JP2021503826A - ワイヤレス通信においてトランスポートブロックサイズを決定するための方法および装置 - Google Patents

ワイヤレス通信においてトランスポートブロックサイズを決定するための方法および装置 Download PDF

Info

Publication number
JP2021503826A
JP2021503826A JP2020527059A JP2020527059A JP2021503826A JP 2021503826 A JP2021503826 A JP 2021503826A JP 2020527059 A JP2020527059 A JP 2020527059A JP 2020527059 A JP2020527059 A JP 2020527059A JP 2021503826 A JP2021503826 A JP 2021503826A
Authority
JP
Japan
Prior art keywords
size
code block
redundancy check
cyclic redundancy
code
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020527059A
Other languages
English (en)
Other versions
JP7012850B2 (ja
Inventor
サーキス、ガビ
ソリアガ、ジョセフ・ビナミラ
スン、ジン
ジャン、ジン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qualcomm Inc
Original Assignee
Qualcomm Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Inc filed Critical Qualcomm Inc
Publication of JP2021503826A publication Critical patent/JP2021503826A/ja
Application granted granted Critical
Publication of JP7012850B2 publication Critical patent/JP7012850B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/03Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
    • H03M13/05Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
    • H03M13/09Error detection only, e.g. using cyclic redundancy check [CRC] codes or single parity bit
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/046Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking physical layer constraints into account
    • H04B7/0473Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking physical layer constraints into account taking constraints in layer or codeword to antenna mapping into account
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0006Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission format
    • H04L1/0007Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission format by modifying the frame length
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/03Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
    • H03M13/05Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
    • H03M13/11Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits using multiple parity bits
    • H03M13/1102Codes on graphs and decoding on graphs, e.g. low-density parity check [LDPC] codes
    • H03M13/1148Structural properties of the code parity-check or generator matrix
    • H03M13/116Quasi-cyclic LDPC [QC-LDPC] codes, i.e. the parity-check matrix being composed of permutation or circulant sub-matrices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/65Purpose and implementation aspects
    • H03M13/6508Flexibility, adaptability, parametrability and configurability of the implementation
    • H03M13/6516Support of multiple code parameters, e.g. generalized Reed-Solomon decoder for a variety of generator polynomials or Galois fields
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0041Arrangements at the transmitter end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0057Block codes
    • H04L1/0058Block-coded modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0061Error detection codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Probability & Statistics with Applications (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Abstract

パラメータとトランスポートブロックサイズ(TBS)との間の巡回的依存性なしに様々なパラメータの関数としてTBSを決定するための装置および方法が開示される。開示される関数は、シングルパスでTBSを決定することができ、決定されたTBSは、トランスポートブロックセグメント化プロセスにおいて等しいコードブロックサイズ(CBS)をもつコードブロックの使用を可能にする。決定されたTBSは、バイト整列されたコードブロック長を提供することと、トランスポートブロック中でパディングビットを必要としないこととが可能である。

Description

関連出願の相互参照
[0001]本出願は、それらの全体が以下に完全に記載されるかのように、またすべての適用可能な目的のために、それらの内容全体が参照により本明細書に組み込まれる、2018年11月15日に米国特許商標庁で出願された非仮特許出願第16/192,697号と、2017年11月17日に米国特許商標庁で出願された仮特許出願第62/588,137号との優先権および利益を主張する。
[0002]以下で論じられる技術は、一般にワイヤレス通信システムに関し、より詳細には、ワイヤレス通信においてデータのトランスポートブロックサイズを決定するための手順に関する。
序論
[0003]ワイヤレス通信では、デバイスは、パケットデータ圧縮プロトコル(PDCP)レイヤ、無線リンク制御(RLC)レイヤ、メディアアクセス制御(MAC)レイヤ、および物理(PHY)レイヤを含むネットワークまたはプロトコルスタックを通して送信用のデータを処理することがある。MACレイヤは、PHYレイヤを構成する変調およびコーディング方式(MCS)を選択する。PHYレイヤに提供されるMACレイヤデータは、トランスポートブロック(TB)と呼ばれることがある。いくつかのネットワークでは、TBのサイズは固定でなく、構成されたMCS、およびネットワークの利用可能な時間周波数リソースなど、様々な要因に依存することがある。トランスポートブロックサイズ(TBS)は、TB中で搬送されることが可能なビット数を指す。TBは、符号化のために複数のコードブロックにセグメント化され得る。コードブロックサイズ(CBS)は、コードブロック(CB)中で搬送されるビット数を指す。
[0004]以下で、本開示の1つまたは複数の態様の基本的理解を与えるために、そのような態様の簡略化された概要を提示する。この概要は、本開示のすべての企図された特徴の包括的な概観ではなく、本開示のすべての態様の主要または重要な要素を識別するものでも、本開示のいずれかまたはすべての態様の範囲を定めるものでもない。その唯一の目的は、後で提示されるより詳細な説明の前置きとして、本開示の1つまたは複数の態様のいくつかの概念を簡略化された形で提示することである。
[0005]本開示の一態様は、ワイヤレス通信においてトランスポートブロック(TB)中でデータを送信する方法を提供する。ワイヤレスデバイスが、最大コードブロックサイズ(Kcb)と、トランスポートブロックレベルの巡回冗長検査サイズ(LTB,CRC)と、コードブロックレベルの巡回冗長検査サイズ(LCB,CRC)とを決定する。ワイヤレスデバイスは、Kcbと、LTB,CRCと、LCB,CRCとに基づいてTBに関連するコードブロックの数をさらに決定する。ワイヤレスデバイスは、コードブロックの数に基づいてコードブロックサイズをさらに決定する。次いで、ワイヤレスデバイスは、決定されたKcbと、LTB,CRCと、LCB,CRCと、コードブロックの数と、コードブロックサイズとの関数としてシングルパスでTBのトランスポートブロックサイズ(TBS)を決定する。ワイヤレスデバイスは、決定されたTBSに基づいてデータとともにTBを送信する。
[0006]本開示の別の態様は、ワイヤレス通信においてトランスポートブロック(TB)中でデータを送信する方法を提供する。ワイヤレスデバイスが、複数のパラメータに基づいて非再帰的手順においてTBのトランスポートブロックサイズ(TBS)を決定する。複数のパラメータは、最大コードブロックサイズ(Kcb)と、トランスポートブロックレベルの巡回冗長検査サイズ(LTB,CRC)と、コードブロックレベルの巡回冗長検査サイズ(LCB,CRC)と、TBに関連するコードブロックの数と、コードブロックサイズKとを含む。ワイヤレスデバイスは、決定されたTBSに基づいてデータとともにTBを送信する。
[0007]本開示の別の態様は、ワイヤレス通信の装置を提供する。本装置は、トランスポートブロック(TB)中でデータを送信するように構成された通信インターフェースと、実行可能コードで記憶されたメモリと、通信インターフェースおよびメモリに動作可能に結合されたプロセッサとを含む。プロセッサは、最大コードブロックサイズ(Kcb)と、トランスポートブロックレベルの巡回冗長検査サイズ(LTB,CRC)と、コードブロックレベルの巡回冗長検査サイズ(LCB,CRC)とを決定するように実行可能コードによって構成される。プロセッサは、Kcbと、LTB,CRCと、LCB,CRCとに基づいてTBに関連するコードブロックの数を決定するようにさらに構成される。プロセッサは、コードブロックの数に基づいてコードブロックサイズを決定するようにさらに構成される。次いで、プロセッサは、決定されたKcbと、LTB,CRCと、LCB,CRCと、コードブロックの数と、コードブロックサイズとの関数としてシングルパスでTBのトランスポートブロックサイズ(TBS)を決定するように構成される。プロセッサは、決定されたTBSに基づいてデータとともにTBを送信するようにさらに構成される。
[0008]本開示の別の態様は、ワイヤレス通信の装置を提供する。本装置は、トランスポートブロック(TB)中でデータを送信するように構成された通信インターフェースと、実行可能コードで記憶されたメモリと、通信インターフェースおよびメモリに動作可能に結合されたプロセッサとを含む。プロセッサは、複数のパラメータに基づいて非再帰的手順においてTBのトランスポートブロックサイズ(TBS)を決定するように実行可能コードによって構成される。複数のパラメータは、最大コードブロックサイズと、トランスポートブロックレベルの巡回冗長検査サイズと、コードブロックレベルの巡回冗長検査サイズと、TBに関連するコードブロックの数と、コードブロックサイズとを含む。プロセッサは、決定されたTBSに基づいてデータとともにTBを送信するようにさらに構成される。
[0009]本開示の別の態様は、ワイヤレス通信の装置を提供する。本装置は、トランスポートブロック(TB)の最大コードブロックサイズと、トランスポートブロックレベルの巡回冗長検査サイズと、コードブロックレベルの巡回冗長検査サイズとを決定するための手段を含む。本装置は、最大コードブロックサイズと、トランスポートブロックレベルの巡回冗長検査サイズと、コードブロックレベルの巡回冗長検査サイズとに基づいてTBに関連するコードブロックの数を決定するための手段をさらに含む。本装置は、コードブロックの数に基づいてコードブロックサイズを決定するための手段をさらに含む。本装置は、決定された最大コードブロックサイズと、トランスポートブロックレベルの巡回冗長検査サイズと、コードブロックレベルの巡回冗長検査サイズと、コードブロックの数と、コードブロックサイズとの関数としてシングルパスでTBのトランスポートブロックサイズ(TBS)を決定するための手段をさらに含む。本装置は、決定されたTBSに基づいてデータとともにTBを送信するための手段をさらに含む。
[0010]本発明のこれらおよび他の態様は、以下の発明を実施するための形態を検討すると、より十分に理解されるようになる。特定の例示的な実施形態の以下の説明を添付の図と併せて検討すれば、当業者には他の態様、特徴、および実施形態が明らかになろう。特徴が、以下のいくつかの実施形態および図に関して論じられることがあるが、すべての実施形態は、本明細書で論じられる有利な特徴のうちの1つまたは複数を含むことができる。言い換えれば、1つまたは複数の実施形態が、いくつかの有利な特徴を有するものとして論じられることがあるが、そのような特徴のうちの1つまたは複数はまた、本明細書で論じられる様々な実施形態に従って使用されてよい。同様に、例示的な実施形態が、デバイス実施形態、システム実施形態、または方法実施形態として以下で論じられることがあるが、そのような例示的な実施形態は、様々なデバイス、システム、および方法において実装され得ることを理解されたい。
[0011]無線アクセスネットワークの一例を示す概念図。 [0012]本開示のいくつかの態様による、1つまたは複数の被スケジューリングエンティティと通信するスケジューリングエンティティの一例を概念的に示すブロック図。 [0013]多入力多出力(MIMO)をサポートするワイヤレス通信システムの一例を示す図。 [0014]直交周波数分割多重化(OFDM)を利用するエアインターフェース中のワイヤレスリソースの編成を示す概略図。 [0015]本開示のいくつかの態様による、スケジューリングエンティティのためのハードウェア実装形態の一例を概念的に示すブロック図。 [0016]本開示のいくつかの態様による、被スケジューリングエンティティのためのハードウェア実装形態の一例を概念的に示すブロック図。 [0017]本開示のいくつかの態様による、シングルパスで式を使用してトランスポートブロックサイズ(TBS)を決定するための例示的なプロセスを示すフローチャート。 [0018]本開示のいくつかの態様による、最大コードブロックサイズを決定するための例示的なプロセスを示すフローチャート。 [0019]本開示のいくつかの態様による、トランスポートブロックの巡回冗長検査サイズを決定するための例示的なプロセスを示すフローチャート。 [0020]本開示のいくつかの態様による、コードブロックの巡回冗長検査サイズを決定するための例示的なプロセスを示すフローチャート。
[0021]添付の図面に関して以下に記載される発明を実施するための形態は、様々な構成の説明として意図されており、本明細書に記載される概念が実践され得る構成のみを表すように意図されていない。発明を実施するための形態は、様々な概念の完全な理解を提供するための具体的な詳細を含む。しかしながら、これらの概念はこれらの具体的な詳細なしに実践され得ることが当業者には明らかであろう。いくつかの事例では、そのような概念を不明瞭にすることを回避するために、よく知られている構造および構成要素がブロック図の形態で示される。
[0022]態様および実施形態について、本出願ではいくつかの例に対する説明によって説明されるが、当業者は、多くの異なる構成およびシナリオにおいて追加の実装形態および使用事例が発生し得ることを理解されよう。本明細書で説明される新機軸は、多くの異なるプラットフォームタイプ、デバイス、システム、形状、サイズ、パッケージング構成にわたって実装され得る。たとえば、実施形態および/または使用は、集積チップ実施形態および他の非モジュール構成要素ベースのデバイス(たとえば、エンドユーザデバイス、車両、通信デバイス、コンピューティングデバイス、工業機器、小売り/購買デバイス、医療デバイス、AI対応デバイスなど)を介して発生し得る。いくつかの例は使用事例または適用例を特に対象とすることも対象としないこともあるが、説明される新機軸の適用可能性の広範な組合せが行われてよい。実装形態は、チップレベルまたはモジュラー構成要素から非モジュラー非チップレベル実装形態までの、さらには説明される新機軸の1つまたは複数の態様を組み込んでいるアグリゲート、分散、またはOEMデバイスまたはシステムまでの範囲にわたり得る。いくつかの実際の設定では、説明される態様および特徴を組み込んでいるデバイスはまた、請求および説明される実施形態の実装および実践のために追加の構成要素および特徴を必ず含むであろう。たとえば、ワイヤレス信号の送信および受信は、アナログおよびデジタル目的のためのいくつかの構成要素(たとえば、アンテナ、RFチェーン、電力増幅器、変調器、バッファ、プロセッサ、インターリーバ、アダー/加算器などを含むハードウェア構成要素)を必ず含む。本明細書で説明される新機軸は、異なるサイズ、形状および構造の多種多様なデバイス、チップレベル構成要素、システム、分散構成、エンドユーザデバイスなどにおいて実践され得ることが意図される。
[0023]5G新無線(NR)のような次世代ネットワークでは、多様なタイプのワイヤレス通信デバイスおよびサービスを扱うために通信リソース割振りはよりフレキシブルである。ロングタームエボリューション(LTE(登録商標))のような現在の通信ネットワークでは、ワイヤレス通信デバイスは、トランスポートブロックサイズ(TBS)を決定するためにTBSテーブルを使用し得る。しかしながら、そのような手法は、様々なスロット構成、復調基準信号(DMRS)の仮定、制御リソースの使用、および次世代ネットワークにおいて提供される多くの他のフレキシビリティにより、望ましくなく大きいTBSテーブルを生じ得る。
[0024]本開示のいくつかの態様は、パラメータとトランスポートブロックサイズ(TBS)との間の巡回的依存性なしに様々なパラメータの関数としてTBSを決定するための装置および方法を提供する。開示される関数は、シングルパスでTBSを決定することができ、決定されたTBSは、トランスポートブロックセグメント化プロセスにおいて等しいコードブロックサイズ(CBS)をもつコードブロックの使用を可能にする。加えて、決定されたTBSは、バイト整列されたコードブロック長を提供し、トランスポートブロック中でパディングビットを必要としない。
[0025]本開示全体にわたって提示される様々な概念は、多種多様な電気通信システム、ネットワークアーキテクチャ、および通信規格にわたって実装され得る。次に図1を参照すると、限定されない例示的な例として、ワイヤレス通信システム100に関する本開示の様々な態様が示されている。ワイヤレス通信システム100は、コアネットワーク102、無線アクセスネットワーク(RAN)104、およびユーザ機器(UE)106という、3つの相互作用ドメインを含む。ワイヤレス通信システム100により、UE106は、(限定はされないが)インターネットなど、外部データネットワーク110とのデータ通信を行うことを可能にされ得る。
[0026]RAN104は、UE106に無線アクセスを提供するために、1つまたは複数の任意の好適なワイヤレス通信技術を実装し得る。一例として、RAN104は、しばしば5Gと呼ばれる、第3世代パートナーシッププロジェクト(3GPP(登録商標))新無線(NR)仕様に従って動作し得る。別の例として、RAN104は、5G NR規格と、しばしばLTEと呼ばれる発展型ユニバーサル地上波無線アクセスネットワーク(eUTRAN)規格とのハイブリッドの下で動作し得る。3GPPは、このハイブリッドRANを次世代RANまたはNG−RANと呼ぶ。もちろん、本開示の範囲内で多くの他の例が利用されてよい。
[0027]図示のように、RAN104は複数の基地局108を含む。概して、基地局は、UEへのまたはUEからの1つまたは複数のセル中の無線送受信を担当する無線アクセスネットワーク中のネットワーク要素である。異なる技術、規格、またはコンテキストでは、基地局は、当業者によって、基地トランシーバ局(BTS)、無線基地局、無線トランシーバ、トランシーバ機能、基本サービスセット(BSS)、拡張サービスセット(ESS)、アクセスポイント(AP)、ノードB(NB)、eノードB(eNB)、gノードB(gNB)、または何らかの他の好適な用語で様々に呼ばれることがある。
[0028]無線アクセスネットワーク104は、複数のモバイル装置のためのワイヤレス通信をサポートするようにさらに示されている。モバイル装置は、3GPP規格ではユーザ機器(UE)と呼ばれることがあるが、移動局(MS)、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末(AT)、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、端末、ユーザエージェント、モバイルクライアント、クライアント、または何らかの他の好適な用語で当業者によって呼ばれることもある。UEは、ネットワークサービスへのアクセスをユーザに提供する装置(たとえば、モバイル装置)であり得る。
[0029]本文書内で、「モバイル」装置は、必ずしも移動する能力を有する必要があるとは限らず、固定であってよい。モバイル装置またはモバイルデバイスという用語は、多種多様なデバイスおよび技術を広く指す。UEは、通信を助けるようにサイズ決定、整形、および構成されたいくつかのハードウェア構造構成要素を含んでよく、そのような構成要素は、互いに電気的に結合されたアンテナ、アンテナアレイ、RFチェーン、増幅器、1つまたは複数のプロセッサなどを含むことができる。たとえば、モバイル装置のいくつかの非限定的な例は、モバイル、セルラー(セル)フォン、スマートフォン、セッション開始プロトコル(SIP)フォン、ラップトップ、パーソナルコンピュータ(PC)、ノートブック、ネットブック、スマートブック、タブレット、携帯情報端末(PDA)、および、たとえば、「モノのインターネット」(IoT)に対応する多種多様な組込みシステムを含む。モバイル装置は、さらに、自動車または他の輸送車両、リモートセンサまたはアクチュエータ、ロボットまたはロボティクスデバイス、衛星ラジオ、全地球測位システム(GPS)デバイス、オブジェクトトラッキングデバイス、ドローン、マルチコプター、クワッドコプター、リモート制御デバイス、アイウェア、ウェアラブルカメラ、仮想現実デバイス、スマートウォッチ、ヘルストラッカーもしくはフィットネストラッカー、デジタルオーディオプレーヤ(たとえば、MP3プレーヤ)、カメラ、ゲームコンソールなどのコンシューマおよび/またはウェアラブルデバイスであってよい。モバイル装置は、さらに、ホームオーディオ、ビデオ、および/またはマルチメディアデバイスなどのデジタルホームまたはスマートホームデバイス、アプライアンス、自動販売機、インテリジェント照明、ホームセキュリティシステム、スマートメータなどであってよい。モバイル装置は、さらに、スマートエネルギーデバイス、セキュリティデバイス、ソーラーパネルまたはソーラーアレイ、電力(たとえば、スマートグリッド)、照明、水などを制御する都市インフラストラクチャデバイス、工業オートメーションおよびエンタープライズデバイス、ロジスティックスコントローラ、農業機器、軍事防衛機器、車両、航空機、船舶、ならびに兵器であってよい。またさらに、モバイル装置は、コネクテッド医療またはテレメディスンのサポート、たとえば、遠隔ヘルスケアを実現し得る。テレヘルスデバイスはテレヘルス監視デバイスとテレヘルス投与デバイスとを含むことがあり、それらの通信は、たとえば、重要サービスデータの移送のための優先アクセス、および/または重要サービスデータの移送のための関連QoSに関して、他のタイプの情報よりも優遇措置または優先アクセスを与えられ得る。
[0030]RAN104とUE106との間のワイヤレス通信は、エアインターフェースを利用するものとして説明されてよい。基地局(たとえば、基地局108)から1つまたは複数のUE(たとえば、UE106)へのエアインターフェースを介した送信はダウンリンク(DL)送信と呼ばれることがある。本開示のいくつかの態様によれば、ダウンリンクという用語は、(たとえば、基地局108など、以下でさらに説明される)スケジューリングエンティティにおいて発生するポイントツーマルチポイント送信を指し得る。この方式について説明するための別の仕方は、ブロードキャストチャネル多重化という用語を使用することであり得る。UE(たとえば、UE106)から基地局(たとえば、基地局108)への送信はアップリンク(UL)送信と呼ばれることがある。本開示のさらなる態様によれば、アップリンクという用語は、(たとえば、UE106など、以下でさらに説明される)被スケジューリングエンティティにおいて発生するポイントツーポイント送信を指し得る。
[0031]いくつかの例では、エアインターフェースへのアクセスがスケジュールされてよく、ここにおいて、スケジューリングエンティティ(たとえば、基地局108)は、そのサービスエリアまたはセル内の一部または全部のデバイスおよび機器の間の通信のためにリソースを割り振る。本開示内で、以下でさらに論じられるように、スケジューリングエンティティは、1つまたは複数の被スケジューリングエンティティのためのリソースをスケジュールすることと、割り当てることと、再構成することと、解放することとを担当し得る。すなわち、スケジュールされた通信では、被スケジューリングエンティティであり得るUE106は、スケジューリングエンティティ108によって割り振られたリソースを利用し得る。
[0032]基地局108は、スケジューリングエンティティとして機能し得る唯一のエンティティではない。すなわち、いくつかの例では、UEがスケジューリングエンティティとして機能し、1つまたは複数の被スケジューリングエンティティ(たとえば、1つまたは複数の他のUE)のためのリソースをスケジュールし得る。
[0033]図1に示されているように、スケジューリングエンティティ108は、1つまたは複数の被スケジューリングエンティティ106にダウンリンクトラフィック112をブロードキャストし得る。概して、スケジューリングエンティティ108は、ダウンリンクトラフィック112と、いくつかの例では、1つまたは複数の被スケジューリングエンティティ106からスケジューリングエンティティ108へのアップリンクトラフィック116とを含む、ワイヤレス通信ネットワーク中のトラフィックをスケジュールすることを担当するノードまたはデバイスである。一方、被スケジューリングエンティティ106は、スケジューリングエンティティ108などのワイヤレス通信ネットワーク中の別のエンティティから、限定はされないが、スケジューリング情報(たとえば、許可)、同期もしくはタイミング情報、または他の制御情報を含む、ダウンリンク制御情報114を受信するノードまたはデバイスである。
[0034]概して、基地局108は、ワイヤレス通信システムのバックホール部分120と通信するためのバックホールインターフェースを含み得る。バックホール120は、基地局108とコアネットワーク102との間のリンクを提供し得る。さらに、いくつかの例では、バックホールネットワークは、それぞれの基地局108間の相互接続を提供し得る。任意の好適なトランスポートネットワークを使用して、直接物理接続、仮想ネットワークなど、様々なタイプのバックホールインターフェースが採用されてよい。
[0035]コアネットワーク102は、ワイヤレス通信システム100の一部であってよく、RAN104において使用される無線アクセス技術とは無関係であり得る。いくつかの例では、コアネットワーク102は、5G規格(たとえば、5GC)に従って構成され得る。他の例では、コアネットワーク102は、4G発展型パケットコア(EPC)、または任意の他の好適な規格もしくは構成に従って構成され得る。
[0036]次に図2を参照すると、限定ではなく例として、RAN200の概略図が提供されている。いくつかの例では、RAN200は、上記で説明され図1に示されているRAN104と同じであり得る。RAN200によってカバーされる地理的エリアは、1つのアクセスポイントまたは基地局からブロードキャストされる識別情報に基づいてユーザ機器(UE)によって一意に識別されることが可能なセルラー領域(セル)に分割されてよい。図2は、マクロセル202、204、および206、ならびにスモールセル208を示し、その各々は、1つまたは複数のセクタ(図示せず)を含んでよい。セクタとはセルのサブエリアである。1つのセル内のすべてのセクタは、同じ基地局によってサービスされる。セクタ内の無線リンクは、そのセクタに属する単一の論理識別情報によって識別されることが可能である。セクタに分割されたセルにおいて、セル内の複数のセクタはアンテナのグループによって形成されることが可能であり、各アンテナは、セルの一部分においてUEとの通信を担当する。
[0037]図2では、セル202および204中に2つの基地局210および212が示され、セル206中でリモートラジオヘッド(RRH)216を制御する第3の基地局214が示されている。すなわち、基地局は、統合されたアンテナを有することができるか、またはフィーダケーブルによってアンテナもしくはRRHに接続されることが可能である。図示の例では、セル202、204、および126は、基地局210、212、および214が大きいサイズを有するセルをサポートするので、マクロセルと呼ばれることがある。さらに、スモールセル208中に基地局218(たとえば、マイクロセル、ピコセル、フェムトセル、ホーム基地局、ホームノードB、ホームeノードBなど)が示されており、スモールセル208は1つまたは複数のマクロセルと重複することがある。この例では、セル208は、基地局218が比較的小さいサイズを有するセルをサポートするので、スモールセルと呼ばれることがある。セルのサイズ決定は、システム設計ならびに構成要素制約に従って行われることが可能である。
[0038]無線アクセスネットワーク200は任意の数のワイヤレス基地局およびセルを含んでよいことを理解されたい。さらに、所与のセルのサイズまたはカバレージエリアを拡張するために、リレーノードが展開されてよい。基地局210、212、214、218は、任意の数のモバイル装置にコアネットワークへのワイヤレスアクセスポイントを提供する。いくつかの例では、基地局210、212、214、および/または218は、上記で説明され図1に示されている基地局/スケジューリングエンティティ108と同じであり得る。
[0039]図2は、基地局として機能するように構成され得るクワッドコプターまたはドローン220をさらに含む。すなわち、いくつかの例では、セルは必ずしも固定であるとは限らないことがあり、セルの地理的エリアは、クワッドコプター220などのモバイル基地局のロケーションに従って移動することがある。
[0040]RAN200内に、セルは、各セルの1つまたは複数のセクタと通信中であり得るUEを含み得る。さらに、各基地局210、212、214、218、および220は、それぞれのセル中のすべてのUEにコアネットワーク102(図1参照)へのアクセスポイントを提供するように構成され得る。たとえば、UE222および224は基地局210と通信中であり得、UE226および228は基地局212と通信中であり得、UE230および232はRRH216を介して基地局214と通信中であり得、UE234は基地局218と通信中であり得、UE236はモバイル基地局220と通信中であり得る。いくつかの例では、UE222、224、226、228、230、232、234、236、238、240、および/または242は、上記で説明され図1に示されているUE/被スケジューリングエンティティ106と同じであり得る。
[0041]いくつかの例では、モバイルネットワークノード(たとえば、クワッドコプター220)は、UEとして機能するように構成され得る。たとえば、クワッドコプター220は、基地局210と通信することによってセル202内で動作し得る。
[0042]RAN200のさらなる態様では、基地局からのスケジューリング情報または制御情報に必ずしも依存するとは限らないで、UE間でサイドリンク信号が使用され得る。たとえば、2つ以上のUE(たとえば、UE226および228)は、基地局(たとえば、基地局212)を介してその通信を中継することなしに、ピアツーピア(P2P)またはサイドリンク信号227を使用して互いに通信し得る。さらなる例では、UE238が、UE240および242と通信しているように示されている。ここで、UE238はスケジューリングエンティティまたは1次サイドリンクデバイスとして機能し得、UE240および242は被スケジューリングエンティティまたは非1次(たとえば、2次)サイドリンクデバイスとして機能し得る。さらに別の例では、UEは、デバイス間(D2D)、ピアツーピア(P2P)、もしくは車両間(V2V)ネットワーク、および/またはメッシュネットワークにおいてスケジューリングエンティティとして機能し得る。メッシュネットワークの例では、UE240および242は、スケジューリングエンティティ238と通信することに加えて、場合によっては互いに直接通信し得る。このように、時間周波数リソースへのアクセスがスケジュールされ、セルラー構成、P2P構成、またはメッシュ構成を有するワイヤレス通信システムでは、スケジューリングエンティティおよび1つまたは複数の被スケジューリングエンティティは、スケジュールされたリソースを利用して通信し得る。
[0043]無線アクセスネットワーク200では、UEが、そのロケーションに関係なく、移動中に通信するための能力は、モビリティと呼ばれる。UEと無線アクセスネットワークとの間の様々な物理チャネルは、概して、アクセスおよびモビリティ管理機能(AMF、図示されず、図1のコアネットワーク102の一部)の制御下でセットアップ、保持、および解放され、アクセスおよびモビリティ管理機能は、制御プレーン機能とユーザプレーン機能の両方のためのセキュリティコンテキストを管理するセキュリティコンテキスト管理機能(SCMF)と、認証を実施するセキュリティアンカー機能(SEAF)とを含んでよい。
[0044]本開示の様々な態様では、無線アクセスネットワーク200は、モビリティおよびハンドオーバ(すなわち、1つの無線チャネルから別の無線チャネルへのUEの接続の移行)を可能にするために、DLベースのモビリティまたはULベースのモビリティを利用し得る。DLベースのモビリティ用に構成されたネットワークでは、スケジューリングエンティティとの呼の間に、または任意の他の時間に、UEは、そのサービングセルからの信号の様々なパラメータ、ならびに隣接セルの様々なパラメータを監視し得る。これらのパラメータの品質に応じて、UEは、隣接セルのうちの1つまたは複数との通信を維持し得る。この時間中に、UEが1つのセルから別のセルに移動した場合、または隣接セルからの信号品質がサービングセルからの信号品質を所与の時間量の間超える場合、UEは、サービングセルから隣接(ターゲット)セルへのハンドオフまたはハンドオーバに着手し得る。たとえば、(任意の好適な形態のUEが使用され得るが、車両として示されている)UE224は、そのサービングセル202に対応する地理的エリアから隣接セル206に対応する地理的エリアに移動することがある。隣接セル206からの信号強度または信号品質がUE224のサービングセル202の信号強度または信号品質を所与の時間量の間超えるとき、UE224は、そのサービング基地局210に、この状態を示す報告メッセージを送信し得る。応答して、UE224はハンドオーバコマンドを受信し得、UEはセル206へのハンドオーバに着手し得る。
[0045]ULベースのモビリティ用に構成されたネットワークでは、各UEのサービングセルを選択するために、各UEからのUL基準信号がネットワークによって利用され得る。いくつかの例では、基地局210、212、および214/216は、統合された同期信号(たとえば、統合された1次同期信号(PSS)、統合された2次同期信号(SSS)、および統合された物理ブロードキャストチャネル(PBCH))をブロードキャストし得る。UE222、224、226、228、230、および232は、統合された同期信号を受信し、同期信号からキャリア周波数とスロットタイミングとを導出し、タイミングを導出したことに応答して、アップリンクパイロットまたは基準信号を送信し得る。UE(たとえば、UE224)によって送信されたアップリンクパイロット信号は、無線アクセスネットワーク200内の2つ以上のセル(たとえば、基地局210および214/216)によって同時に受信されることがある。セルの各々はパイロット信号の強度を測定し得、無線アクセスネットワーク(たとえば、基地局210および214/216のうちの1つもしくは複数、ならびに/またはコアネットワーク内の中央ノード)は、UE224のためのサービングセルを決定し得る。UE224が無線アクセスネットワーク200を通って移動するとき、ネットワークは、UE224によって送信されるアップリンクパイロット信号を監視し続け得る。隣接セルによって測定されたパイロット信号の信号強度または信号品質が、サービングセルによって測定された信号強度または信号品質のそれを超えるとき、ネットワーク200は、UE224に通知するとともにまたは通知することなしに、サービングセルから隣接セルにUE224をハンドオーバし得る。
[0046]基地局210、212、および214/216によって送信された同期信号は統合されてよいが、同期信号は、特定のセルを識別しないことがあり、そうではなく同じ周波数上でおよび/または同じタイミングを用いて動作する複数のセルのゾーンを識別することがある。5Gネットワークまたは他の次世代通信ネットワークにおいてゾーンを使用すると、アップリンクベースのモビリティフレームワークが可能になり、UEとネットワークとの間で交換される必要があるモビリティメッセージの数が低減され得るので、UEとネットワークの両方の効率が改善される。
[0047]様々な実装形態では、無線アクセスネットワーク200中のエアインターフェースは、認可スペクトル、無認可スペクトル、または共有スペクトルを利用し得る。認可スペクトルは、概してモバイルネットワーク事業者が政府規制機関からライセンスを購入することによって、スペクトルの一部分の排他的使用を実現する。無認可スペクトルは、政府許可ライセンスの必要なしに、スペクトルの一部分の共有使用を実現する。無認可スペクトルにアクセスするためにいくつかの技術的なルールの遵守が概してなお要求されるが、概して、どんな事業者またはデバイスもアクセスを獲得し得る。共有スペクトルは、認可スペクトルと無認可スペクトルとの間にあってよく、ここにおいて、スペクトルにアクセスするために技術的なルールまたは制限が要求され得るが、スペクトルは、やはり複数の事業者および/または複数のRATによって共有され得る。たとえば、認可スペクトルの一部分のためのライセンスの保有者は、たとえば、アクセスを獲得するための好適なライセンシー決定条件を用いて、そのスペクトルを他の関係者と共有するために認可共有アクセス(LSA)を提供し得る。
[0048]無線アクセスネットワーク200中のエアインターフェースは、1つまたは複数の二重化アルゴリズムを利用し得る。二重は、両方のエンドポイントが両方向に互いに通信することができるポイントツーポイント通信リンクを指す。全二重は、両方のエンドポイントが互いに同時に通信できることを意味する。半二重は、一度に一方のエンドポイントのみが他方のエンドポイントに情報を送ることができることを意味する。ワイヤレスリンクでは、全二重チャネルは、概して、送信機と受信機の物理的分離、および好適な干渉消去技術に依存する。全二重エミュレーションは、周波数分割複信(FDD)または時分割複信(TDD)を利用することによってワイヤレスリンクのために頻繁に実装される。FDDでは、異なる方向の送信は、異なるキャリア周波数において動作する。TDDでは、所与のチャネル上の異なる方向の送信は、時分割多重化を使用して互いに分離される。すなわち、ある時間には、チャネルはある方向の送信専用であり、他の時間には、チャネルは他の方向の送信専用であり、ここで、方向は、極めて迅速に、たとえば、スロットごとに数回変わり得る。
[0049]本開示のいくつかの態様では、スケジューリングエンティティおよび/または被スケジューリングエンティティは、ビームフォーミングおよび/または多入力多出力(MIMO)技術のために構成され得る。図3は、MIMOをサポートするワイヤレス通信システム300の一例を示す。MIMOシステムでは、送信機302は、複数の送信アンテナ304(たとえば、N個の送信アンテナ)を含み、受信機306は、複数の受信アンテナ308(たとえば、M個の受信アンテナ)を含む。したがって、送信アンテナ304から受信アンテナ308へのN×M個の信号経路310が存在する。送信機302と受信機306との各々は、たとえば、スケジューリングエンティティ108、被スケジューリングエンティティ106、または任意の他の好適なワイヤレス通信デバイス内に実装され得る。
[0050]そのような複数アンテナ技術を使用すると、ワイヤレス通信システムが、空間多重化と、ビームフォーミングと、送信ダイバーシティとをサポートするために空間ドメインを活用することが可能になる。空間多重化は、レイヤとも呼ばれる、データの異なるストリームを、同じ時間周波数リソース上で同時に送信するために使用され得る。データストリームまたはレイヤの数は送信のランクに対応する。概して、MIMOシステム300のランクは、送信アンテナ304または受信アンテナ308の数の、どちらでもより低い方によって制限される。加えて、UEにおけるチャネル状態、ならびに基地局における利用可能なリソースなどの他の考慮事項も、送信ランクに影響を及ぼし得る。たとえば、ダウンリンク上で特定のUEに割り当てられるランク(したがって、データストリームの数)は、UEから基地局に送信されるランクインジケータ(RI)に基づいて決定され得る。RIは、アンテナ構成(たとえば、送信アンテナおよび受信アンテナの数)、ならびに受信アンテナの各々上の測定された信号対干渉雑音比(SINR)に基づいて決定され得る。RIは、たとえば、現在のチャネル状態下でサポートされ得るレイヤの数を示し得る。基地局は、UEに送信ランクを割り当てるために、リソース情報(たとえば、UEにスケジュールされるべき利用可能なリソースおよびデータ量)とともにRIを使用し得る。
[0051]最も簡単なケースでは、図3に示されているように、2×2MIMOアンテナ構成上のランク2空間多重化送信は、各送信アンテナ304から1つのデータストリームを送信する。各データストリームは、異なる信号経路310に沿って各受信アンテナ308に到達する。次いで、受信機306は、各受信アンテナ308からの受信信号を使用してデータストリームを再構成し得る。
[0052]無線アクセスネットワーク200上の送信が、極めて高いデータレートをやはり実現しながら低いブロック誤り率(BLER)を取得するために、チャネルコーディングが使用され得る。すなわち、ワイヤレス通信は、概して、好適な誤り訂正ブロックコードを利用し得る。典型的なブロックコードでは、情報メッセージまたはシーケンスはコードブロック(CB)に分割され、送信デバイスにあるエンコーダ(たとえば、コーデック)は、次いで、情報メッセージに冗長性を数学的に追加する。符号化された情報メッセージ中でこの冗長性を活用すると、ノイズに起因して発生し得る任意のビットエラーに対する訂正が可能になり、メッセージの信頼性を改善することができる。
[0053]初期の5G NR仕様では、ユーザデータは、2つの異なるベースグラフをもつ準巡回的低密度パリティチェック(LDPC)を使用してコーディングされ、一方のベースグラフは大きいコードブロックおよび/または高いコードレートの場合に使用されるが、他方のベースグラフは、そうでない場合に使用される。制御情報および物理ブロードキャストチャネル(PBCH)は、ネストされたシーケンスに基づいて、ポーラーコーディングを使用してコーディングされる。これらのチャネルの場合、パンクチャリング、ショートニング、および繰返しがレートマッチングのために使用される。
[0054]ベースグラフ(BG)は、最大コードレートおよび最小コードレートなど、いくつかの性能特性を有するLPDCコードを指す。一例では、第1のベースグラフ(BG1)は、1/3の最小コードレートをサポートすることができ、第2のベースグラフ(BG2)は、1/5の最小コードレートをサポートすることができる。コードブロックの最大サイズはベースグラフに依存する。ベースグラフ(たとえば、BG1およびBG2)は、コードブロックサイズまたは長さに基づいてより良い性能を提供するように選択される。たとえば、BG2は、概して、BG1のコードレートよりも低いコードレートのために使用される。ベースグラフの例は、技術仕様書38.212v1.1.2、多重化およびチャネルコーディング(リリース15)などの3GPP規格において見つけられ得る。
[0055]一例では、コードレート(Rinit)が1/4よりも大きい初期送信では、TBSが、3824ビットより大きいとき、BG2は使用されない。しかしながら、BG2は、コードレートが1/4以下である初期送信では、そのコードレートにおいてサポートされるすべてのTBSのために使用される。TBSが3824ビットよりも大きいBG2が使用されるとき、TBは、3840ビット以下のコードブロックにセグメント化される。
[0056]本開示の一態様では、308ビット以下のコードブロックサイズ(K)では、BG2は、すべてのコードレートのために使用され得る。5G NR規格では、最大コードブロックサイズ(Kcb)は、BG1とともに使用するためには8448ビットであり、BG2とともに使用するためには3840ビットである。一例では、CBSがX(たとえば、X=3840)よりも大きいとき、または初期送信のコードレートがY(たとえば、Y=0.67)よりも大きいとき、初期送信と、同じTBの後続の再送信とのためにBG1が使用される。一例では、CBSがX以下であり、初期送信のコードレートがY以下であるとき、初期送信と、同じTBの後続の再送信とのためにBG2が使用される。
[0057]しかしながら、当業者は、本開示の態様が任意の好適なチャネルコードを利用して実装され得ることを理解されよう。スケジューリングエンティティ108と被スケジューリングエンティティ106との様々な実装形態は、ワイヤレス通信のためにこれらのチャネルコードのうちの1つまたは複数を利用するための好適なハードウェアおよび能力(たとえば、エンコーダ、デコーダ、および/またはコーデック)を含み得る。
[0058]無線アクセスネットワーク200中のエアインターフェースは、様々なデバイスの同時通信を可能にするために、1つまたは複数の多重化と、複数のアクセスアルゴリズムとを利用し得る。たとえば、5G NR仕様は、巡回プレフィックス(CP)とともに直交周波数分割多重化(OFDM)を利用して、UE222および224から基地局210へのUL送信のための多元接続、ならびに基地局210から1つまたは複数のUE222および224へのDL送信のための多重化を実現する。加えて、UL送信の場合、5G NR仕様は、(シングルキャリアFDMA(SC−FDMA)とも呼ばれる)CPを用いた離散フーリエ変換拡張OFDM(DFT−s−OFDM)向けのサポートを提供する。しかしながら、本開示の範囲内で、多重化および多元接続は上記の方式に限定されず、時分割多元接続(TDMA)、符号分割多元接続(CDMA)、周波数分割多元接続(FDMA)、スパースコード多元接続(SCMA)、リソース拡散多元接続(RSMA)、または他の好適な多元接続方式を利用して実現されてよい。さらに、基地局210からUE222および224へのDL送信を多重化することは、時分割多重化(TDM)、符号分割多重化(CDM)、周波数分割多重化(FDM)、直交周波数分割多重化(OFDM)、スパースコード多重化(SCM)、または他の好適な多重化方式を利用して実現されてよい。
[0059]本開示の様々な態様について、図4に概略的に示されているOFDM波形に関して説明される。本開示の様々な態様は、以下で説明されるのと実質的に同じ仕方でDFT−s−OFDMA波形に適用され得ることが当業者によって理解されるべきである。すなわち、本開示のいくつかの例は、明快のためにOFDMリンクに焦点を当てることがあるが、同じ原理がDFT−s−OFDMA波形にも適用され得ることを理解されたい。
[0060]本開示内で、フレームは、ワイヤレス送信のための所定の持続時間(たとえば、10ms)を指し、各フレームは、ある数のサブフレーム(たとえば、1msごとに10個のサブフレーム)からなる。所与のキャリア上では、UL中にはフレームの1つのセットが、およびDL中にはフレームの別のセットがあり得る。次に図4を参照すると、OFDMリソースグリッド404を示している、例示的なDLサブフレーム402の拡大図が示されている。しかしながら、当業者なら容易に諒解するように、任意の特定の適用例のためのPHY送信構造は、任意の数の要因に応じて、ここで説明される例とは異なることがある。ここで、時間は、OFDMシンボルのユニットをもつ水平方向にあり、周波数は、サブキャリアまたはトーンのユニットをもつ垂直方向にある。
[0061]リソースグリッド404は、所与のアンテナポートについて時間周波数リソースを概略的に表すために使用され得る。リソースグリッド404は複数のリソース要素(RE)406に分割される。1サブキャリア×1シンボルであるREは、時間周波数グリッドの最小の個別部分であり、物理チャネルまたは信号からのデータを表す単一の複素数値を含んでいる。特定の実装形態において利用される変調に応じて、各REは1つまたは複数のビットの情報を表し得る。いくつかの例では、REのブロックは、物理リソースブロック(PRB)またはより簡単にリソースブロック(RB)408と呼ばれることがあり、それは、周波数ドメイン中に任意の好適な数の連続するサブキャリアを含んでいる。一例では、RBは、使用される数秘学とは無関係の数である、12個のサブキャリアを含んでよい。いくつかの例では、数秘学に応じて、RBは、時間ドメイン中に任意の好適な数の連続するOFDMシンボルを含んでよい。本開示内で、RB408などの単一のRBは、単一方向の通信(所与のデバイスのための送信または受信のいずれか)に完全に対応すると仮定される。
[0062]UEは、リソースグリッド404のサブセットのみを概して利用する。RBは、UEに割り振られることが可能なリソースの最小単位であり得る。したがって、UEのためにスケジュールされるRBが多いほど、またエアインターフェースのために選定される変調方式が高いほど、UEのデータレートはより高くなる。
[0063]この図では、RB408は、サブフレーム402の帯域幅全体よりも小さく占有しているように示されており、いくつかのサブキャリアがRB408の上下に示されている。所与の実装形態では、サブフレーム402は、1つまたは複数のRB408のうちの任意の数に対応する帯域幅を有し得る。さらに、この図では、RB408は、サブフレーム402の持続時間全体よりも小さく占有しているように示されているが、これは考えられる一例にすぎない。
[0064]各サブフレーム402(たとえば、1msサブフレーム)は、1つまたは複数の隣接スロットからなり得る。図4に示されている例では、1つのサブフレーム402は、例示的な例のように、4つのスロット410を含む。いくつかの例では、スロットは、所与の巡回プレフィックス(CP)長をもつ指定された数のOFDMシンボルに従って定義され得る。たとえば、スロットは、公称のCPとともに7個または14個のOFDMシンボルを含み得る。さらなる例は、より短い持続時間(たとえば、1つ、2つ、4つ、または7つのOFDMシンボル)を有するミニスロットを含み得る。これらのミニスロットは、いくつかの場合には、同じまたは異なるUEのための進行中のスロット送信のためにスケジュールされたリソースを占有して送信され得る。
[0065]スロット410のうちの1つの拡大図は、制御領域412とデータ領域414とを含むスロット410を示している。概して、制御領域412は制御チャネル(たとえば、PDCCH)を搬送し得、データ領域414はデータチャネル(たとえば、PDSCHまたはPUSCH)を搬送し得る。もちろん、スロットは、すべてのDL、すべてのUL、または少なくとも1つのDL部分および少なくとも1つのUL部分を含んでいることがある。図4に示されている簡単な構造は、本質的に例示にすぎず、異なるスロット構造が利用されてよく、制御領域とデータ領域との各々のうちの1つまたは複数を含み得る。
[0066]図4に示されていないが、制御チャネル、共有チャネル、データチャネルなどを含む1つまたは複数の物理チャネルを搬送するために、RB408内の様々なRE406がスケジュールされてよい。RB408内の他のRE406は、限定はされないが、復調基準信号(DMRS)、制御基準信号(CRS)、またはサウンディング基準信号(SRS)を含む、パイロットまたは基準信号をも搬送し得る。これらのパイロットまたは基準信号は、受信デバイスが、対応するチャネルのチャネル推定を実施することを実現し得、それにより、RB408内の制御および/またはデータチャネルのコヒーレントな復調/検出が可能になり得る。
[0067]DL送信では、送信デバイス(たとえば、スケジューリングエンティティ108)は、物理ブロードキャストチャネル(PBCH)、物理ダウンリンク制御チャネル(PDCCH)など、上位レイヤから発生する情報を概して搬送する1つまたは複数のDL制御チャネルを含むDL制御情報114を1つまたは複数の被スケジューリングエンティティ106に搬送するために、(たとえば、制御領域412内に)1つまたは複数のRE406を割り振り得る。加えて、上位レイヤから発信する情報を概して搬送しないDL物理的信号を搬送するためにDL REが割り振られ得る。これらのDL物理的信号は、1次同期信号(PSS)、2次同期信号(SSS)、復調基準信号(DM−RS)、位相トラッキング基準信号(PT−RS)、チャネル状態情報基準信号(CSI−RS)などを含み得る。PDCCHは、セル中の1つまたは複数のUEのためにダウンリンク制御情報(DCI)を搬送し得る。これは、限定はされないが、電力制御コマンド、スケジューリング情報、許可、ならびに/またはDL送信およびUL送信のためのREの割当てを含むことができる。
[0068]UL送信では、送信デバイス(たとえば、被スケジューリングエンティティ106)は、UL制御情報118(UCI)を搬送するために1つまたは複数のRE406を利用し得る。UCIは、物理アップリンク制御チャネル(PUCCH)、物理ランダムアクセスチャネル(PRACH)など、1つまたは複数のUL制御チャネルを介して上位レイヤからスケジューリングエンティティ108に対して発生することができる。さらに、UL REは、復調基準信号(DM−RS)、位相トラッキング基準信号(PT−RS)、サウンディング基準信号(SRS)など、上位レイヤから発生する情報を概して搬送しないUL物理的信号を搬送し得る。いくつかの例では、制御情報118は、スケジューリング要求(SR)、すなわち、スケジューリングエンティティ108がアップリンク送信をスケジュールするようにとの要求を含み得る。ここで、制御チャネル118中で送信されたSRに応答して、スケジューリングエンティティ108は、アップリンクパケット送信のためのリソースをスケジュールし得るダウンリンク制御情報114を送信し得る。
[0069]UL制御情報はまた、肯定応答(ACK)もしくは否定応答(NACK)、チャネル状態情報(CSI)、または任意の他の好適なUL制御情報など、ハイブリッド自動再送要求(HARQ)フィードバックを含み得る。HARQは当業者によく知られている技法であり、ここにおいて、たとえば、チェックサムまたは巡回冗長検査(CRC)などの任意の好適な完全性検査機構を利用して、正確さについて受信側においてパケット送信の完全性が検査され得る。送信の完全性が確認された場合、ACKが送信され得、確認されなかった場合、NACKが送信され得る。NACKに応答して、送信デバイスはHARQ再送信を送り得、HARQ再送信は、チェイス合成、インクリメンタル冗長性などを実装し得る。
[0070]制御情報に加えて、(たとえば、データ領域414内の)1つまたは複数のRE406がユーザデータまたはトラフィックデータのために割り振られ得る。そのようなトラフィックは、DL送信の場合には物理ダウンリンク共有チャネル(PDSCH)、またはUL送信の場合には物理アップリンク共有チャネル(PUSCH)など、1つまたは複数のトラフィックチャネル上で搬送されてよい。
[0071]上記で説明され図1、図2および図3に示されているチャネルまたはキャリアは、必ずしもスケジューリングエンティティ108と被スケジューリングエンティティ106との間で利用され得るすべてのチャネルまたはキャリアであるとは限らず、当業者は、示されているチャネルまたはキャリアに加えて、他のトラフィックチャネル、制御チャネル、およびフィードバックチャネルなど、他のチャネルまたはキャリアが利用され得ることを認識されよう。
[0072]上記で説明されたこれらの物理チャネルは、概して、メディアアクセス制御(MAC)レイヤにおいて処理するために多重化され、トランスポートチャネルにマッピングされる。トランスポートチャネルは、トランスポートブロック(TB)と呼ばれる情報のブロックを搬送する。情報のビット数に対応し得るトランスポートブロックサイズ(TBS)は、変調およびコーディング方式(MCS)と、所与の送信におけるRBの数とに基づいて制御されるパラメータであり得る。
[0073]図5は、処理システム514を採用するスケジューリングエンティティ500のためのハードウェア実装形態の一例を示すブロック図である。たとえば、スケジューリングエンティティ500は、図1、図2、および/または図3のうちのいずれか1つまたは複数に示されているようなユーザ機器(UE)であり得る。別の例では、スケジューリングエンティティ500は、図1、図2、および/または図3のうちのいずれか1つまたは複数に示されているような基地局であり得る。
[0074]スケジューリングエンティティ500は、1つまたは複数のプロセッサ504を含む処理システム514を用いて実装され得る。プロセッサ504の例は、マイクロプロセッサ、マイクロコントローラ、デジタル信号プロセッサ(DSP)、フィールドプログラマブルゲートアレイ(FPGA)、プログラマブル論理デバイス(PLD)、状態機械、ゲート論理、個別ハードウェア回路、および本開示全体にわたって説明される様々な機能を実施するように構成された他の好適なハードウェアを含む。様々な例では、スケジューリングエンティティ500は、本明細書で説明される機能のうちのいずれか1つまたは複数を実施するように構成され得る。すなわち、スケジューリングエンティティ500中で利用されるプロセッサ504は、以下で説明され図7〜図10に示されているプロセスおよび手順のうちのいずれか1つまたは複数を実装するために使用され得る。
[0075]この例では、処理システム514は、バス502によって概略的に表されるバスアーキテクチャを用いて実装され得る。バス502は、処理システム514の特定の適用例および全体的な設計制約に応じて、任意の数の相互接続バスおよびブリッジを含み得る。バス502は、(プロセッサ504によって概略的に表される)1つまたは複数のプロセッサと、メモリ505と、(コンピュータ可読媒体506によって概略的に表される)コンピュータ可読媒体とを含む、様々な回路を互いに通信可能に結合する。バス502はまた、タイミングソース、周辺機器、電圧調節器、および電力管理回路などの様々な他の回路をリンクすることがあり、これらの回路は当技術分野でよく知られており、したがって、これ以上説明されない。バスインターフェース508は、バス502とトランシーバ510との間のインターフェースを提供する。トランシーバ510は、伝送媒体を介して様々な他の装置と通信するための通信インターフェースまたは通信手段を提供する。装置の性質に応じて、ユーザインターフェース512(たとえば、キーパッド、ディスプレイ、スピーカー、マイクロフォン、ジョイスティック)も設けられてよい。もちろん、そのようなユーザインターフェース512は随意であり、基地局など、いくつかの例では省略されてよい。
[0076]本開示のいくつかの態様では、プロセッサ504は、たとえば、ワイヤレス通信において使用されるベースグラフ選択およびトランスポートブロックサイズ決定を含む、様々な機能のために構成された回路を含み得る。たとえば、この回路は、図7〜図10に関して以下で説明される機能のうちの1つまたは複数を実装するために構成され得る。プロセッサ504は、ワイヤレス通信において使用される様々なデータ処理機能を実施するために処理命令522によって構成されることが可能な処理回路540を含み得る。プロセッサ504は、アップリンク(UL)通信において使用される様々な機能を実施するためにUL通信命令554によって構成されることが可能なUL通信回路542を含み得る。たとえば、UL通信回路542は、UL通信のためのリソース(たとえば、MIMOレイヤ、PRB)をスケジュールし、割り振り得る。UL通信回路542は、UL通信において使用されるターゲットコードレートと、変調およびコーディング方式とを構成し得る。プロセッサ504は、ダウンリンク(DL)通信において使用される様々な機能を実施するためにDL通信命令556によって構成されることが可能なDL通信回路544を含み得る。たとえば、DL通信回路544は、DL通信のためのリソース(たとえば、MIMOレイヤ、PRB)をスケジュールし、割り振り得る。DL通信回路544は、DL通信において使用されるターゲットコードレートと、変調およびコーディング方式とを構成し得る。
[0077]プロセッサ504は、バス502を管理することと、コンピュータ可読媒体506に記憶されたソフトウェアの実行を含む全般的な処理とを担当する。ソフトウェアは、プロセッサ504によって実行されたとき、処理システム514に、いずれかの特定の装置について以下で説明される様々な機能を実施させる。コンピュータ可読媒体506およびメモリ505はまた、ソフトウェアを実行するときにプロセッサ504によって操作されるデータを記憶するために使用され得る。
[0078]処理システム中の1つまたは複数のプロセッサ504はソフトウェアを実行し得る。ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語などの名称にかかわらず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行ファイル、実行スレッド、プロシージャ、関数などを意味するように広く解釈されるべきである。ソフトウェアはコンピュータ可読媒体506上に常駐し得る。コンピュータ可読媒体506は非一時的コンピュータ可読媒体であってよい。非一時的コンピュータ可読媒体は、例として、磁気ストレージデバイス(たとえば、ハードディスク、フロッピー(登録商標)ディスク、磁気ストリップ)、光ディスク(たとえば、コンパクトディスク(CD)またはデジタル多用途ディスク(DVD))、スマートカード、フラッシュメモリデバイス(たとえば、カード、スティック、またはキードライブ)、ランダムアクセスメモリ(RAM)、読取り専用メモリ(ROM)、プログラマブルROM(PROM)、消去可能PROM(EPROM)、電気的消去可能PROM(EEPROM(登録商標))、レジスタ、リムーバブルディスク、ならびにコンピュータによってアクセスされ、読み取られ得るソフトウェアおよび/または命令を記憶するための任意の他の好適な媒体を含む。コンピュータ可読媒体506は、処理システム514内に存在するか、処理システム514の外部に存在するか、または処理システム514を含む複数のエンティティにわたって分散されてよい。コンピュータ可読媒体506はコンピュータプログラム製品において具現化され得る。例として、コンピュータプログラム製品は、パッケージング材料中にコンピュータ可読媒体を含み得る。特定の適用例と、全体的なシステムに課される全体的な設計制約とに応じて、本開示全体にわたって提示される記載の機能をいかにして最も良く実装することができるかを当業者は認識されよう。
[0079]1つまたは複数の例では、コンピュータ可読記憶媒体506は、たとえば、ワイヤレス通信において使用されるベースグラフ選択およびトランスポートブロックサイズ決定を含む、様々な機能のために構成されたソフトウェアを含み得る。たとえば、ソフトウェアは、図7〜図10に関して説明される機能のうちの1つまたは複数を実装するようにプロセッサ504を構成し得る、処理命令552と、UL通信命令554と、DL通信命令556とを含み得る。
[0080]図6は、処理システム614を採用する例示的な被スケジューリングエンティティ600のためのハードウェア実装形態の一例を示す概念図である。本開示の様々な態様によれば、要素、または要素の任意の部分、または要素の任意の組合せは、1つまたは複数のプロセッサ604を含む処理システム614を用いて実装され得る。たとえば、被スケジューリングエンティティ600は、図1、図2、および/または図3のうちのいずれか1つまたは複数に示されているようなユーザ機器(UE)であり得る。
[0081]処理システム614は、図4に示されている処理システム614と実質的に同じであってよく、バスインターフェース608と、バス602と、メモリ605と、プロセッサ604と、コンピュータ可読媒体606とを含む。さらに、被スケジューリングエンティティ600は、図4において上記で説明されたものと実質的に同様の、ユーザインターフェース612と、トランシーバ610とを含み得る。すなわち、被スケジューリングエンティティ600中で利用されるプロセッサ604は、以下で説明され図7〜図10に示されているプロセスおよび機能のうちのいずれか1つまたは複数を実装するために使用され得る。
[0082]本開示のいくつかの態様では、プロセッサ604は、たとえば、ワイヤレス通信において使用されるベースグラフ選択およびトランスポートブロックサイズ決定を含む、様々な機能のために構成された回路を含み得る。たとえば、この回路は、図7〜図10に関して説明される機能のうちの1つまたは複数を実装するために構成され得る。プロセッサ604は、ワイヤレス通信において使用される様々なデータ処理機能を実施するために処理命令622によって構成されることが可能な処理回路640を含み得る。プロセッサ604は、トランシーバ610を介してULおよびDL通信において使用される様々な機能を実施するために通信命令654によって構成されることが可能な通信回路642を含み得る。通信回路642は、ワイヤレス通信において使用されるターゲットコードレートと、変調およびコーディング方式とを構成し得る。プロセッサ604は、ワイヤレス通信において使用されるベースグラフを選択し、TBSを決定するための様々な機能を実施するためにトランスポートブロックサイズ(TBS)決定命令656によって構成されることが可能なTBS決定回路644を含み得る。
[0083]5G NR規格では、トランスポートブロックサイズ(TBS)は、NRE、v、Qm、およびRを含む様々なパラメータの関数として決定され得る。ここで、NREは、トランスポートブロック(TB)に割り当てられたリソース要素(RE)の数であり、vは多入力多出力(MIMO)レイヤの数であり、Qmは変調次数であり、Rはコードレートである。しかしながら、TBSを決定するために使用されるいくつかの関数または手順は、TBSと、TBSを決定するために使用されるパラメータ(たとえば、NRE、v、Qm、および/またはR)との間の巡回的依存性に依存する。そのような巡回的依存性は、TBSを決定するために再帰的アルゴリズムおよび/または特定の公式もしくは関数の複数のパスの使用を必要とし得る。したがって、TBS決定の処理時間および/または電力消費量が、望ましくなく増加または延長されることがある。
[0084]本開示の態様は、公式、関数、式、またはアルゴリズムをシングルパスで使用してTBSを決定し、TBSと公式または関数において使用されるパラメータとの間の巡回的依存性を回避することができる手順および方法を提供する。その上、決定されたTBSは、バイト整列されたコードブロックサイズを容易にすることと、トランスポートブロック中でパディングを必要としないこととが可能である。
[0085]5G NRの一例では、TBレベルCRC(LTB,CRC)は、所定のしきい値(たとえば、512ビット)よりも大きいTBのために24ビットであり得る。TBが、CBセグメント化の後に2つ以上のCBにセグメント化された場合、CBレベルCRCがCBに適用され得る。Kcbは最大コードブロックサイズである。たとえば、各コードブロックに個々にCRCビットが付属され得る。この場合、LTB,CRCは、所定のしきい値(たとえば、3824ビット)以下のTBのために16ビットであり得、CBレベルCRC(LCB,CRC)は24ビットであり得る。
[0086]本開示の一態様では、TBSは、以下の単一の式(1)を使用して決定され得る。
Figure 2021503826
[0087]式(1)において、Xは、0以上の値を有するレートバックオフファクタである。たとえば、Xは、所定の定数(たとえば、0、8、16、または24)であるか、あるいは情報ビットの中間数に等しくなり得るNRE・Qm・R・vに依存する値であることが可能である。レートバックオフファクタXを使用することで、決定されたTBSが公称コードレートを超えるのを防ぐことができる。式(1)において、大括弧は天井関数を表し、「8」演算子はバイト整列またはサイズ決定を示す。
[0088]図7は、本開示のいくつかの態様によるシングルパスでTBSを決定するための例示的なプロセス700を示すフローチャートである。TBSは、ULまたはDLトランスポートチャネル中でデータとともにトランスポートブロックを送信するために使用され得る。以下で説明されるように、一部またはすべての図示された特徴は、本開示の範囲内で特定の実装形態において省略されてよく、いくつかの図示された特徴は、すべての実施形態の実装に必要とされるとは限らないことがある。いくつかの例では、プロセス700は、図5に示されているスケジューリングエンティティ500または図6に示されている被スケジューリングエンティティ600(たとえば、UE)によって行われ得る。いくつかの例では、プロセス700は、以下で説明される機能またはアルゴリズムを行うための任意の好適な装置または手段によって行われ得る。
[0089]ブロック702において、被スケジューリングエンティティ600(たとえば、UE)が、最大コードブロックサイズ(Kcb)の値を決定するためにTBS決定回路644を利用することができる。最初に、被スケジューリングエンティティは、中間値T0=NRE・Qm・R・v−Xを決定し得る。ここで、NRE・Qm・R・vは、情報ビットの中間数を表し得る。レートバックオフファクタXは、決定されたTBSが公称コードレートを超えるのを防ぐ任意の値(たとえば、0、8、16、または24)であり得る。図8に示されているように、決定ブロック802において、条件(R≦1/4)または(R≦0.67およびT0≦3824)または(T0≦288)が真である場合、ブロック804において、TBS決定回路644は、第1のベースグラフ(たとえば、BG2)を選択し、Kcbを第1の値(たとえば、3840)に設定する。そうでない場合は、ブロック806において、TBS決定回路644は、第2のベースグラフ(たとえば、BG1)を選択し、Kcbを第1の値よりも大きい第2の値(たとえば、8448)に設定する。一例では、被スケジューリングエンティティ600は、NREと、Qmと、Rと、vとを決定するために、スケジューリングエンティティ500から情報(たとえば、MCS、コードレート、MIMO構成など)を受信し得る。
[0090]ブロック704において、被スケジューリングエンティティ600は、TBレベルCRCサイズ(LTB,CRC)を決定するためにTBS決定回路644を利用し得る。図9に示されているように、決定ブロック902において、条件T0≦3824が真である場合、ブロック904において、TBS決定回路644は、LTB,CRCを第1の値(たとえば、16)に設定し得る。そうでない場合は、ブロック906において、TBS決定回路644は、LTB,CRCを第1の値よりも大きい第2の値(たとえば、24)に設定し得る。
[0091]ブロック706において、被スケジューリングエンティティ600は、CB CRCサイズ(LCB,CRC)を決定するためにTBS決定回路644を利用し得る。図10に示されているように、決定ブロック1002において、条件T0+LTB,CRC≦Kcbが真である場合、次いで、ブロック1004において、TBS決定回路644は、LCB,CRCを第1の値(たとえば、0)に設定する。他の場合、ブロック1006において、TBS決定回路644は、LCB,CRCを第1の値よりも大きい第2の値(たとえば、24)に設定する。
[0092]ブロック708において、被スケジューリングエンティティ600は、たとえば、以下に記載された式(2)を使用して、T0と、Kcbと、LTB,CRCと、LCB,CRCとに基づいてコードブロックの数(C)または情報ブロック長を決定するためにTBS決定回路644を利用し得る。
[0093]
Figure 2021503826
[0094]ブロック710において、被スケジューリングエンティティ600は、たとえば、以下に記載された式(3)を使用して、コードブロックサイズ(K)を決定するためにTBS決定回路644を利用し得る。そのようなコードブロックサイズを使用して、コードブロックはバイトまたは8ビット整列されることが可能である。
[0095]
Figure 2021503826
[0096]ブロック712において、被スケジューリングエンティティ600は、以下に記載された式(4)を使用してTBSを決定するためにTBS決定回路644を利用し得る。
[0097]
Figure 2021503826
[0098]式(4)は、展開されたとき、上記に記載された単一のTBS式(1)になる。ブロック714において、被スケジューリングエンティティ600は、決定されたTBSに基づいてデータとともにトランスポートブロック(TB)を送信するために通信回路642およびトランシーバ610を利用し得る。したがって、プロセス700を使用して、被スケジューリングエンティティ600は、バイト整列されたコードブロック長を提供し、パディングを必要としないTBSを決定するために、シングルパスでまたは非再帰的に式(1)またはその一部を使用することができる。シングルパスは、上記で説明されたプロセスが、TBSと、ベースグラフ(たとえば、BG1またはBG2)と、コードブロックサイズとの間の巡回的依存性に対処することなしにTBSを決定することができることを意味する。すなわち、式(1)の異なるパラメータの値は1回決定され、TBSは、TBSの決定された値に基づいてパラメータを変更することなしに、式(1)を使用して計算されることが可能である。
[0099]この例では、項
Figure 2021503826
は、パラメータKcbおよびLCB,CRCが上記で説明されたように2つの所定の値をそれぞれ有するので、4つの値のうちの1つを取ることができる。たとえば、Kcbは3840または8448であり得、LCB,CRCは16または24であり得る。本開示のいくつかの態様では、これらの4つの値は、数値的問題または計算を回避するためにルックアップテーブルに記憶されることが可能である。
[0100]同様に、項
Figure 2021503826
は、値の制限されたセットのうちの1つを取ることができる(すなわち、コードブロックの数は、最大値≦200である整数に限定される)。本開示のいくつかの態様では、これらの値は、数値的問題または計算を回避するためにルックアップテーブルに記憶されることが可能である。本開示の一態様では、TBSおよび中間値はルックアップテーブルに記憶されることが可能であり、ここで、ルックアップは、NRE・Qm・R・vがどの範囲内に入るか、ならびに選択されたベースグラフに基づく。
[0101]一構成では、ワイヤレス通信のための装置(たとえば、被スケジューリングエンティティ600)は、トランスポートブロック(TB)の最大コードブロックサイズ(Kcb)を決定するための手段と、トランスポートブロックレベルの巡回冗長検査サイズ(LTB,CRC)を決定するための手段と、コードブロックレベルの巡回冗長検査サイズ(LCB,CRC)を決定するための手段と、Kcbと、LTB,CRCと、LCB,CRCとに基づいてTBに関連するコードブロックの数を決定するための手段と、コードブロックの数に基づいてコードブロックサイズを決定するための手段と、決定されたKcbと、LTB,CRCと、LCB,CRCと、コードブロックの数と、コードブロックサイズとの関数としてシングルパスでTBのトランスポートブロックサイズ(TBS)を決定するための手段と、決定されたTBSに基づいてデータとともにTBを送信するための手段とを含む。本開示のいくつかの態様では、上記の様々な手段は、TBS決定回路644と、TBS決定命令656と、トランシーバ610と、コンピュータ可読媒体606と、図7〜図10に示されているプロセスを実装するために本明細書で説明される他の要素とを使用して実装されてよい。
[0102]一態様では、上述の手段は、上述の手段によって具陳される機能を実施するように構成された図6に示されているプロセッサ604であり得る。別の態様では、上述の手段は、上述の手段によって具陳される機能を実施するように構成された回路または任意の装置であり得る。
[0103]もちろん、上記の例において、プロセッサ604中に含まれる回路は一例として提供されるにすぎず、限定はされないが、コンピュータ可読記憶媒体606に記憶された命令、または図1、図2、および/もしくは図3のいずれか1つにおいて説明される任意の他の好適な装置もしくは手段を含み、ならびに、たとえば、図7〜図10に関して本明細書で説明されるプロセスおよび/またはアルゴリズムを利用する、説明される機能を行うための他の手段が本開示の様々な態様内に含まれてよい。
[0104]例示的な実装形態を参照しながら、ワイヤレス通信ネットワークのいくつかの態様が提示された。当業者なら容易に諒解するように、本開示全体にわたって説明された様々な態様は、他の電気通信システム、ネットワークアーキテクチャ、および通信規格に拡張されてよい。
[0105]例として、様々な態様は、ロングタームエボリューション(LTE)、発展型パケットシステム(EPS)、ユニバーサルモバイルテレコミュニケーションシステム(UMTS)、および/またはモバイル用グローバルシステム(GSM(登録商標))など、3GPPによって定義された他のシステム内で実装されてよい。様々な態様はまた、CDMA2000および/またはエボリューションデータオプティマイズド(EV−DO)など、第3世代パートナーシッププロジェクト2(3GPP2)によって定義されたシステムに拡張されてよい。他の例は、IEEE802.11(Wi−Fi(登録商標))、IEEE802.16(WiMAX(登録商標))、IEEE802.20、ウルトラワイドバンド(UWB)、Bluetooth(登録商標)を採用するシステム、および/または他の好適なシステム内に実装されてよい。採用される実際の電気通信規格、ネットワークアーキテクチャ、および/または通信規格は、特定の適用例およびシステムに課される全体的な設計制約に依存する。
[0106]本開示内で、「例示的」という単語は、「例、事例、または例示として働くこと」を意味するために使用される。「例示的」として本明細書で説明されたいかなる実装形態または態様も、必ずしも本開示の他の態様よりも好ましいかまたは有利であると解釈されるべきであるとは限らない。同様に、「態様」という用語は、本開示のすべての態様が、論じられた特徴、利点、または動作モードを含むことを必要とするとは限らない。「結合される」という用語は、本明細書では、2つのオブジェクト間の直接的または間接的結合を指すために使用される。たとえば、オブジェクトAがオブジェクトBに物理的に触れ、オブジェクトBがオブジェクトCに触れる場合、オブジェクトAおよびCは、それらが互いに直接物理的に触れない場合でも、やはり互いに結合されていると見なされてよい。たとえば、第1のオブジェクトが第2のオブジェクトに決して直接物理的に接触しない場合でも、第1のオブジェクトは第2のオブジェクトに結合され得る。「回路(circuit)」および「回路(circuitry)」という用語は広く使用され、接続および構成されたとき、電子回路のタイプに関する制限なしに本開示で説明された機能の実施を可能にする、電気デバイスおよび電気導体のハードウェア実装形態、ならびにプロセッサによって実行されたとき、本開示で説明された機能の実施を可能にする、情報および命令のソフトウェア実装形態の両方を含むものとする。
[0107]図1〜図10に示されている構成要素、ステップ、特徴および/または機能のうちの1つまたは複数は、単一の構成要素、ステップ、特徴または機能に再構成されおよび/または組み合わされ得、あるいはいくつかの構成要素、ステップ、または機能で具現され得る。また、本明細書で開示される新規の特徴から逸脱することなく追加の要素、構成要素、ステップ、および/または機能が追加され得る。図1〜図10に示されている装置、デバイス、および/または構成要素は、本明細書で説明された方法、特徴、またはステップのうちの1つまたは複数を実施するように構成され得る。本明細書で説明された新規のアルゴリズムはまた、効率的にソフトウェアで実装され、および/またはハードウェアに組み込まれてよい。
[0108]開示される方法におけるステップの特定の順序または階層は、例示的なプロセスの一例であることを理解されたい。設計上の選好に基づいて、方法におけるステップの特定の順序または階層は並べ替えられてよいことを理解されたい。添付の方法クレームは、様々なステップの要素を例示的な順序で提示し、添付の方法クレーム内で特段に具陳されていない限り、提示された特定の順序または階層に限定されるものではない。
[0109]以上の説明は、どんな当業者でも本明細書で説明された様々な態様を実践できるようにするために提供される。これらの態様への様々な修正は当業者には容易に明らかであり、本明細書において定義された一般的な原理は他の態様に適用されてよい。したがって、特許請求の範囲は、本明細書に示されている態様に限定されるものではなく、特許請求の範囲の言い回しに矛盾しない全範囲を与えられるべきであり、ここにおいて、単数形の要素への言及は、そのように明記されていない限り、「唯一無二」を意味するものではなく、むしろ「1つまたは複数」を意味するものである。別段に明記されていない限り、「いくつか」という語は1つまたは複数を指す。項目のリスト「のうちの少なくとも1つ」を指す句は、単一のメンバーを含む、それらの項目の任意の組合せを指す。一例として、「a、b、またはcのうちの少なくとも1つ」は、aと、bと、cと、aおよびbと、aおよびcと、bおよびcと、a、bおよびcとを包含するように意図されている。当業者に知られているかまたは後に知られるようになる、本開示全体にわたって説明された様々な態様の要素に対するすべての構造的および機能的均等物は、参照により本明細書に明確に組み込まれ、特許請求の範囲によって包含されるように意図されている。その上、本明細書で開示されるいかなることも、そのような開示が特許請求の範囲に明示的に具陳されているかどうかにかかわらず、公に供されるものではない。
[0109]以上の説明は、どんな当業者でも本明細書で説明された様々な態様を実践できるようにするために提供される。これらの態様への様々な修正は当業者には容易に明らかであり、本明細書において定義された一般的な原理は他の態様に適用されてよい。したがって、特許請求の範囲は、本明細書に示されている態様に限定されるものではなく、特許請求の範囲の言い回しに矛盾しない全範囲を与えられるべきであり、ここにおいて、単数形の要素への言及は、そのように明記されていない限り、「唯一無二」を意味するものではなく、むしろ「1つまたは複数」を意味するものである。別段に明記されていない限り、「いくつか」という語は1つまたは複数を指す。項目のリスト「のうちの少なくとも1つ」を指す句は、単一のメンバーを含む、それらの項目の任意の組合せを指す。一例として、「a、b、またはcのうちの少なくとも1つ」は、aと、bと、cと、aおよびbと、aおよびcと、bおよびcと、a、bおよびcとを包含するように意図されている。当業者に知られているかまたは後に知られるようになる、本開示全体にわたって説明された様々な態様の要素に対するすべての構造的および機能的均等物は、参照により本明細書に明確に組み込まれ、特許請求の範囲によって包含されるように意図されている。その上、本明細書で開示されるいかなることも、そのような開示が特許請求の範囲に明示的に具陳されているかどうかにかかわらず、公に供されるものではない。
以下に本願発明の当初の特許請求の範囲に記載された発明を付記する。
[C1]
ワイヤレス通信においてトランスポートブロック(TB)中でデータを送信する方法であって、
最大コードブロックサイズを決定することと、
トランスポートブロックレベルの巡回冗長検査サイズを決定することと、
コードブロックレベルの巡回冗長検査サイズを決定することと、
前記最大コードブロックサイズと、前記トランスポートブロックレベルの巡回冗長検査サイズと、前記コードブロックレベルの巡回冗長検査サイズとに基づいて前記TBに関連するコードブロックの数を決定することと、
コードブロックの前記数に基づいてコードブロックサイズを決定することと、
前記決定された最大コードブロックサイズと、前記トランスポートブロックレベルの巡回冗長検査サイズと、前記コードブロックレベルの巡回冗長検査サイズと、コードブロックの前記数と、前記コードブロックサイズとの関数としてシングルパスで前記TBのトランスポートブロックサイズ(TBS)を決定することと、
前記決定されたTBSに基づいて前記データとともに前記TBを送信することと
を備える、方法。
[C2]
前記コードブロックサイズを前記決定することが、バイト整列されたコードブロックサイズを決定することを備える、C1に記載の方法。
[C3]
前記送信されるTBがパディングビットを有しない、C2に記載の方法。
[C4]
前記最大コードブロックサイズを前記決定することが、
コードレートまたは情報ビットの中間数のうちの少なくとも1つに基づいてコードブロックを符号化するためのベースグラフを決定することと、
前記決定されたベースグラフに基づいて前記最大コードブロックサイズを決定することと
を備える、C1に記載の方法。
[C5]
前記決定されたベースグラフに基づいて前記最大コードブロックサイズを前記決定することが、
前記最大コードブロックサイズを複数の値から選択すること
を備える、C4に記載の方法。
[C6]
前記トランスポートブロックレベルの巡回冗長検査サイズを前記決定することが、
RE ・Q m ・R・vが所定の値よりも小さい場合、前記トランスポートブロックレベルの巡回冗長検査サイズを第1の値に設定することと、
そうでない場合は、前記トランスポートブロックレベルの巡回冗長検査サイズを前記第1の値よりも大きい第2の値に設定することとを備え、ここにおいて、vがMIMOレイヤの数であり、Q m が変調次数であり、Rがコードレートであり、N RE がリソース要素の数である、C1に記載の方法。
[C7]
前記コードブロックレベルの巡回冗長検査サイズを前記決定することが、
条件N RE ・Q m ・R・v−X+L TB,CRC が前記最大コードブロックサイズ以下である場合、前記コードブロックレベルの巡回冗長検査サイズを第1の値に設定することと、
そうでない場合は、前記コードブロックレベルの巡回冗長検査サイズを前記第1の値よりも大きい第2の値に設定することと
を備え、
ここにおいて、vがMIMOレイヤの数であり、Q m が変調次数であり、Rがコードレートであり、N RE がリソース要素の数であり、Xがレートバックオフファクタであり、L TB,CRC がトランスポートブロックレベルの巡回冗長検査サイズである、
C1に記載の方法。
[C8]
前記TBSを前記決定することが、
RE ・Q m ・R・vに基づいて、1つまたは複数のルックアップテーブルにおいて前記関数とともに使用するための複数の中間値を決定すること、ここにおいて、vがMIMOレイヤの数であり、Q m が変調次数であり、Rがコードレートであり、N RE がリソース要素の数である、
を備える、C1に記載の方法。
[C9]
前記関数が、N RE ・Q m ・R・v−Xに基づいて前記TBSを決定し、ここで、Xが、0以上の値を有するレートバックオフファクタであり、vがMIMOレイヤの数であり、Q m が変調次数であり、Rがコードレートであり、N RE がリソース要素の数である、C1に記載の方法。
[C10]
前記関数が
Figure 2021503826
を備え、
ここにおいて、K cb が前記最大コードブロックサイズであり、L TB,CRC が前記トランスポートブロックレベルの巡回冗長検査サイズであり、L CB,CRC が前記コードブロックレベルの巡回冗長検査サイズである、
C9に記載の方法。
[C11]
Xが、N RE と、Q m と、Rと、vとの値に基づく所定の値を備える、C9に記載の方法。
[C12]
ワイヤレス通信においてトランスポートブロック(TB)中でデータを送信する方法であって、
複数のパラメータに基づいて非再帰的手順において前記TBのトランスポートブロックサイズ(TBS)を決定することと、
ここにおいて、前記複数のパラメータが、最大コードブロックサイズと、トランスポートブロックレベルの巡回冗長検査サイズと、コードブロックレベルの巡回冗長検査サイズと、前記TBに関連するコードブロックの数と、コードブロックサイズKとを備える、
前記決定されたTBSに基づいて前記データとともに前記TBを送信することと
を備える、方法。
[C13]
前記非再帰的手順において前記TBの前記TBSを前記決定することが、N RE ・Q m ・R・v−Xに基づき、ここにおいて、Xが、0以上の値を有するレートバックオフファクタであり、vがMIMOレイヤの数であり、Q m が変調次数であり、Rがコードレートであり、N RE がリソース要素の数である、C12に記載の方法。
[C14]
前記非再帰的手順において前記TBの前記TBSを前記決定することが、
Figure 2021503826
を決定し、
ここにおいて、K cb が前記最大コードブロックサイズであり、L TB,CRC が前記トランスポートブロックレベルの巡回冗長検査サイズであり、L CB,CRC が前記コードブロックレベルの巡回冗長検査サイズであり、Xが、0以上の値を有するレートバックオフファクタであり、vがMIMOレイヤの数であり、Q m が変調次数であり、Rがコードレートであり、N RE がリソース要素の数である、
C13に記載の方法。
[C15]
Xが、N RE と、Q m と、Rと、vとの値に基づく所定の値を備える、C13に記載の方法。
[C16]
トランスポートブロック(TB)中でデータを送信するように構成された通信インターフェースと、
実行可能コードで記憶されたメモリと、
前記通信インターフェースおよび前記メモリに動作可能に結合されたプロセッサと
を備える、ワイヤレス通信の装置であって、
前記プロセッサが、
最大コードブロックサイズを決定することと、
トランスポートブロックレベルの巡回冗長検査サイズを決定することと、
コードブロックレベルの巡回冗長検査サイズを決定することと、
前記最大コードブロックサイズと、前記トランスポートブロックレベルの巡回冗長検査サイズと、前記コードブロックレベルの巡回冗長検査サイズとに基づいて前記TBに関連するコードブロックの数を決定することと、
コードブロックの前記数に基づいてコードブロックサイズを決定することと、
前記決定された最大コードブロックサイズと、前記トランスポートブロックレベルの巡回冗長検査サイズと、前記コードブロックレベルの巡回冗長検査サイズと、コードブロックの前記数と、前記コードブロックサイズとの関数としてシングルパスで前記TBのトランスポートブロックサイズ(TBS)を決定することと、
前記決定されたTBSに基づいて前記データとともに前記TBを送信することと
を行うように前記実行可能コードによって構成された、装置。
[C17]
前記プロセッサが、バイト整列されたコードブロックサイズを決定することによって前記コードブロックサイズを決定するようにさらに構成された、C16に記載の装置。
[C18]
前記送信されるTBがパディングビットを有しない、C16に記載の装置。
[C19]
前記プロセッサが、
コードレートまたは情報ビットの中間数のうちの少なくとも1つに基づいてコードブロックを符号化するためのベースグラフを決定することと、
前記決定されたベースグラフに基づいて前記最大コードブロックサイズを決定することと
によって前記最大コードブロックサイズを決定するようにさらに構成された、C16に記載の装置。
[C20]
前記プロセッサが、前記最大コードブロックサイズを複数の値から選択することによって、前記決定されたベースグラフに基づいて前記最大コードブロックサイズを決定するようにさらに構成された、C19に記載の装置。
[C21]
前記プロセッサが、
RE ・Q m ・R・vが所定の値よりも小さい場合、前記トランスポートブロックレベルの巡回冗長検査サイズを第1の値に設定することと、
そうでない場合は、前記トランスポートブロックレベルの巡回冗長検査サイズを前記第1の値よりも大きい第2の値に設定することとによって前記トランスポートブロックレベルの巡回冗長検査サイズを決定するようにさらに構成され、ここにおいて、vがMIMOレイヤの数であり、Q m が変調次数であり、Rがコードレートであり、N RE がリソース要素の数である、
C16に記載の装置。
[C22]
前記プロセッサが、
条件N RE ・Q m ・R・v−X+L TB,CRC が前記最大コードブロックサイズ以下である場合、前記コードブロックレベルの巡回冗長検査サイズを第1の値に設定することと、
そうでない場合は、前記コードブロックレベルの巡回冗長検査サイズを前記第1の値よりも大きい第2の値に設定することと
によって前記コードブロックレベルの巡回冗長検査サイズを決定するようにさらに構成され、
ここにおいて、vがMIMOレイヤの数であり、Q m が変調次数であり、Rがコードレートであり、N RE がリソース要素の数であり、Xがレートバックオフファクタであり、L TB,CRC がトランスポートブロックレベルの巡回冗長検査サイズであり、K cb が前記最大コードブロックサイズである、
C16に記載の装置。
[C23]
前記プロセッサが、
RE ・Q m ・R・vに基づいて、1つまたは複数のルックアップテーブルにおいて前記関数とともに使用するための複数の中間値を決定すること、ここにおいて、vがMIMOレイヤの数であり、Q m が変調次数であり、Rがコードレートであり、N RE がリソース要素の数である、
によって前記TBSを決定するようにさらに構成された、C16に記載の装置。
[C24]
前記関数が、N RE ・Q m ・R・v−Xに基づいて前記TBSを決定し、ここにおいて、Xが、0以上の値を有するレートバックオフファクタであり、vがMIMOレイヤの数であり、Q m が変調次数であり、Rがコードレートであり、N RE がリソース要素の数である、C16に記載の装置。
[C25]
前記関数が
Figure 2021503826
を備え、
ここにおいて、K cb が前記最大コードブロックサイズであり、L TB,CRC が前記トランスポートブロックレベルの巡回冗長検査サイズであり、L CB,CRC が前記コードブロックレベルの巡回冗長検査サイズであり、Xが、0以上の値を有するレートバックオフファクタであり、vがMIMOレイヤの数であり、Q m が変調次数であり、Rがコードレートであり、N RE がリソース要素の数である、
C24に記載の装置。
[C26]
Xが、N RE と、Q m と、Rと、vとの値に基づく所定の値を備える、
C24に記載の装置。
[C27]
トランスポートブロック(TB)中でデータを送信するように構成された通信インターフェースと、
メモリと、
前記通信インターフェースおよびメモリに動作可能に結合されたプロセッサと
を備える、ワイヤレス通信の装置であって、
前記プロセッサが、
複数のパラメータに基づいて非再帰的手順において前記TBのトランスポートブロックサイズ(TBS)を決定することと、
ここにおいて、前記複数のパラメータが、最大コードブロックサイズと、トランスポートブロックレベルの巡回冗長検査サイズと、コードブロックレベルの巡回冗長検査サイズと、前記TBに関連するコードブロックの数と、コードブロックサイズとを備える、
前記決定されたTBSに基づいて前記データとともに前記TBを送信することと
を行うように構成された、装置。
[C28]
前記非再帰的手順において、前記プロセッサが、N RE ・Q m ・R・v−Xに基づいて前記TBSを決定するようにさらに構成され、ここにおいて、Xが、0以上の値を有するレートバックオフファクタであり、vがMIMOレイヤの数であり、Q m が変調次数であり、Rがコードレートであり、N RE がリソース要素の数である、C27に記載の装置。
[C29]
前記非再帰的手順が
Figure 2021503826
を備え、
ここにおいて、K cb が前記最大コードブロックサイズであり、L TB,CRC が前記トランスポートブロックレベルの巡回冗長検査サイズであり、L CB,CRC が前記コードブロックレベルの巡回冗長検査サイズであり、Xが、0以上の値を有するレートバックオフファクタであり、vがMIMOレイヤの数であり、Q m が変調次数であり、Rがコードレートであり、N RE がリソース要素の数である、
C28に記載の装置。
[C30]
Xが、N RE と、Q m と、Rと、vとの値に基づく所定の値を備える、C28に記載の装置。
[C31]
ワイヤレス通信の装置であって、
トランスポートブロック(TB)の最大コードブロックサイズを決定するための手段と、
トランスポートブロックレベルの巡回冗長検査サイズを決定するための手段と、
コードブロックレベルの巡回冗長検査サイズを決定するための手段と、
前記最大コードブロックサイズと、前記トランスポートブロックレベルの巡回冗長検査サイズと、前記コードブロックレベルの巡回冗長検査サイズとに基づいて前記TBに関連するコードブロックの数を決定するための手段と、
コードブロックの前記数に基づいてコードブロックサイズを決定するための手段と、
前記決定された最大コードブロックサイズと、前記トランスポートブロックレベルの巡回冗長検査サイズと、前記コードブロックレベルの巡回冗長検査サイズと、コードブロックの前記数と、前記コードブロックサイズとの関数としてシングルパスで前記TBのトランスポートブロックサイズ(TBS)を決定するための手段と、
前記決定されたTBSに基づいて前記データとともに前記TBを送信するための手段とを備える装置。
[C32]
前記コードブロックサイズを決定するための前記手段が、バイト整列されたコードブロックサイズを決定するように構成された、C31に記載の装置。
[C33]
前記送信されるTBがパディングビットを有しない、C31に記載の装置。
[C34]
前記最大コードブロックサイズを決定するための前記手段が、
コードレートまたは情報ビットの中間数のうちの少なくとも1つに基づいてコードブロックを符号化するためのベースグラフを決定するための手段と、
前記決定されたベースグラフに基づいて前記最大コードブロックサイズを決定するための手段と
を備える、C31に記載の装置。
[C35]
前記決定されたベースグラフに基づいて前記最大コードブロックサイズを決定するための前記手段が、前記最大コードブロックサイズを複数の値から選択するように構成された、C34に記載の装置。
[C36]
前記トランスポートブロックレベルの巡回冗長検査サイズを決定するための前記手段が、
RE ・Q m ・R・vが所定の値よりも小さい場合、前記トランスポートブロックレベルの巡回冗長検査サイズを第1の値に設定することと、
そうでない場合は、前記トランスポートブロックレベルの巡回冗長検査サイズを前記第1の値よりも大きい第2の値に設定することとを行うように構成され、ここにおいて、vがMIMOレイヤの数であり、Q m が変調次数であり、Rがコードレートであり、N RE がリソース要素の数である、
C31に記載の装置。
[C37]
前記コードブロックレベルの巡回冗長検査サイズを決定するための前記手段が、
条件N RE ・Q m ・R・v−X+L TB,CRC が前記最大コードブロックサイズ以下である場合、前記コードブロックレベルの巡回冗長検査サイズを第1の値に設定することと、
そうでない場合は、前記コードブロックレベルの巡回冗長検査サイズを前記第1の値よりも大きい第2の値に設定することと
を備え、
ここにおいて、vがMIMOレイヤの数であり、Q m が変調次数であり、Rがコードレートであり、N RE がリソース要素の数であり、Xがレートバックオフファクタであり、L TB,CRC がトランスポートブロックレベルの巡回冗長検査サイズであり、K cb が前記最大コードブロックサイズである、
C31に記載の装置。
[C38]
前記TBSを決定するための前記手段が、
RE ・Q m ・R・vに基づいて、1つまたは複数のルックアップテーブルにおいて前記関数とともに使用するための複数の中間値を決定すること、ここにおいて、vがMIMOレイヤの数であり、Q m が変調次数であり、Rがコードレートであり、N RE がリソース要素の数である、
を備える、C31に記載の装置。
[C39]
前記関数が、N RE ・Q m ・R・v−Xに基づいて前記TBSを決定し、ここにおいて、Xが、0以上の値を有するレートバックオフファクタであり、vがMIMOレイヤの数であり、Q m が変調次数であり、Rがコードレートであり、N RE がリソース要素の数である、C31に記載の装置。
[C40]
前記関数が
Figure 2021503826
を備え、
ここにおいて、K cb が前記最大コードブロックサイズであり、L TB,CRC が前記トランスポートブロックレベルの巡回冗長検査サイズであり、L CB,CRC が前記コードブロックレベルの巡回冗長検査サイズであり、Xが、0以上の値を有するレートバックオフファクタであり、vがMIMOレイヤの数であり、Q m が変調次数であり、Rがコードレートであり、N RE がリソース要素の数である、
C39に記載の装置。
[C41]
Xが、N RE と、Q m と、Rと、vとの値に基づく所定の値を備える、C39に記載の装置。

Claims (41)

  1. ワイヤレス通信においてトランスポートブロック(TB)中でデータを送信する方法であって、
    最大コードブロックサイズを決定することと、
    トランスポートブロックレベルの巡回冗長検査サイズを決定することと、
    コードブロックレベルの巡回冗長検査サイズを決定することと、
    前記最大コードブロックサイズと、前記トランスポートブロックレベルの巡回冗長検査サイズと、前記コードブロックレベルの巡回冗長検査サイズとに基づいて前記TBに関連するコードブロックの数を決定することと、
    コードブロックの前記数に基づいてコードブロックサイズを決定することと、
    前記決定された最大コードブロックサイズと、前記トランスポートブロックレベルの巡回冗長検査サイズと、前記コードブロックレベルの巡回冗長検査サイズと、コードブロックの前記数と、前記コードブロックサイズとの関数としてシングルパスで前記TBのトランスポートブロックサイズ(TBS)を決定することと、
    前記決定されたTBSに基づいて前記データとともに前記TBを送信することと
    を備える、方法。
  2. 前記コードブロックサイズを前記決定することが、バイト整列されたコードブロックサイズを決定することを備える、請求項1に記載の方法。
  3. 前記送信されるTBがパディングビットを有しない、請求項2に記載の方法。
  4. 前記最大コードブロックサイズを前記決定することが、
    コードレートまたは情報ビットの中間数のうちの少なくとも1つに基づいてコードブロックを符号化するためのベースグラフを決定することと、
    前記決定されたベースグラフに基づいて前記最大コードブロックサイズを決定することと
    を備える、請求項1に記載の方法。
  5. 前記決定されたベースグラフに基づいて前記最大コードブロックサイズを前記決定することが、
    前記最大コードブロックサイズを複数の値から選択すること
    を備える、請求項4に記載の方法。
  6. 前記トランスポートブロックレベルの巡回冗長検査サイズを前記決定することが、
    RE・Qm・R・vが所定の値よりも小さい場合、前記トランスポートブロックレベルの巡回冗長検査サイズを第1の値に設定することと、
    そうでない場合は、前記トランスポートブロックレベルの巡回冗長検査サイズを前記第1の値よりも大きい第2の値に設定することとを備え、ここにおいて、vがMIMOレイヤの数であり、Qmが変調次数であり、Rがコードレートであり、NREがリソース要素の数である、請求項1に記載の方法。
  7. 前記コードブロックレベルの巡回冗長検査サイズを前記決定することが、
    条件NRE・Qm・R・v−X+LTB,CRCが前記最大コードブロックサイズ以下である場合、前記コードブロックレベルの巡回冗長検査サイズを第1の値に設定することと、
    そうでない場合は、前記コードブロックレベルの巡回冗長検査サイズを前記第1の値よりも大きい第2の値に設定することと
    を備え、
    ここにおいて、vがMIMOレイヤの数であり、Qmが変調次数であり、Rがコードレートであり、NREがリソース要素の数であり、Xがレートバックオフファクタであり、LTB,CRCがトランスポートブロックレベルの巡回冗長検査サイズである、
    請求項1に記載の方法。
  8. 前記TBSを前記決定することが、
    RE・Qm・R・vに基づいて、1つまたは複数のルックアップテーブルにおいて前記関数とともに使用するための複数の中間値を決定すること、ここにおいて、vがMIMOレイヤの数であり、Qmが変調次数であり、Rがコードレートであり、NREがリソース要素の数である、
    を備える、請求項1に記載の方法。
  9. 前記関数が、NRE・Qm・R・v−Xに基づいて前記TBSを決定し、ここで、Xが、0以上の値を有するレートバックオフファクタであり、vがMIMOレイヤの数であり、Qmが変調次数であり、Rがコードレートであり、NREがリソース要素の数である、請求項1に記載の方法。
  10. 前記関数が
    Figure 2021503826
    を備え、
    ここにおいて、Kcbが前記最大コードブロックサイズであり、LTB,CRCが前記トランスポートブロックレベルの巡回冗長検査サイズであり、LCB,CRCが前記コードブロックレベルの巡回冗長検査サイズである、
    請求項9に記載の方法。
  11. Xが、NREと、Qmと、Rと、vとの値に基づく所定の値を備える、請求項9に記載の方法。
  12. ワイヤレス通信においてトランスポートブロック(TB)中でデータを送信する方法であって、
    複数のパラメータに基づいて非再帰的手順において前記TBのトランスポートブロックサイズ(TBS)を決定することと、
    ここにおいて、前記複数のパラメータが、最大コードブロックサイズと、トランスポートブロックレベルの巡回冗長検査サイズと、コードブロックレベルの巡回冗長検査サイズと、前記TBに関連するコードブロックの数と、コードブロックサイズKとを備える、
    前記決定されたTBSに基づいて前記データとともに前記TBを送信することと
    を備える、方法。
  13. 前記非再帰的手順において前記TBの前記TBSを前記決定することが、NRE・Qm・R・v−Xに基づき、ここにおいて、Xが、0以上の値を有するレートバックオフファクタであり、vがMIMOレイヤの数であり、Qmが変調次数であり、Rがコードレートであり、NREがリソース要素の数である、請求項12に記載の方法。
  14. 前記非再帰的手順において前記TBの前記TBSを前記決定することが、
    Figure 2021503826
    を決定し、
    ここにおいて、Kcbが前記最大コードブロックサイズであり、LTB,CRCが前記トランスポートブロックレベルの巡回冗長検査サイズであり、LCB,CRCが前記コードブロックレベルの巡回冗長検査サイズであり、Xが、0以上の値を有するレートバックオフファクタであり、vがMIMOレイヤの数であり、Qmが変調次数であり、Rがコードレートであり、NREがリソース要素の数である、
    請求項13に記載の方法。
  15. Xが、NREと、Qmと、Rと、vとの値に基づく所定の値を備える、請求項13に記載の方法。
  16. トランスポートブロック(TB)中でデータを送信するように構成された通信インターフェースと、
    実行可能コードで記憶されたメモリと、
    前記通信インターフェースおよび前記メモリに動作可能に結合されたプロセッサと
    を備える、ワイヤレス通信の装置であって、
    前記プロセッサが、
    最大コードブロックサイズを決定することと、
    トランスポートブロックレベルの巡回冗長検査サイズを決定することと、
    コードブロックレベルの巡回冗長検査サイズを決定することと、
    前記最大コードブロックサイズと、前記トランスポートブロックレベルの巡回冗長検査サイズと、前記コードブロックレベルの巡回冗長検査サイズとに基づいて前記TBに関連するコードブロックの数を決定することと、
    コードブロックの前記数に基づいてコードブロックサイズを決定することと、
    前記決定された最大コードブロックサイズと、前記トランスポートブロックレベルの巡回冗長検査サイズと、前記コードブロックレベルの巡回冗長検査サイズと、コードブロックの前記数と、前記コードブロックサイズとの関数としてシングルパスで前記TBのトランスポートブロックサイズ(TBS)を決定することと、
    前記決定されたTBSに基づいて前記データとともに前記TBを送信することと
    を行うように前記実行可能コードによって構成された、装置。
  17. 前記プロセッサが、バイト整列されたコードブロックサイズを決定することによって前記コードブロックサイズを決定するようにさらに構成された、請求項16に記載の装置。
  18. 前記送信されるTBがパディングビットを有しない、請求項16に記載の装置。
  19. 前記プロセッサが、
    コードレートまたは情報ビットの中間数のうちの少なくとも1つに基づいてコードブロックを符号化するためのベースグラフを決定することと、
    前記決定されたベースグラフに基づいて前記最大コードブロックサイズを決定することと
    によって前記最大コードブロックサイズを決定するようにさらに構成された、請求項16に記載の装置。
  20. 前記プロセッサが、前記最大コードブロックサイズを複数の値から選択することによって、前記決定されたベースグラフに基づいて前記最大コードブロックサイズを決定するようにさらに構成された、請求項19に記載の装置。
  21. 前記プロセッサが、
    RE・Qm・R・vが所定の値よりも小さい場合、前記トランスポートブロックレベルの巡回冗長検査サイズを第1の値に設定することと、
    そうでない場合は、前記トランスポートブロックレベルの巡回冗長検査サイズを前記第1の値よりも大きい第2の値に設定することとによって前記トランスポートブロックレベルの巡回冗長検査サイズを決定するようにさらに構成され、ここにおいて、vがMIMOレイヤの数であり、Qmが変調次数であり、Rがコードレートであり、NREがリソース要素の数である、
    請求項16に記載の装置。
  22. 前記プロセッサが、
    条件NRE・Qm・R・v−X+LTB,CRCが前記最大コードブロックサイズ以下である場合、前記コードブロックレベルの巡回冗長検査サイズを第1の値に設定することと、
    そうでない場合は、前記コードブロックレベルの巡回冗長検査サイズを前記第1の値よりも大きい第2の値に設定することと
    によって前記コードブロックレベルの巡回冗長検査サイズを決定するようにさらに構成され、
    ここにおいて、vがMIMOレイヤの数であり、Qmが変調次数であり、Rがコードレートであり、NREがリソース要素の数であり、Xがレートバックオフファクタであり、LTB,CRCがトランスポートブロックレベルの巡回冗長検査サイズであり、Kcbが前記最大コードブロックサイズである、
    請求項16に記載の装置。
  23. 前記プロセッサが、
    RE・Qm・R・vに基づいて、1つまたは複数のルックアップテーブルにおいて前記関数とともに使用するための複数の中間値を決定すること、ここにおいて、vがMIMOレイヤの数であり、Qmが変調次数であり、Rがコードレートであり、NREがリソース要素の数である、
    によって前記TBSを決定するようにさらに構成された、請求項16に記載の装置。
  24. 前記関数が、NRE・Qm・R・v−Xに基づいて前記TBSを決定し、ここにおいて、Xが、0以上の値を有するレートバックオフファクタであり、vがMIMOレイヤの数であり、Qmが変調次数であり、Rがコードレートであり、NREがリソース要素の数である、請求項16に記載の装置。
  25. 前記関数が
    Figure 2021503826
    を備え、
    ここにおいて、Kcbが前記最大コードブロックサイズであり、LTB,CRCが前記トランスポートブロックレベルの巡回冗長検査サイズであり、LCB,CRCが前記コードブロックレベルの巡回冗長検査サイズであり、Xが、0以上の値を有するレートバックオフファクタであり、vがMIMOレイヤの数であり、Qmが変調次数であり、Rがコードレートであり、NREがリソース要素の数である、
    請求項24に記載の装置。
  26. Xが、NREと、Qmと、Rと、vとの値に基づく所定の値を備える、
    請求項24に記載の装置。
  27. トランスポートブロック(TB)中でデータを送信するように構成された通信インターフェースと、
    メモリと、
    前記通信インターフェースおよびメモリに動作可能に結合されたプロセッサと
    を備える、ワイヤレス通信の装置であって、
    前記プロセッサが、
    複数のパラメータに基づいて非再帰的手順において前記TBのトランスポートブロックサイズ(TBS)を決定することと、
    ここにおいて、前記複数のパラメータが、最大コードブロックサイズと、トランスポートブロックレベルの巡回冗長検査サイズと、コードブロックレベルの巡回冗長検査サイズと、前記TBに関連するコードブロックの数と、コードブロックサイズとを備える、
    前記決定されたTBSに基づいて前記データとともに前記TBを送信することと
    を行うように構成された、装置。
  28. 前記非再帰的手順において、前記プロセッサが、NRE・Qm・R・v−Xに基づいて前記TBSを決定するようにさらに構成され、ここにおいて、Xが、0以上の値を有するレートバックオフファクタであり、vがMIMOレイヤの数であり、Qmが変調次数であり、Rがコードレートであり、NREがリソース要素の数である、請求項27に記載の装置。
  29. 前記非再帰的手順が
    Figure 2021503826
    を備え、
    ここにおいて、Kcbが前記最大コードブロックサイズであり、LTB,CRCが前記トランスポートブロックレベルの巡回冗長検査サイズであり、LCB,CRCが前記コードブロックレベルの巡回冗長検査サイズであり、Xが、0以上の値を有するレートバックオフファクタであり、vがMIMOレイヤの数であり、Qmが変調次数であり、Rがコードレートであり、NREがリソース要素の数である、
    請求項28に記載の装置。
  30. Xが、NREと、Qmと、Rと、vとの値に基づく所定の値を備える、請求項28に記載の装置。
  31. ワイヤレス通信の装置であって、
    トランスポートブロック(TB)の最大コードブロックサイズを決定するための手段と、
    トランスポートブロックレベルの巡回冗長検査サイズを決定するための手段と、
    コードブロックレベルの巡回冗長検査サイズを決定するための手段と、
    前記最大コードブロックサイズと、前記トランスポートブロックレベルの巡回冗長検査サイズと、前記コードブロックレベルの巡回冗長検査サイズとに基づいて前記TBに関連するコードブロックの数を決定するための手段と、
    コードブロックの前記数に基づいてコードブロックサイズを決定するための手段と、
    前記決定された最大コードブロックサイズと、前記トランスポートブロックレベルの巡回冗長検査サイズと、前記コードブロックレベルの巡回冗長検査サイズと、コードブロックの前記数と、前記コードブロックサイズとの関数としてシングルパスで前記TBのトランスポートブロックサイズ(TBS)を決定するための手段と、
    前記決定されたTBSに基づいて前記データとともに前記TBを送信するための手段と
    を備える装置。
  32. 前記コードブロックサイズを決定するための前記手段が、バイト整列されたコードブロックサイズを決定するように構成された、請求項31に記載の装置。
  33. 前記送信されるTBがパディングビットを有しない、請求項31に記載の装置。
  34. 前記最大コードブロックサイズを決定するための前記手段が、
    コードレートまたは情報ビットの中間数のうちの少なくとも1つに基づいてコードブロックを符号化するためのベースグラフを決定するための手段と、
    前記決定されたベースグラフに基づいて前記最大コードブロックサイズを決定するための手段と
    を備える、請求項31に記載の装置。
  35. 前記決定されたベースグラフに基づいて前記最大コードブロックサイズを決定するための前記手段が、前記最大コードブロックサイズを複数の値から選択するように構成された、請求項34に記載の装置。
  36. 前記トランスポートブロックレベルの巡回冗長検査サイズを決定するための前記手段が、
    RE・Qm・R・vが所定の値よりも小さい場合、前記トランスポートブロックレベルの巡回冗長検査サイズを第1の値に設定することと、
    そうでない場合は、前記トランスポートブロックレベルの巡回冗長検査サイズを前記第1の値よりも大きい第2の値に設定することとを行うように構成され、ここにおいて、vがMIMOレイヤの数であり、Qmが変調次数であり、Rがコードレートであり、NREがリソース要素の数である、
    請求項31に記載の装置。
  37. 前記コードブロックレベルの巡回冗長検査サイズを決定するための前記手段が、
    条件NRE・Qm・R・v−X+LTB,CRCが前記最大コードブロックサイズ以下である場合、前記コードブロックレベルの巡回冗長検査サイズを第1の値に設定することと、
    そうでない場合は、前記コードブロックレベルの巡回冗長検査サイズを前記第1の値よりも大きい第2の値に設定することと
    を備え、
    ここにおいて、vがMIMOレイヤの数であり、Qmが変調次数であり、Rがコードレートであり、NREがリソース要素の数であり、Xがレートバックオフファクタであり、LTB,CRCがトランスポートブロックレベルの巡回冗長検査サイズであり、Kcbが前記最大コードブロックサイズである、
    請求項31に記載の装置。
  38. 前記TBSを決定するための前記手段が、
    RE・Qm・R・vに基づいて、1つまたは複数のルックアップテーブルにおいて前記関数とともに使用するための複数の中間値を決定すること、ここにおいて、vがMIMOレイヤの数であり、Qmが変調次数であり、Rがコードレートであり、NREがリソース要素の数である、
    を備える、請求項31に記載の装置。
  39. 前記関数が、NRE・Qm・R・v−Xに基づいて前記TBSを決定し、ここにおいて、Xが、0以上の値を有するレートバックオフファクタであり、vがMIMOレイヤの数であり、Qmが変調次数であり、Rがコードレートであり、NREがリソース要素の数である、請求項31に記載の装置。
  40. 前記関数が
    Figure 2021503826
    を備え、
    ここにおいて、Kcbが前記最大コードブロックサイズであり、LTB,CRCが前記トランスポートブロックレベルの巡回冗長検査サイズであり、LCB,CRCが前記コードブロックレベルの巡回冗長検査サイズであり、Xが、0以上の値を有するレートバックオフファクタであり、vがMIMOレイヤの数であり、Qmが変調次数であり、Rがコードレートであり、NREがリソース要素の数である、
    請求項39に記載の装置。
  41. Xが、NREと、Qmと、Rと、vとの値に基づく所定の値を備える、請求項39に記載の装置。
JP2020527059A 2017-11-17 2018-11-16 ワイヤレス通信においてトランスポートブロックサイズを決定するための方法および装置 Active JP7012850B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201762588137P 2017-11-17 2017-11-17
US62/588,137 2017-11-17
US16/192,697 US10680751B2 (en) 2017-11-17 2018-11-15 Methods and apparatus for determining transport block size in wireless communication
US16/192,697 2018-11-15
PCT/US2018/061676 WO2019099940A1 (en) 2017-11-17 2018-11-16 Methods and apparatus for determining transport block size in wireless communication

Publications (2)

Publication Number Publication Date
JP2021503826A true JP2021503826A (ja) 2021-02-12
JP7012850B2 JP7012850B2 (ja) 2022-01-28

Family

ID=66534022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020527059A Active JP7012850B2 (ja) 2017-11-17 2018-11-16 ワイヤレス通信においてトランスポートブロックサイズを決定するための方法および装置

Country Status (9)

Country Link
US (2) US10680751B2 (ja)
EP (1) EP3711208B1 (ja)
JP (1) JP7012850B2 (ja)
KR (2) KR102366770B1 (ja)
CN (2) CN113765557A (ja)
BR (1) BR112020009678A2 (ja)
SG (1) SG11202003424QA (ja)
TW (1) TWI746904B (ja)
WO (1) WO2019099940A1 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102414531B1 (ko) * 2017-06-15 2022-06-30 삼성전자 주식회사 통신 또는 방송 시스템에서 채널 부호화/복호화 방법 및 장치
WO2018230992A1 (ko) 2017-06-15 2018-12-20 삼성전자 주식회사 통신 또는 방송 시스템에서 채널 부호화 및 복호화를 수행하는 방법 및 장치
RU2731549C1 (ru) 2017-08-24 2020-09-04 Телефонактиеболагет Лм Эрикссон (Пабл) Сегментация на кодовые блоки для нового стандарта радиосвязи
US10341956B2 (en) * 2017-10-23 2019-07-02 Apple Inc. Opportunistic RX chain depowering based on allocated rank and MCS
US10680751B2 (en) * 2017-11-17 2020-06-09 Qualcomm Incorporated Methods and apparatus for determining transport block size in wireless communication
EP4094415A4 (en) * 2020-01-21 2023-08-16 ZTE Corporation PROCEDURE FOR DETERMINING TRANSPORT BLOCK SIZE
US11411779B2 (en) 2020-03-31 2022-08-09 XCOM Labs, Inc. Reference signal channel estimation
CN115836569A (zh) * 2020-07-15 2023-03-21 中兴通讯股份有限公司 传输块大小确定
WO2022080946A1 (en) * 2020-10-16 2022-04-21 Samsung Electronics Co., Ltd. Method and apparatus for transmitting uplink channel in wireless communication system
CA3195885A1 (en) 2020-10-19 2022-04-28 XCOM Labs, Inc. Reference signal for wireless communication systems
WO2022093988A1 (en) 2020-10-30 2022-05-05 XCOM Labs, Inc. Clustering and/or rate selection in multiple-input multiple-output communication systems
CN114554563B (zh) * 2020-11-24 2023-10-27 中国移动通信集团设计院有限公司 5g网络到4g网络的切换方法及装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101221915B1 (ko) 2007-08-14 2013-01-15 엘지전자 주식회사 데이터 전송방법
WO2009096658A1 (en) * 2008-01-31 2009-08-06 Lg Electronics Inc. Method for determining transport block size and signal transmission method using the same
KR101526990B1 (ko) * 2008-01-31 2015-06-11 엘지전자 주식회사 전송 블록 크기 결정 방법 및 이를 이용한 신호 전송 방법
CN102684816A (zh) 2011-03-09 2012-09-19 中兴通讯股份有限公司 一种热点小区覆盖的数据传输方法、装置及基站
US10075266B2 (en) * 2013-10-09 2018-09-11 Qualcomm Incorporated Data transmission scheme with unequal code block sizes
EP3200369B1 (en) * 2014-09-25 2022-08-31 Sony Group Corporation Wireless communication device, wireless communication method, and computer program using idma (interleave division multiple access)
US10575205B2 (en) * 2014-10-20 2020-02-25 Qualcomm Incorporated Transport block size determination
CA3000200C (en) * 2015-10-06 2020-10-20 Kodiak Networks, Inc. Ptt network with radio condition aware media packet aggregation scheme
US10680751B2 (en) 2017-11-17 2020-06-09 Qualcomm Incorporated Methods and apparatus for determining transport block size in wireless communication

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CATT: "NR TB Size determination", 3GPP TSG RAN WG1 #90 R1-1712412, JPN6020051183, 12 August 2017 (2017-08-12), ISSN: 0004420716 *
CATT: "PDSCH and PUSCH resource allocation", 3GPP TSG RAN WG1 #90B R1-1717833, JPN6020051181, 3 October 2017 (2017-10-03), ISSN: 0004420715 *
MEDIATEK INC.: "TB size determination and channel coding considerations", 3GPP TSG RAN WG1 #90B R1-1718353, JPN6020051179, 3 October 2017 (2017-10-03), ISSN: 0004420714 *

Also Published As

Publication number Publication date
TWI746904B (zh) 2021-11-21
KR20200088812A (ko) 2020-07-23
CN113765557A (zh) 2021-12-07
TW201924292A (zh) 2019-06-16
SG11202003424QA (en) 2020-05-28
EP3711208A1 (en) 2020-09-23
KR102366770B1 (ko) 2022-02-24
US11368248B2 (en) 2022-06-21
JP7012850B2 (ja) 2022-01-28
CN111344970B (zh) 2021-10-15
WO2019099940A1 (en) 2019-05-23
US20200280394A1 (en) 2020-09-03
US10680751B2 (en) 2020-06-09
KR20210083407A (ko) 2021-07-06
BR112020009678A2 (pt) 2020-11-10
EP3711208B1 (en) 2023-08-30
US20190158221A1 (en) 2019-05-23
EP3711208C0 (en) 2023-08-30
CN111344970A (zh) 2020-06-26

Similar Documents

Publication Publication Date Title
JP7012850B2 (ja) ワイヤレス通信においてトランスポートブロックサイズを決定するための方法および装置
JP7073485B2 (ja) アップリンク肯定応答マッピングおよびリソース割振り
US11228992B2 (en) Uplink transmissions without timing synchronization in wireless communication
US11240774B2 (en) Timing advance group for new radio
US11743889B2 (en) Channel state information (CSI) reference signal (RS) configuration with cross-component carrier CSI prediction algorithm
US10972937B2 (en) Group indicator for code block group based retransmission in wireless communication
US11026218B2 (en) Indication on joint multi-transmission point transmission in new radio system
US11323227B2 (en) Multiplexing of physical uplink shared channel (PUSCH) and physical uplink control channel (PUCCH) in uplink short burst transmission
US10772091B2 (en) Resource coordination with acknowledgement of scheduling grant
KR20200091406A (ko) 무선 통신에서 업링크 데이터 채널에 대한 업링크 제어 정보의 맵핑
US10873869B2 (en) Cell-specific sounding and measurement configuration
US20230059731A1 (en) Dynamically enabling and disabling physical downlink shared channel scheduling using downlink control information
KR20200016270A (ko) 다운링크 및 업링크 다운링크 제어 정보 길이를 매칭시키기 위한 동적 패딩 필드
WO2021232215A1 (en) System and method to retain lte service in cell upon rejection of non-standalone service request

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200928

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200928

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20200928

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20201014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220118

R150 Certificate of patent or registration of utility model

Ref document number: 7012850

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150