JP2021500912A5 - - Google Patents

Download PDF

Info

Publication number
JP2021500912A5
JP2021500912A5 JP2020524308A JP2020524308A JP2021500912A5 JP 2021500912 A5 JP2021500912 A5 JP 2021500912A5 JP 2020524308 A JP2020524308 A JP 2020524308A JP 2020524308 A JP2020524308 A JP 2020524308A JP 2021500912 A5 JP2021500912 A5 JP 2021500912A5
Authority
JP
Japan
Prior art keywords
test compound
cells
determined
incubated
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020524308A
Other languages
Japanese (ja)
Other versions
JPWO2019086476A5 (en
JP2021500912A (en
JP7478094B2 (en
Filing date
Publication date
Application filed filed Critical
Priority claimed from PCT/EP2018/079746 external-priority patent/WO2019086476A1/en
Publication of JP2021500912A publication Critical patent/JP2021500912A/en
Publication of JP2021500912A5 publication Critical patent/JP2021500912A5/ja
Publication of JPWO2019086476A5 publication Critical patent/JPWO2019086476A5/ja
Application granted granted Critical
Publication of JP7478094B2 publication Critical patent/JP7478094B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Claims (19)

試験化合物の選択性を決定する方法であって、以下の工程:
(a)細胞の合計集団において、細胞の少なくとも2つの区別することができるサブ集団を含む試料を提供すること;
(b)前記試料を少なくとも2つの部分に分けること;
(c)試験化合物の非存在下の工程(b)で得られる少なくとも1つの部分及び試験化合物の存在下の工程(b)で得られる少なくとも1つの部分をインキュベートすること;
(d)
(i)前記試験化合物の存在下でインキュベートされた前記少なくとも1つの部分及び
(ii)前記試験化合物の非存在下でインキュベートされた前記少なくとも1つの部分
において、同じ表現型を示す細胞の合計集団の細胞数に対して、区別することができる表現型を示す前記少なくとも2つのサブ集団の1つにおける細胞の数を決定すること;並びに
(e)前記試験化合物の選択性を決定して、(i)を(ii)で割ることによって、全てのその他のサブ集団におけるステップ(d)に参照される前記1つのサブ集団の(d)において参照される前記表現型を誘導し、ここで(i)を(ii)で割った値が1より大きい場合、記試験化合物は、(d)に参照される前記表現型を選択的に誘導し、及び(i)を(ii)で割った値が1未満ある場合、(d)に参照される前記表現型を選択的に阻害又は減少すること、
を含む、方法。
A method for determining the selectivity of a test compound, the following steps:
(A) To provide a sample containing at least two distinguishable subpopulations of cells in a total population of cells;
(B) Divide the sample into at least two parts;
(C) Incubate at least one portion obtained in step (b) in the absence of the test compound and at least one portion obtained in step (b) in the presence of the test compound;
(D)
A total population of cells exhibiting the same phenotype in (i) the at least one portion incubated in the presence of the test compound and (ii) the at least one portion incubated in the absence of the test compound. Determining the number of cells in one of the at least two subpopulations exhibiting a distinguishable phenotype with respect to the number of cells; and (e) determining the selectivity of the test compound (i). ) Is divided by (ii) to derive the phenotype referenced in (d) of said one subgroup referred to in step (d) in all other subpopulations, where (i). is larger than a value obtained by dividing 1 by the (ii), before Symbol test compound is divided by selectively inducing the phenotype referenced (d), the and (i) (ii) If it is less than 1, selectively inhibiting or reducing the phenotype referred to in (d),
Including, how.
前記工程(e)において、(i)を(ii)で割った値が、1.05、1.1、1.5、2、3又は5より大きい場合、前記試験化合物は、(d)に参照される前記表現型を選択的に誘導する、請求項1に記載の方法。 In the step (e), when the value obtained by dividing (i) by (ii) is larger than 1.05, 1.1, 1.5, 2, 3 or 5, the test compound is referred to in (d). The method of claim 1, wherein the referenced phenotype is selectively derived. 前記工程(e)において、(i)を(ii)で割った値が、0.95、0.9、0.7、0.5、0.3又は0.2未満である場合、前記試験化合物は、(d)に参照される前記表現型を選択的に阻害又は減少する、請求項1に記載の方法。 In the step (e), when the value obtained by dividing (i) by (ii) is less than 0.95, 0.9, 0.7, 0.5, 0.3 or 0.2, the test is performed. The method of claim 1, wherein the compound selectively inhibits or reduces the phenotype referred to in (d). 工程(d)の前記区別することができる表現型が生存率であり、ここで
(i)工程(e)で決定される前記選択性が1未満である場合、前記試験化合物は、工程(d)の前記1つのサブ集団の生細胞の数を選択的に減少することが決定され、及び
(ii)工程(e)において決定される前記選択性が1より大きい場合、前記試験化合物は、前記1つのサブ集団の生存率を選択的に改善すること、及び/又は工程(d)の前記1つのサブ集団以外の前記サブ集団(複数可)の1つ以上の生存率を選択的に減少することが決定される、請求項1に記載の方法。
If the distinguishable phenotype of step (d) is survival, where (i) the selectivity determined in step (e) is less than 1, the test compound is said to be step (d). ) Is determined to selectively reduce the number of viable cells in the one subpopulation, and (ii) if the selectivity determined in step (e) is greater than 1, the test compound is said to be said. Selectively improve the survival rate of one subpopulation and / or selectively reduce the survival rate of one or more of the subpopulations (s) other than the one subpopulation of step (d). The method of claim 1, wherein it is determined.
癌を罹患している対象が試験化合物による治療に応答する又は応答性があるかどうかを決定する方法であって、以下の工程:
(a)合計集団細胞において、細胞の少なくとも2つのサブ集団を含む対象から得られる試料を提供することであり、ここで少なくとも1つのサブ集団は、癌性細胞に対応し、かつ、少なくとも1つのサブ集団は非癌性細胞に対応する;
(b)前記試料を少なくとも2つの部分に分けること;
(c)試験化合物の非存在下の工程(b)で得られる少なくとも1つの部分及び試験化合物の存在下の少なくとも1つの部分をインキュベートすること;
(d)
(i)前記試験化合物の存在下でインキュベートされた前記少なくとも1つの部分及び
(ii)前記試験化合物の非存在下でインキュベートされた前記少なくとも1つの部分
における細胞の前記合計集団の生細胞の数に対して、癌細胞に対応する前記サブ集団の少なくとも1つにおいて、生細胞の数を決定すること;並びに
(e)(i)を(ii)で割ることによって、前記対象が前記試験化合物による治療に応答する又は応答性があるかどうかを決定することであり、ここで前記対象は、前記得られる値が1未満ある場合、治療に応答する又は応答性がある
を含む、方法。
A method of determining whether a subject suffering from cancer responds to or is responsive to treatment with a test compound, the following steps:
(A) To provide a sample obtained from a subject comprising at least two subpopulations of cells in a total population cell, wherein at least one subpopulation corresponds to a cancerous cell and at least one. Subpopulations correspond to non-cancerous cells;
(B) Divide the sample into at least two parts;
(C) Incubating at least one portion obtained in step (b) in the absence of the test compound and at least one portion in the presence of the test compound;
(D)
To the number of viable cells in the total population of (i) the at least one portion incubated in the presence of the test compound and (ii) the at least one portion incubated in the absence of the test compound. In contrast, the subject is treated with the test compound by determining the number of living cells in at least one of the subpopulations corresponding to the cancer cells; and by dividing (e) (i) by (ii). to is to determine whether there is or responsive reply, wherein said subject, if said obtained value is less than 1, there is or responsive to respond to treatment,
Including, how.
前記工程(e)において、前記対象は、前記得られる値が0.95、0.9、0.8、0.6、0.4又は0.2未満である場合、治療に応答する又は応答性がある、請求項5に記載の方法。 In step (e), the subject responds to or responds to treatment if the resulting value is less than 0.95, 0.9, 0.8, 0.6, 0.4 or 0.2. The method of claim 5, which has the property. 前記方法は少なくとも2つの試験化合物について繰り返され、前記対象が前記少なくとも2つの試験化合物の組み合わせによる治療に応答する又は応答性であるかどうかは、1.0から少なくとも前記2つの試験化合物のそれぞれについての(e)で得られる値を引き、前記少なくとも2つの試験化合物についての得られる値の和を出し、前記得られる和が−1より大きい場合前記対象は、前記少なくとも2つの試験化合物の組み合わせによる治療に応答する又は応答性であることが決定される、請求項に記載の方法。 The method is repeated for at least two test compounds, and whether the subject is responsive or responsive to treatment with the combination of the at least two test compounds is from 1.0 to at least each of the two test compounds. The value obtained in (e) is subtracted to obtain the sum of the obtained values for the at least two test compounds, and when the obtained sum is greater than -1 , the subject is a combination of the at least two test compounds. 5. The method of claim 5, wherein the method is determined to be responsive or responsive to treatment with. 前記方法は少なくとも2つの試験化合物について繰り返され、前記対象が前記少なくとも2つの試験化合物の組み合わせによる治療に応答する又は応答性であるかどうかは、1.0から少なくとも前記2つの試験化合物のそれぞれについての(e)で得られる値を引き、前記少なくとも2つの試験化合物についての得られる値の和を出し、前記得られる和が−0.5、0、0.5又は1より大きい場合、前記対象は、前記少なくとも2つの試験化合物の組み合わせによる治療に応答する又は応答性であることが決定される、請求項5に記載の方法。 The method is repeated for at least two test compounds, and whether the subject is responsive or responsive to treatment with the combination of the at least two test compounds is from 1.0 to at least each of the two test compounds. Subtract the value obtained in (e) to give the sum of the values obtained for the at least two test compounds, and if the sum obtained is greater than -0.5, 0, 0.5 or 1, the subject. 5. The method of claim 5, wherein is determined to be responsive or responsive to treatment with a combination of at least two test compounds. 前記試験化合物(複数可)が1つ以上の化学物質を含む、請求項1〜のいずれか一項に記載の方法。 The method according to any one of claims 1 to 8 , wherein the test compound (s) comprises one or more chemical substances. 工程(b)で得られる少なくとも1つの部分がさらに少なくとも2つの部分に分けられ、ここで前記少なくとも2つの部分のそれぞれが異なる濃度の前記試験化合物で工程(c)においてインキュベートされ、工程(d)及び(e)は、独立して前記試験化合物の各濃度で繰り返されて、前記試験化合物の各濃度の選択性/値を決定し、それによって全ての濃度の平均選択性/値が工程(e)の後に計算され、前記最終選択性/値を決定するために使用される、請求項1〜のいずれか一項に記載の方法。 At least one moiety obtained in step (b) is further divided into at least two moieties, where each of the at least two moieties is incubated with the test compound at a different concentration in step (c) and step (d). And (e) are independently repeated at each concentration of the test compound to determine the selectivity / value of each concentration of the test compound, whereby the average selectivity / value of all concentrations is determined in the step (e). The method according to any one of claims 1 to 9 , which is calculated after) and used to determine the final selectivity / value. 工程(b)において、前記試料が少なくとも3つの部分に分けられ、工程(c)において、少なくとも2つの部分が試験化合物の非存在下でインキュベートされる及び/又は少なくとも2つの部分が試験化合物の存在下でインキュベートされ、それによって、前記試験化合物の存在下でインキュベートされる各部分が、同じ濃度の前記試験化合物の存在下でインキュベートされ、工程(d)において、同区別することができる表現型を示す前記細胞の合計集団の数に対して、前記区別することができる表現型を示す前記少なくとも2つのサブ集団の1つの細胞数が、
(i)独立して前記試験化合物の存在下でインキュベートされた各部分、及び/又は
(ii)独立して前記試験化合物の非存在下でインキュベートされた各部分について決定され、並びに(i)で得られる前記相対数の平均及び/又は(ii)で得られる前記相対数の平均が使用される、請求項1〜のいずれか一項に記載の方法。
In step (b), the sample is divided into at least three parts, and in step (c), at least two parts are incubated in the absence of the test compound and / or at least two parts are in the presence of the test compound. Each portion incubated under, thereby incubating in the presence of said test compound, is incubated in the presence of said test compound at the same concentration to give the same distinguishable phenotype in step (d). For the total number of populations of the cells shown, the number of cells in one of the at least two subpopulations showing the distinguishable phenotype is:
(I) Independently determined for each portion incubated in the presence of the test compound and / or (ii) independently incubated in the absence of the test compound, and (i). The method according to any one of claims 1 to 9 , wherein the average of the relative numbers obtained and / or the average of the relative numbers obtained in (ii) is used.
工程(b)において、前記試料が少なくとも3つの部分に分けられ、工程(c)において、少なくとも1つの部分が試験化合物の非存在下でインキュベートされ、及び/又は少なくとも2つの部分が前記試験化合物の少なくとも2つの異なる濃度の存在下でインキュベートされ、並びに工程(d)において、同区別することができる表現型を示す細胞の前記合計集団の細胞数に対して前記区別することができる表現型を示す前記少なくとも2つのサブ集団の1つの細胞の数が、
(i)前記試験化合物の存在下でインキュベートされた各部分について独立して決定され及び/又は
(ii)前記試験化合物の非存在下でインキュベートされた各部分について独立して決定され、ここで(i)の平均が各濃度について独立して決定され、及び/又は前記(ii)の平均がさらなる工程のために決定され、及び使用され、ここで工程(e)において、前記選択性/値が、各濃度について(i)の平均を(ii)の平均で割ることによって、前記試験化合物のそれぞれの濃度について決定され、前記最終選択性/値が、各濃度についての前記選択性/値を平均することによって得られる、請求項1〜のいずれか一項に記載の方法。
In step (b), the sample is divided into at least three parts, in step (c), at least one part is incubated in the absence of the test compound and / or at least two parts are of the test compound. Incubated in the presence of at least two different concentrations and in step (d) show the distinguishable phenotype with respect to the total population of cells showing the same distinguishable phenotype. The number of cells in one of the at least two subpopulations
(I) Independently determined for each moiety incubated in the presence of the test compound and / or (ii) Independently determined for each moiety incubated in the absence of the test compound, where (ii) The average of i) is determined independently for each concentration and / or the average of said (ii) is determined and used for further steps, wherein in step (e) the selectivity / value is determined. The final selectivity / value is determined by dividing the average of (i) by the average of (ii) for each concentration, and the final selectivity / value is the average of the selectivity / value for each concentration. The method according to any one of claims 1 to 9 , which is obtained by the above-mentioned method.
前記方法が少なくとも2つの試験化合物について繰り返され、工程(e)で得られる最も低い値を有する前記試験化合物が癌を罹患している前記対象の治療に選択される、請求項又は12のいずれか一項に記載の方法。 The method is repeated for at least two test compounds, the test compound having the lowest value obtained in step (e) is selected to treat the subject suffering from cancer, according to claim 5 or 9-12 The method described in any one of the above. 前記方法が少なくとも3つの試験化合物について繰り返され、前記組み合わせの少なくとも2つの試験化合物のそれぞれについて、(e)で得られる値を1.0から引き、前記組み合わせの前記少なくとも2つの試験化合物についての得られる結果の値を足すことによって得られる最も高い値を有する前記少なくとも3つの試験化合物の少なくとも2つの組み合わせが、癌を罹患している前記対象の治療のために選択される、請求項12のいずれか一項に記載の方法。 The method is repeated for at least three test compounds, and for each of the at least two test compounds in the combination, the value obtained in (e) is subtracted from 1.0 to obtain the at least two test compounds in the combination. is a combination of at least two of the at least three test compounds with the highest value obtained by adding the value of the result is selected for treatment of said subject suffering from cancer, claims 7 to 12 The method according to any one of the above. 前記癌がPBMC又は骨髄細胞又はPBMC若しくは骨髄細胞に由来する細胞に関連する癌である、請求項14のいずれか一項に記載の方法。 The method according to any one of claims 5 to 14 , wherein the cancer is a cancer associated with PBMC or bone marrow cells or cells derived from PBMC or bone marrow cells. 前記試料が少なくとも1%の癌性細胞及び/又は少なくとも1%の非癌性細胞を含む組織試料である、請求項1〜15のいずれか一項に記載の方法。 The method according to any one of claims 1 to 15 , wherein the sample is a tissue sample containing at least 1% cancerous cells and / or at least 1% non-cancerous cells. 前記組織試料が非接着性細胞単層として培養される、請求項1〜16のいずれか一項に記載の方法。 The method according to any one of claims 1 to 16 , wherein the tissue sample is cultured as a non-adhesive cell monolayer. 前記生存癌性及び非癌性細胞が、自動顕微鏡を使用して決定される、請求項17に記載の方法。 17. The method of claim 17, wherein the viable and non-cancerous cells are determined using an automated microscope. 前記生存細胞の数が断片化されていない核の数として決定される、請求項18に記載の方法。 18. The method of claim 18 , wherein the number of viable cells is determined as the number of unfragmented nuclei.
JP2020524308A 2017-10-31 2018-10-30 Methods for determining the selectivity of a test compound Active JP7478094B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP17199353.8 2017-10-31
EP17199353 2017-10-31
PCT/EP2018/079746 WO2019086476A1 (en) 2017-10-31 2018-10-30 Methods for determining selectivity of test compounds

Publications (4)

Publication Number Publication Date
JP2021500912A JP2021500912A (en) 2021-01-14
JP2021500912A5 true JP2021500912A5 (en) 2021-12-02
JPWO2019086476A5 JPWO2019086476A5 (en) 2023-07-12
JP7478094B2 JP7478094B2 (en) 2024-05-02

Family

ID=60413039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020524308A Active JP7478094B2 (en) 2017-10-31 2018-10-30 Methods for determining the selectivity of a test compound

Country Status (10)

Country Link
US (1) US20210181183A1 (en)
EP (1) EP3704484A1 (en)
JP (1) JP7478094B2 (en)
KR (1) KR20200079296A (en)
CN (1) CN111295588A (en)
AU (1) AU2018359500A1 (en)
CA (1) CA3079134A1 (en)
IL (1) IL274074A (en)
SG (1) SG11202002570WA (en)
WO (1) WO2019086476A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201806188D0 (en) * 2018-04-16 2018-05-30 Bailey David Stanley Methods for cell profiling
WO2020102595A1 (en) * 2018-11-14 2020-05-22 Dana-Farber Cancer Institute, Inc. Determining treatment response in single cells
CN116083512A (en) * 2021-12-28 2023-05-09 珠海市藤栢医药有限公司 Method for detecting biological activity of test object

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991017240A1 (en) * 1990-05-07 1991-11-14 Baxter Diagnostics Inc. Method and apparatus for conducting the cytotoxicity assays on tumor cells
FR2754544B1 (en) 1996-10-10 1998-11-06 Lorraine Laminage LOW EMISSIVITY ALUMINUM SHEET
US6322901B1 (en) 1997-11-13 2001-11-27 Massachusetts Institute Of Technology Highly luminescent color-selective nano-crystalline materials
US6649138B2 (en) 2000-10-13 2003-11-18 Quantum Dot Corporation Surface-modified semiconductive and metallic nanoparticles having enhanced dispersibility in aqueous media
US6576291B2 (en) 2000-12-08 2003-06-10 Massachusetts Institute Of Technology Preparation of nanocrystallites
US20020083888A1 (en) 2000-12-28 2002-07-04 Zehnder Donald A. Flow synthesis of quantum dot nanocrystals
WO2002099378A2 (en) * 2001-06-01 2002-12-12 Cytovia, Inc. Methods of identifying anti-cancer agents that are inducers of apoptosis
EP1409240B1 (en) 2001-07-20 2012-05-09 Life Technologies Corporation Luminescent nanoparticles and methods for their preparation
WO2005001889A2 (en) 2003-05-07 2005-01-06 Indiana University Research & Technology Corporation Alloyed semiconductor quantum dots and concentration-gradient alloyed quantum dots, series comprising the same and methods related thereto
KR100657891B1 (en) 2003-07-19 2006-12-14 삼성전자주식회사 Semiconductor nanocrystal and method for preparing the same
WO2005061707A1 (en) * 2003-12-24 2005-07-07 Kyowa Hakko Kogyo Co., Ltd. METHOD OF JUDGING SENSITIVITY OF CANCER CELL TO Eg5 INHIBITOR
US20060223131A1 (en) * 2004-09-15 2006-10-05 Barry Schweitzer Protein arrays and methods of use thereof
AU2010206843B2 (en) * 2009-01-20 2015-01-29 The Board Of Trustees Of The Leland Stanford Junior University Single cell gene expression for diagnosis, prognosis and identification of drug targets
ES2628219T3 (en) 2009-05-19 2017-08-02 Vivia Biotech S.L. Methods for providing ex vivo personalized medicine trials for hematologic malignancies
CA2781955A1 (en) * 2009-12-01 2011-06-09 Precision Therapeutics, Inc. Multi drug response markers for breast cancer cells
WO2011149013A1 (en) * 2010-05-26 2011-12-01 株式会社Reiメディカル Method for evaluation of sensitivity of cancer-tissue-derived cell mass or aggregated cancer cell mass to medicinal agent or radioactive ray
US20140093962A1 (en) * 2012-10-01 2014-04-03 The Regents Of The University Of Michigan Non-adherent cell support and manufacturing method
ES2964769T3 (en) * 2014-09-24 2024-04-09 Exscientia Gmbh Monolayer of PBMC or bone marrow cells and uses thereof
CA3014708A1 (en) * 2016-02-18 2017-08-24 University Of South Florida Methods of screening drugs for cancer treatment using cells grown on a fiber-inspired smart scaffold

Similar Documents

Publication Publication Date Title
Janin et al. Epigenetic loss of RNA-methyltransferase NSUN5 in glioma targets ribosomes to drive a stress adaptive translational program
Gupta et al. Association of Flavonifractor plautii, a flavonoid-degrading bacterium, with the gut microbiome of colorectal cancer patients in India
Costa et al. Occupational exposure to formaldehyde and early biomarkers of cancer risk, immunotoxicity and susceptibility
Herrera et al. Next‐generation sequencing‐based detection of circulating tumour DNA After allogeneic stem cell transplantation for lymphoma
Wang et al. The complex exogenous RNA spectra in human plasma: an interface with human gut biota?
Bletz et al. Disruption of skin microbiota contributes to salamander disease
Chomel et al. Leukemic stem cell persistence in chronic myeloid leukemia patients in deep molecular response induced by tyrosine kinase inhibitors and the impact of therapy discontinuation
Port et al. Micro-RNA expression in cisplatin resistant germ cell tumor cell lines
Nguyen-Kim et al. Coral mucus is a hot spot for viral infections
JP2021500912A5 (en)
Chen et al. Her2 amplification distinguishes a subset of non-muscle-invasive bladder cancers with a high risk of progression
Calvisi et al. Altered methionine metabolism and global DNA methylation in liver cancer: relationship with genomic instability and prognosis
Coutermarsh-Ott et al. NLRX1 suppresses tumorigenesis and attenuates histiocytic sarcoma through the negative regulation of NF-λB signaling
Zhao et al. MiR-30a-5p frequently downregulated in prostate cancer inhibits cell proliferation via targeting PCLAF
Altieri et al. Recurrence and progression in non-muscle-invasive bladder cancer using EORTC risk tables
Xia et al. Decreased 8-oxoguanine DNA glycosylase 1 (hOGG1) expression and DNA oxidation damage induced by Cr (VI)
Tekin et al. The effects of metallothionein 2A polymorphism on lead metabolism: are pregnant women with a heterozygote genotype for metallothionein 2A polymorphism and their newborns at risk of having higher blood lead levels?
Lösslein et al. Monocyte progenitors give rise to multinucleated giant cells
NO20072296L (en) Methods and systems for prognosis and treatment of solid tumors
Malihi et al. Clonal diversity revealed by morphoproteomic and copy number profiles of single prostate cancer cells at diagnosis
Bibby et al. Prevalence of respiratory adenovirus species B and C in sewage sludge
Lu et al. Clinical significance and prognostic value of Nek2 protein expression in colon cancer
Soon et al. Mitochondrial DNA mutations in grade II and III glioma cell lines are associated with significant mitochondrial dysfunction and higher oxidative stress
DO HYOUNG et al. Microarray gene-expression profiling analysis comparing PCNSL and non-CNS diffuse large B-cell lymphoma
Wang et al. Prognostic value of MGMT promoter methylation and TP53 mutation in glioblastomas depends on IDH1 mutation