶接電極キャップ。 The resistance spot welded electrode cap according to claim 7, wherein the protrusion height H of the annular ridge (4) is 20 to 500 μm. 環状隆起(4)の数が0−5であることを特徴とする、 請求項7に記載の抵抗スポット溶接電極キャップ。 The resistance spot weld electrode cap according to claim 7, wherein the number of annular ridges (4) is 0-5. 隣接する2つの環状隆起(4)の間の距離が50〜3000umであることを特徴とする、 請求項7に記載の抵抗スポット溶接電極キャップ。 The resistance spot welded electrode cap according to claim 7, wherein the distance between two adjacent annular ridges (4) is 50 to 3000 um.
JP2021504557A 2018-04-12 2018-12-18 resistance spot welding electrode cap Active JP7256863B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201810327005.3 2018-04-12
CN201810327005.3A CN110369848B (en) 2018-04-12 2018-04-12 Resistance spot welding electrode cap
PCT/CN2018/121780 WO2019196494A1 (en) 2018-04-12 2018-12-18 Resistance spot welding electrode cap

Publications (2)

Publication Number Publication Date
JP2021521017A true JP2021521017A (en) 2021-08-26
JP7256863B2 JP7256863B2 (en) 2023-04-12

Family

ID=68163091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021504557A Active JP7256863B2 (en) 2018-04-12 2018-12-18 resistance spot welding electrode cap

Country Status (5)

Country Link
US (1) US11890701B2 (en)
JP (1) JP7256863B2 (en)
CN (1) CN110369848B (en)
DE (1) DE112018007461T5 (en)
WO (1) WO2019196494A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112916992A (en) * 2019-12-06 2021-06-08 中国科学院上海光学精密机械研究所 Resistance spot welding electrode for welding high-strength steel and welding method thereof
CN111451625A (en) * 2020-03-02 2020-07-28 中国科学院上海光学精密机械研究所 Method for improving welding quality of resistance spot welding of coated ultrahigh-strength steel
CN112548295B (en) * 2020-12-05 2022-11-29 钟丽慧 Automobile aluminum alloy resistance spot welding method
CN114378418B (en) * 2021-04-27 2023-12-19 北京电子科技职业学院 Aluminum alloy resistance spot welding equipment and spot welding method
CN115255587A (en) * 2022-08-22 2022-11-01 中国科学院上海光学精密机械研究所 Spot-welded joint and method for manufacturing same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000288744A (en) * 1999-04-06 2000-10-17 Akihiro Saito Electrode chip, and its forming cutter
US20030192863A1 (en) * 2002-04-15 2003-10-16 Pei-Chung Wang Method for repairing resistance spot welds in aluminum sheet materials
JP2005193298A (en) * 2003-12-10 2005-07-21 Honda Motor Co Ltd Electrode for resistance welding, method for resistance welding and welding structure
US20150231729A1 (en) * 2014-02-14 2015-08-20 GM Global Technology Operations LLC Electrode for resistance spot welding of dissimilar metals

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101927398A (en) * 2009-06-23 2010-12-29 上海沪工电焊机制造有限公司 Spot welding method
DE102013224443A1 (en) * 2013-03-15 2014-09-18 GM Global Technology Operations, LLC (n.d. Ges. d. Staates Delaware) Weld surface design for spot welding
JP6287083B2 (en) 2013-11-08 2018-03-07 新日鐵住金株式会社 Dissimilar metal joining method between steel plate and aluminum alloy plate
CN104084686B (en) 2014-06-12 2017-01-18 上海翼锐汽车科技有限公司 Electrode for restraining generation of aluminum alloy resistance spot welding crack
US10259071B2 (en) * 2015-03-27 2019-04-16 GM Global Technology Operations LLC Resistive welding electrode and method for spot welding steel and aluminum alloy workpieces with the resistive welding electrode
US20170361392A1 (en) 2016-06-16 2017-12-21 GM Global Technology Operations LLC Multistep electrode weld face geometry for weld bonding aluminum to steel
CN106736000A (en) 2016-12-08 2017-05-31 上海交通大学 Electrode system for improving steel aluminum dissimilar metal joint for resistance spot welding performance

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000288744A (en) * 1999-04-06 2000-10-17 Akihiro Saito Electrode chip, and its forming cutter
US20030192863A1 (en) * 2002-04-15 2003-10-16 Pei-Chung Wang Method for repairing resistance spot welds in aluminum sheet materials
JP2005193298A (en) * 2003-12-10 2005-07-21 Honda Motor Co Ltd Electrode for resistance welding, method for resistance welding and welding structure
US20150231729A1 (en) * 2014-02-14 2015-08-20 GM Global Technology Operations LLC Electrode for resistance spot welding of dissimilar metals

Also Published As

Publication number Publication date
CN110369848B (en) 2022-09-02
CN110369848A (en) 2019-10-25
WO2019196494A1 (en) 2019-10-17
DE112018007461T5 (en) 2020-12-24
US11890701B2 (en) 2024-02-06
JP7256863B2 (en) 2023-04-12
US20210146484A1 (en) 2021-05-20

Similar Documents

Publication Publication Date Title
JP2021521017A (en) Resistor spot welded electrode cap
US11123816B2 (en) Aluminum alloy to steel welding process
US11084119B2 (en) Electrode for resistance spot welding of dissimilar materials
US20150352658A1 (en) Intruding feature in aluminum alloy workpiece to improve al-steel spot welding
CN102049591B (en) Dissimilar metal spot welding system of light metal and coated steel and welding method thereof
CN116213903A (en) Electrode cap for aluminum workpiece glue joint spot welding and welding method thereof
CN110834139A (en) Method for resistance spot welding of dissimilar metals
JP2010131666A (en) Electrode for spot welding
CN112059391A (en) Stepped resistance spot welding electrode cap
JP7353329B2 (en) Welding device and method for friction stir welding and resistance welding
JP2023013802A (en) Joining device for friction stir joining and resistance welding
US20200139481A1 (en) High aspect ratio weld face design for dissimilar metal welding
CN111745275A (en) Resistance spot welding electrode cap and welding method
US20160039039A1 (en) Aluminum resistance spot welding tip and method of making the same
JP6136249B2 (en) SPOT WELDING ELECTRODE, SPOT WELDING METHOD, AND SPOT WELDING MEMBER
JP2006224148A (en) Resistance spot welding method for different materials
CN114932302B (en) Fastener for resistance spot welding of heterogeneous materials and welding method
CN116197509A (en) Electrode cap for resistance spot welding of aluminum workpiece and spot welding method
JP5836826B2 (en) Indirect spot welding method
WO2020203375A1 (en) Spot welding method for aluminum material and aluminum material
CN212070759U (en) Electrode wheel for resistance seam welding
CN218341214U (en) Electrode cap for hot formed steel resistance spot welding
JPS60227997A (en) Electrode material for welding
CN215658390U (en) Resistance spot welding electrode
TWI706820B (en) Spot welding electrode and spot welding method for aluminum alloy

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201209

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220105

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220405

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230331

R150 Certificate of patent or registration of utility model

Ref document number: 7256863

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150