JP2021515414A - Liquid helium immersion type low temperature superconducting member for large current high temperature superconducting current lead - Google Patents

Liquid helium immersion type low temperature superconducting member for large current high temperature superconducting current lead Download PDF

Info

Publication number
JP2021515414A
JP2021515414A JP2020560468A JP2020560468A JP2021515414A JP 2021515414 A JP2021515414 A JP 2021515414A JP 2020560468 A JP2020560468 A JP 2020560468A JP 2020560468 A JP2020560468 A JP 2020560468A JP 2021515414 A JP2021515414 A JP 2021515414A
Authority
JP
Japan
Prior art keywords
temperature superconducting
low
liquid helium
copper head
low temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020560468A
Other languages
Japanese (ja)
Other versions
JP6860753B1 (en
Inventor
劉承連
宋雲涛
陸坤
冉慶翔
丁開忠
劉辰
黄雄一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei Institutes of Physical Science of CAS
Original Assignee
Hefei Institutes of Physical Science of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei Institutes of Physical Science of CAS filed Critical Hefei Institutes of Physical Science of CAS
Application granted granted Critical
Publication of JP6860753B1 publication Critical patent/JP6860753B1/en
Publication of JP2021515414A publication Critical patent/JP2021515414A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/06Coils, e.g. winding, insulating, terminating or casing arrangements therefor
    • H01F6/065Feed-through bushings, terminals and joints

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

【課題】大電流高温超電導電流リード用の液体ヘリウム浸漬式低温超電導部材を公開する。【解決手段】低温超電導銅ヘッド(3)を備え、前記低温超電導銅ヘッド(3)の一方端の断面は円状であり、且つその円周面に係止溝(6)が配置され、前記係止溝(6)にそれぞれ低温超電導線(2)が係着され、且つ高温超電導スタック(1)によって圧入され、前記低温超電導銅ヘッド(3)の他方端の断面は正方形であり、その両側面に凹溝(7)が設けられ、前記低温超電導線(2)の延長部がそれぞれ凹溝(7)内に係着され、且つステンレススチールのカバー(4)によって圧着固定されて低温超電導継手部を構成する大電流高温超電導電流リード用の液体ヘリウム浸漬式低温超電導部材。本技術案は、構造設計が合理的であり、高温超電導部分の低温端、低温超電導部分と低温超電導継手部の3つの部分を一体的に整合して、接触抵抗を低下させるだけではなく、ユーザーによる加工や取り付けのプロセスを簡単化し、作動コストを節約し、高温超電導電流リードの作動安全を効果的に保証することができる。【選択図】図1PROBLEM TO BE SOLVED: To disclose a liquid helium immersion type low temperature superconducting member for a large current high temperature superconducting flow lead. SOLUTION: The low temperature superconducting copper head (3) is provided, the cross section of one end of the low temperature superconducting copper head (3) is circular, and a locking groove (6) is arranged on the circumferential surface thereof. A low-temperature superconducting wire (2) is engaged with each of the locking grooves (6) and is press-fitted by a high-temperature superconducting stack (1). A concave groove (7) is provided on the surface, and each extension of the low temperature superconducting wire (2) is engaged in the concave groove (7) and crimped and fixed by a stainless steel cover (4) to form a low temperature superconducting joint. A liquid helium-immersed low-temperature superconducting member for large-current high-temperature superconducting current leads that composes the part. In this technical proposal, the structural design is rational, and not only the low temperature end of the high temperature superconducting part, the low temperature superconducting part and the low temperature superconducting joint part are integrally aligned to reduce the contact resistance, but also the user. It can simplify the processing and mounting process, save the operating cost, and effectively guarantee the operating safety of the high-temperature superconducting current lead. [Selection diagram] Fig. 1

Description

本発明は、大型熱核融合装置又は他の大型電磁装置の超電導(超伝導とも呼ばれる)マグネットの給電フィーダの分野に関し、主に、大電流高温超電導電流リード用の液体ヘリウム浸漬式低温超電導部材に関する。 The present invention relates to the field of power feeding feeders for superconducting (also called superconducting) magnets of large thermonuclear fusion devices or other large electromagnetic devices, and mainly relates to liquid helium-immersed low-temperature superconducting members for high-current high-temperature superconducting current leads. ..

高温超電導電流リードは、室温電源と低温超電導マグネットとを接続して、室温から液体ヘリウムの温度領域へ移行させるための電気的接続装置である。超電導マグネットについては、常規の電流リードは、熱が低温システムへ漏洩する主な熱源である。Bi−2223及びYBCO等の高温超電導材料は、液体窒素の温度領域において、ゼロ抵抗率及び低熱伝導率の特徴を有するため、高温超電導電流リードに適用されると、低温システムの約半分の冷熱消費を低減し、更に低温システムの建設投資及び作動費用を効果的に低減することができる。 The high-temperature superconducting current lead is an electrical connection device for connecting a room temperature power source and a low-temperature superconducting magnet to move from room temperature to the temperature range of liquid helium. For superconducting magnets, regular current leads are the main source of heat leakage to cold systems. High-temperature superconducting materials such as Bi-2223 and YBCO have the characteristics of zero resistivity and low thermal conductivity in the temperature range of liquid nitrogen, so when applied to high-temperature superconducting current leads, they consume about half the cold heat of low-temperature systems. It is possible to effectively reduce the construction investment and operating cost of the low temperature system.

電流リードは、超電導装置における肝心な部品の1つであり、超電導マグネットの安定した動作や低温システムのコストに対して、重要な意味を持つ。安定性、及び熱漏洩の最小化に対する追求は、常に電流リードの設計の主な目的である。 The current lead is one of the essential parts in the superconducting device, and has an important meaning for the stable operation of the superconducting magnet and the cost of the low temperature system. The pursuit of stability and minimization of heat leakage has always been the main goal of current reed design.

本申請の設計には、金属部分の材料、構造、接触抵抗、低温超電導材料の性能等の要素の間の結合や関連の特性を合わせて、構造をモジュール化して、プロセスを簡単にし、且つ取り付けしやすくする。その同時に、高温超電導部分の低温端と低温超電導部分とは一体として、液体ヘリウムに浸漬され、低温超電導部分全体が液体ヘリウムの環境で動作し、これにより、低温超電導部分の安定低温環境が効果的に保証され、システム構造が簡単化され、且つ高温超電導高温端の温度を安定して制御することができ、ユーザによる取り付けや運用メンテナンスも非常に便利である。 The design of this application combines the coupling and related properties between elements such as the material, structure, contact resistance of the metal part, and the performance of the cryogenic superconducting material to modularize the structure to simplify and install the process. Make it easier. At the same time, the low temperature end of the high temperature superconducting part and the low temperature superconducting part are immersed in liquid helium, and the entire low temperature superconducting part operates in the liquid helium environment, so that the stable low temperature environment of the low temperature superconducting part is effective. It is guaranteed that the system structure is simplified, the temperature at the high temperature superconducting high temperature end can be controlled stably, and the installation and operation maintenance by the user is very convenient.

本発明の目的は、従来の技術の欠点を改善するために、構造がモジュール化され、熱漏洩が低く、電流負荷能力が強く、安全性が高いこと等の特徴を有する大電流高温超電導電流リード用の液体ヘリウム浸漬式低温超電導部材を提供する。 An object of the present invention is a large-current high-temperature superconducting flow lead having features such as a modularized structure, low heat leakage, strong current load capacity, and high safety in order to improve the drawbacks of the prior art. To provide a liquid helium immersion type low temperature superconducting member for use.

本発明は、下記技術案で達成される。
低温超電導銅ヘッドを備え、前記低温超電導銅ヘッドの一方端の断面は円状であり、且つその円周面に係止溝が配置され、前記係止溝にそれぞれ低温超電導線が係着され、且つ高温超電導スタックによって圧入され、前記低温超電導銅ヘッドの他方端の断面は正方形であり、その両側面に凹溝が設けられ、前記低温超電導線の延長部がそれぞれ凹溝内に係着され、且つステンレススチールのカバーによって圧着固定されて低温超電導継手部を構成することを特徴とする大電流高温超電導電流リード用の液体ヘリウム浸漬式低温超電導部材を提供する。
The present invention is achieved by the following technical proposal.
A low-temperature superconducting copper head is provided, the cross section of one end of the low-temperature superconducting copper head is circular, and a locking groove is arranged on the circumferential surface thereof, and a low-temperature superconducting wire is entwined in each of the locking grooves. Further, it is press-fitted by the high-temperature superconducting stack, the cross section of the other end of the low-temperature superconducting copper head is square, concave grooves are provided on both side surfaces thereof, and the extension portions of the low-temperature superconducting wire are respectively engaged in the concave grooves. Further, the present invention provides a liquid helium immersion type low temperature superconducting member for a large current high temperature superconducting flow lead, which is crimp-fixed by a stainless steel cover to form a low temperature superconducting joint portion.

前記の低温超電導銅ヘッドの中部に、排気通孔が設けられる。 An exhaust through hole is provided in the middle of the low temperature superconducting copper head.

前記の低温超電導銅ヘッドの円状部分と正方形部分との間は円錐状部分によって移行し、且つ低温超電導線の移行部分は低温超電導銅ヘッドの真ん中のテーパ面に均一に配置して貼り合わせられる。 The circular portion and the square portion of the low-temperature superconducting copper head are transferred by a conical portion, and the transition portion of the low-temperature superconducting wire is uniformly arranged and bonded to the tapered surface in the center of the low-temperature superconducting copper head. ..

前記の低温超電導線は、研磨体によりプレス処理されて成形してから係止溝内に置かれ、前記高温超電導スタックは係止溝内に真空半田付けされる。 The low-temperature superconducting wire is pressed by a polishing body, molded, and then placed in a locking groove, and the high-temperature superconducting stack is vacuum-soldered in the locking groove.

前記の低温超電導銅ヘッドにおける断面が正方形である所在部分の両側面に、それぞれステンレススチールのカバーを係着するための位置限定段差が設けられ、前記位置限定段差はそれぞれ内部へ凹むように両端にあり、前記ステンレススチールのカバーに、位置限定段差に合わせたボスが設けられる。 Position-limited steps for engaging the stainless steel cover are provided on both side surfaces of the location portion of the low-temperature superconducting copper head having a square cross section, and the position-limited steps are provided at both ends so as to be recessed inward. Yes, the stainless steel cover is provided with a boss that matches the position-limited step.

前記のステンレススチールのカバーは、真空半田付けされ、またボルトによって圧着されるように、低温超電導銅ヘッドの両側の凹溝内に固定され、且つボルトは位置限定段差とボスとの合わせ箇所に取り付けられる。 The stainless steel cover is vacuum soldered and fixed in the recesses on both sides of the low temperature superconducting copper head so that it can be crimped with bolts, and the bolts are attached at the point where the position limiting step and the boss meet. Be done.

前記の低温超電導継手部の低温超電導銅ヘッドの外面は、銀メッキ処理される。 The outer surface of the low-temperature superconducting copper head of the low-temperature superconducting joint portion is silver-plated.

前記の高温超電導スタックは、多層のBi−2223/AgAu超電導テープによって真空半田付けされる。 The high temperature superconducting stack is vacuum soldered by a multilayer Bi-2223 / AgAu superconducting tape.

上記解決策において、高温超電導部分の低温端、低温超電導部分と低温超電導継手部の3つの部分を一体的に整合して、接触抵抗を低下させるだけではなく、ユーザーによる加工や取り付けのプロセスを簡単化し、作動コストを節約し、高温超電導電流リードの作動安全を効果的に保証することができる。 In the above solution, not only the low temperature end of the high temperature superconducting part, the low temperature superconducting part and the low temperature superconducting joint part are integrally aligned to reduce the contact resistance, but also the processing and installation process by the user is simplified. It is possible to save the operating cost and effectively guarantee the operating safety of the high-temperature superconducting current lead.

高温超電導部分の低温端は高温超電導スタックであり、高低温超電導部材の中間で移行する低温超電導線は、研磨体によりプレス処理されて成形してから高温超電導スタックの下方の溝内に置かれ、高温超電導スタックと共に真空半田付けされ、接触抵抗を低下させ、プロセス過程を簡単化し、低温超電導部分は複数本の低温超電導線によって低温端銅ヘッドの両側の溝内に真空半田付けされ、またステンレススチール圧板によって圧着され、真空半田付けされ、またボルトによって圧着されるように接続されるので、取り付けを頑固にするだけではなく、接触抵抗を小さくし、ジュール熱を低下させることができる。低温超電導部材の末端の低温超電導継手部の銅表面は銀メッキ処理されており、電流リードと低温超電導マグネットとの接合に低接触抵抗の条件を提供する。 The low-temperature end of the high-temperature superconducting part is the high-temperature superconducting stack, and the low-temperature superconducting wire that shifts between the high- and low-temperature superconducting members is pressed and molded by a polishing body and then placed in the groove below the high-temperature superconducting stack. Vacuum soldered with high temperature superconducting stack to reduce contact resistance and simplify process process, low temperature superconducting part is vacuum soldered into grooves on both sides of low temperature end copper head by multiple low temperature superconducting wires, and stainless steel Since they are crimped by a pressure plate, vacuum soldered, and connected so as to be crimped by bolts, not only the mounting is stubborn, but also the contact resistance can be reduced and the Joule heat can be reduced. The copper surface of the cryogenic superconducting joint at the end of the cryogenic superconducting member is silver-plated to provide low contact resistance conditions for joining the current lead to the cryogenic superconducting magnet.

本発明のメリットは、下記の通りである。
本発明は、構造設計が合理的であり、高温超電導部分の低温端、低温超電導部分と低温超電導継手部の3つの部分を一体的に整合して、接触抵抗を低下させるだけではなく、ユーザーによる加工や取り付けのプロセスを簡単化し、作動コストを節約し、高温超電導電流リードの作動安全を効果的に保証することができる。
The merits of the present invention are as follows.
In the present invention, the structural design is rational, and not only the low temperature end of the high temperature superconducting portion, the low temperature superconducting portion and the low temperature superconducting joint portion are integrally aligned to reduce the contact resistance, but also by the user. It simplifies the processing and installation process, saves operating costs, and effectively guarantees the operational safety of high-temperature superconducting current leads.

本発明の構造の模式図である。It is a schematic diagram of the structure of this invention. 図1におけるA−A断面図である。FIG. 1 is a cross-sectional view taken along the line AA in FIG. 図1におけるB−B断面図である。FIG. 5 is a cross-sectional view taken along the line BB in FIG.

図1〜図3を参照されたい。 See FIGS. 1 to 3.

低温超電導銅ヘッド3を備え、前記低温超電導銅ヘッド3の一方端の断面は円状であり、且つその円周面に係止溝6が配置され、前記係止溝6にそれぞれ低温超電導線2が係着され、且つ高温超電導スタック1によって圧入され、前記低温超電導銅ヘッド3の他方端の断面は正方形であり、その両側面に凹溝7が設けられ、前記低温超電導線2の延長部がそれぞれ凹溝7内に係着され、且つステンレススチールのカバー4によって圧着固定されて低温超電導継手部を構成する大電流高温超電導電流リード用の液体ヘリウム浸漬式低温超電導部材である。 A low-temperature superconducting copper head 3 is provided, the cross section of one end of the low-temperature superconducting copper head 3 is circular, and a locking groove 6 is arranged on the circumferential surface thereof, and the low-temperature superconducting wire 2 is provided in each of the locking grooves 6. Is engaged and press-fitted by the high-temperature superconducting stack 1, the cross section of the other end of the low-temperature superconducting copper head 3 is square, recessed grooves 7 are provided on both side surfaces thereof, and an extension portion of the low-temperature superconducting wire 2 is provided. These are liquid helium-immersed low-temperature superconducting members for large-current high-temperature superconducting current leads that are respectively engaged in the recesses 7 and crimped and fixed by a stainless steel cover 4 to form a low-temperature superconducting joint portion.

前記の低温超電導銅ヘッド3の中部に、排気通孔8が設けられる。 An exhaust through hole 8 is provided in the middle of the low temperature superconducting copper head 3.

前記の低温超電導銅ヘッド3の円状部分と正方形部分との間は円錐状部分によって移行し、且つ低温超電導線2の移行部分は低温超電導銅ヘッド3の真ん中のテーパ面に均一に配置して貼り合わせられる。 The circular portion and the square portion of the low-temperature superconducting copper head 3 are displaced by a conical portion, and the transition portion of the low-temperature superconducting wire 2 is uniformly arranged on the tapered surface in the center of the low-temperature superconducting copper head 3. Can be pasted together.

前記の低温超電導線2は、研磨体によりプレス処理されて成形してから係止溝6内に置かれ、前記高温超電導スタック1は係止溝6内に真空半田付けされる。 The low-temperature superconducting wire 2 is pressed and molded by a polishing body and then placed in the locking groove 6, and the high-temperature superconducting stack 1 is vacuum-soldered in the locking groove 6.

前記の低温超電導銅ヘッド3における断面が正方形である所在部分の両側面に、それぞれステンレススチールのカバー4を係着するための位置限定段差9が設けられ、前記位置限定段差9はそれぞれ内部へ凹むように両端にあり、前記ステンレススチールのカバー4、に位置限定段差9に合わせたボス10が設けられる。 Position-limited steps 9 for engaging the stainless steel cover 4 are provided on both side surfaces of the location portion of the low-temperature superconducting copper head 3 having a square cross section, and the position-limited steps 9 are recessed inward. The stainless steel cover 4 is provided with bosses 10 that match the position-limited step 9 at both ends.

前記のステンレススチールのカバー4は、真空半田付けされ、またボルト5によって圧着されるように、低温超電導銅ヘッド3の両側の凹溝7内に固定され、且つボルト5は位置限定段差9とボス10との合わせ箇所に取り付けられる。 The stainless steel cover 4 is vacuum-soldered and fixed in the recesses 7 on both sides of the low-temperature superconducting copper head 3 so as to be crimped by the bolt 5, and the bolt 5 has a position-limited step 9 and a boss. It is attached to the matching point with 10.

前記の低温超電導継手部の低温超電導銅ヘッド3の外面は、銀メッキ処理される。 The outer surface of the low-temperature superconducting copper head 3 of the low-temperature superconducting joint portion is silver-plated.

前記の高温超電導スタック1は、多層のBi−2223/AgAu超電導テープによって真空半田付けされる。 The high temperature superconducting stack 1 is vacuum soldered by a multilayer Bi-2223 / AgAu superconducting tape.

具体的に使用する場合の過程としては、低温超電導銅ヘッド3の末端の正方形断面領域の銅面と被接続低温超電導継手部とを接合した後で、この領域を液体ヘリウムに垂直に浸漬し、液面を低温超電導銅ヘッド3の円状部分と正方形部分との間の円錐形移行部分の中間位置にして、使被ステンレススチールのカバー4によって凹溝7内に係着される低温超電導線2の延長部を液体ヘリウムに浸漬する状態にする。低温超電導銅ヘッド3の中部の排気通孔8によりも、蒸発した冷たいヘリウムガスが低温超電導銅ヘッド3の円状断面領域の内部へ流通すると共に、低温超電導銅ヘッド3の円状断面領域の外側の高温超電導スタック1も蒸発した冷液ヘリウムの環境にある。 As a specific process, after joining the copper surface of the square cross section region at the end of the low temperature superconducting copper head 3 and the connected low temperature superconducting joint portion, this region is vertically immersed in liquid helium. The cryogenic superconducting wire 2 is anchored in the groove 7 by the stainless steel cover 4 to be used, with the liquid level at the intermediate position of the conical transition portion between the circular portion and the square portion of the cryogenic superconducting copper head 3. Immerse the extension of the above in liquid helium. The evaporated cold helium gas also circulates inside the circular cross-sectional area of the low-temperature superconducting copper head 3 through the exhaust through hole 8 in the middle of the low-temperature superconducting copper head 3, and also outside the circular cross-sectional area of the low-temperature superconducting copper head 3. The high-temperature superconducting stack 1 of the above is also in an environment of evaporated cold liquid helium.

上記は単に本発明の設計の好適な実施例であるが、本発明の設計を限定するためのものではない。本発明の設計の精神や原則で加えた如何なる修正や均等な交換、改善等も、本発明の設計の保護範囲内に属する。 The above is merely a preferred embodiment of the design of the present invention, but is not intended to limit the design of the present invention. Any modifications, equal replacements, improvements, etc. made in the spirit or principle of the design of the present invention fall within the scope of protection of the design of the present invention.

1 高温超電導スタック
2 低温超電導線
3 低温超電導銅ヘッド
4 ステンレススチールのカバー
5 ボルト
6 係止溝
7 凹溝
8 排気通孔
9 位置限定段差
10 ボス
1 Cryogenic superconducting stack 2 Cryogenic superconducting wire 3 Cryogenic superconducting copper head 4 Stainless steel cover 5 Bolt 6 Locking groove 7 Concave groove 8 Exhaust hole 9 Position limited step 10 Boss

Claims (8)

低温超電導銅ヘッドを備え、前記低温超電導銅ヘッドの一方端の断面は円状であり、且つその円周面に係止溝が配置され、前記係止溝にそれぞれ低温超電導線が係着され、且つ高温超電導スタックによって圧入され、前記低温超電導銅ヘッドの他方端の断面は正方形であり、その両側面に凹溝が設けられ、前記低温超電導線の延長部がそれぞれ凹溝内に係着され、且つステンレススチールのカバーによって圧着固定されて低温超電導継手部を構成することを特徴とする大電流高温超電導電流リード用の液体ヘリウム浸漬式低温超電導部材。 A low-temperature superconducting copper head is provided, the cross section of one end of the low-temperature superconducting copper head is circular, and a locking groove is arranged on the circumferential surface thereof, and a low-temperature superconducting wire is entwined in each of the locking grooves. Further, it is press-fitted by the high-temperature superconducting stack, the cross section of the other end of the low-temperature superconducting copper head is square, concave grooves are provided on both side surfaces thereof, and the extension portions of the low-temperature superconducting wire are respectively engaged in the concave grooves. A liquid helium-immersed low-temperature superconducting member for a large-current high-temperature superconducting current lead, which is crimp-fixed by a stainless steel cover to form a low-temperature superconducting joint. 前記の低温超電導銅ヘッドの中部に、排気通孔が設けられることを特徴とする請求項1に記載の大電流高温超電導電流リード用の液体ヘリウム浸漬式低温超電導部材。 The liquid helium-immersed low-temperature superconducting member for a large-current high-temperature superconducting flow lead according to claim 1, wherein an exhaust through hole is provided in the middle of the low-temperature superconducting copper head. 前記の低温超電導銅ヘッドの円状部分と正方形部分との間は円錐状部分によって移行し、且つ低温超電導線の移行部分は低温超電導銅ヘッドの真ん中のテーパ面に均一に配置して貼り合わせられることを特徴とする請求項1に記載の大電流高温超電導電流リード用の液体ヘリウム浸漬式低温超電導部材。 The circular portion and the square portion of the low-temperature superconducting copper head are transferred by a conical portion, and the transition portion of the low-temperature superconducting wire is uniformly arranged and bonded to the tapered surface in the center of the low-temperature superconducting copper head. The liquid helium immersion type low temperature superconducting member for a large current high temperature superconducting flow lead according to claim 1. 前記の低温超電導線は、研磨体によりプレス処理されて成形してから係止溝内に置かれ、前記高温超電導スタックは係止溝内に真空半田付けされることを特徴とする請求項1に記載の大電流高温超電導電流リード用の液体ヘリウム浸漬式低温超電導部材。 The first aspect of claim 1, wherein the low-temperature superconducting wire is pressed by a polishing body, molded, and then placed in a locking groove, and the high-temperature superconducting stack is vacuum-soldered in the locking groove. The liquid helium immersion type low temperature superconducting member for the high current high temperature superconducting flow lead described. 前記の低温超電導銅ヘッドにおける断面が正方形である所在部分の両側面に、それぞれステンレススチールのカバーを係着するための位置限定段差が設けられ、前記位置限定段差はそれぞれ内部へ凹むように両端にあり、前記ステンレススチールのカバーに、位置限定段差に合わせたボスが設けられることを特徴とする請求項1に記載の大電流高温超電導電流リード用の液体ヘリウム浸漬式低温超電導部材。 Position-limited steps for engaging the stainless steel cover are provided on both side surfaces of the location portion of the low-temperature superconducting copper head having a square cross section, and the position-limited steps are provided at both ends so as to be recessed inward. The liquid helium-immersed low-temperature superconducting member for a large-current high-temperature superconducting flow lead according to claim 1, wherein the stainless steel cover is provided with a boss corresponding to a position-limited step. 前記のステンレススチールのカバーは、真空半田付けされ、またボルトによって圧着されるように、低温超電導銅ヘッドの両側の凹溝内に固定され、且つボルトは位置限定段差とボスとの合わせ箇所に取り付けられることを特徴とする請求項5に記載の大電流高温超電導電流リード用の液体ヘリウム浸漬式低温超電導部材。 The stainless steel cover is fixed in the recesses on both sides of the cryogenic superconducting copper head so that it is vacuum soldered and crimped by bolts, and the bolts are attached at the mating points of the positioning step and the boss. The liquid helium-immersed low-temperature superconducting member for a large-current high-temperature superconducting current lead according to claim 5, wherein the superconducting member is a liquid helium. 前記の低温超電導継手部の低温超電導銅ヘッドの外面は、銀メッキ処理されることを特徴とする請求項1に記載の大電流高温超電導電流リード用の液体ヘリウム浸漬式低温超電導部材。 The liquid helium-immersed low-temperature superconducting member for a large-current high-temperature superconducting current lead according to claim 1, wherein the outer surface of the low-temperature superconducting copper head of the low-temperature superconducting joint portion is silver-plated. 前記の高温超電導スタックは、多層のBi−2223/AgAu超電導テープによって真空半田付けされることを特徴とする請求項1に記載の大電流高温超電導電流リード用の液体ヘリウム浸漬式低温超電導部材。 The liquid helium-immersed low-temperature superconducting member for a high-current high-temperature superconducting current lead according to claim 1, wherein the high-temperature superconducting stack is vacuum-soldered by a multilayer Bi-2223 / AgAu superconducting tape.
JP2020560468A 2018-09-26 2019-09-16 Liquid helium immersion type low temperature superconducting member for large current high temperature superconducting current lead Active JP6860753B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201811120754.5A CN109285647B (en) 2018-09-26 2018-09-26 liquid helium soaking type low-temperature superconducting assembly for large-current high-temperature superconducting current lead
CN201811120754.5 2018-09-26
PCT/CN2019/105982 WO2020063385A1 (en) 2018-09-26 2019-09-16 Liquid helium immersion type low-temperature superconducting component for high-current and high-temperature superconducting current lead

Publications (2)

Publication Number Publication Date
JP6860753B1 JP6860753B1 (en) 2021-04-21
JP2021515414A true JP2021515414A (en) 2021-06-17

Family

ID=65182133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020560468A Active JP6860753B1 (en) 2018-09-26 2019-09-16 Liquid helium immersion type low temperature superconducting member for large current high temperature superconducting current lead

Country Status (3)

Country Link
JP (1) JP6860753B1 (en)
CN (1) CN109285647B (en)
WO (1) WO2020063385A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109285647B (en) * 2018-09-26 2019-12-17 中国科学院合肥物质科学研究院 liquid helium soaking type low-temperature superconducting assembly for large-current high-temperature superconducting current lead
CN111584180B (en) * 2020-06-05 2021-12-28 中国科学院合肥物质科学研究院 Low-stress safe transmission device between rapid excitation superconducting magnet and current lead
CN112038035B (en) * 2020-09-18 2022-03-25 中国科学院合肥物质科学研究院 Close-wound superconducting magnet refrigerating device based on interlayer lamination integral heat conduction

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01310515A (en) * 1988-06-08 1989-12-14 Ishikawajima Harima Heavy Ind Co Ltd Structure of gas-cooling type current lead
JPH09219309A (en) * 1996-02-13 1997-08-19 Tokyo Electric Power Co Inc:The Connection part of superconductor
JP2000030776A (en) * 1998-07-07 2000-01-28 Fujikura Ltd Connecting structure for superconducting current lead part
CN1873847A (en) * 2006-05-25 2006-12-06 中国科学院等离子体物理研究所 Cold end of heavy current lead out wire made from high-temperature superconductor, and low resistance connector of superconducting transmission line
JP2013125721A (en) * 2011-12-16 2013-06-24 Panasonic Corp Induction heating apparatus
CN103258615A (en) * 2013-04-17 2013-08-21 中国科学院等离子体物理研究所 Forced flow cooling low-temperature section directly overlapped with high-temperature superconductor stack
JP2014143812A (en) * 2013-01-23 2014-08-07 Swcc Showa Cable Systems Co Ltd Terminal structure of superconducting cable
JP2018137292A (en) * 2017-02-20 2018-08-30 住友電気工業株式会社 Terminal structure of superconducting apparatus

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4058920B2 (en) * 2001-07-10 2008-03-12 株式会社日立製作所 Superconducting connection structure
CN101694908B (en) * 2009-09-30 2011-05-25 中国科学院等离子体物理研究所 Low temperature superconducting assembly with low joint resistance for high temperature superconducting current lead cold end
CN102769214A (en) * 2012-07-18 2012-11-07 合肥科烨电物理设备制造有限公司 High-current distributed superconducting conductor joint
CN103219124B (en) * 2013-04-26 2015-06-10 宁波健信机械有限公司 High-temperature superconducting current lead with section capable of being pulled out and using externally supplied liquid nitrogen to cool
CN104600535B (en) * 2015-01-26 2017-04-05 中国科学院等离子体物理研究所 The vacuum pressure impregnation soldering process of superconductive cable and copper sleeve
CN105171169A (en) * 2015-08-20 2015-12-23 合肥聚能电物理高技术开发有限公司 Tin soldering technique for superconductive current lead and superconductive cable
CN108022712A (en) * 2018-01-22 2018-05-11 中国科学院合肥物质科学研究院 The distributed electric current of large-scale superconducting Tokamak magnet and cold matter transmission feeder
CN109285647B (en) * 2018-09-26 2019-12-17 中国科学院合肥物质科学研究院 liquid helium soaking type low-temperature superconducting assembly for large-current high-temperature superconducting current lead

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01310515A (en) * 1988-06-08 1989-12-14 Ishikawajima Harima Heavy Ind Co Ltd Structure of gas-cooling type current lead
JPH09219309A (en) * 1996-02-13 1997-08-19 Tokyo Electric Power Co Inc:The Connection part of superconductor
JP2000030776A (en) * 1998-07-07 2000-01-28 Fujikura Ltd Connecting structure for superconducting current lead part
CN1873847A (en) * 2006-05-25 2006-12-06 中国科学院等离子体物理研究所 Cold end of heavy current lead out wire made from high-temperature superconductor, and low resistance connector of superconducting transmission line
JP2013125721A (en) * 2011-12-16 2013-06-24 Panasonic Corp Induction heating apparatus
JP2014143812A (en) * 2013-01-23 2014-08-07 Swcc Showa Cable Systems Co Ltd Terminal structure of superconducting cable
CN103258615A (en) * 2013-04-17 2013-08-21 中国科学院等离子体物理研究所 Forced flow cooling low-temperature section directly overlapped with high-temperature superconductor stack
JP2018137292A (en) * 2017-02-20 2018-08-30 住友電気工業株式会社 Terminal structure of superconducting apparatus

Also Published As

Publication number Publication date
WO2020063385A1 (en) 2020-04-02
CN109285647B (en) 2019-12-17
CN109285647A (en) 2019-01-29
JP6860753B1 (en) 2021-04-21

Similar Documents

Publication Publication Date Title
JP6860753B1 (en) Liquid helium immersion type low temperature superconducting member for large current high temperature superconducting current lead
JP6860754B1 (en) Helium-cooled high-temperature superconducting member for large-current high-temperature superconducting current leads
CN106450992B (en) Liquid nitrogen conduction cooling type high-temperature superconducting current lead structure
CN103456455B (en) A kind of current lead of superconducting magnets
US8340737B1 (en) High temperature superconductor current lead for connecting a superconducting load system to a current feed point
CN109215931B (en) Low-temperature superconducting segment structure for ten-thousand-ampere-level current lead
JP5005582B2 (en) Superconducting current lead manufacturing method
CN107068324A (en) 6kA high-temperature superconductive lead wires
CN104051120A (en) High-temperature superconducting binary current lead based on conduction cooling
CN204010879U (en) A kind of based on the cooling high-temperature superconducting binary current lead of conduction
CN104134921B (en) The method of attachment of a kind of cold insulation high-temperature superconductive cable end conductor
GB2476716A (en) Current lead assembly and its cooling method, suitable for a superconducting magnet
CN115691940A (en) High-temperature superconducting current lead for large-current conduction cooling magnet
CN202503116U (en) Tubular bus joint
CN114649114B (en) Direct-cooling high-temperature superconductive current lead structure of refrigerator
CN105047353A (en) Low-temperature electrical-insulating heat transfer component
CN201689851U (en) Galvanic circle structure of low-voltage circuit breaker
US20120007703A1 (en) Current lead assembly for superconducting magnet
CN115547612B (en) kA-level current-carrying superconducting insulated electrode device
CN208834834U (en) A kind of superconducting magnet room temperature current feed attachment device
JP3125532B2 (en) Current lead using oxide superconductor
CN113782294A (en) Binary current lead
JP2003324013A (en) Oxide superconductor current lead
DeBry et al. Note: Electroplating process for connectorizing superconducting NbTi cables
CN109822173A (en) One kind being used for high-temperature superconductive lead wire current divider and its production technology

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201026

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20201026

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20210315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210323

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210326

R150 Certificate of patent or registration of utility model

Ref document number: 6860753

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250