JP2021510880A - 画像における作物タイプ分類 - Google Patents
画像における作物タイプ分類 Download PDFInfo
- Publication number
- JP2021510880A JP2021510880A JP2020539853A JP2020539853A JP2021510880A JP 2021510880 A JP2021510880 A JP 2021510880A JP 2020539853 A JP2020539853 A JP 2020539853A JP 2020539853 A JP2020539853 A JP 2020539853A JP 2021510880 A JP2021510880 A JP 2021510880A
- Authority
- JP
- Japan
- Prior art keywords
- crop
- image
- images
- crop type
- data
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 claims description 69
- 238000010801 machine learning Methods 0.000 claims description 23
- 238000003860 storage Methods 0.000 claims description 23
- 238000013527 convolutional neural network Methods 0.000 claims description 10
- 230000004048 modification Effects 0.000 claims description 7
- 238000012986 modification Methods 0.000 claims description 7
- 238000007726 management method Methods 0.000 claims description 5
- 230000004044 response Effects 0.000 claims description 3
- 230000003595 spectral effect Effects 0.000 claims description 3
- 238000010586 diagram Methods 0.000 abstract description 5
- 238000001514 detection method Methods 0.000 description 38
- 230000008569 process Effects 0.000 description 22
- 238000012549 training Methods 0.000 description 21
- 238000001914 filtration Methods 0.000 description 15
- 230000007246 mechanism Effects 0.000 description 9
- 244000068988 Glycine max Species 0.000 description 6
- 235000010469 Glycine max Nutrition 0.000 description 6
- 240000008042 Zea mays Species 0.000 description 6
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 6
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 6
- 238000013145 classification model Methods 0.000 description 6
- 238000004891 communication Methods 0.000 description 6
- 235000005822 corn Nutrition 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 230000008859 change Effects 0.000 description 5
- 230000006870 function Effects 0.000 description 4
- 241000282412 Homo Species 0.000 description 3
- 238000010276 construction Methods 0.000 description 3
- 239000003337 fertilizer Substances 0.000 description 3
- 238000003306 harvesting Methods 0.000 description 3
- 238000012544 monitoring process Methods 0.000 description 3
- 235000021307 Triticum Nutrition 0.000 description 2
- 241000209140 Triticum Species 0.000 description 2
- 235000009754 Vitis X bourquina Nutrition 0.000 description 2
- 235000012333 Vitis X labruscana Nutrition 0.000 description 2
- 240000006365 Vitis vinifera Species 0.000 description 2
- 235000014787 Vitis vinifera Nutrition 0.000 description 2
- 239000003086 colorant Substances 0.000 description 2
- 238000012272 crop production Methods 0.000 description 2
- 238000013500 data storage Methods 0.000 description 2
- 201000010099 disease Diseases 0.000 description 2
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000002372 labelling Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000001932 seasonal effect Effects 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- 230000003442 weekly effect Effects 0.000 description 2
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 240000004050 Pentaglottis sempervirens Species 0.000 description 1
- 235000004522 Pentaglottis sempervirens Nutrition 0.000 description 1
- 241000209504 Poaceae Species 0.000 description 1
- 240000006394 Sorghum bicolor Species 0.000 description 1
- 235000011684 Sorghum saccharatum Nutrition 0.000 description 1
- 241000219094 Vitaceae Species 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000003190 augmentative effect Effects 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 235000013339 cereals Nutrition 0.000 description 1
- 238000000701 chemical imaging Methods 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000013480 data collection Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 235000013399 edible fruits Nutrition 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000013213 extrapolation Methods 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 235000021021 grapes Nutrition 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 235000021374 legumes Nutrition 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 230000033001 locomotion Effects 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 230000006855 networking Effects 0.000 description 1
- 235000019198 oils Nutrition 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- 230000029305 taxis Effects 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
- 238000001429 visible spectrum Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
- G06F18/241—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
- G06F18/2413—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches based on distances to training or reference patterns
- G06F18/24133—Distances to prototypes
- G06F18/24143—Distances to neighbourhood prototypes, e.g. restricted Coulomb energy networks [RCEN]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N20/00—Machine learning
- G06N20/20—Ensemble learning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N7/00—Computing arrangements based on specific mathematical models
- G06N7/01—Probabilistic graphical models, e.g. probabilistic networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/174—Segmentation; Edge detection involving the use of two or more images
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/70—Determining position or orientation of objects or cameras
- G06T7/77—Determining position or orientation of objects or cameras using statistical methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/20—Image preprocessing
- G06V10/30—Noise filtering
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/40—Extraction of image or video features
- G06V10/44—Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components
- G06V10/443—Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components by matching or filtering
- G06V10/449—Biologically inspired filters, e.g. difference of Gaussians [DoG] or Gabor filters
- G06V10/451—Biologically inspired filters, e.g. difference of Gaussians [DoG] or Gabor filters with interaction between the filter responses, e.g. cortical complex cells
- G06V10/454—Integrating the filters into a hierarchical structure, e.g. convolutional neural networks [CNN]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/764—Arrangements for image or video recognition or understanding using pattern recognition or machine learning using classification, e.g. of video objects
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/82—Arrangements for image or video recognition or understanding using pattern recognition or machine learning using neural networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/10—Terrestrial scenes
- G06V20/17—Terrestrial scenes taken from planes or by drones
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/10—Terrestrial scenes
- G06V20/188—Vegetation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
- G06Q50/02—Agriculture; Fishing; Forestry; Mining
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10024—Color image
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10032—Satellite or aerial image; Remote sensing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10032—Satellite or aerial image; Remote sensing
- G06T2207/10036—Multispectral image; Hyperspectral image
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10048—Infrared image
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20081—Training; Learning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20084—Artificial neural networks [ANN]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30181—Earth observation
- G06T2207/30188—Vegetation; Agriculture
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Evolutionary Computation (AREA)
- Artificial Intelligence (AREA)
- Multimedia (AREA)
- General Health & Medical Sciences (AREA)
- Health & Medical Sciences (AREA)
- Software Systems (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Computing Systems (AREA)
- Data Mining & Analysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Mathematical Physics (AREA)
- Molecular Biology (AREA)
- Biomedical Technology (AREA)
- Medical Informatics (AREA)
- Databases & Information Systems (AREA)
- Computational Linguistics (AREA)
- Biophysics (AREA)
- Remote Sensing (AREA)
- Biodiversity & Conservation Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Evolutionary Biology (AREA)
- Probability & Statistics with Applications (AREA)
- Mathematical Analysis (AREA)
- Computational Mathematics (AREA)
- Mathematical Optimization (AREA)
- Pure & Applied Mathematics (AREA)
- Algebra (AREA)
- Image Analysis (AREA)
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
- Astronomy & Astrophysics (AREA)
- Image Processing (AREA)
Abstract
Description
[0001] 本出願は、2018年1月23日に出願された米国仮特許出願第62/620,939号に対する優先権を主張し、その開示は、その全体が参照により本明細書に組み込まれる。
Claims (22)
- 地理的地域及び期間と関連付けられた複数の画像セットを取得することであって、前記複数の画像セットの各画像セットは、前記期間中の前記地理的地域のそれぞれの特定の部分を描写する多スペクトル及び時系列の画像を含む、取得することと、
前記複数の画像セットのうちのある画像セットと関連付けられた前記地理的地域の前記特定の部分内の特定の位置の各々で生育する1つ以上の作物タイプを予測することと、
前記それぞれの特定の位置に対して前記予測された1つ以上の作物タイプに基づいて、前記特定の位置の各々に対する作物タイプ分類を判定することと、
前記それぞれの特定の位置に対して判定された前記作物タイプ分類の表示がオーバーレイされた前記画像セットのうちの前記多スペクトル及び時系列の画像の少なくとも1つの画像を含む作物表示画像を生成することと、を含む方法。 - 前記特定の位置の各々で生育する前記1つ以上の作物タイプを予測することは、
前記特定の位置における作物の存在を予測することと、
前記特定の位置における前記作物の前記予測された存在に基づいて、前記地理的地域の前記特定の部分内の作物境界位置を判定することと、
前記判定された作物境界位置の各々内で生育する前記1つ以上の作物タイプを予測することと、を含む、請求項1に記載の方法。 - 前記特定の位置の各々に対する前記作物タイプ分類を判定することは、前記特定の位置の各々に対して、前記それぞれの特定の位置に対して予測された前記作物タイプから、優位な多数であると予測された作物タイプを選択することを含み、前記優位な多数であると予測された作物タイプは、前記作物タイプ分類である、請求項1に記載の方法。
- 前記特定の位置の各々に対する前記作物タイプ分類を判定することは、
前記特定の位置の各々に対して、前記優位な多数であると予測された作物タイプが存在しない場合、前記それぞれの特定の位置を複数のサブ特定の位置に分割し、かつ前記複数のサブ特定の位置の前記それぞれのサブ特定の位置の各々を、前記特定の位置に対して予測された前記作物タイプのそれぞれの作物タイプとして分類することを含む、請求項3に記載の方法。 - 前記それぞれの特定の位置に対して判定された前記作物タイプ分類に基づいて、前記特定の位置の各々に対して作物収量を推定することをさらに含む、請求項1に記載の方法。
- 前記それぞれの特定の位置に対して判定された前記作物タイプ分類に基づいて、前記特定の位置の各々に対して作物管理手法を決定することをさらに含む、請求項1に記載の方法。
- 前記特定の位置の各々に対して前記作物タイプ分類を判定することは、前記特定の位置の各々に対して、サブメートル地上分解能で前記作物タイプ分類を判定することを含む、請求項1に記載の方法。
- 前記特定の位置の各々で生育する前記1つ以上の作物タイプを予測することは、前記画像セットを1つ以上の機械学習システム又は畳み込みニューラルネットワーク(CNN)に適用することを含む、請求項1に記載の方法。
- 前記1つ以上の機械学習システム又はCNNは、グラウンドトゥルースデータにおける教師あり学習の後に、前記特定の位置の各々で生育する前記1つ以上の作物タイプを予測するように構成されている、請求項8に記載の方法。
- 前記グラウンドトゥルースデータは、政府の作物データ、公的に入手可能な作物データ、低地上分解能で識別された作物エリアを伴う画像、低地上分解能で識別された作物タイプを伴う画像、手動で識別された作物境界を伴う画像、手動で識別された作物境界及び作物タイプを伴う画像、作物調査データ、サンプリングされた作物データ、並びに農家のレポートのうちの1つ以上を含む、請求項9に記載の方法。
- 前記特定の位置の各々で生育する前記1つ以上の作物タイプを予測することは、前記特定の位置の各々に対して、前記それぞれの特定の位置と関連付けられた画素の経時変化について前記時系列の画像を分析することを含み、前記画素の特定の変化パターンは、少なくとも1つの作物タイプと関連付けられている、請求項1に記載の方法。
- ユーザによってアクセス可能なデバイスに前記作物表示画像を表示させることと、
前記ユーザから、前記それぞれの特定の位置に対して判定された前記作物タイプ分類の表示からの特定の表示の修正を受信することであって、前記修正は、前記特定の表示と関連付けられた前記特定の位置に対する前記作物タイプの手動の再分類を含む、受信することと、を含む、請求項1に記載の方法。 - 1つ以上のコンピュータ可読記憶媒体であって、装置の1つ以上のプロセッサによる実行に応答して、前記装置に
地理的地域及び期間と関連付けられた複数の画像セットを取得することであって、前記複数の画像セットの各画像セットは、前記期間中の前記地理的地域のそれぞれの特定の部分を描写する多スペクトル及び時系列の画像を含む、取得することと、
前記複数の画像セットのうちのある画像セットと関連付けられた前記地理的地域の前記特定の部分内の特定の位置の各々で生育する1つ以上の作物タイプを予測することと、
前記それぞれの特定の位置に対して前記予測された1つ以上の作物タイプに基づいて、前記特定の位置の各々に対する作物タイプ分類を判定することと、
前記それぞれの特定の位置に対して判定された前記作物タイプ分類の表示がオーバーレイされた前記画像セットのうちの前記多スペクトル及び時系列の画像の少なくとも1つの画像を含む作物表示画像を生成することと、を実行させる複数の命令を備える、コンピュータ可読記憶媒体。 - 前記特定の位置の各々で生育する前記1つ以上の作物タイプを予測することは、
前記特定の位置における作物の存在を予測することと、
前記特定の位置における前記作物の前記予測された存在に基づいて、前記地理的地域の前記特定の部分内の作物境界位置を判定することと、
前記判定された作物境界位置の各々の内で生育する前記1つ以上の作物タイプを予測することと、を含む、請求項13に記載のコンピュータ可読記憶媒体。 - 前記特定の位置の各々に対する前記作物タイプ分類を判定することは、前記特定の位置の各々に対して、前記それぞれの特定の位置に対して予測された前記作物タイプから、優位な多数であると予測された作物タイプを選択することを含み、前記優位な多数であると予測された作物タイプは、前記作物タイプ分類である、請求項13に記載のコンピュータ可読記憶媒体。
- 前記特定の位置の各々に対する前記作物タイプ分類を判定することは、
前記特定の位置の各々に対して、前記優位な多数であると予測された作物タイプが存在しない場合、前記それぞれの特定の位置を複数のサブ特定の位置に分割し、かつ前記複数のサブ特定の位置の前記それぞれのサブ特定の位置の各々を、前記特定の位置に対して予測された前記作物タイプのそれぞれの作物タイプとして分類することを含む、請求項13に記載のコンピュータ可読記憶媒体。 - 前記特定の位置の各々に対して前記作物タイプ分類を判定することは、前記特定の位置の各々に対して、サブメートル地上分解能で前記作物タイプ分類を判定することを含む、請求項13に記載のコンピュータ可読記憶媒体。
- 前記特定の位置の各々で生育する前記1つ以上の作物タイプを予測することは、前記画像セットを1つ以上の機械学習システム又は畳み込みニューラルネットワーク(CNN)に適用することを含む、請求項13に記載のコンピュータ可読記憶媒体。
- 前記1つ以上の機械学習システム又はCNNは、グラウンドトゥルースデータにおける教師あり学習の後に、前記特定の位置の各々で生育する前記1つ以上の作物タイプを予測するように構成されている、請求項18に記載のコンピュータ可読記憶媒体。
- 前記グラウンドトゥルースデータは、政府の作物データ、公的に入手可能な作物データ、低地上分解能で識別された作物エリアを伴う画像、低地上分解能で識別された作物タイプを伴う画像、手動で識別された作物境界を伴う画像、手動で識別された作物境界及び作物タイプを伴う画像、作物調査データ、サンプリングされた作物データ、並びに農家のレポートのうちの1つ以上を含む、請求項19に記載のコンピュータ可読記憶媒体。
- 前記画像セットのうちの第1の画像の第1の分解能は、前記画像セットのうちの第2の画像の第2の分解能とは異なり、前記第1の分解能は、前記作物表示画像の第3の分解能よりも低く、前記グラウンドトゥルースデータの少なくとも一部分の第4の分解能は、前記作物表示画像の前記第3の分解能よりも低い、請求項19に記載のコンピュータ可読記憶媒体。
- 前記特定の位置の各々で生育する前記1つ以上の作物タイプを予測することは、前記特定の位置の各々に対して、前記それぞれの特定の位置と関連付けられた画素の経時変化について前記時系列の画像を分析することを含み、前記画素の特定の変化パターンは、少なくとも1つの作物タイプと関連付けられている、請求項13に記載のコンピュータ可読記憶媒体。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022030570A JP7345583B2 (ja) | 2018-01-23 | 2022-03-01 | 画像における作物タイプ分類 |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201862620939P | 2018-01-23 | 2018-01-23 | |
US62/620,939 | 2018-01-23 | ||
US16/218,305 | 2018-12-12 | ||
US16/218,305 US10909368B2 (en) | 2018-01-23 | 2018-12-12 | Crop type classification in images |
PCT/US2019/013704 WO2019147439A1 (en) | 2018-01-23 | 2019-01-15 | Crop type classification in images |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2022030570A Division JP7345583B2 (ja) | 2018-01-23 | 2022-03-01 | 画像における作物タイプ分類 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2021510880A true JP2021510880A (ja) | 2021-04-30 |
JP7034304B2 JP7034304B2 (ja) | 2022-03-11 |
Family
ID=67298690
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020539853A Active JP7034304B2 (ja) | 2018-01-23 | 2019-01-15 | 画像における作物タイプ分類 |
JP2022030570A Active JP7345583B2 (ja) | 2018-01-23 | 2022-03-01 | 画像における作物タイプ分類 |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2022030570A Active JP7345583B2 (ja) | 2018-01-23 | 2022-03-01 | 画像における作物タイプ分類 |
Country Status (7)
Country | Link |
---|---|
US (2) | US10909368B2 (ja) |
EP (1) | EP3743876A4 (ja) |
JP (2) | JP7034304B2 (ja) |
CN (2) | CN115731414A (ja) |
BR (1) | BR112020014942A2 (ja) |
CA (1) | CA3088641C (ja) |
WO (1) | WO2019147439A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102390740B1 (ko) * | 2021-07-07 | 2022-04-26 | 주식회사 에이오팜 | 불량 농산물 분류 모델 학습 방법, 장치 및 이를 이용한 불량 농산물 분류 장치 |
KR102687300B1 (ko) * | 2023-09-12 | 2024-07-19 | 서울대학교 산학협력단 | 이미지 분할 모델의 앙상블을 사용한 작물 유형 매핑 방법 및 시스템 |
Families Citing this family (97)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10445877B2 (en) | 2016-12-30 | 2019-10-15 | International Business Machines Corporation | Method and system for crop recognition and boundary delineation |
US10664702B2 (en) | 2016-12-30 | 2020-05-26 | International Business Machines Corporation | Method and system for crop recognition and boundary delineation |
US10586105B2 (en) * | 2016-12-30 | 2020-03-10 | International Business Machines Corporation | Method and system for crop type identification using satellite observation and weather data |
WO2018176000A1 (en) | 2017-03-23 | 2018-09-27 | DeepScale, Inc. | Data synthesis for autonomous control systems |
US11409692B2 (en) | 2017-07-24 | 2022-08-09 | Tesla, Inc. | Vector computational unit |
US11157441B2 (en) | 2017-07-24 | 2021-10-26 | Tesla, Inc. | Computational array microprocessor system using non-consecutive data formatting |
US11893393B2 (en) | 2017-07-24 | 2024-02-06 | Tesla, Inc. | Computational array microprocessor system with hardware arbiter managing memory requests |
US10671349B2 (en) | 2017-07-24 | 2020-06-02 | Tesla, Inc. | Accelerated mathematical engine |
US11263707B2 (en) | 2017-08-08 | 2022-03-01 | Indigo Ag, Inc. | Machine learning in agricultural planting, growing, and harvesting contexts |
US10909368B2 (en) * | 2018-01-23 | 2021-02-02 | X Development Llc | Crop type classification in images |
US10621434B2 (en) * | 2018-01-25 | 2020-04-14 | International Business Machines Corporation | Identification and localization of anomalous crop health patterns |
US11561791B2 (en) | 2018-02-01 | 2023-01-24 | Tesla, Inc. | Vector computational unit receiving data elements in parallel from a last row of a computational array |
US11138677B2 (en) | 2018-04-24 | 2021-10-05 | Indigo Ag, Inc. | Machine learning in an online agricultural system |
US11367093B2 (en) | 2018-04-24 | 2022-06-21 | Indigo Ag, Inc. | Satellite-based agricultural modeling |
US11215999B2 (en) | 2018-06-20 | 2022-01-04 | Tesla, Inc. | Data pipeline and deep learning system for autonomous driving |
US11361457B2 (en) | 2018-07-20 | 2022-06-14 | Tesla, Inc. | Annotation cross-labeling for autonomous control systems |
US11636333B2 (en) | 2018-07-26 | 2023-04-25 | Tesla, Inc. | Optimizing neural network structures for embedded systems |
US11562231B2 (en) | 2018-09-03 | 2023-01-24 | Tesla, Inc. | Neural networks for embedded devices |
US11195030B2 (en) * | 2018-09-14 | 2021-12-07 | Honda Motor Co., Ltd. | Scene classification |
US11034357B2 (en) | 2018-09-14 | 2021-06-15 | Honda Motor Co., Ltd. | Scene classification prediction |
US11818982B2 (en) | 2018-09-18 | 2023-11-21 | Deere & Company | Grain quality control system and method |
US11197417B2 (en) * | 2018-09-18 | 2021-12-14 | Deere & Company | Grain quality control system and method |
US11205093B2 (en) | 2018-10-11 | 2021-12-21 | Tesla, Inc. | Systems and methods for training machine models with augmented data |
US11196678B2 (en) | 2018-10-25 | 2021-12-07 | Tesla, Inc. | QOS manager for system on a chip communications |
US12069978B2 (en) * | 2018-10-26 | 2024-08-27 | Deere & Company | Predictive environmental characteristic map generation and control system |
US11589509B2 (en) | 2018-10-26 | 2023-02-28 | Deere & Company | Predictive machine characteristic map generation and control system |
US11178818B2 (en) | 2018-10-26 | 2021-11-23 | Deere & Company | Harvesting machine control system with fill level processing based on yield data |
US11957072B2 (en) | 2020-02-06 | 2024-04-16 | Deere & Company | Pre-emergence weed detection and mitigation system |
US11079725B2 (en) | 2019-04-10 | 2021-08-03 | Deere & Company | Machine control using real-time model |
US11467605B2 (en) | 2019-04-10 | 2022-10-11 | Deere & Company | Zonal machine control |
US11672203B2 (en) | 2018-10-26 | 2023-06-13 | Deere & Company | Predictive map generation and control |
US11240961B2 (en) | 2018-10-26 | 2022-02-08 | Deere & Company | Controlling a harvesting machine based on a geo-spatial representation indicating where the harvesting machine is likely to reach capacity |
US11641800B2 (en) | 2020-02-06 | 2023-05-09 | Deere & Company | Agricultural harvesting machine with pre-emergence weed detection and mitigation system |
US11653588B2 (en) | 2018-10-26 | 2023-05-23 | Deere & Company | Yield map generation and control system |
US11816585B2 (en) | 2018-12-03 | 2023-11-14 | Tesla, Inc. | Machine learning models operating at different frequencies for autonomous vehicles |
US11537811B2 (en) | 2018-12-04 | 2022-12-27 | Tesla, Inc. | Enhanced object detection for autonomous vehicles based on field view |
US11610117B2 (en) | 2018-12-27 | 2023-03-21 | Tesla, Inc. | System and method for adapting a neural network model on a hardware platform |
US11150664B2 (en) | 2019-02-01 | 2021-10-19 | Tesla, Inc. | Predicting three-dimensional features for autonomous driving |
US10997461B2 (en) | 2019-02-01 | 2021-05-04 | Tesla, Inc. | Generating ground truth for machine learning from time series elements |
US11567514B2 (en) | 2019-02-11 | 2023-01-31 | Tesla, Inc. | Autonomous and user controlled vehicle summon to a target |
US10956755B2 (en) | 2019-02-19 | 2021-03-23 | Tesla, Inc. | Estimating object properties using visual image data |
US11234366B2 (en) * | 2019-04-10 | 2022-02-01 | Deere & Company | Image selection for machine control |
TWI760782B (zh) * | 2019-07-08 | 2022-04-11 | 國立臺灣大學 | 用於地理區域上果園辨識之系統及方法 |
US11238283B2 (en) * | 2019-10-04 | 2022-02-01 | The Climate Corporation | Hybrid vision system for crop land navigation |
US11157811B2 (en) * | 2019-10-28 | 2021-10-26 | International Business Machines Corporation | Stub image generation for neural network training |
US12035648B2 (en) | 2020-02-06 | 2024-07-16 | Deere & Company | Predictive weed map generation and control system |
US11477940B2 (en) | 2020-03-26 | 2022-10-25 | Deere & Company | Mobile work machine control based on zone parameter modification |
CN111539350A (zh) * | 2020-04-27 | 2020-08-14 | 无锡雪浪数制科技有限公司 | 一种农作物病虫害智能识别的方法 |
US11500876B2 (en) | 2020-04-29 | 2022-11-15 | International Business Machines Corporation | Method for duplicate determination in a graph |
US11941056B2 (en) | 2020-04-29 | 2024-03-26 | International Business Machines Corporation | Method for weighting a graph |
US11748984B2 (en) * | 2020-05-05 | 2023-09-05 | Planttagg, Inc. | System and method for horticulture viability prediction and display |
US11393194B2 (en) * | 2020-08-11 | 2022-07-19 | International Business Machines Corporation | Selective analysis for field boundary detection |
WO2022035829A1 (en) * | 2020-08-14 | 2022-02-17 | X Development Llc | Processing satellite images using brain emulation neural networks |
US11763557B1 (en) * | 2020-09-22 | 2023-09-19 | Sentera, Inc. | Permanent crop and permanent cropland analysis using aerial vehicles |
US11825768B2 (en) | 2020-10-09 | 2023-11-28 | Deere & Company | Machine control using a predictive map |
US11946747B2 (en) | 2020-10-09 | 2024-04-02 | Deere & Company | Crop constituent map generation and control system |
US11711995B2 (en) | 2020-10-09 | 2023-08-01 | Deere & Company | Machine control using a predictive map |
US11874669B2 (en) | 2020-10-09 | 2024-01-16 | Deere & Company | Map generation and control system |
US11983009B2 (en) | 2020-10-09 | 2024-05-14 | Deere & Company | Map generation and control system |
US11849672B2 (en) | 2020-10-09 | 2023-12-26 | Deere & Company | Machine control using a predictive map |
US11849671B2 (en) | 2020-10-09 | 2023-12-26 | Deere & Company | Crop state map generation and control system |
US11474523B2 (en) | 2020-10-09 | 2022-10-18 | Deere & Company | Machine control using a predictive speed map |
US12013245B2 (en) | 2020-10-09 | 2024-06-18 | Deere & Company | Predictive map generation and control system |
US11727680B2 (en) | 2020-10-09 | 2023-08-15 | Deere & Company | Predictive map generation based on seeding characteristics and control |
US11871697B2 (en) | 2020-10-09 | 2024-01-16 | Deere & Company | Crop moisture map generation and control system |
US11889788B2 (en) | 2020-10-09 | 2024-02-06 | Deere & Company | Predictive biomass map generation and control |
US11635765B2 (en) | 2020-10-09 | 2023-04-25 | Deere & Company | Crop state map generation and control system |
US11845449B2 (en) | 2020-10-09 | 2023-12-19 | Deere & Company | Map generation and control system |
US11650587B2 (en) | 2020-10-09 | 2023-05-16 | Deere & Company | Predictive power map generation and control system |
US11844311B2 (en) | 2020-10-09 | 2023-12-19 | Deere & Company | Machine control using a predictive map |
US11675354B2 (en) | 2020-10-09 | 2023-06-13 | Deere & Company | Machine control using a predictive map |
US11895948B2 (en) | 2020-10-09 | 2024-02-13 | Deere & Company | Predictive map generation and control based on soil properties |
US11927459B2 (en) | 2020-10-09 | 2024-03-12 | Deere & Company | Machine control using a predictive map |
US11864483B2 (en) | 2020-10-09 | 2024-01-09 | Deere & Company | Predictive map generation and control system |
US12069986B2 (en) | 2020-10-09 | 2024-08-27 | Deere & Company | Map generation and control system |
US11592822B2 (en) | 2020-10-09 | 2023-02-28 | Deere & Company | Machine control using a predictive map |
US11889787B2 (en) | 2020-10-09 | 2024-02-06 | Deere & Company | Predictive speed map generation and control system |
CN112287186B (zh) * | 2020-12-24 | 2021-03-26 | 北京数字政通科技股份有限公司 | 一种用于城市管理的智能分类方法及其系统 |
US20230018041A1 (en) * | 2021-02-09 | 2023-01-19 | Nutech Ventures | Optical analysis paired plot automated fertigation systems, methods and datastructures |
WO2022200547A1 (en) * | 2021-03-26 | 2022-09-29 | Basf Agro Trademarks Gmbh | Computer-implemented method for generating the validity for agricultural purposes of an image |
CN113159044A (zh) * | 2021-04-01 | 2021-07-23 | 中国公路工程咨询集团有限公司 | 一种基于深度学习的卷积神经网络的道路材质识别方法 |
US12112546B2 (en) * | 2021-04-30 | 2024-10-08 | Deere & Company | Vision guidance system using dynamic edge detection |
US11941880B2 (en) * | 2021-06-02 | 2024-03-26 | Ping An Technology (Shenzhen) Co., Ltd. | System and method for image-based crop identification |
US11531656B1 (en) | 2021-06-08 | 2022-12-20 | International Business Machines Corporation | Duplicate determination in a graph |
US20220406055A1 (en) * | 2021-06-16 | 2022-12-22 | Ipq Pty Ltd | Systems and methods for calculating water resources using aerial imaging of crop lands |
JP2024527301A (ja) * | 2021-06-29 | 2024-07-24 | ビーエーエスエフ アグロ トレードマークス ゲーエムベーハー | 生育不良マップの生成方法及びシステム |
CN113435649B (zh) * | 2021-06-29 | 2022-09-16 | 布瑞克农业大数据科技集团有限公司 | 一种全域农业数据整理方法、系统、装置及介质 |
CN113591611B (zh) * | 2021-07-13 | 2023-08-22 | 青海省气象科学研究所 | 一种基于地理分区的土壤干旱遥感监测方法 |
US20230046882A1 (en) * | 2021-08-11 | 2023-02-16 | Deere & Company | Obtaining and augmenting agricultural data and generating an augmented display |
WO2023034118A1 (en) | 2021-08-30 | 2023-03-09 | Indigo Ag, Inc. | Systems for management of location-aware market data |
CA3230474A1 (en) | 2021-08-31 | 2023-03-09 | Eleanor Elizabeth Campbell | Systems and methods for ecosystem credit recommendations |
CN115909374B (zh) * | 2021-09-30 | 2024-06-18 | 腾讯科技(深圳)有限公司 | 一种信息识别方法、装置、设备及存储介质、程序产品 |
WO2023095041A1 (en) * | 2021-11-24 | 2023-06-01 | Upl Limited | Method and system for automatically identifying crop infestation |
EP4246462A1 (en) * | 2022-03-15 | 2023-09-20 | Tata Consultancy Services Limited | Method and system for detection of field boundaries using coarse resolution satellite data and gis |
US12058951B2 (en) | 2022-04-08 | 2024-08-13 | Deere & Company | Predictive nutrient map and control |
WO2024002863A1 (en) * | 2022-07-01 | 2024-01-04 | Basf Se | Satellite imaging data for enhanced production of plant propagation material |
US11663753B1 (en) * | 2022-11-16 | 2023-05-30 | Eos Data Analytics, Inc. | Generation of field productivity maps |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003006612A (ja) * | 2001-06-20 | 2003-01-10 | Ntt Data Corp | 収穫予測装置及び方法 |
JP2014102542A (ja) * | 2012-11-16 | 2014-06-05 | Fujitsu Ltd | 差分検出プログラム及び差分検出方法並びに差分検出装置 |
Family Cites Families (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1382370A (zh) * | 2001-04-25 | 2002-12-04 | 周宗岳 | 提前预测作物花期的方法 |
US7916898B2 (en) | 2003-09-15 | 2011-03-29 | Deere & Company | Method and system for identifying an edge of a crop |
US20070036467A1 (en) | 2004-07-26 | 2007-02-15 | Coleman Christopher R | System and method for creating a high resolution material image |
US20060287896A1 (en) | 2005-06-16 | 2006-12-21 | Deere & Company, A Delaware Corporation | Method for providing crop insurance for a crop associated with a defined attribute |
JP2008148565A (ja) * | 2006-12-14 | 2008-07-03 | Hitachi Software Eng Co Ltd | 圃場管理システムおよびプログラム |
US8055081B2 (en) * | 2008-04-14 | 2011-11-08 | Eastman Kodak Company | Image classification using capture-location-sequence information |
US9152938B2 (en) | 2008-08-11 | 2015-10-06 | Farmlink Llc | Agricultural machine and operator performance information systems and related methods |
US9084389B2 (en) | 2009-12-17 | 2015-07-21 | Mapshots, Inc | Multiple field boundary data sets in an automated crop recordkeeping system |
WO2012124066A1 (ja) * | 2011-03-15 | 2012-09-20 | 富士通株式会社 | 携帯装置、作業支援プログラム、情報提供方法および情報提供プログラム |
CN102194127B (zh) * | 2011-05-13 | 2012-11-28 | 中国科学院遥感应用研究所 | 一种多频率sar数据农作物遥感分类方法 |
US8310361B1 (en) * | 2011-06-13 | 2012-11-13 | Google Inc. | Creating and monitoring alerts for a geographical area |
US9292797B2 (en) | 2012-12-14 | 2016-03-22 | International Business Machines Corporation | Semi-supervised data integration model for named entity classification |
US9147132B2 (en) | 2013-09-11 | 2015-09-29 | Digitalglobe, Inc. | Classification of land based on analysis of remotely-sensed earth images |
WO2015051339A1 (en) | 2013-10-03 | 2015-04-09 | Farmers Business Network, Llc | Crop model and prediction analytics |
US9489576B2 (en) * | 2014-03-26 | 2016-11-08 | F12 Solutions, LLC. | Crop stand analysis |
US9858502B2 (en) | 2014-03-31 | 2018-01-02 | Los Alamos National Security, Llc | Classification of multispectral or hyperspectral satellite imagery using clustering of sparse approximations on sparse representations in learned dictionaries obtained using efficient convolutional sparse coding |
US9946931B2 (en) * | 2015-04-20 | 2018-04-17 | Los Alamos National Security, Llc | Change detection and change monitoring of natural and man-made features in multispectral and hyperspectral satellite imagery |
CN105005782A (zh) * | 2014-04-24 | 2015-10-28 | 中国科学院遥感与数字地球研究所 | 一种基于多时相遥感数据及光谱数据的全球精细植被分类方法 |
WO2016035149A1 (ja) * | 2014-09-02 | 2016-03-10 | 富士通株式会社 | 収穫量記録方法、収穫量記録プログラムおよび収穫量記録装置 |
US20170161560A1 (en) | 2014-11-24 | 2017-06-08 | Prospera Technologies, Ltd. | System and method for harvest yield prediction |
US9813512B2 (en) * | 2015-04-20 | 2017-11-07 | Agverdict, Inc. | Systems and methods for efficiently generating a geospatial data map for use in agricultural operations |
US20180082223A1 (en) * | 2015-05-25 | 2018-03-22 | Agromentum Ltd. | Closed Loop Integrated Pest Management |
CN104952070B (zh) * | 2015-06-05 | 2018-04-13 | 中北大学 | 一种类矩形引导的玉米田遥感图像分割方法 |
CN104951754A (zh) * | 2015-06-08 | 2015-09-30 | 中国科学院遥感与数字地球研究所 | 基于面向对象技术与ndvi时间序列相结合的农作物精细分类方法 |
US10025983B2 (en) * | 2015-09-21 | 2018-07-17 | The Climate Corporation | Ponding water detection on satellite imagery |
JP6973375B2 (ja) * | 2016-03-24 | 2021-11-24 | 日本電気株式会社 | 制御装置、制御方法、及び、制御プログラム |
US20180330435A1 (en) * | 2017-05-11 | 2018-11-15 | Harvesting Inc. | Method for monitoring and supporting agricultural entities |
CN107358214A (zh) * | 2017-07-20 | 2017-11-17 | 中国人民解放军国防科学技术大学 | 基于卷积神经网络的极化sar地物分类方法 |
US10909368B2 (en) * | 2018-01-23 | 2021-02-02 | X Development Llc | Crop type classification in images |
US11715277B2 (en) * | 2020-06-23 | 2023-08-01 | Tusimple, Inc. | Perception system for autonomous vehicles |
US20220044146A1 (en) * | 2020-08-04 | 2022-02-10 | Bentley Systems, Incorporated | Techniques for extracting machine-readable information from p&ids |
-
2018
- 2018-12-12 US US16/218,305 patent/US10909368B2/en active Active
-
2019
- 2019-01-15 CN CN202211427413.9A patent/CN115731414A/zh active Pending
- 2019-01-15 JP JP2020539853A patent/JP7034304B2/ja active Active
- 2019-01-15 CN CN201980009776.0A patent/CN111630551B/zh active Active
- 2019-01-15 EP EP19743767.6A patent/EP3743876A4/en active Pending
- 2019-01-15 WO PCT/US2019/013704 patent/WO2019147439A1/en unknown
- 2019-01-15 CA CA3088641A patent/CA3088641C/en active Active
- 2019-01-15 BR BR112020014942-0A patent/BR112020014942A2/pt unknown
-
2021
- 2021-01-29 US US17/162,806 patent/US11321943B2/en active Active
-
2022
- 2022-03-01 JP JP2022030570A patent/JP7345583B2/ja active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003006612A (ja) * | 2001-06-20 | 2003-01-10 | Ntt Data Corp | 収穫予測装置及び方法 |
JP2014102542A (ja) * | 2012-11-16 | 2014-06-05 | Fujitsu Ltd | 差分検出プログラム及び差分検出方法並びに差分検出装置 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102390740B1 (ko) * | 2021-07-07 | 2022-04-26 | 주식회사 에이오팜 | 불량 농산물 분류 모델 학습 방법, 장치 및 이를 이용한 불량 농산물 분류 장치 |
KR102687300B1 (ko) * | 2023-09-12 | 2024-07-19 | 서울대학교 산학협력단 | 이미지 분할 모델의 앙상블을 사용한 작물 유형 매핑 방법 및 시스템 |
Also Published As
Publication number | Publication date |
---|---|
CA3088641C (en) | 2023-09-26 |
CN111630551B (zh) | 2022-11-29 |
EP3743876A4 (en) | 2021-10-27 |
US11321943B2 (en) | 2022-05-03 |
JP7345583B2 (ja) | 2023-09-15 |
JP7034304B2 (ja) | 2022-03-11 |
CN115731414A (zh) | 2023-03-03 |
JP2022084655A (ja) | 2022-06-07 |
US10909368B2 (en) | 2021-02-02 |
BR112020014942A2 (pt) | 2020-12-08 |
WO2019147439A1 (en) | 2019-08-01 |
CN111630551A (zh) | 2020-09-04 |
EP3743876A1 (en) | 2020-12-02 |
US20190228224A1 (en) | 2019-07-25 |
CA3088641A1 (en) | 2019-08-01 |
US20210150209A1 (en) | 2021-05-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7034304B2 (ja) | 画像における作物タイプ分類 | |
JP7083910B2 (ja) | 画像における作物境界検出 | |
US11915387B2 (en) | Crop yield prediction at field-level and pixel-level | |
US11751499B2 (en) | Computer-implemented methods, computer readable medium and systems for a precision agriculture platform that detects disease in crops | |
De Wit et al. | Efficiency and accuracy of per-field classification for operational crop mapping | |
Zhao et al. | Mapping rice paddies in complex landscapes with convolutional neural networks and phenological metrics | |
Costa et al. | Combining per-pixel and object-based classifications for mapping land cover over large areas | |
Li et al. | An all-season sample database for improving land-cover mapping of Africa with two classification schemes | |
Mishra et al. | Urban heat island in Kathmandu, Nepal: Evaluating relationship between NDVI and LST from 2000 to 2018 | |
Diao | Innovative pheno-network model in estimating crop phenological stages with satellite time series | |
Lee et al. | Evaluation of crop mapping on fragmented and complex slope farmlands through random forest and object-oriented analysis using unmanned aerial vehicles | |
Dorbu | Data-Driven Approach for Processing Remote Sensing Time-Series Imagery for Precision Agriculture | |
Robson et al. | Advancing the delivery of national mapping applications and tools |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200728 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20210826 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210831 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20211130 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220209 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220301 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7034304 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |