JP2021512444A - コミュニケーション用談話ツリーを用いる、説明の要求の検出 - Google Patents
コミュニケーション用談話ツリーを用いる、説明の要求の検出 Download PDFInfo
- Publication number
- JP2021512444A JP2021512444A JP2020562098A JP2020562098A JP2021512444A JP 2021512444 A JP2021512444 A JP 2021512444A JP 2020562098 A JP2020562098 A JP 2020562098A JP 2020562098 A JP2020562098 A JP 2020562098A JP 2021512444 A JP2021512444 A JP 2021512444A
- Authority
- JP
- Japan
- Prior art keywords
- communication
- discourse tree
- text
- verb
- request
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004891 communication Methods 0.000 title claims abstract description 279
- 238000001514 detection method Methods 0.000 title description 7
- 238000000034 method Methods 0.000 claims abstract description 104
- 239000012634 fragment Substances 0.000 claims abstract description 87
- 238000013145 classification model Methods 0.000 claims abstract description 64
- 238000012549 training Methods 0.000 claims description 56
- 230000004044 response Effects 0.000 claims description 50
- 230000006870 function Effects 0.000 claims description 31
- 230000009471 action Effects 0.000 claims description 29
- 238000012545 processing Methods 0.000 claims description 26
- 238000012706 support-vector machine Methods 0.000 claims description 6
- 230000006399 behavior Effects 0.000 description 74
- 239000003795 chemical substances by application Substances 0.000 description 49
- 230000008569 process Effects 0.000 description 42
- 238000007726 management method Methods 0.000 description 25
- 238000010801 machine learning Methods 0.000 description 20
- 230000014509 gene expression Effects 0.000 description 14
- 238000004458 analytical method Methods 0.000 description 13
- 230000008451 emotion Effects 0.000 description 10
- 238000011156 evaluation Methods 0.000 description 9
- 238000012360 testing method Methods 0.000 description 9
- 241000282472 Canis lupus familiaris Species 0.000 description 7
- 238000012544 monitoring process Methods 0.000 description 7
- 238000012546 transfer Methods 0.000 description 7
- 241000282414 Homo sapiens Species 0.000 description 6
- 230000008520 organization Effects 0.000 description 6
- 230000029305 taxis Effects 0.000 description 6
- 238000013459 approach Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 238000003058 natural language processing Methods 0.000 description 5
- 230000002093 peripheral effect Effects 0.000 description 5
- 238000013403 standard screening design Methods 0.000 description 5
- 101100041128 Schizosaccharomyces pombe (strain 972 / ATCC 24843) rst2 gene Proteins 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 238000011160 research Methods 0.000 description 4
- 230000011218 segmentation Effects 0.000 description 4
- 239000013598 vector Substances 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 238000004422 calculation algorithm Methods 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000005352 clarification Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000001976 improved effect Effects 0.000 description 3
- 238000011835 investigation Methods 0.000 description 3
- 238000004900 laundering Methods 0.000 description 3
- 230000033001 locomotion Effects 0.000 description 3
- 238000013507 mapping Methods 0.000 description 3
- 230000008450 motivation Effects 0.000 description 3
- 230000000717 retained effect Effects 0.000 description 3
- 230000003068 static effect Effects 0.000 description 3
- 238000013519 translation Methods 0.000 description 3
- 241000282326 Felis catus Species 0.000 description 2
- 241000282412 Homo Species 0.000 description 2
- 241000699670 Mus sp. Species 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 210000004556 brain Anatomy 0.000 description 2
- 238000012790 confirmation Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 230000006996 mental state Effects 0.000 description 2
- 230000006855 networking Effects 0.000 description 2
- 230000000699 topical effect Effects 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- 206010002515 Animal bite Diseases 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 241000238558 Eucarida Species 0.000 description 1
- 206010021703 Indifference Diseases 0.000 description 1
- 241000282341 Mustela putorius furo Species 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- 238000013473 artificial intelligence Methods 0.000 description 1
- 238000013528 artificial neural network Methods 0.000 description 1
- 230000003190 augmentative effect Effects 0.000 description 1
- 238000013475 authorization Methods 0.000 description 1
- 230000003542 behavioural effect Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000004397 blinking Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 230000009850 completed effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000002591 computed tomography Methods 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 238000003066 decision tree Methods 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000002059 diagnostic imaging Methods 0.000 description 1
- 230000002996 emotional effect Effects 0.000 description 1
- 230000004424 eye movement Effects 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000012804 iterative process Methods 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 238000012417 linear regression Methods 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000007477 logistic regression Methods 0.000 description 1
- 238000002595 magnetic resonance imaging Methods 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 230000002853 ongoing effect Effects 0.000 description 1
- 230000008447 perception Effects 0.000 description 1
- 238000007637 random forest analysis Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 238000003325 tomography Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
- 230000036642 wellbeing Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F40/00—Handling natural language data
- G06F40/30—Semantic analysis
- G06F40/35—Discourse or dialogue representation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/30—Information retrieval; Database structures therefor; File system structures therefor of unstructured textual data
- G06F16/35—Clustering; Classification
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F40/00—Handling natural language data
- G06F40/10—Text processing
- G06F40/12—Use of codes for handling textual entities
- G06F40/131—Fragmentation of text files, e.g. creating reusable text-blocks; Linking to fragments, e.g. using XInclude; Namespaces
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N20/00—Machine learning
- G06N20/10—Machine learning using kernel methods, e.g. support vector machines [SVM]
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Artificial Intelligence (AREA)
- Audiology, Speech & Language Pathology (AREA)
- Computational Linguistics (AREA)
- General Health & Medical Sciences (AREA)
- Health & Medical Sciences (AREA)
- Software Systems (AREA)
- Data Mining & Analysis (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Medical Informatics (AREA)
- Evolutionary Computation (AREA)
- Computing Systems (AREA)
- Mathematical Physics (AREA)
- Databases & Information Systems (AREA)
- Machine Translation (AREA)
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
Abstract
Description
本出願は、2018年1月30日に提出された仮出願62/624,001、および2018年3月23日に提出された仮出願62/646,711からの優先権を主張するものであり、これらの両方とも、その全体が参照により本明細書に組み込まれる。
本開示は、一般に言語に関する。より詳しくは、本開示は、コミュニケーション用談話ツリーを用いて説明の要求を検出することに関する。
該当せず
語学は言語に関する科学的研究である。言語学の一局面は、英語などの人の自然言語に対してコンピュータサイエンスを適用することである。プロセッサ速度の大幅な上昇およびメモリ容量の大幅な増大により、言語学にコンピュータを適用することが増えてきている。たとえば、言語談話をコンピュータで分析できれば、ユーザからの質問に回答することができる自動化エージェントなどの多数の用途が促進される。質問に回答し、議論を促進し、ダイアログを管理し、社会的振興をもたらすために自律型エージェント(「チャットボット」)を用いることが次第に普及してきている。この必要性に対処するために、複合的セマンティクスを含む広範囲の技術が開発されてきた。このような技術は、単純で短い問合せおよび返答の場合に自動化エージェントをサポートすることができる。
簡単な概要
一般に、本発明のシステム、デバイス、および方法は、コミュニケーション用談話ツリーに関する。一例では、ある方法は、テキストをコミュニケーション用談話ツリーとして表し、機械学習を使用して、テキストが説明の要求を含むかどうかを判断する。この方法は、テキストが説明の要求を含むことに基づいて、適切な説明を生成させ、提供させることができる。
本明細書で開示される局面は、コンピュータにより実現される言語の分野に技術的改善を提供する。より具体的には、本開示の局面は、テキスト本文で検出された特定の議論において説明の要求を判断するために、機械学習と併せてコミュニケーション用談話ツリーを用いる。いくつかの局面は、苦情などのクエリが、暗黙的であれ明示的であれ、説明の要求を含むかどうかを自動的に分類することができる。説明を求める暗黙の要求の例は、体験に関する否定的なコメントまたはテキストのセットである。説明を求める明示的な要求の例は、ユーザに苦情を開始するように促した特定の判断が行われた理由に関する質問である。
「修辞構造理論(rhetorical structure theory)」は、この明細書中において用いられる場合、談話の一貫性の分析を可能にし得る論理基礎を提供した調査および研究の分野である。
言語学は言語についての科学的研究である。たとえば、言語学は、センテンス(構文)の構造、たとえば、主語−動詞−目的語、センテンス(セマンティックス)の意味、たとえば、「dog bites man(犬が人を噛む)」に対して「man bites dog(人が犬を噛む)」、さらに、話し手が会話中に行うこと、すなわち、談話分析またはセンテンスの範囲を超えた言語の分析、を含み得る。
上述したように、この明細書中に記載されるいくつかの局面はコミュニケーション用談話ツリーを用いている。修辞関係はさまざまな方法で説明することができる。たとえば、MannおよびThompsonは23の実現可能な関係について記載している。C. Mann, William & Thompson, Sandra(1987)(「Mann and Thompson」)による「Rhetorical Structure Theory: A Theory of Text Organization)がある。他のいくつかの関係も実現可能である。
1.新しい技術報告の要約は、現在、簡略版辞典付近の蔵書の雑誌領域にあります(The new Tech Report abstracts are now in the journal area of the library near the abridged dictionary)。
図から分かるように、関係328は、エンティティ307とエンティティ306との関係、すなわち可能化、を示している。図3は、複数の核を入れ子状にすることができるが、最も核性のある1つのテキストスパンだけが存在することを例示している。
談話ツリーはさまざまな方法を用いて生成することができる。DTボトムアップ(DT bottom up)を構築するための方法の単純な例は以下のとおりである:
(1)以下の(a)および(b)によって談話テキストを複数単位に分割する。
(b)典型的には単位は節である。
(3)関係が保たれている場合、その関係に印を付ける。
MannおよびThompsonはまた、スキーマ・アプリケーションと呼ばれるブロック構造の構築の第2のレベルを記載している。RSTにおいては、修辞関係が、テキスト上に直接マッピングされず、それらはスキーマ・アプリケーションと呼ばれる構造上に適合され、これらはさらにテキストに適合される。スキーマ・アプリケーションは、(図4によって示されるような)スキーマと呼ばれる、より単純な構造に由来している。各々のスキーマは、テキストの特定の単位が如何にしてより小さなテキスト単位に分解されるかを示している。修辞構造ツリーまたはDTは、スキーマ・アプリケーションの階層システムである。スキーマ・アプリケーションは、いくつかの連続するテキストスパンをリンクさせ、複雑なテキストスパンを作成する。複雑なテキストスパンはさらに、より高レベルのスキーマ・アプリケーションによってリンクされ得る。RSTの主張によれば、すべての一貫した談話の構造を単一の修辞構造ツリーによって記述することができ、その最上位のスキーマによって談話全体を包含するスパンが作成される。
自動的な談話セグメンテーションはさまざまな方法で実行することができる。たとえば、或るセンテンスを想定すると、セグメンテーションモデルは、センテンスにおける各々の特定のトークンの前に境界が挿入されるべきであるかどうかを予測することによって、複合的な基本談話単位の境界を識別する。たとえば、1つのフレームワークは、センテンス内の各トークンを連続的に独立して考慮に入れる。このフレームワークにおいては、セグメンテーションモデルは、トークンによってセンテンストークンをスキャンし、サポートベクトルマシンまたはロジスティック回帰などの二進法分類を用いて、検査されているトークンの前に境界を挿入することが適切であるかどうかを予測する。別の例においては、タスクは連続的にラベル付けする際の問題である。テキストが基本談話単位にセグメント化されると、センテンスレベルの談話構文解析を実行して談話ツリーを構築することができる。機械学習技術を用いることができる。
人Aと人Bとの間の会話は談話の一形式である。たとえば、FaceBook(登録商標)メッセンジャ、WhatsApp(登録商標)、Slack(登録商標)、SMSなどのアプリケーションが存在し、AとBとの間の会話は、典型的には、より従来型の電子メールおよび音声会話に加えて、メッセージを介するものであってもよい。(知的なボットまたは仮想アシスタントなどと称されることもある)チャットボットは、「知的な」マシンであって、たとえば、人Bと置き換わって、2人の人同士の間の会話をさまざまな程度に模倣する。究極の目的の一例としては、人Aは、Bが人であるかまたはマシンであるかどうか区別できないようにすることである(1950年にAlan Turingによって開発されたチューリング(Turning)テスト)。談話分析、機械学習を含む人工知能および自然言語処理は、チューリングテストに合格するという長期目標に向かって大きく発展してきた。当然ながら、コンピュータにより、莫大なデータのリポジトリを検索および処理して、予測的分析を含めるようにデータに対して複雑な分析を行うことも次第に可能になってきており、長期目標は、人のようなチャットボットとコンピュータとを組合わせることである。
本開示の局面はコミュニケーション用談話ツリーを構築するとともに、コミュニケーション用談話ツリーを用いて、要求または質問の修辞構造が回答に合致しているかどうかを分析する。より具体的には、この明細書中に記載される局面は、要求・応答ペアの表現を作成し、これらの表現を学習し、ペアを有効なペアまたは無効なペアのクラスに関連づける。このような態様で、自律型エージェントはユーザから質問を受取り、たとえば複数の回答を検索することによって質問を処理し、複数の回答の中から最適な回答を判断して、ユーザに対して回答を提供することができる。
図7は、一局面に従った、財産税に関する要求例についての例示的なDTを示す。ノードラベルは関係であり、矢印付きの線は衛星を指している。核は実線である。図7は以下のテキストを示す。
図7から分かるように、上述のテキストを分析することにより、以下の結果が得られる。「My husbands' grandmother gave him his grandfather's truck」は、「I wanted to put in my name」、「and paid the property tax」、および「and got insurance for the truck」という表現によって詳述される「having unpaid fines on his license, he was not able to get the truck put in his name」によって詳述される「She signed the title over but due to my husband」という表現によって詳述される。
回答の選択は文脈に依存する。修辞構造は、「公式の(official)」、「政治的に正しい(politically correct)」テンプレートベースの回答と、「実際の(actual)」、「未処理の(raw)」、「現場からの報告(reports from the field)」または「論争の的となる(controversial)」回答とを区別することを可能にする(図9および図10を参照されたい)。時として、質問自体は、どのカテゴリの回答が期待されているかについてのヒントを与えることができる。質問が、第2の意味を持たない類事実または定義的性質をもつ質問として策定されている場合、第1のカテゴリーの回答が適している。他の場合には、質問が、「それが実際に何であるかを私に伝える」という意味を有する場合、第2のカテゴリが適している。一般に、質問から修辞構造を抽出した後、同様の修辞構造、一致した修辞構造、または補足的な修辞構造を有するであろう適切な回答を選択することはより容易である。
修辞学的分類アプリケーション102は、コミュニケーション用談話ツリーを作成し、分析し、比較することができる。コミュニケーション用談話ツリーは、修辞情報を発話動作構造と組合わせるように設計されている。CDTは、コミュニケーション行動についての表現でラベル付けされた円弧を含む。コミュニケーション行動を組合わせることにより、CDTは、RST関係およびコミュニケーション行動のモデリングを可能にする。CDTはパース交錯の縮図である。Galitsky、B. Ilvovsky、D. Kuznetsov SOによる「Rhetoric Map of an Answer to Compound Queries Knowledge Trail Inc. ACL 2015,681-686(Galitsky(2015))を参照されたい。パース交錯は、センテンスについてのパースツリーを1つのグラフにおけるセンテンスの単語と部分との談話レベル関係と組合わせたものである。発話動作を識別するラベルを組込むことにより、コミュニケーション用談話ツリーの学習が、基本談話単位(EDU)の構文および適正な修辞関係よりもより豊富な特徴セットにわたって実行可能となる。
図11から分かるように、CDTの非終端ノードは修辞関係であり、終端ノードは、これらの関係の主題である基本談話単位(フレーズ、センテンスフラグメント)である。CDTのいくつかの円弧は、行動者であるエージェント、およびこれらの行動の主題(やり取りされていること)を含むコミュニケーション行動についての表現でラベル付けされている。たとえば、(左側の)詳細関係についての核ノードは、say(Dutch, evidence)でラベル付けされており、衛星は、responsible(rebels, shooting down)でラベル付けされている。これらのラベルは、EDUの主題がevidence(証拠)およびshooting down(撃墜)であることを表すように意図されたものではなく、このCDTと他のものとの間の類似性を見出す目的でこのCDTを他のものと一致させるように意図されている。この場合、コミュニケーション用談話の情報を提供するのではなく修辞関係によってこれらのコミュニケーション行動を単にリンクさせることは、あまりに制限され過ぎていて、やり取りされている物およびその方法についての構造を表わすことができない。同じ修辞関係または調整された修辞関係を有するべきというRRペアについての要件は弱すぎるため、ノード同士を一致させることに加えて円弧に関するCDTラベル同士を合致させることが必要となる。
図13は、一局面に従った、第3のエージェントの請求についてのコミュニケーション用談話ツリーを示す。図13は、以下のテキストを表わすコミュニケーション用談話ツリー1300を示す。「Rebels, the self-proclaimed Donetsk People's Republic, deny that they controlled the territory from which the missile was allegedly fired. It became possible only after three months after the tragedy to say if rebels controlled one or another town.(反乱分子である自称ドニエツク人民共和国は、彼らが、ミサイルが発射されたと主張されている領域を制圧していたことを否定している。反乱分子が或る町または別の町を制圧していたかどうかは、悲劇の後に3か月経った後にしか発表することができなかった。)」
コミュニケーション用談話ツリー1100〜1300から分かるように、応答は任意ではない。応答は、元のテキストと同じエンティティについて述べている。たとえば、コミュニケーション用談話ツリー1200および1300はコミュニケーション用談話ツリー1100に関係している。応答は、これらのエンティティについての、かつこれらのエンティティの行動についての、推定および感情との不合致を裏づけしている。
抽象的な構造同士の間の類似性を演算するために、2つのアプローチがしばしば用いられる。(1)これらの構造を数値空間で表わすとともに類似性を数として表す(統計学習アプローチ);または、(2)数値空間ではなくツリーおよびグラフなどの構造表現を用いて、最大の共通サブ構造として類似性を表現する。最大の共通サブ構造として類似性を表わすことは一般化と称される。
要求・応答ペアを表現することは、或るペアに基づいた分類ベースの動作を促進する。一例においては、要求・応答ペアはパース交錯として表わすことができる。パース交錯は、1つのグラフにおけるセンテンスの単語と部分との間の談話・レベル関係を用いて、2つ以上のセンテンスについてのパースツリーを表わしたものである。Galitsky(2015)を参照されたい。質問と回答との間の話題の類似性は、パース交錯の共通のサブグラフとして表わすことができる。共通のグラフノードの数が多ければ多いほど、類似性は高くなる。
応答1402が表わす応答は以下のとおりである。「Marital therapists advise on dealing with a child being born from an affair as follows. One option is for the husband to avoid contact but just have the basic legal and financial commitments. Another option is to have the wife fully involved and have the baby fully integrated into the family just like a child from a previous marriage.(結婚に関するセラピストは、ある情事から生まれてきた子供への対処について以下のように助言しています。1つのオプションは、夫との接触を避けて、基本的な法的および財政的義務だけを果たさせることです。別のオプションは、妻に十分に関与させて、赤ん坊を前の結婚からできた子供のように家族に完全に溶け込ませることです)」。
2つのコミュニケーション行動A1とA2との間の類似性は、A1とA2との間で共通である特徴を所有する抽象動詞として規定される。2つの動詞の類似性を抽象動詞のような構造として定義することにより、修辞学的合致の評価などの帰納的学習タスクがサポートされる。一例においては、agree(合致する)およびdisagree(合致しない)という共通の2つの動詞間の類似性を以下のように一般化することができる。agree ^ disagree = verb(Interlocutor, Proposed_action, Speaker)。この場合、Interlocutor(対話)は、Proposed_actionをSpeaker(話し手)に提案した人であって、この人に対してSpeakerが自身の応答を伝えている。さらに、proposed_actionは、要求または提案を受諾するかまたは拒絶する場合にSpeakerが実行するであろう行動であり、Speakerは、特定の行動が提案された対象の人であって、なされた要求または提案に応える人である。
談話ツリー同士の間のいくつかの関係は一般化することができ、同じタイプの関係(対照などの表示関係、条件などの主題関係、およびリストなどの多核の関係)を表わす円弧などは一般化することができる。核または核によって示される状況は、「N」によって示される。衛星または衛星によって示される状況は、「S」によって示される。「W」は書き手を示す。「R」は読み手(聞き手)を示す。状況は、提案、完了した行動または進行中の行動、ならびにコミュニケーション行動および状態(beliefs(信念)、desires(要望)、approve(承認する)、explain(説明する)、reconcile(和解させる)などを含む)である。上述のパラメータによる2つのRST関係の一般化は以下のように表わされる:
rst1(N1,S1,W1,R1) ^ rst2(N2,S2,W2,R2)=
(rst1 ^ rst2)(N1 ^ N2,S1 ^ S2,W1 ^ W2,R1 ^ R2).
N1、S1、W1、R1におけるテキストはフレーズとして一般化される。たとえば、rst1 ^ rst2は以下のように一般化することができる。(1)relation_type(rst1)!= relation_type(rst2)である場合、一般化は空である。(2)その他の場合には、修辞関係のシグネチャがセンテンスとして一般化される。
Iruskieta、Mikel、Iria da CunhaおよびMaite Taboadaによる「A qualitative comparison method for rhetorical structures: identifying different discourse structures in multilingual corpora」(Lang Resources & Evaluation. June 2015, Volume 49, Issue 2)を参照されたい。
図15は、一局面に従った、コミュニケーション用談話ツリーを構築するための例示的なプロセスを示す。修辞学的分類アプリケーション102はプロセス1500を実現することができる。上述のように、コミュニケーション用談話ツリーは改善された検索エンジン結果を可能にする。
第1のフラグメントである動詞「deny」の場合、修辞学的分類アプリケーション102は、フレームのリスト、または、「deny」に一致する動詞についての動詞シグネチャにアクセスする。リストは「NP V NP to be NP」、「NP V that S」、および「NP V NP」である。
(1)第2のツリーからの主題付きの別のコミュニケーション行動に対する、第1のツリーからの主題付きの1つのコミュニケーション行動(コミュニケーション行動の円弧は用いられていない)。
CDTが構築されると、テキストにおける議論を識別するために、修辞学的分類アプリケーション102は、肯定的なクラスについてのCDTと比較された類似性を演算し、それがその否定的なクラスについてのCDTのセットに達するほどに低いことを検証する。CDT間の類似性は最大共通サブCDTによって規定される。
この定義は、「より大きな」CDT G1から「より小さな」CDT G2に至る場合に、一致した頂点同士のラベルの類似性(「弱まり」)の計算を考慮に入れている。
この条件は、類似性の基準を導入するものであって、クラスに割り当てられるようにするために、未知のCDT Uと肯定的なクラスから最も近接しているCDTとの間の類似性が、Uと各々の否定的な例との間の類似性よりも高くなるはずであることを述べている。条件2は、肯定的な例R+が存在しており、このため、するR−がない場合には、U*R+μR−を有すること、すなわち、肯定的な例のこの一般化に対する反例が存在しないこと、を示唆している。
ストリング、パースツリーおよびパース交錯についてのツリーカーネル学習は、最近になって確立された研究分野である。パースツリーカーネルは、2つのインスタンス間の談話類似性の基準として共通のサブツリーの数をカウントする。ツリーカーネルはJoty、ShafiqおよびA. MoschittiによりDTに関して規定された「Discriminative Reranking of Discourse Parses Using Tree Kernels」(Proceedings of EMNLP; 2014)である。さらに、Wang、W., Su, J., & Tan, C. L.(2010)による「Kernel Based Discourse Relation Recognition with Temporal Ordering Information」(In Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics)も参照されたい。(談話関係認識のためにツリーカーネルの特別な形式を使用している)。交錯カーネルは、コミュニケーション行動についての情報によってDTカーネルを増強することによって、CDTに関して規定される。
V(T)=(タイプ1のサブツリーの#,…,タイプIのサブツリーの#,…,タイプnのサブツリーの#)。この結果、異なるサブツリーの数がそのサイズでは指数関数的になるので、次元性が非常に高くなる。したがって、特徴ベクトル
K(CDT1,CDT2)=<V(CDT1),V(CDT2)>=ΣiV(CDT1)[i],V(CDT2)[i]=Σn1Σn2 Σi Ii(n1)*Ii(n2)
この場合、n1∈N1およびn2∈N2であり、N1およびN2は、それぞれ、CDT1およびCDT2におけるすべてのノードのセットである。
Ii(n)={タイプiのサブツリーがノードにおけるルートで起こる場合には1であり、他の場合には0である}。K(CDT1,CDT2)は、ツリー構造に対する畳み込みカーネルのインスタンスであり(CollinsおよびDuffy;2002年)、回帰的定義によって演算することができる。
ここで、n1およびn2に同じPOSタグが割り当てられるかまたはそれらの子供が異なるサブツリーである場合にはΔ(n1,n2)=0となる。
その他の場合、以下のとおりである。
上述したように、ユーザは、機械学習モデルを操作しているコンピューティングシステムによってなされる判断の説明を望むことが多い。機械学習モデルに関して、しばしば、最良の分類精度は、典型的には、サポートベクターマシン、ニューラルネットワークもしくはランダムフォレストまたはこれらのすべての複雑な集合などのブラックボックス機械学習モデルによって達成される。これらのシステムは、ブラックボックスと称され、それらの欠点は、それらの内部作業が本当に理解するのが困難であるため、しばしば引用される。それらは通常、それらがある判断または予測を行った理由の明確な説明を提供せず、代わりに、予測に関連付けられる確率を出力するだけである。一方、予測が理解しやすく解釈しやすい機械学習方法は、予測能力が限られている(機能的推理、線形回帰、単一の決定木)か、または明示的なグラフィカルモデルのように、柔軟性がなく計算が煩雑であることがしばしばである。これらの方法は、通常、トレーニングするのに必要とするデータがより少ない。
キーワードのみに依存することにより、キーワード規則を用いることは、暗黙の説明要求を検出するには不十分である。したがって、適切なトレーニングデータセットを用いた機械学習アプローチが有益である。トレーニングセットは、説明要求を伴うテキストと、それを含まないテキストとを含む。説明要求が明示的に言及されていない場合、談話レベルの特徴が有用である。したがって、さまざまな局面は、コミュニケーション用談話ツリーを、感情的な立論に関連付けられる談話特徴を表す手段として、用いる。
図24は、一局面による、テキストにおいて説明の要求の存在を判断するために分類モデルをトレーニングするためのトレーニングデータを生成するために用いられる例示的なプロセスを示す。トレーニングは、コミュニケーション用談話ツリーが別のコミュニケーション用談話ツリーと最大数の類似性を有することに基づくことができる。各トレーニングデータセットは、トレーニングペアのセットを含む。トレーニングデータ125は、肯定的なデータセットに説明の要求を含むコミュニケーション用談話ツリーと、否定的なデータセットに説明の要求を含まないコミュニケーション用談話ツリーとを含む。
このデータセットの目的は、著者が(顧客として)正しいこと、および著者の対抗者(企業)が間違っていることを示すために、あらゆる手段を用いることによって、著者が自分の要点を伝えるのに最善を尽くすテキストを得ることである(Galitsky et al 2009)。苦情者は、金融サービスで遭遇した問題、この問題が顧客サポート要員とやりとりされた際の明瞭さおよび透明性の欠如、ならびに彼らがその問題をどのように解決しようと試みたかを記述する、感情的になった書き手である。生の苦情が、過去数年にわたって提出された多数の銀行について収集される。400の苦情は、認識される苦情の有効性、適切な立論、検出可能な誤表現、および企業の判断に関する説明の要求が発生したかどうかに関して、手動でタグ付けされる。苦情によって判定すると、大部分の苦情者は、サービスから期待したものと実際に受け取ったものとの間の大きなずれ、このずれがどのように説明されたのか、および問題が顧客サポートによってどのように伝えられたか、のために、本当に困った状態にある。大部分の苦情の著者らは、無能力、欠陥のあるポリシー、無視、常識の欠如、企業の判断の背後にある理由を理解できないこと、顧客ニーズに対する無関心、および顧客サービス要員からの誤まった表現を報告している。著者はしばしば混乱し、企業の説明を探し、他のユーザからの推奨を求め、特定の金融サービスを回避することを他のユーザに忠告する。苦情の焦点は、提議者が正しく、相手が間違っているという証明、企業がある態様で振る舞うよう判断する理由に対する提案された説明、解決提案、および所望の結果である。
発明者らは、説明要求検出のためのアルゴリズムをいったん開発したため、それをトレーニングし、それをテストし、その結果がドメインにわたってどのくらい一貫性があるかを検証することを望む。我々はまた、異なる複雑さの事例に対して認識精度がどのように変化するかを試験する。
図26は、上記局面のうちの1つを実現するための分散型システム2600を示す簡略図である。例示された局面においては、分散型システム2600は、1つ以上のネットワーク2610を介して、ウェブブラウザ、プロプライエタリクライアント(たとえばオラクルフォーム)などのクライアントアプリケーションを実行して動作させるように構成される1つ以上のクライアントコンピューティングデバイス2602、2604、2606および2608を含む。サーバ2612は、ネットワーク2610を介してリモートクライアントコンピューティングデバイス2602、2604、2606および2608と通信可能に結合されてもよい。
Claims (20)
- テキストにおいて説明の要求を検出するための方法であって、
フラグメントを含むテキストにアクセスすることと、
前記テキストのサブセットから談話ツリーを作成することとを備え、前記談話ツリーは複数のノードを含み、各非終端ノードは、前記フラグメントのうちの2つの間の修辞関係を表し、前記談話ツリーの前記ノードの各終端ノードは前記フラグメントのうちの1つに関連付けられ、前記方法はさらに、
動詞を有する各フラグメントを動詞シグネチャにマッチングすることによって、前記テキストの前記サブセットを表現するコミュニケーション用談話ツリーを形成することと、
説明の要求を検出するようにトレーニングされた分類モデルを前記コミュニケーション用談話ツリーに適用することによって、前記テキストの前記サブセットが説明の要求を含むことを識別することとを備える、テキストにおいて説明の要求を検出するための方法。 - 前記マッチングすることは、
複数の動詞シグネチャにアクセスすることを含み、各動詞シグネチャは、それぞれのフラグメントの動詞および一連の主題役割を含み、主題役割は、前記動詞と関連する単語との間の関係を記述し、前記マッチングすることはさらに、
前記複数の動詞シグネチャの各動詞シグネチャについて、それぞれのフラグメントにおける単語の役割に一致する前記シグネチャの複数の主題役割を判断することと、
前記複数の動詞シグネチャから、特定の動詞シグネチャが最大数の一致を含むことに基づいて、前記特定の動詞シグネチャを選択することと、
前記特定の動詞シグネチャを前記フラグメントに関連付けることとを含む、請求項1に記載の方法。 - 前記複数の動詞シグネチャの各動詞シグネチャは、(i)副詞、(ii)名詞フレーズ、または(iii)名詞のうちの1つを含み、前記特定の動詞シグネチャを前記フラグメントと関連付けることは、さらに、
前記特定の動詞シグネチャにおいて複数の主題役割の各々を識別することと、
前記特定の動詞シグネチャにおける前記複数の主題役割の各々について、前記フラグメント内の対応する単語を前記主題役割にマッチングすることとを含む、請求項2に記載の方法。 - (i)前記分類モデルは、ツリーカーネル学習を伴うサポートベクターマシンであるか、または(ii)前記分類モデルは、最大共通サブツリーの最近傍学習を用いる、請求項2に記載の方法。
- 前記分類モデルを前記テキストの前記サブセットに適用することは、さらに、
前記コミュニケーション用談話ツリーとコミュニケーション用談話ツリーのトレーニングセットからの1つ以上のコミュニケーション用談話ツリーとの間の類似性を判断することと、
前記1つ以上のコミュニケーション用談話ツリーから、追加のコミュニケーション用談話ツリーが前記コミュニケーション用談話ツリーと最大数の類似性を有することに基づいて、前記追加のコミュニケーション用談話ツリーを選択することと、
分類モデルを前記コミュニケーション用談話ツリーに適用することにより、前記コミュニケーション用談話ツリーが肯定的なセットからであるか否定的なセットからであるかを識別することとを含み、前記肯定的なセットは、説明の要求を含むテキストを表すコミュニケーション用談話ツリーを含み、前記否定的なセットは、説明の要求のないテキストを表すコミュニケーション用談話ツリーを含み、前記分類モデルを前記テキストの前記サブセットに適用することはさらに、
前記識別することに基づいて、前記テキストが説明の要求を含むかどうかを判断することを含む、請求項1に記載の方法。 - 前記テキストにアクセスすることは、ユーザデバイスからテキストを受信することを含み、前記方法は、さらに、前記判断された説明の要求に基づいて応答を調整することと、前記調整された応答をユーザデバイスに与えることとを備える、請求項1に記載の方法。
- 前記分類モデルを前記テキストの前記サブセットに適用することは、さらに、
前記コミュニケーション用談話ツリーとコミュニケーション用談話ツリーのトレーニングセットからの1つ以上のコミュニケーション用談話ツリーとの間の類似性を判断することと、
前記1つ以上のコミュニケーション用談話ツリーから、追加のコミュニケーション用談話ツリーが前記コミュニケーション用談話ツリーと最大数の類似性を有することに基づいて、前記追加のコミュニケーション用談話ツリーを選択することと、
前記追加のコミュニケーション用談話ツリーが肯定的なセットからであるかまたは否定的なセットからであるかを識別することとを含み、前記肯定的なセットは説明の要求を含むテキストと関連付けられ、前記否定的なセットは説明の要求を含まないテキストと関連付けられ、前記分類モデルを前記テキストの前記サブセットに適用することは、さらに、
前記識別することに基づいて、前記テキストが説明の要求を含むかどうかを判断することを含む、請求項1に記載の方法。 - 前記分類モデルのトレーニングは、
コミュニケーション用談話ツリーおよび説明の要求の予想強度を各々が含むトレーニングペアのセットのうち1つを前記分類モデルに与えることと、
前記分類モデルから説明の要求の分類強度を受け取ることと、
前記予想強度と前記分類強度との差を計算することによって損失関数を計算することと、
前記分類モデルの内部パラメータを調整して前記損失関数を最小化することとを反復的に行うことによって行われる、請求項1に記載の方法。 - トレーニングデータセットを構築する方法であって、
フラグメントを含むテキストにアクセスすることと、
前記テキストから談話ツリーを作成することとを備え、前記談話ツリーは複数のノードを含み、各非終端ノードは、前記フラグメントのうちの2つの間の修辞関係を表し、前記談話ツリーの前記ノードの各終端ノードは前記フラグメントのうちの1つに関連付けられ、前記方法はさらに、
動詞を有する各フラグメントを動詞シグネチャにマッチングし、それによって、コミュニケーション用談話ツリーを作成することと、
肯定的なセットからの肯定的なコミュニケーション用談話ツリーおよび否定的なセットからの否定的なコミュニケーション用談話ツリーにアクセスすることと、
分類モデルを前記コミュニケーション用談話ツリーに適用することにより、前記コミュニケーション用談話ツリーが肯定的なセットからであるかまたは否定的なセットからであるかを識別することとを備え、前記肯定的なセットは、説明の要求を含むテキストを表すコミュニケーション用談話ツリーを含み、前記否定的なセットは、説明の要求のないテキストを表すコミュニケーション用談話ツリーを含み、前記方法はさらに、
前記識別することに基づいて、前記肯定的なトレーニングセットまたは前記否定的なトレーニングセットのいずれかに前記コミュニケーション用談話ツリーを追加することを備える、トレーニングデータセットを構築する方法。 - 前記コミュニケーション用談話ツリーを作成することは、前記サブセットから談話ツリーを判断することを含み、前記談話ツリーは複数のノードを含み、各非終端ノードは前記フラグメントのうちの2つの間の修辞関係を表し、前記談話ツリーの前記ノードの各終端ノードは前記フラグメントのうちの1つに関連付けられ、前記コミュニケーション用談話ツリーを作成することはさらに、動詞を有する各フラグメントを動詞シグネチャにマッチングすることによって、前記談話ツリーからコミュニケーション用談話ツリーを形成することを含む、請求項9に記載の方法。
- 前記マッチングすることは、
複数の動詞シグネチャにアクセスすることを含み、各動詞シグネチャは、それぞれのフラグメントの動詞および一連の主題役割を含み、主題役割は、前記動詞と関連する単語との間の関係を記述し、前記マッチングすることはさらに、
前記複数の動詞シグネチャの各動詞シグネチャについて、それぞれのフラグメントにおける単語の役割に一致する前記シグネチャの複数の主題役割を判断することと、
前記複数の動詞シグネチャから、特定の動詞シグネチャが最大数の一致を含むことに基づいて、前記特定の動詞シグネチャを選択することと、
前記特定の動詞シグネチャを前記フラグメントに関連付けることとを含む、請求項9に記載の方法。 - 前記分類モデルをトレーニングすることをさらに備え、前記分類モデルをトレーニングすることは、
コミュニケーション用談話ツリーおよび説明の要求の予想強度を各々が含むトレーニングペアのセットのうち1つを前記分類モデルに与えることと、
前記分類モデルから説明の要求の分類強度を受け取ることと、
前記予想強度と前記分類強度との差を計算することによって損失関数を計算することと、
前記分類モデルの内部パラメータを調整して前記損失関数を最小化することとを反復的に行うことによって行われる、請求項9に記載の方法。 - さらに、
ユーザデバイスからの追加のテキストにアクセスすることと、
前記追加のテキストを表すコミュニケーション用談話ツリーを形成することと、
前記トレーニングされた分類モデルを前記コミュニケーション用談話ツリーに適用することによって、追加のテキストが説明の要求を含むことを識別することとを備える、請求項12に記載の方法。 - システムであって、
非一時的コンピュータ実行可能プログラム命令を格納するコンピュータ読取可能媒体と、
前記非一時的コンピュータ実行可能プログラム命令を実行するために前記コンピュータ読取可能媒体に通信可能に結合される処理装置とを備え、前記非一時的コンピュータ実行可能プログラム命令を実行することは、前記処理装置を、
フラグメントを含むテキストにアクセスすることと、
前記テキストのサブセットから談話ツリーを作成することとを含む動作を実行させるよう構成し、前記談話ツリーは複数のノードを含み、各非終端ノードは、前記フラグメントのうちの2つの間の修辞関係を表し、前記談話ツリーの前記ノードの各終端ノードは前記フラグメントのうちの1つに関連付けられ、前記非一時的コンピュータ実行可能プログラム命令を実行することは、さらに、前記処理装置を、
動詞を有する各フラグメントを動詞シグネチャにマッチングすることによって、前記テキストの前記サブセットを表現するコミュニケーション用談話ツリーを形成することと、
説明の要求を検出するようにトレーニングされた分類モデルを前記コミュニケーション用談話ツリーに適用することによって、前記テキストの前記サブセットが説明の要求を含むことを識別することとを含む動作を実行させるよう構成する、システム。 - 前記マッチングすることは、
複数の動詞シグネチャにアクセスすることを含み、各動詞シグネチャは、それぞれのフラグメントの動詞および一連の主題役割を含み、主題役割は、前記動詞と関連する単語との間の関係を記述し、前記マッチングすることはさらに、
前記複数の動詞シグネチャの各動詞シグネチャについて、それぞれのフラグメントにおける単語の役割に一致する前記シグネチャの複数の主題役割を判断することと、
前記複数の動詞シグネチャから、特定の動詞シグネチャが最大数の一致を含むことに基づいて、前記特定の動詞シグネチャを選択することと、
前記特定の動詞シグネチャを前記フラグメントに関連付けることとを含む、請求項14に記載のシステム。 - 前記複数の動詞シグネチャの各動詞シグネチャは、(i)副詞、(ii)名詞フレーズ、または(iii)名詞のうちの1つを含み、前記特定の動詞シグネチャを前記フラグメントと関連付けることは、さらに、
前記特定の動詞シグネチャにおいて複数の主題役割の各々を識別することと、
前記特定の動詞シグネチャにおける前記複数の主題役割の各々について、前記フラグメント内の対応する単語を前記主題役割にマッチングすることとを含む、請求項15に記載のシステム。 - (i)前記分類モデルは、ツリーカーネル学習を伴うサポートベクターマシンであるか、または(ii)前記分類モデルは、最大共通サブツリーの最近傍学習を用いる、請求項14に記載のシステム。
- 前記分類モデルを前記テキストの前記サブセットに適用することは、さらに、
前記コミュニケーション用談話ツリーとコミュニケーション用談話ツリーのトレーニングセットからの1つ以上のコミュニケーション用談話ツリーとの間の類似性を判断することと、
前記1つ以上のコミュニケーション用談話ツリーから、追加のコミュニケーション用談話ツリーが前記コミュニケーション用談話ツリーと最大数の類似性を有することに基づいて、前記追加のコミュニケーション用談話ツリーを選択することと、
分類モデルを前記コミュニケーション用談話ツリーに適用することにより、前記コミュニケーション用談話ツリーが肯定的なセットからであるか否定的なセットからであるかを識別することとを含み、前記肯定的なセットは、説明の要求を含むテキストを表すコミュニケーション用談話ツリーを含み、前記否定的なセットは、説明の要求のないテキストを表すコミュニケーション用談話ツリーを含み、前記分類モデルを前記テキストの前記サブセットに適用することはさらに、
前記識別することに基づいて、前記テキストが説明の要求を含むかどうかを判断することを含む、請求項14に記載のシステム。 - 前記テキストにアクセスすることは、ユーザデバイスからテキストを受信することを含み、前記動作は、さらに、前記判断された説明の要求に基づいて応答を調整することと、前記調整された応答をユーザデバイスに与えることとを含む、請求項14に記載のシステム。
- 前記分類モデルを前記テキストの前記サブセットに適用することは、さらに、
前記コミュニケーション用談話ツリーとコミュニケーション用談話ツリーのトレーニングセットからの1つ以上のコミュニケーション用談話ツリーとの間の類似性を判断することと、
前記1つ以上のコミュニケーション用談話ツリーから、追加のコミュニケーション用談話ツリーが前記コミュニケーション用談話ツリーと最大数の類似性を有することに基づいて、前記追加のコミュニケーション用談話ツリーを選択することと、
前記追加のコミュニケーション用談話ツリーが肯定的なセットからであるかまたは否定的なセットからであるかを識別することとを含み、前記肯定的なセットは説明の要求を含むテキストと関連付けられ、前記否定的なセットは説明の要求を含まないテキストと関連付けられ、前記分類モデルを前記テキストの前記サブセットに適用することは、さらに、
前記識別することに基づいて、前記テキストが説明の要求を含むかどうかを判断することを含む、請求項14に記載のシステム。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2024028891A JP2024081641A (ja) | 2018-01-30 | 2024-02-28 | コミュニケーション用談話ツリーを用いる、説明の要求の検出 |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201862624001P | 2018-01-30 | 2018-01-30 | |
US62/624,001 | 2018-01-30 | ||
US201862646711P | 2018-03-22 | 2018-03-22 | |
US62/646,711 | 2018-03-22 | ||
PCT/US2019/015696 WO2019152426A1 (en) | 2018-01-30 | 2019-01-29 | Using communicative discourse trees to detect a request for an explanation |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2024028891A Division JP2024081641A (ja) | 2018-01-30 | 2024-02-28 | コミュニケーション用談話ツリーを用いる、説明の要求の検出 |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2021512444A true JP2021512444A (ja) | 2021-05-13 |
JPWO2019152426A5 JPWO2019152426A5 (ja) | 2022-01-24 |
JP7447019B2 JP7447019B2 (ja) | 2024-03-11 |
Family
ID=65409616
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020562098A Active JP7447019B2 (ja) | 2018-01-30 | 2019-01-29 | コミュニケーション用談話ツリーを用いる、説明の要求の検出 |
JP2024028891A Pending JP2024081641A (ja) | 2018-01-30 | 2024-02-28 | コミュニケーション用談話ツリーを用いる、説明の要求の検出 |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2024028891A Pending JP2024081641A (ja) | 2018-01-30 | 2024-02-28 | コミュニケーション用談話ツリーを用いる、説明の要求の検出 |
Country Status (5)
Country | Link |
---|---|
US (2) | US10949623B2 (ja) |
EP (1) | EP3746916A1 (ja) |
JP (2) | JP7447019B2 (ja) |
CN (1) | CN111670435B (ja) |
WO (1) | WO2019152426A1 (ja) |
Families Citing this family (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11182412B2 (en) | 2017-09-27 | 2021-11-23 | Oracle International Corporation | Search indexing using discourse trees |
US10812417B2 (en) * | 2018-01-09 | 2020-10-20 | International Business Machines Corporation | Auto-incorrect in chatbot human-machine interfaces |
EP3746916A1 (en) * | 2018-01-30 | 2020-12-09 | Oracle International Corporation | Using communicative discourse trees to detect a request for an explanation |
US10936998B2 (en) * | 2018-03-29 | 2021-03-02 | Adp, Llc | Metadata-based chat wizard |
US10893012B2 (en) * | 2018-04-24 | 2021-01-12 | Adp, Llc | Context aware metadata-based chat wizard |
US20220215293A1 (en) * | 2018-08-01 | 2022-07-07 | Intuit Inc. | Method to identify incorrect account numbers |
US11669767B2 (en) * | 2019-08-15 | 2023-06-06 | Salesforce, Inc. | Automatic generation of an explanation, based on data lineage and user feedback, of a prediction produced by a machine learning system |
US20200151583A1 (en) * | 2018-11-13 | 2020-05-14 | Capital One Services, Llc | Attentive dialogue customer service system and method |
US11507787B2 (en) * | 2018-12-12 | 2022-11-22 | International Business Machines Corporation | Model agnostic contrastive explanations for structured data |
US11270077B2 (en) * | 2019-05-13 | 2022-03-08 | International Business Machines Corporation | Routing text classifications within a cross-domain conversational service |
US10902854B1 (en) * | 2019-05-17 | 2021-01-26 | Eyeballs Financial, LLC | Systems and methods for generating responses to questions about user accounts |
US11741305B2 (en) | 2019-10-07 | 2023-08-29 | The Toronto-Dominion Bank | Systems and methods for automatically assessing fault in relation to motor vehicle collisions |
US11521065B2 (en) | 2020-02-06 | 2022-12-06 | International Business Machines Corporation | Generating explanations for context aware sequence-to-sequence models |
US11741308B2 (en) | 2020-05-14 | 2023-08-29 | Oracle International Corporation | Method and system for constructing data queries from conversational input |
US11487650B2 (en) * | 2020-05-22 | 2022-11-01 | International Business Machines Corporation | Diagnosing anomalies detected by black-box machine learning models |
US12106054B2 (en) * | 2020-10-12 | 2024-10-01 | Oracle International Corporation | Multi case-based reasoning by syntactic-semantic alignment and discourse analysis |
US20220121666A1 (en) * | 2020-10-20 | 2022-04-21 | Unisys Corporation | Creating a trained database |
US11620118B2 (en) * | 2021-02-12 | 2023-04-04 | Oracle International Corporation | Extraction from trees at scale |
US11270214B1 (en) | 2021-03-29 | 2022-03-08 | Isidore Samuel Sobkowski | Providing the basis for ethical AI through explanations by coupling non-interpretable and interpretable systems |
CN113076720B (zh) * | 2021-04-29 | 2022-01-28 | 新声科技(深圳)有限公司 | 长文本的分段方法及装置、存储介质、电子装置 |
CN113268579B (zh) * | 2021-06-24 | 2023-12-08 | 中国平安人寿保险股份有限公司 | 对话内容类别识别方法、装置、计算机设备及存储介质 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001523019A (ja) * | 1997-10-20 | 2001-11-20 | マイクロソフト コーポレイション | テキストの本文の談話構造の自動認識 |
Family Cites Families (61)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2696853B1 (fr) | 1992-10-12 | 1994-12-23 | Bull Sa | Procédé d'aide à l'optimisation d'une requête d'un système de gestion, de base de données relationnel et procédé d'analyse syntaxique en résultant. |
US8725493B2 (en) | 2004-01-06 | 2014-05-13 | Neuric Llc | Natural language parsing method to provide conceptual flow |
US6181909B1 (en) | 1997-07-22 | 2001-01-30 | Educational Testing Service | System and method for computer-based automatic essay scoring |
US20070294229A1 (en) | 1998-05-28 | 2007-12-20 | Q-Phrase Llc | Chat conversation methods traversing a provisional scaffold of meanings |
US7152031B1 (en) | 2000-02-25 | 2006-12-19 | Novell, Inc. | Construction, manipulation, and comparison of a multi-dimensional semantic space |
JP2001167087A (ja) | 1999-12-14 | 2001-06-22 | Fujitsu Ltd | 構造化文書検索装置,構造化文書検索方法,構造化文書検索用プログラム記録媒体および構造化文書検索用インデックス作成方法 |
CN1465018A (zh) | 2000-05-11 | 2003-12-31 | 南加利福尼亚大学 | 机器翻译技术 |
US6731307B1 (en) | 2000-10-30 | 2004-05-04 | Koninklije Philips Electronics N.V. | User interface/entertainment device that simulates personal interaction and responds to user's mental state and/or personality |
US7519529B1 (en) | 2001-06-29 | 2009-04-14 | Microsoft Corporation | System and methods for inferring informational goals and preferred level of detail of results in response to questions posed to an automated information-retrieval or question-answering service |
US7127208B2 (en) | 2002-01-23 | 2006-10-24 | Educational Testing Service | Automated annotation |
US7305336B2 (en) | 2002-08-30 | 2007-12-04 | Fuji Xerox Co., Ltd. | System and method for summarization combining natural language generation with structural analysis |
US20040148170A1 (en) | 2003-01-23 | 2004-07-29 | Alejandro Acero | Statistical classifiers for spoken language understanding and command/control scenarios |
US7610190B2 (en) | 2003-10-15 | 2009-10-27 | Fuji Xerox Co., Ltd. | Systems and methods for hybrid text summarization |
US9646107B2 (en) | 2004-05-28 | 2017-05-09 | Robert T. and Virginia T. Jenkins as Trustee of the Jenkins Family Trust | Method and/or system for simplifying tree expressions such as for query reduction |
US7698267B2 (en) | 2004-08-27 | 2010-04-13 | The Regents Of The University Of California | Searching digital information and databases |
US8700404B1 (en) | 2005-08-27 | 2014-04-15 | At&T Intellectual Property Ii, L.P. | System and method for using semantic and syntactic graphs for utterance classification |
US20070073533A1 (en) | 2005-09-23 | 2007-03-29 | Fuji Xerox Co., Ltd. | Systems and methods for structural indexing of natural language text |
US20070136284A1 (en) | 2005-12-12 | 2007-06-14 | Sbc Knowledge Ventures Lp | Method for constructing and repurposing rhetorical content |
US7840556B1 (en) | 2007-07-31 | 2010-11-23 | Hewlett-Packard Development Company, L.P. | Managing performance of a database query |
US7890539B2 (en) | 2007-10-10 | 2011-02-15 | Raytheon Bbn Technologies Corp. | Semantic matching using predicate-argument structure |
US8463594B2 (en) | 2008-03-21 | 2013-06-11 | Sauriel Llc | System and method for analyzing text using emotional intelligence factors |
US8874443B2 (en) * | 2008-08-27 | 2014-10-28 | Robert Bosch Gmbh | System and method for generating natural language phrases from user utterances in dialog systems |
US20100169359A1 (en) | 2008-12-30 | 2010-07-01 | Barrett Leslie A | System, Method, and Apparatus for Information Extraction of Textual Documents |
US8712759B2 (en) | 2009-11-13 | 2014-04-29 | Clausal Computing Oy | Specializing disambiguation of a natural language expression |
US20130046757A1 (en) | 2011-08-17 | 2013-02-21 | Microsoft Corporation | Indicating relationship closeness between subsnippets of a search result |
SG188994A1 (en) | 2011-10-20 | 2013-05-31 | Nec Corp | Textual entailment recognition apparatus, textual entailment recognition method, and computer-readable recording medium |
WO2013091075A1 (en) | 2011-12-20 | 2013-06-27 | Soschen Alona | Natural language processor |
US9336297B2 (en) | 2012-08-02 | 2016-05-10 | Paypal, Inc. | Content inversion for user searches and product recommendations systems and methods |
US20140122083A1 (en) | 2012-10-26 | 2014-05-01 | Duan Xiaojiang | Chatbot system and method with contextual input and output messages |
US9152623B2 (en) | 2012-11-02 | 2015-10-06 | Fido Labs, Inc. | Natural language processing system and method |
US9037464B1 (en) | 2013-01-15 | 2015-05-19 | Google Inc. | Computing numeric representations of words in a high-dimensional space |
WO2014182820A2 (en) | 2013-05-07 | 2014-11-13 | Haley Paul V | System for knowledge acquisition |
US9355372B2 (en) * | 2013-07-03 | 2016-05-31 | Thomson Reuters Global Resources | Method and system for simplifying implicit rhetorical relation prediction in large scale annotated corpus |
US9317260B2 (en) | 2013-08-09 | 2016-04-19 | Vmware, Inc. | Query-by-example in large-scale code repositories |
US9292490B2 (en) | 2013-08-16 | 2016-03-22 | International Business Machines Corporation | Unsupervised learning of deep patterns for semantic parsing |
CN104598445B (zh) | 2013-11-01 | 2019-05-10 | 腾讯科技(深圳)有限公司 | 自动问答系统和方法 |
US10019716B1 (en) | 2013-11-21 | 2018-07-10 | Google Llc | Method for feedback submission resolution |
US20150149461A1 (en) | 2013-11-24 | 2015-05-28 | Interstack, Inc | System and method for analyzing unstructured data on applications, devices or networks |
US9471874B2 (en) | 2013-12-07 | 2016-10-18 | International Business Machines Corporation | Mining forums for solutions to questions and scoring candidate answers |
CN105873753B (zh) | 2013-12-20 | 2018-12-14 | 艾利丹尼森公司 | 聚酯-三聚氰胺涂料和包括其的标签 |
US10664558B2 (en) | 2014-04-18 | 2020-05-26 | Arria Data2Text Limited | Method and apparatus for document planning |
US9582501B1 (en) | 2014-06-16 | 2017-02-28 | Yseop Sa | Techniques for automatic generation of natural language text |
EP3143248A4 (en) | 2014-07-11 | 2018-01-24 | Halliburton Energy Services, Inc. | Evaluation tool for concentric wellbore casings |
US9619513B2 (en) | 2014-07-29 | 2017-04-11 | International Business Machines Corporation | Changed answer notification in a question and answer system |
US20160055240A1 (en) | 2014-08-22 | 2016-02-25 | Microsoft Corporation | Orphaned utterance detection system and method |
US9559993B2 (en) | 2014-10-02 | 2017-01-31 | Oracle International Corporation | Virtual agent proxy in a real-time chat service |
US10019437B2 (en) | 2015-02-23 | 2018-07-10 | International Business Machines Corporation | Facilitating information extraction via semantic abstraction |
EP3341933A1 (en) | 2015-10-21 | 2018-07-04 | Google LLC | Parameter collection and automatic dialog generation in dialog systems |
WO2017112813A1 (en) | 2015-12-22 | 2017-06-29 | Sri International | Multi-lingual virtual personal assistant |
US11042702B2 (en) | 2016-02-04 | 2021-06-22 | International Business Machines Corporation | Solving textual logic problems using a statistical approach and natural language processing |
US20170286390A1 (en) | 2016-04-04 | 2017-10-05 | Contextors Ltd. | Dynamic and automatic generation of interactive text related objects |
CN106649768B (zh) | 2016-12-27 | 2021-03-16 | 北京百度网讯科技有限公司 | 基于深度问答的问答澄清方法和装置 |
CN106682194B (zh) | 2016-12-29 | 2020-05-22 | 北京百度网讯科技有限公司 | 基于深度问答的答案定位方法及装置 |
US10679011B2 (en) * | 2017-05-10 | 2020-06-09 | Oracle International Corporation | Enabling chatbots by detecting and supporting argumentation |
US10599885B2 (en) | 2017-05-10 | 2020-03-24 | Oracle International Corporation | Utilizing discourse structure of noisy user-generated content for chatbot learning |
US10839161B2 (en) | 2017-06-15 | 2020-11-17 | Oracle International Corporation | Tree kernel learning for text classification into classes of intent |
US10628528B2 (en) * | 2017-06-29 | 2020-04-21 | Robert Bosch Gmbh | System and method for domain-independent aspect level sentiment detection |
US10817578B2 (en) * | 2017-08-16 | 2020-10-27 | Wipro Limited | Method and system for providing context based adaptive response to user interactions |
US11182412B2 (en) | 2017-09-27 | 2021-11-23 | Oracle International Corporation | Search indexing using discourse trees |
US20190103111A1 (en) * | 2017-10-03 | 2019-04-04 | Rupert Labs Inc. ( DBA Passage AI) | Natural Language Processing Systems and Methods |
EP3746916A1 (en) * | 2018-01-30 | 2020-12-09 | Oracle International Corporation | Using communicative discourse trees to detect a request for an explanation |
-
2019
- 2019-01-29 EP EP19705043.8A patent/EP3746916A1/en active Pending
- 2019-01-29 US US16/260,930 patent/US10949623B2/en active Active
- 2019-01-29 JP JP2020562098A patent/JP7447019B2/ja active Active
- 2019-01-29 CN CN201980010702.9A patent/CN111670435B/zh active Active
- 2019-01-29 WO PCT/US2019/015696 patent/WO2019152426A1/en unknown
-
2021
- 2021-01-29 US US17/162,740 patent/US11694040B2/en active Active
-
2024
- 2024-02-28 JP JP2024028891A patent/JP2024081641A/ja active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001523019A (ja) * | 1997-10-20 | 2001-11-20 | マイクロソフト コーポレイション | テキストの本文の談話構造の自動認識 |
Non-Patent Citations (2)
Title |
---|
BORIS GALITSKY: "Discovering Rhetorical Agreement between a Request and Response[online]", DIALOGUE & DISCOURSE, vol. 8, no. 2, JPN6023003301, 15 December 2017 (2017-12-15), pages 167 - 205, ISSN: 0004977780 * |
林克彦 他3名: "修辞構造木から自動変換した談話依存構造木の性質について", 言語処理学会第21回年次大会発表論文集[ONLINE], JPN6023003302, 9 March 2015 (2015-03-09), JP, pages 369 - 372, ISSN: 0004977781 * |
Also Published As
Publication number | Publication date |
---|---|
US11694040B2 (en) | 2023-07-04 |
CN111670435A (zh) | 2020-09-15 |
US20190236134A1 (en) | 2019-08-01 |
JP7447019B2 (ja) | 2024-03-11 |
CN111670435B (zh) | 2024-08-06 |
JP2024081641A (ja) | 2024-06-18 |
US20210150153A1 (en) | 2021-05-20 |
WO2019152426A1 (en) | 2019-08-08 |
EP3746916A1 (en) | 2020-12-09 |
US10949623B2 (en) | 2021-03-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7086993B2 (ja) | コミュニケーション用談話ツリーの使用による修辞学的分析の可能化 | |
JP7447019B2 (ja) | コミュニケーション用談話ツリーを用いる、説明の要求の検出 | |
JP7531649B2 (ja) | 収束質問に対する回答を改善するための仮想談話ツリーの構築 | |
US11977568B2 (en) | Building dialogue structure by using communicative discourse trees | |
US11455494B2 (en) | Automated building of expanded datasets for training of autonomous agents | |
US20220253611A1 (en) | Techniques for maintaining rhetorical flow | |
US11914961B2 (en) | Relying on discourse trees to build ontologies | |
US11615145B2 (en) | Converting a document into a chatbot-accessible form via the use of communicative discourse trees | |
US20240119232A1 (en) | Relying on discourse trees to build ontologies | |
CN117015772A (zh) | 依赖于话语树以构建本体 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220113 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20220113 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20230123 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230131 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230428 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230808 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20231107 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20240130 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20240228 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7447019 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |