JP2021197862A - Vehicle charging planning system - Google Patents

Vehicle charging planning system Download PDF

Info

Publication number
JP2021197862A
JP2021197862A JP2020104304A JP2020104304A JP2021197862A JP 2021197862 A JP2021197862 A JP 2021197862A JP 2020104304 A JP2020104304 A JP 2020104304A JP 2020104304 A JP2020104304 A JP 2020104304A JP 2021197862 A JP2021197862 A JP 2021197862A
Authority
JP
Japan
Prior art keywords
charging
battery
electric vehicle
soc
plan
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020104304A
Other languages
Japanese (ja)
Inventor
祥人 池内
Yoshito Ikeuchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2020104304A priority Critical patent/JP2021197862A/en
Publication of JP2021197862A publication Critical patent/JP2021197862A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • Y02T90/167Systems integrating technologies related to power network operation and communication or information technologies for supporting the interoperability of electric or hybrid vehicles, i.e. smartgrids as interface for battery charging of electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S30/00Systems supporting specific end-user applications in the sector of transportation
    • Y04S30/10Systems supporting the interoperability of electric or hybrid vehicles
    • Y04S30/12Remote or cooperative charging

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

To make a charging plan such that a certain cruising range can be secured in an electric vehicle equipped with a battery that also functions as a member of a smart grid.SOLUTION: In a smart grid that includes a battery and a charging infrastructure of an electric vehicle, a vehicle charging planning system that makes a charging plan to charge the battery includes SOC prediction means (300a) that predicts the minimum SOC of the battery between first and second timings, and plan creation means (300a) that creates a charging plan to charge the battery from the charging infrastructure before the battery's SOC drops to the predicted minimum SOC when the predicted minimum SOC is less than a preset threshold SOC.SELECTED DRAWING: Figure 1

Description

本発明は、電動車両が備えるバッテリ及び充電インフラを含んで構成されるスマートグリッドにおいて、充電を計画的に行うための車両充電計画システムの技術分野に関する。 The present invention relates to the technical field of a vehicle charging planning system for systematically charging in a smart grid including a battery and a charging infrastructure provided in an electric vehicle.

この種のシステムとして例えば、地域内で供給可能な電力量の範囲内で、電動車両に充電する電力量に関する充電スケジュールを作成保持すると共に、電動車両を特定するための識別番号を保持し、充電を開始すべき旨の充電開始信号が識別番号で特定される電動車両から検知された場合に、既に作成保持されている充電スケジュールに基づいて、当該電動車両の現在位置及び現在時刻における充電の可否を判定する。こうして電動車両の充電を充電スケジュールに基づいて管理する(特許文献1参照)。このシステムによれば、電動車両に電力供給する際の平準化が促進される。 As this type of system, for example, within the range of electric power that can be supplied in the area, a charging schedule for the amount of electric power to be charged to the electric vehicle is created and maintained, and an identification number for identifying the electric vehicle is retained and charged. When a charging start signal indicating that the electric vehicle should be started is detected from the electric vehicle specified by the identification number, whether or not charging is possible at the current position and the current time of the electric vehicle based on the charging schedule already created and held. To judge. In this way, the charging of the electric vehicle is managed based on the charging schedule (see Patent Document 1). This system facilitates leveling when powering electric vehicles.

特開2018−61433号公報Japanese Unexamined Patent Publication No. 2018-61433

しかしながら、上記特許文献1に係るシステムによれば、電動車両のバッテリの側からスマートグリッドに電力供給する場合、電動車両においては通常の車両走行のための一定の航続距離を確保できなくなる虞があるという技術的問題点がある。 However, according to the system according to Patent Document 1, when power is supplied to the smart grid from the battery side of the electric vehicle, the electric vehicle may not be able to secure a certain cruising range for normal vehicle traveling. There is a technical problem.

本発明は、例えば上述した技術的問題に鑑みなされたものであり、スマートグリッドの一員としても機能するバッテリを備える電動車両において、一定の航続距離を確保できるように充電計画を行うことが可能な車両充電計画システムを提供することを課題とする。 The present invention has been made in view of the above-mentioned technical problems, for example, and it is possible to carry out a charging plan so as to secure a certain cruising range in an electric vehicle equipped with a battery that also functions as a member of a smart grid. The challenge is to provide a vehicle charging planning system.

本発明に係る車両充電計画システムの一の態様は上記課題を解決するために、電動車両が備えるバッテリ及び充電インフラを含んで構成されるスマートグリッドにおいて、前記バッテリに充電する充電計画を行う車両充電計画システムであって、第1タイミングから第2タイミングまでの間における前記バッテリの最低SOC(State Of Charge)を予測するSOC予測手段と、前記予測された最低SOCが予め設定された閾値SOC未満である場合、前記予測された最低SOCまで前記バッテリのSOCが下がるタイミングよりも前のタイミングに前記充電インフラから前記バッテリに充電するように前記充電計画を作成する計画作成手段とを備える。 One aspect of the vehicle charging planning system according to the present invention is to charge a vehicle in a smart grid including a battery provided in an electric vehicle and a charging infrastructure in order to solve the above-mentioned problems. In a planning system, an SOC predicting means for predicting the minimum SOC (State Of Charge) of the battery between the first timing and the second timing, and the predicted minimum SOC being less than a preset threshold SOC. In some cases, it comprises a planning means for creating the charging plan so that the battery is charged from the charging infrastructure at a timing prior to the timing at which the SOC of the battery drops to the predicted minimum SOC.

本発明に係る車両充電計画システムの一の態様によれば、電動車両のバッテリの側からスマートグリッドに対して電力供給する場合でも、電動車両における通常の車両走行のための一定の航続距離を確保可能となる。 According to one aspect of the vehicle charging planning system according to the present invention, a certain cruising range for normal vehicle traveling in the electric vehicle is secured even when power is supplied to the smart grid from the battery side of the electric vehicle. It will be possible.

本発明によるこのような作用効果は、以下に説明する発明の実施形態により、より明らかにされる。 Such an action and effect according to the present invention will be further clarified by the embodiment of the invention described below.

第1実施形態に係る車両充電計画システムを、スマートグリッドを構成する要素と共に示すブロック図である。It is a block diagram which shows the vehicle charge planning system which concerns on 1st Embodiment together with the element which comprises the smart grid. 第1実施形態の充電計画アルゴリズムにおける処理の流れを示すフローチャートである。It is a flowchart which shows the flow of processing in the charge planning algorithm of 1st Embodiment. 第1実施形態における、SOCの経時変化を示す特性図である。It is a characteristic diagram which shows the time-dependent change of SOC in 1st Embodiment. 第2実施形態に係る車両充電計画システムを示すブロック図である。It is a block diagram which shows the vehicle charge planning system which concerns on 2nd Embodiment. 第2実施形態の充電計画アルゴリズムにおける処理の流れを示すフローチャートである。It is a flowchart which shows the flow of processing in the charge planning algorithm of 2nd Embodiment.

<第1実施形態>
図1から図3を参照して、本発明に係る第1実施形態について説明する。先ず図1を参照して実施形態の全体構成について説明する。
<First Embodiment>
A first embodiment according to the present invention will be described with reference to FIGS. 1 to 3. First, the overall configuration of the embodiment will be described with reference to FIG.

図1に示されるように、第1実施形態に係る車両充電計画システム100は、スマートグリッド(以下適宜、単に“グリッド”という。)に対して構築されている。グリッドは、バッテリBA(即ち、BA1、BA2、…)をそれぞれ有する複数の電動自動車EV(即ち、EV1、EV2、…を含む電動自動車群EVG)と、各バッテリBAを充電可能に或いは各バッテリBAから充電可能(言い換えれば、各バッテリBAを放電可能)に設けられた充電器CH(即ち、CH1、CH2、…)と、複数の需要家CS(即ち、需要家群CSG)と、複数の発電ユニットPU(即ち、発電ユニット群PUG)とを含んで構成される。それぞれが「電動車両」の一例である各電動自動車EVのバッテリBAは、グリッドの電力バッファとして適宜機能可能なように構成されている。それぞれが「充電インフラ」の一例を構成する発電ユニット群PUGには、太陽光発電等の再生可能エネルギー発電のための発電ユニットPU、及びコジェネ等の内燃機関発電機等が含まれる。これらグリッドを構成する各要素は、不図示の送電線、変電設備等を介して送受電可能となるように、常時或いは必要に応じて接続される。 As shown in FIG. 1, the vehicle charging planning system 100 according to the first embodiment is constructed for a smart grid (hereinafter, as appropriate, simply referred to as “grid”). The grid can charge each battery BA or each battery BA with a plurality of electric vehicle EVs (ie, electric vehicle group EVG including EV1, EV2, ...) Each having a battery BA (ie, BA1, BA2, ...). Charger CH (that is, CH1, CH2, ...) Provided to be rechargeable (that is, each battery BA can be discharged), a plurality of consumer CS (that is, a consumer group CSG), and a plurality of power generations. It is configured to include a unit PU (that is, a power generation unit group PUG). The battery BA of each electric vehicle EV, each of which is an example of an "electric vehicle", is configured to appropriately function as a grid power buffer. The power generation unit group PUG, each of which constitutes an example of "charging infrastructure", includes a power generation unit PU for renewable energy power generation such as solar power generation, an internal combustion engine generator such as a cogene, and the like. Each element constituting these grids is always connected or as needed so that power can be transmitted and received via a transmission line (not shown), a substation facility, and the like.

図1においては、電動自動車群EVGのうち、電動自動車EV1と電動自動車EV2が示され、充電器CH1は電動自動車EV1のバッテリBA1用として設けられ、充電器CH2は電動自動車EV2のバッテリBA2用に設けられた状態が示されている。但し、電動自動車EVと充電器CHとの対応関係はこれに限られない。充電器CHとしては、接触充電型或いは非接触充電型である各種のものを採用可能であり、プラグイン型である家庭用の汎用ソケット、充電ステーションに配備された専用の充電器等を含んでも良い。 In FIG. 1, among the electric vehicle group EVG, the electric vehicle EV1 and the electric vehicle EV2 are shown, the charger CH1 is provided for the battery BA1 of the electric vehicle EV1, and the charger CH2 is used for the battery BA2 of the electric vehicle EV2. The provided state is shown. However, the correspondence between the electric vehicle EV and the charger CH is not limited to this. As the charger CH, various types of contact charging type or non-contact charging type can be adopted, including a plug-in type household general-purpose socket, a dedicated charger installed in a charging station, and the like. good.

グリッドでは、主に発電ユニットPUによる余剰電力が各電動自動車EVのバッテリBA用に分配される。余剰電力に余裕のないときは、需要家CSや他の電動自動車EVに対して、例えば駐車中であり且つ余剰電力がある電動自動車EVのバッテリBAからの放電電力が利用され得る。なお、このグリッドは系統電力への依存が高いスマートグリッドであってもよい。 In the grid, the surplus electric power mainly generated by the power generation unit PU is distributed to the battery BA of each electric vehicle EV. When there is no surplus power, the discharge power from the battery BA of the electric vehicle EV that is parked and has surplus power can be used for the consumer CS and other electric vehicle EVs. Note that this grid may be a smart grid that is highly dependent on grid power.

車両充電計画システム100は、後述するように、グリッド内の電力需給計画及び電動自動車EVの利用計画に基づいた長期的な充電電力分配計画或いは充放電計画(以下“充電計画”という。)を初期の計画とし、その計画期間内における最も低い電動自動車EVが有するバッテリBAの走行後バッテリ残量を、必要とあらば(即ち、当該バッテリ残量が所定閾値未満となることが予測される場合には)、充電電力の再分配により逐次的に底上げするアルゴリズムを採用する。これにより、電動車両EVのバッテリBAのうち余剰電力があるものを充電に利用したり或いは電動車両EVのバッテリBAのうち余剰電力がないものに充電したり、言い換えれば、当該バッテリBAを電力バッファとして利用する。従って、再生可能エネルギーによる発電が大量導入される等により余剰電力に関する需給が不安定なグリッドに対しても、天候・電動自動車の運行・グリッド内構成(発電ユニット群PUG、需要家群CSG、電動自動車EVの台数)といった可変要素・不確定要素に対してロバスト性を確保して、電力の安定供給と電動自動車EVの日常利用における運行を高水準で両立させることができる。しかも、本実施形態では、そのようなバッテリ残量の底上げを行う計画変更を、予想上でその必要性が判明した時点からなるべく早期に行うことで、グリッド全体で効率の良い電力分配が可能とされている。 As will be described later, the vehicle charging planning system 100 initially initializes a long-term charging power distribution plan or charging / discharging plan (hereinafter referred to as “charging plan”) based on the power supply / demand plan in the grid and the usage plan of the electric vehicle EV. When it is predicted that the remaining battery level of the battery BA of the lowest electric vehicle EV in the planned period will be less than a predetermined threshold if necessary (that is, the remaining battery level is expected to be less than a predetermined threshold value). ), Adopt an algorithm that sequentially raises the level by redistributing the charging power. As a result, the battery BA of the electric vehicle EV having surplus power can be used for charging, or the battery BA of the electric vehicle EV having no surplus power can be charged, in other words, the battery BA can be used as a power buffer. Use as. Therefore, even for a grid where the supply and demand of surplus electricity is unstable due to the introduction of a large amount of power generation from renewable energy, the weather, the operation of electric vehicles, and the configuration within the grid (power generation unit group PUG, consumer group CSG, electric power) Robustness can be ensured against variable and uncertain factors such as the number of vehicle EVs), and stable power supply and operation in daily use of electric vehicle EVs can be achieved at a high level. Moreover, in the present embodiment, it is possible to efficiently distribute power over the entire grid by making such a plan change to raise the remaining battery level as soon as possible from the time when the necessity is predicted. Has been done.

車両充電計画システム100は、グリッドを網羅する通信ネットワークに収容された少なくとも1のコンピュータで構成され、グリッド内における充電計画を作成可能に構成されている。この例での充電計画は、各電動自動車EVに対する計画であり、具体的には各電動自動車EVのバッテリBAに各充電器CHを介して充電したり或いは各電動自動車EVのバッテリBAから各充電器CHを介して充電(言い換えれば、バッテリBAの側から見て放電)したりする際の計画である。この例での充電計画では、以下に説明するように、「第1タイミングの」一例としての開始タイミングから、「第2タイミング」の一例としての終了タイミングまでの期間である計画期間(即ち、“充電計画期間”或いは“電力分配計画期間”)における、各電動自動車EVに対する充電タイミング及び充電電力量が定められる。こうして作成された充電計画に従って、各電動自動車EVのバッテリBAは充電(或いは放電)されることになる。 The vehicle charging planning system 100 is composed of at least one computer housed in a communication network covering the grid, and is configured to be capable of creating a charging plan in the grid. The charging plan in this example is a plan for each electric vehicle EV, specifically, the battery BA of each electric vehicle EV is charged via each charger CH, or each charge is performed from the battery BA of each electric vehicle EV. It is a plan for charging (in other words, discharging when viewed from the battery BA side) via the device CH. In the charging plan in this example, as described below, the planning period (that is, "" is the period from the start timing as an example of "first timing" to the end timing as an example of "second timing". The charging timing and the amount of charging power for each electric vehicle EV in the "charging planning period" or "power distribution planning period") are determined. According to the charging plan thus created, the battery BA of each electric vehicle EV will be charged (or discharged).

車両充電計画システム100は、予測部200並びに計画作成部300a及び計画実行部300bを含む充電計画実行部300を備えて構成される。これらにより、初期に或いは先に作成した充電計画を、経時変化するパラメータに基づいて逐次的に修正し、より適切な充電計画を逐次作成する。初期の充電計画として、例えば、各電動自動車EVに余剰電力を等分した充電計画が考えられる。 The vehicle charging planning system 100 includes a charging planning execution unit 300 including a prediction unit 200, a planning creation unit 300a, and a planning execution unit 300b. As a result, the charging plan created at the initial stage or earlier is sequentially modified based on the parameters that change with time, and a more appropriate charging plan is sequentially created. As an initial charging plan, for example, a charging plan in which surplus electric power is equally divided into each electric vehicle EV can be considered.

予測部200は、走行後バッテリ残量予測部210、充電受入能力予測部220、電力需給差予測部230を含む。図1に示すように、走行後バッテリ残量予測部210及び充電受入能力予測部220は、充電器CH1及びCH2並びに電動自動車EV1及びEV2と、車両充電計画システム100が収容されているネットワーク上で情報通信可能に接続されている。他の充電器CHや他の電動自動車EVについても同様である。なお、図1では図示されていないものの、電動自動車EVと予測部210及び220とは、充電器CHを介さず直接に情報通信可能に接続されていてもよい。また、電力需給差予測部230は、発電ユニット群PUGに含まれる各発電ユニットPU、及び需要家群CSGに含まれる各需要家CSと情報通信可能に接続されている。車両充電計画システム100は、グリッドを構成する上記各構成とその対応関係を識別可能に構成されている。 The prediction unit 200 includes a post-travel battery remaining amount prediction unit 210, a charge acceptance capacity prediction unit 220, and a power supply and demand difference prediction unit 230. As shown in FIG. 1, the post-travel battery remaining amount prediction unit 210 and the charge acceptance capacity prediction unit 220 are on a network in which chargers CH1 and CH2, electric vehicles EV1 and EV2, and a vehicle charging planning system 100 are housed. It is connected so that information communication is possible. The same applies to other charger CHs and other electric vehicle EVs. Although not shown in FIG. 1, the electric vehicle EV and the prediction units 210 and 220 may be directly connected to each other so as to be capable of information communication without going through the charger CH. Further, the power supply and demand difference prediction unit 230 is connected to each power generation unit PU included in the power generation unit group PUG and each consumer CS included in the consumer group CSG so as to be capable of information communication. The vehicle charging planning system 100 is configured so that each of the above configurations constituting the grid and their corresponding relationships can be identified.

走行後バッテリ残量予測部210は、充電計画の計画期間内における各電動自動車EVのバッテリ残量(以下適宜“SOC”という。)の極小値を予測する。この極小値は、本例では、1日を単位に、電動自動車EVの走行が終了して、グリッド内充電器CHに接続される直前のSOCとして予測される。走行後バッテリ残量予測部210は、走行中或いは駐停車中の各電動自動車EVから、SOCの予測に必要な情報(例えば、各電動自動車EVのSOC、電費、利用履歴、及び/又は利用計画等)を取得して、この情報に基づいて各電動自動車EVの計画期間内における予測極小値を得るように構成されている。走行後バッテリ残量予測部210の予測処理は、例えば、後述する計画作成部300aによるサブルーチン処理(図2参照)が実行されるときに実行される。より具体的には、この予測処理は、電動自動車EVの走行状況に応じて定期若しくは不定期に又は適宜に、数秒から数時間に一度程度の又は電動自動車EVが充電ステーションへ寄った都度など、比較的低頻度で逐次実行されるのでもよいし、或いは、1秒間に数回から数千回程度の電動自動車EVで実行される各種サブルーチン処理の一環として比較的高頻度で逐次実行されるのでもよい。 The post-travel battery remaining amount prediction unit 210 predicts the minimum value of the battery remaining amount (hereinafter, appropriately referred to as “SOC”) of each electric vehicle EV within the planning period of the charging plan. In this example, this minimum value is predicted as the SOC immediately before the running of the electric vehicle EV ends and is connected to the charger CH in the grid in units of one day. The post-driving battery remaining amount prediction unit 210 is used to predict the SOC from each of the running or parked electric vehicle EVs (for example, the SOC, electricity cost, usage history, and / or usage plan of each electric vehicle EV). Etc.), and based on this information, it is configured to obtain the predicted minimum value within the planned period of each electric vehicle EV. The prediction process of the post-travel battery remaining amount prediction unit 210 is executed, for example, when the subroutine process (see FIG. 2) by the plan creation unit 300a, which will be described later, is executed. More specifically, this prediction process is performed regularly or irregularly or appropriately depending on the driving condition of the electric vehicle EV, about once every few seconds to several hours, or every time the electric vehicle EV approaches the charging station, etc. It may be executed sequentially at a relatively low frequency, or it may be executed sequentially at a relatively high frequency as part of various subroutine processes executed on an electric vehicle EV several to several thousand times per second. But it may be.

充電受入能力予測部220は、各電動自動車EVのバッテリBAの充電受入能力を予測する。充電受入能力予測部220は、各電動自動車EVから、充電受入能力を予測するために必要な情報(例えば、グリッド内の各充電器CHの性能、接続されている各電動自動車EVのバッテリ性能、SOC、接続時間、及び/又は利用開始予測時間等)を取得して、この情報に基づいて計画期間内において経時変化する充電受入能力予測を得るように構成されている。充電受入能力予測部220の予測処理は、例えば、後述する計画作成部300aの処理(図2参照)が実行されるときに逐次実行される。 The charge acceptance capacity prediction unit 220 predicts the charge acceptance capacity of the battery BA of each electric vehicle EV. The charge receiving capacity prediction unit 220 provides information necessary for predicting the charge receiving capacity from each electric vehicle EV (for example, the performance of each charger CH in the grid, the battery performance of each connected electric vehicle EV, and the like. The SOC, connection time, and / or expected start time of use, etc.) are acquired, and based on this information, the charge acceptance capacity prediction that changes over time within the planned period is obtained. The prediction process of the charge receiving capacity prediction unit 220 is sequentially executed, for example, when the process of the plan creation unit 300a (see FIG. 2), which will be described later, is executed.

電力需給差予測部230は、電力需給差を予測する。電力需給差予測部230は、発電ユニット群PUGから取得する供給電力予測、及び需要家群CSGから取得する消費電力予測から、計画期間内において経時変化する電力需給差予測を逐次得るように構成されている。なお、この電力需給差予測は、電動自動車EVのバッテリBAによる電力バッファ機能を除いた予測プロファイルである。電力需給差予測部230の予測処理は、例えば、後述する計画作成部300aの処理(図2参照)が実行されるときに逐次実行される。 The electric power supply and demand difference prediction unit 230 predicts the electric power supply and demand difference. The power supply-demand difference forecasting unit 230 is configured to sequentially obtain a power supply-demand difference forecast that changes over time within the planning period from the power supply forecast acquired from the power generation unit group PUG and the power consumption forecast acquired from the consumer group CSG. ing. It should be noted that this power supply-demand difference prediction is a prediction profile excluding the power buffer function by the battery BA of the electric vehicle EV. The prediction process of the power supply and demand difference prediction unit 230 is sequentially executed, for example, when the process of the plan creation unit 300a (see FIG. 2), which will be described later, is executed.

計画作成部300aは、充電計画アルゴリズム(以下適宜単に“アルゴリズム”という。)を実行することにより、充電計画を作成する。アルゴリズムは、計画期間内における、走行後バッテリ残量予測部210から取得した各電動自動車EVの走行後SOCの最低値に着目して、既存の充電計画の中から、SOCの最低値を底上げするように充電電力の再分配、充電タイミングの見直しを逐次的に演算、計算するように構成されている。 The plan creation unit 300a creates a charging plan by executing a charging planning algorithm (hereinafter, simply referred to as “algorithm” as appropriate). The algorithm focuses on the minimum value of the SOC after driving of each electric vehicle EV acquired from the battery remaining amount prediction unit 210 after driving within the planning period, and raises the minimum value of SOC from the existing charging plans. It is configured to sequentially calculate and calculate the redistribution of charging power and the review of charging timing.

計画作成部300aは、アルゴリズムを実行することにより、走行後バッテリ残量予測部210から取得した予測極小値の情報に基づいて、計画期間内の最低SOCを予測する。そして、予測された最低SOCを底上げするように、最低SOCになる前の充電計画を修正する。この時、計画作成部300aは、電力需給差予測部230から得た電力需給差予測と、充電受入能力予測部220から得た充電受入能力予測の範囲内で既存の充電計画を修正する。 By executing the algorithm, the planning unit 300a predicts the minimum SOC within the planning period based on the information of the predicted minimum value acquired from the post-travel battery remaining amount prediction unit 210. Then, the charging plan before reaching the minimum SOC is modified so as to raise the predicted minimum SOC. At this time, the planning unit 300a modifies the existing charging plan within the range of the power supply and demand difference prediction obtained from the power supply and demand difference prediction unit 230 and the charge receiving capacity prediction obtained from the charge receiving capacity prediction unit 220.

計画作成部300aは、アルゴリズムを充電計画の対象とされている各電動自動車EVの走行中や駐停車中に、逐次的に繰り返し実行する。電動自動車EVが走行中であれば消費電力に応じて、或いは駐停車中であっても、時間が経過することで逐次変化する他の充電インフラ或いは他の電動自動車EVの充放電状況に応じて、アルゴリズムにより最適として作成される充電計画は変化する。これにより、既存の充電計画が逐次的に修正され、グリッドの状況により適した充電計画が逐次作成される。また、予測部200による予測情報が考慮されることにより、グリッドや電動自動車EV等のハードウェア面の制限を超えた充電計画の実施がされないように、この制約の範囲内での充電電力の再分配及び充電タイミングの調整を可能にする。 The planning unit 300a sequentially and repeatedly executes the algorithm while the electric vehicle EV, which is the target of the charging plan, is running or parked / stopped. If the electric vehicle EV is running, it depends on the power consumption, or even if it is parked or stopped, it depends on the charging / discharging status of other charging infrastructure or other electric vehicle EV that changes sequentially over time. , The charging plan created optimally by the algorithm changes. As a result, the existing charging plan is sequentially modified, and a charging plan more suitable for the grid situation is sequentially created. Further, by considering the prediction information by the prediction unit 200, the charging power is re-charged within the range of this restriction so that the charging plan that exceeds the hardware limitation such as the grid and the electric vehicle EV is not executed. Allows adjustment of distribution and charging timing.

計画実行部300bは、逐次更新される計画のうち最新のものに沿って、計画を実行するように構成されている。従って、再生可能エネルギー等による発電が大量導入されたグリッド、或いは系統電力の依存が高いグリッドにおいて、電動自動車EVのバッテリBAの側からグリッドに対して電力供給する場合でも、安定した電力を確保して分配で、電動自動車EVにおける通常の車両走行のための一定の航続距離を確保可能となる。具体的には、計画実行部300bは、上記の如く計画作成部300aにより作成された充電計画に従って、各電動自動車EVのバッテリBAを充電(或いは放電)する旨の指示等をグリッドの各構成要素に対して適宜出すように構成されている。 The plan execution unit 300b is configured to execute the plan according to the latest plan among the plans to be sequentially updated. Therefore, stable power is secured even when power is supplied to the grid from the battery BA side of the electric vehicle EV on a grid in which a large amount of power generation by renewable energy or the like is introduced or a grid that is highly dependent on grid power. By distributing the power, it becomes possible to secure a certain cruising distance for normal vehicle running in the electric vehicle EV. Specifically, the plan execution unit 300b gives an instruction to charge (or discharge) the battery BA of each electric vehicle EV according to the charging plan created by the plan creation unit 300a as described above for each component of the grid. It is configured to be issued as appropriate.

計画作成部300aが実行する具体的な処理の一例を、図2を用いて説明する。この例では、アルゴリズムは、計画期間をN日とし、i=1からスタートして、充電計画の修正が可能と判定されたi日目での当該修正が行われるように構成されている。このように、計画作成部300aは、未来への影響力の大きい直近の充電計画から修正をするように構成されている。なお、この例における“タイミング“の単位は1日である。従って、N及びiの単位は日であるが、タイミングの単位は日に限らず適宜設定可能である。 An example of a specific process executed by the planning unit 300a will be described with reference to FIG. In this example, the algorithm is configured such that the planning period is N days, the modification is started from i = 1, and the modification is performed on the i-day when it is determined that the charging plan can be modified. In this way, the planning unit 300a is configured to make corrections from the latest charging plan, which has a great influence on the future. The unit of "timing" in this example is one day. Therefore, the unit of N and i is a day, but the unit of timing is not limited to a day and can be set as appropriate.

図2において、計画作成部300aは、まず、走行後バッテリ残量予測部210から取得した情報に基づいて、計画期間におけるグリッド内の電動自動車群EVGの最低SOCを予測する(ステップS10)。具体的には、走行後バッテリ残量予測部210から、計画期間内における各電動自動車EVの走行後SOCの予測極小値の情報を取得し、その中から、最も低い最低SOCを特定する。この特定により、最低SOC値の他、最低SOCに対応する電動自動車EV、タイミング等も特定される。このように、計画作成部300aは「SOC予測手段」の一例として機能する。 In FIG. 2, the plan creation unit 300a first predicts the minimum SOC of the electric vehicle group EVG in the grid during the planning period based on the information acquired from the after-travel battery remaining amount prediction unit 210 (step S10). Specifically, information on the predicted minimum value of the post-travel SOC of each electric vehicle EV within the planned period is acquired from the post-travel battery remaining amount prediction unit 210, and the lowest lowest SOC is specified from the information. By this specification, in addition to the minimum SOC value, the electric vehicle EV, timing, etc. corresponding to the minimum SOC are also specified. In this way, the plan creation unit 300a functions as an example of the “SOC prediction means”.

次に、予測された最低SOCが予め設定された閾値SOC未満か否か判定される(ステップS11)。“閾値SOC“とは、各電動自動車EVのSOCであって、計画期間、あるいはそれ以上の期間において、グリッドと電動自動車EVの機能(即ち、走行機能など、電動自動車としての本来の機能)を確保するために必要と考えられる最低値である。この閾値SOCは、当該電動自動車EVの走行に関する不確定要素(例えば、時々刻々の天候変化、予定されている走行距離、走行時間、走行速度、道路の路面や混雑・渋滞状況、充電インフラの営業状況や混雑具合、停電等)に対して、当該電動自動車EVの機能確保ができるような値が、(典型的にはバッテリBAが空になる前に若干の余裕を持って、適切な充電インフラに辿り着けるように)予め設定される。閾値SOCは、不確定要素の状況に応じて経時変化可能な式やテーブル値として設定されてもよく、具体的には、経験的、実験的、シミュレーション、機械学習等により、確実に適切な充電インフラまで辿り着くのに適当と認められるSOC値が、現時点で取得可能な各種パラメータを入力パラメータとする該式やテーブル値として適宜決定されてもよい。 Next, it is determined whether or not the predicted minimum SOC is less than the preset threshold SOC (step S11). The "threshold SOC" is the SOC of each electric vehicle EV, and the functions of the grid and the electric vehicle EV (that is, the original functions of the electric vehicle such as the driving function) during the planned period or longer. This is the lowest value that can be considered necessary to secure it. This threshold SOC is an uncertain factor related to the running of the electric vehicle EV (for example, momentary weather change, planned mileage, running time, running speed, road surface and congestion / congestion situation, operation of charging infrastructure). Appropriate charging infrastructure with a value that can ensure the function of the electric vehicle EV (typically, with some margin before the battery BA becomes empty) for situations, congestion, power outages, etc. (To reach) preset. The threshold SOC may be set as an expression or table value that can change with time according to the situation of uncertain factors. Specifically, empirical, experimental, simulation, machine learning, etc. are used to ensure appropriate charging. The SOC value deemed appropriate for reaching the infrastructure may be appropriately determined as the formula or table value using various parameters that can be acquired at present as input parameters.

予測された最低SOCが閾値SOCに達していない、即ち、閾値SOC未満と判定された場合(ステップS11:Yes)、i日目の充電計画の修正が可能か否か判定される(ステップS12)。例えば、i=1であれば、計画期間の開始タイミングである1日目での修正が可能であるか否か判定される。具体的には、取得された予測(充電受入能力予測及び電力需給差予測)の範囲内で最低SOCに対応する充電計画が修正可能であるか否か判定される。 When it is determined that the predicted minimum SOC has not reached the threshold SOC, that is, it is determined to be less than the threshold SOC (step S11: Yes), it is determined whether or not the charging plan on the i-day day can be modified (step S12). .. For example, if i = 1, it is determined whether or not the correction is possible on the first day, which is the start timing of the planning period. Specifically, it is determined whether or not the charging plan corresponding to the minimum SOC can be modified within the range of the acquired predictions (charge acceptance capacity prediction and power supply / demand difference prediction).

ここで充電計画の修正が可能であると判定された場合(ステップS12:Yes)、i日目の充電計画を修正する(ステップS13)。ここでは、初期設定で“i=1日目”としてアルゴリズムをスタートさせているので、計画時に最も近い日(即ち、第1日目)から、以下に示すように修正の可否を順次判定すると共に、修正が可能な場合に該修正を実行していくことになる。なお、後に詳述する図3の例では、第2日目に最低SOCが閾値SOCに達している場合であるので、先ずは第1日目の充電計画を修正できるか否かを判定し、その結果に応じて、可能なら第1日目の充電計画を修正し、或いは不可能なら第2日目の充電計画を修正する。 If it is determined that the charging plan can be modified here (step S12: Yes), the charging plan on the i-day day is modified (step S13). Here, since the algorithm is started with "i = 1st day" in the initial setting, the possibility of modification is sequentially determined as shown below from the day closest to the planning time (that is, the 1st day). , If the correction is possible, the correction will be executed. In the example of FIG. 3 to be described in detail later, since the minimum SOC reaches the threshold SOC on the second day, it is first determined whether or not the charging plan on the first day can be modified. Depending on the result, the charging plan for the first day is modified if possible, or the charging plan for the second day is modified if not possible.

ステップS13の処理の後、充電計画が(本例では、第1日から)修正された状態で、ステップS10からアルゴリズムを繰り返して実行する。 After the process of step S13, the algorithm is repeatedly executed from step S10 with the charging plan modified (in this example, from the first day).

ステップS12の判定においてi日目の充電計画が修正できないと判定された場合(ステップS12:No)、i<Nか否か(即ち、計画の最終日に関する修正の可否までも判定し終わったか否か)が判断される(ステップS14)。ステップS14においてi<Nと判定された場合、即ち、計画の最終日の修正可否の判定までは未だ至っていない場合は(ステップS14:Yes)、iに1が加算される(ステップS15)。他方、ステップS14において、i<Nではないと判定された場合は(ステップS14:No)、即ち、iがNに達すると(即ち、充電計画の最終日まで修正が不可能であるとの判定を終えたことになるので)、アルゴリズムは終了する。ステップS14及びS15における処理により、i<Nである限り、充電計画の修正候補日が1日ずつ逐次更新され、修正の可否判定が続けられ可能な場合の修正が実行される。 If it is determined in the determination of step S12 that the charging plan on the i-day cannot be modified (step S12: No), whether or not i <N (that is, whether or not the modification regarding the last day of the plan has been completed) has been completed. Is determined (step S14). If i <N is determined in step S14, that is, if the determination of whether or not to modify the last day of the plan has not yet been reached (step S14: Yes), 1 is added to i (step S15). On the other hand, in step S14, when it is determined that i <N (step S14: No), that is, when i reaches N (that is, it is determined that the correction is impossible until the final day of the charging plan). The algorithm is finished. By the processing in steps S14 and S15, as long as i <N, the correction candidate dates of the charging plan are sequentially updated one day at a time, and the correction possibility determination is continued and the correction is executed when possible.

他方、ステップS11の判定において最低SOCは閾値SOC未満ではないと判定された場合(ステップS11:No)、計画変更は必要ないので、アルゴリズムは終了する。このように、計画作成部300aは、最終的に充電計画の修正候補日がN日目になるか、或いは、最低SOCが閾値SOC以上になると、電動自動車EVの充電計画の修正処理を終了するように構成されている。 On the other hand, when it is determined in the determination of step S11 that the minimum SOC is not less than the threshold value SOC (step S11: No), no plan change is required, and the algorithm ends. In this way, the plan creation unit 300a ends the correction process of the charging plan of the electric vehicle EV when the candidate date for correction of the charging plan finally becomes the Nth day or the minimum SOC becomes the threshold SOC or more. It is configured as follows.

次に、アルゴリズムによって電動自動車EVのSOCがどのように修正され得るかについて、具体的な例により説明する。ここでは、電動自動車EV1と電動自動車EV2の充電計画において、最低SOCがアルゴリズムによって改善される過程を例にして、図3を用いて説明する。図3において、グラフG1α(実線)は、既存の走行予測及び充電計画によって予測された電動自動車EV1のバッテリBA1のSOCプロファイルであり、グラフG2α(破線)は、既存の走行予測及び充電計画によって予測された電動自動車EV2のバッテリBA2のSOCプロファイルである。 Next, how the SOC of the electric vehicle EV can be modified by the algorithm will be described by a concrete example. Here, in the charging plan of the electric vehicle EV1 and the electric vehicle EV2, the process in which the minimum SOC is improved by the algorithm will be described as an example with reference to FIG. In FIG. 3, graph G1α (solid line) is the SOC profile of the battery BA1 of the electric vehicle EV1 predicted by the existing driving prediction and charging plan, and graph G2α (broken line) is predicted by the existing driving prediction and charging plan. It is the SOC profile of the battery BA2 of the electric vehicle EV2.

図3に示すように、電動自動車EV1及び電動自動車EV2の既存の充電計画に基づいて予測された計画期間内の最低SOCは、電動自動車EV2のグラフG2αにおけるポイントP1である。ポイントP1のSOCは計画終了閾値、即ち閾値SOC未満であるため、上述したアルゴリズムの処理によって、充電計画が修正される。この修正の結果得られる電動自動車EV2のSOCプロファイルは、グラフG2β(点線)である。 As shown in FIG. 3, the minimum SOC within the planned period predicted based on the existing charging plans of the electric vehicle EV1 and the electric vehicle EV2 is the point P1 in the graph G2α of the electric vehicle EV2. Since the SOC of the point P1 is less than the planned end threshold value, that is, the threshold value SOC, the charging plan is modified by the processing of the above-mentioned algorithm. The SOC profile of the electric vehicle EV2 obtained as a result of this modification is graph G2β (dotted line).

グラフG2βが示すように、電動自動車EV2のバッテリBA2のSOCがタイミングt1(1日目)で増加することにより、閾値SOC未満であったポイントP1が閾値SOC以上になるように底上げされている。これは、最低SOCに達するタイミングt2(2日目)より前のタイミングt1において充電計画の修正が可能と判定されたことを示す。 As shown in the graph G2β, the SOC of the battery BA2 of the electric vehicle EV2 increases at the timing t1 (day 1), so that the point P1 that was less than the threshold SOC is raised to be equal to or higher than the threshold SOC. This indicates that it is determined that the charging plan can be modified at the timing t1 before the timing t2 (the second day) when the minimum SOC is reached.

なお、図3では、電動自動車EV2に対応する1日目の充電電力量を単純に増加させているが、計画期間の余剰電力に余裕がない場合は、例えば、他の電動自動車EV1のバッテリBA1からの放電電力も分配電力として利用される。 In FIG. 3, the amount of charging power on the first day corresponding to the electric vehicle EV2 is simply increased, but if there is not enough surplus power during the planning period, for example, the battery BA1 of another electric vehicle EV1 The discharge power from is also used as the distributed power.

ポイントP1に関する修正後、予測された最低SOCは、電動自動車EV1のグラフG1αのポイントP2に移る。ポイントP2は閾値SOC未満であるため、この最低SOC(ポイントP2)に対して、再度アルゴリズムが実行され、再度充電計画が修正される。この修正の結果得られる電動自動車EV1のSOCプロファイルは、グラフG1β(太線)である。 After the modification for the point P1, the predicted minimum SOC moves to the point P2 of the graph G1α of the electric vehicle EV1. Since the point P2 is less than the threshold SOC, the algorithm is executed again for this minimum SOC (point P2), and the charging plan is modified again. The SOC profile of the electric vehicle EV1 obtained as a result of this modification is graph G1β (thick line).

グラフG1βが示すように、電動自動車EV1のバッテリBA1のSOCがタイミングt3(2日目)で増加することにより、閾値SOC未満であったポイントP2が閾値SOC以上になるように底上げされている。これは、最低SOCに達するタイミングt4(3日目)より前のタイミングであって、タイミングt3より前のタイミングt5(1日目)では充電計画の修正はできないと判定され、タイミングt3において充電計画が修正可能と判断された結果である。 As shown in the graph G1β, the SOC of the battery BA1 of the electric vehicle EV1 increases at the timing t3 (day 2), so that the point P2 that was less than the threshold SOC is raised to be equal to or higher than the threshold SOC. This is the timing before the timing t4 (3rd day) when the minimum SOC is reached, and it is determined that the charging plan cannot be modified at the timing t5 (1st day) before the timing t3, and the charging plan at the timing t3. Is the result of the judgment that it can be corrected.

上記ポイントP2に関する修正により、グリッド内の全電動自動車EV1及びEV2に関する最低SOCは、修正後のポイントP1になるが、修正後のポイントP1は閾値SOC以上であるため、アルゴリズムによる充電計画の修正は終了する。 Due to the above modification of point P2, the minimum SOC for all electric vehicles EV1 and EV2 in the grid becomes the modified point P1, but since the modified point P1 is equal to or higher than the threshold SOC, the algorithm-based modification of the charging plan is not possible. finish.

以上のように、車両充電計画システム100によれば、計画期間、もしくはそれ以上の期間においてグリッドと電動自動車EVの運用、機能確保が実現できるような閾値に、最低SOCが到達するまで、既存の充電計画を逐次的に更新していくことにより、不確定要素に対するロバスト性を備えた、グリッド・電動自動車群EVGの機能確保が実現できる充電計画を実現することができる。 As described above, according to the vehicle charging planning system 100, the existing SOC is reached until the minimum SOC is reached so that the grid and the electric vehicle EV can be operated and the functions can be secured during the planning period or longer. By sequentially updating the charging plan, it is possible to realize a charging plan that is robust against uncertainties and can secure the functions of the grid / electric vehicle group EVG.

<第2実施形態>
図4及び5を参照して、本発明に係る第2実施形態について説明する。ここに図4及び図5はそれぞれ、第1実施形態に係る図1及び図2と同趣旨の図面であり、図4及び図5において、図1及び図2に示した第1実施形態と同様の構成要素に対しては同様の参照符号を付し、それらの説明は適宜省略する。
<Second Embodiment>
A second embodiment according to the present invention will be described with reference to FIGS. 4 and 5. Here, FIGS. 4 and 5 are drawings having the same meaning as those of FIGS. 1 and 2 according to the first embodiment, respectively, and are the same as those of the first embodiment shown in FIGS. 1 and 2 in FIGS. 4 and 5, respectively. The same reference numerals are given to the components of the above, and the description thereof will be omitted as appropriate.

第2実施形態に係る車両充電計画システム100は、第1実施形態のグリッドに電力供給安定化機能を更に備えたグリッドに対して設けられる。図4に示す例においては、第2実施形態に係る車両充電計画システム100は、第1実施形態の構成に加えて、電力需給差予測部230が少なくとも1の電力バッファPBを含む電力バッファ群PBGと接続されており、その他の構成は第1実施形態と同様である。 The vehicle charging planning system 100 according to the second embodiment is provided for a grid further provided with a power supply stabilizing function in the grid of the first embodiment. In the example shown in FIG. 4, in the vehicle charging planning system 100 according to the second embodiment, in addition to the configuration of the first embodiment, the power buffer group PBG including the power buffer PB in which the power supply and demand difference prediction unit 230 has at least one. The other configurations are the same as those of the first embodiment.

電力バッファPBは、電動自動車EVのバッテリBAとは別に、例えば充放電ステーション、各種施設或いは設備、家庭に備えられる大型の蓄電池であり、一時的な畜放電可能な専用の電力バッファとしてグリッドに設けられている。電力バッファPBは、その放電電力により、グリッド内の電力供給の安定化を図るために設けられている。従って、例えば、電力需給差予測部230は、各電力バッファPBによる充放電能力に基づいて、調整余裕をもった電力需給差を予測することができる。そして、計画作成部300aは、電力バッファ群PBGの放電による電力供給増を利用して、より柔軟な充電分配、タイミング調整が可能となる。なお、電力バッファPB自体は発電することができないため、放電した電力量と同量の充電が、余剰電力がある時に必要である。 The power buffer PB is a large storage battery installed in, for example, a charging / discharging station, various facilities or equipment, and a home, in addition to the battery BA of the electric vehicle EV, and is provided on the grid as a dedicated power buffer capable of temporary storage and discharging. Has been done. The power buffer PB is provided to stabilize the power supply in the grid by the discharge power. Therefore, for example, the power supply and demand difference prediction unit 230 can predict the power supply and demand difference with an adjustment margin based on the charge / discharge capacity of each power buffer PB. Then, the plan creation unit 300a can more flexibly distribute the charge and adjust the timing by utilizing the increase in power supply due to the discharge of the power buffer group PBG. Since the power buffer PB itself cannot generate power, it is necessary to charge the same amount as the amount of discharged power when there is surplus power.

また、グリッド内の電力需給変動が著しい場合、電力不足解消のために、一時的に電動自動車群EVGのバッテリBAから電力バッファに対して放電するような計画がされてもよい。この場合、車両充電計画システム100の計画作成部300aは、グリッド内の電動自動車群EVGのバッテリBAからの放電計画を策定する処理も行う。当該処理の例としての充電計画アルゴリズム(以下、適宜単に“アルゴリズム”という。)を、図5に示す。 Further, when the fluctuation of the power supply and demand in the grid is remarkable, a plan may be made to temporarily discharge the battery BA of the electric vehicle group EVG to the power buffer in order to solve the power shortage. In this case, the planning unit 300a of the vehicle charging planning system 100 also performs a process of formulating a discharge plan from the battery BA of the electric vehicle group EVG in the grid. A charging planning algorithm (hereinafter, simply referred to as “algorithm”) as an example of the processing is shown in FIG.

図5のアルゴリズムでは、まず計画作成部300aにより電動自動車群EVGのバッテリBAにより電力不足を解消する放電計画が立てられる(ステップS20)。電力不足が発生すると、ブラックアウト等、グリッドの運用に大きな影響をもたらすため、電力バッファ群PBGによって最優先で電力不足を解消する必要がある。そのため、ここでは、アルゴリズムの初期に、グリッド内のバッテリBA個々の放電計画を立て、確定させる。第2実施形態では特に、電力バッファの充放電能力を利用しての計画作成が可能とされており、第1実施形態の場合と比べて、計画作成の自由度が高められている。 In the algorithm of FIG. 5, first, the plan creation unit 300a establishes a discharge plan for solving the power shortage by the battery BA of the electric vehicle group EVG (step S20). When a power shortage occurs, it has a great influence on the operation of the grid such as blackout. Therefore, it is necessary to solve the power shortage with the highest priority by the power buffer group PBG. Therefore, here, at the beginning of the algorithm, a discharge plan for each battery BA in the grid is made and finalized. In particular, in the second embodiment, it is possible to create a plan by using the charge / discharge capacity of the power buffer, and the degree of freedom in creating a plan is increased as compared with the case of the first embodiment.

その後、第1実施形態と同様にステップS10以降の処理が行われ、一連の処理を終了する。よって、第2実施形態によれば、電力バッファ群PBGの充放電による電力供給増を利用して、より柔軟な充電分配、タイミング調整が可能となる。 After that, the processes after step S10 are performed as in the first embodiment, and the series of processes is completed. Therefore, according to the second embodiment, more flexible charge distribution and timing adjustment are possible by utilizing the increase in power supply by charging / discharging the power buffer group PBG.

付記
以上説明した実施形態に関して、更に以下の付記を開示する。
Additional Notes The following additional notes will be further disclosed with respect to the embodiments described above.

[付記1]
付記1に記載の車両充電計画システムは、電動車両が備えるバッテリ及び充電インフラを含んで構成されるスマートグリッドにおいて、前記バッテリに充電する充電計画を行う車両充電計画システムであって、第1タイミングから第2タイミングまでの間における前記バッテリの最低SOCを予測するSOC予測手段と、前記予測された最低SOCが予め設定された閾値SOC未満である場合、前記予測された最低SOCまで前記バッテリのSOCが下がる前のタイミングに前記充電インフラから前記バッテリに充電するように前記充電計画を作成する計画作成手段とを備えることを特徴とする車両充電計画システムである。
[Appendix 1]
The vehicle charging planning system according to Appendix 1 is a vehicle charging planning system that performs a charging plan for charging the battery in a smart grid including a battery and a charging infrastructure included in an electric vehicle, and is a vehicle charging planning system from the first timing. The SOC predicting means for predicting the minimum SOC of the battery until the second timing, and when the predicted minimum SOC is less than the preset threshold SOC, the SOC of the battery is up to the predicted minimum SOC. The vehicle charging planning system is provided with a planning means for creating a charging plan so as to charge the battery from the charging infrastructure at a timing before the lowering.

付記1に記載の車両充電計画システムによれば、第1タイミングから第2タイミングまでの期間(即ち、“充電計画期間”或いは“電力分配計画期間”)における、バッテリの最低SOCが、SOC予測手段により電動車両の走行中や駐停車中に逐次に予測される。ここでは、予測された最低SOCが予め設定された閾値SOC未満である場合、予測された最低SOCまでバッテリのSOCが下がるタイミングよりも前のタイミングに充電インフラからバッテリに充電するように充電計画が、計画作成手段により電動車両の走行中や駐停車中に逐次に作成される。即ち、充電計画が逐次に見直される。 According to the vehicle charging planning system described in Appendix 1, the minimum SOC of the battery in the period from the first timing to the second timing (that is, the "charging planning period" or the "power distribution planning period") is the SOC predicting means. Therefore, it is predicted sequentially while the electric vehicle is running or parked / stopped. Here, if the predicted minimum SOC is less than the preset threshold SOC, the charging plan is to charge the battery from the charging infrastructure before the timing when the battery SOC drops to the predicted minimum SOC. , It is created sequentially by the planning means while the electric vehicle is running or parked / stopped. That is, the charging plan is reviewed one by one.

従って、この車両充電計画システムによって作成された充電計画に従えば、スマートグリッドの一員としての電動車両のバッテリの側から、スマートグリッドに対して電力供給する場合でも、電動車両における通常の車両走行のための一定の航続距離を確保可能となる。言い換えれば、電動車両における自動車本来の機能である通常走行の航続距離に支障を来すことを阻止或いは抑制しつつ、電動車両のバッテリをスマートグリッドにおける電力バッファとして利用することでスマートグリッドにおける電力需給の平準化を図れる。天候等の不確実性に対するロバスト性も向上可能となる。しかも、スマートグリッドとの間でのバッテリの無闇な充放電によるバッテリの劣化も、阻止或いは抑制可能となる。 Therefore, according to the charging plan created by this vehicle charging planning system, even when power is supplied to the smart grid from the battery side of the electric vehicle as a member of the smart grid, the normal vehicle running in the electric vehicle It is possible to secure a certain cruising range for the purpose. In other words, power supply and demand in the smart grid is achieved by using the battery of the electric vehicle as a power buffer in the smart grid while preventing or suppressing the hindrance to the cruising range of normal driving, which is the original function of the vehicle in the electric vehicle. Can be leveled. Robustness against uncertainties such as weather can also be improved. Moreover, deterioration of the battery due to unreasonable charging / discharging of the battery with the smart grid can be prevented or suppressed.

[付記2]
付記2に記載の車両充電計画システムは、前記スマートグリッドは、前記バッテリ及び前記充電インフラに加えて、充放電可能な電力バッファを含んで構成されることを特徴とする前記付記1記載の車両充電計画システムである。
[Appendix 2]
The vehicle charging planning system according to Appendix 2 is characterized in that the smart grid is configured to include a chargeable / dischargeable power buffer in addition to the battery and the charging infrastructure. It is a planning system.

付記2に記載された車両充電計画システムによれば、電力バッファとしても機能するバッテリに加えて、別途専用或いは兼用で備えられた電力バッファからの放電による電力供給の増加分を利用可能となり、より柔軟な充電配分及びタイミング調査調整がなされた充電計画を作成可能となる。電力バッファに対する充電については、スマートグリッド全体で余剰電力がある際に実行すればよい。 According to the vehicle charging planning system described in Appendix 2, in addition to the battery that also functions as a power buffer, an increase in power supply due to discharge from a separately dedicated or dual-purpose power buffer can be used. It is possible to create a charging plan with flexible charge distribution and timing survey adjustment. Charging of the power buffer may be performed when there is surplus power in the entire smart grid.

[付記3]
付記3に記載の車両充電計画システムは、前記バッテリの充電受入能力を予測する充電受入能力予測手段を更に備え、前記計画作成手段は、前記予測された充電受入能力を加味して前記充電計画を作成することを特徴とする前記付記1記載の車両充電計画システムである。
[Appendix 3]
The vehicle charging planning system according to Appendix 3 further includes a charging receiving capacity predicting means for predicting the charging receiving capacity of the battery, and the planning means prepares the charging plan in consideration of the predicted charge receiving capacity. The vehicle charging planning system according to the appendix 1, characterized in that it is created.

付記3に記載された車両充電計画システムによれば、予測されたバッテリの充電受入能力を加味して、充電インフラからバッテリに適宜に充電するように充電計画を作成するので、スマートグリッド全体として、より効率的な充電電力の再配分が可能となる。 According to the vehicle charging planning system described in Appendix 3, the charging plan is created so that the battery is appropriately charged from the charging infrastructure in consideration of the predicted charging capacity of the battery, so that the smart grid as a whole can be used as a whole. More efficient redistribution of charging power is possible.

[付記4]
付記4に記載の車両充電計画システムは、前記スマートグリッドにおける電力需給差を予測する電力需給差予測手段を更に備え、前記計画作成手段は、前記予測された電力需給差を加味して前記充電計画を作成することを特徴とする前記付記1記載の車両充電計画システムである。
[Appendix 4]
The vehicle charging planning system according to Appendix 4 further includes a power supply / demand difference predicting means for predicting a power supply / demand difference in the smart grid, and the planning means takes the predicted power supply / demand difference into consideration to perform the charging plan. The vehicle charging planning system according to the appendix 1, wherein the vehicle charging planning system is characterized in that.

付記4に記載された車両充電計画システムによれば、予測されたスマートグリッドにおける電力需給差を加味して、充電インフラからバッテリに適宜に充電するように充電計画を作成するので、スマートグリッド全体として、より効率的な充電電力の再配分が可能となる。 According to the vehicle charging planning system described in Appendix 4, the charging plan is created so that the battery is appropriately charged from the charging infrastructure in consideration of the predicted power supply-demand difference in the smart grid, so that the smart grid as a whole , More efficient redistribution of charging power becomes possible.

本発明は、請求の範囲及び明細書全体から読み取るこのできる発明の要旨又は思想に反しない範囲で適宜変更可能であり、そのような変更を伴う車両充電計画システムもまた本発明の技術思想に含まれる。 The present invention can be appropriately modified within the scope of the claims and within the scope not contrary to the gist or idea of the invention which can be read from the entire specification, and the vehicle charging planning system accompanied by such modification is also included in the technical idea of the present invention. Will be.

100…車両充電計画システム
200…予測部
210…走行後バッテリ残量予測部
220…充電受入能力予測部
230…電力需給差予測部
300…充電計画実行部
300a…計画作成部
300b…計画実行部
EV、EV1、EV2…電動自動車(電動車両)
BA、BA1、BA2…バッテリ
CH、CH1、CH2…充電器
100 ... Vehicle charging planning system 200 ... Prediction unit 210 ... After-travel battery remaining amount prediction unit 220 ... Charge acceptance capacity prediction unit 230 ... Electric power supply / demand difference prediction unit 300 ... Charging plan execution unit 300a ... Plan creation unit 300b ... Plan execution unit EV , EV1, EV2 ... Electric vehicle (electric vehicle)
BA, BA1, BA2 ... Battery CH, CH1, CH2 ... Charger

Claims (1)

電動車両が備えるバッテリ及び充電インフラを含んで構成されるスマートグリッドにおいて、前記バッテリに充電する充電計画を行う車両充電計画システムであって、
第1タイミングから第2タイミングまでの間における前記バッテリの最低SOCを予測するSOC予測手段と、
前記予測された最低SOCが予め設定された閾値SOC未満である場合、前記予測された最低SOCまで前記バッテリのSOCが下がるタイミングよりも前のタイミングに前記充電インフラから前記バッテリに充電するように前記充電計画を作成する計画作成手段と
を備えることを特徴とする車両充電計画システム。
A vehicle charging planning system for charging a battery in a smart grid including a battery and charging infrastructure of an electric vehicle.
An SOC predicting means for predicting the minimum SOC of the battery between the first timing and the second timing,
If the predicted minimum SOC is less than a preset threshold SOC, the charging infrastructure charges the battery before the timing when the battery's SOC drops to the predicted minimum SOC. A vehicle charging planning system characterized by providing a planning means for creating a charging plan.
JP2020104304A 2020-06-17 2020-06-17 Vehicle charging planning system Pending JP2021197862A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020104304A JP2021197862A (en) 2020-06-17 2020-06-17 Vehicle charging planning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020104304A JP2021197862A (en) 2020-06-17 2020-06-17 Vehicle charging planning system

Publications (1)

Publication Number Publication Date
JP2021197862A true JP2021197862A (en) 2021-12-27

Family

ID=79196166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020104304A Pending JP2021197862A (en) 2020-06-17 2020-06-17 Vehicle charging planning system

Country Status (1)

Country Link
JP (1) JP2021197862A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7434397B2 (en) 2022-03-29 2024-02-20 本田技研工業株式会社 Charging management system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7434397B2 (en) 2022-03-29 2024-02-20 本田技研工業株式会社 Charging management system

Similar Documents

Publication Publication Date Title
US10992155B2 (en) Systems and methods for determining and managing battery charging rules
Yan et al. Optimized operational cost reduction for an EV charging station integrated with battery energy storage and PV generation
KR101566715B1 (en) Efficient electric vehicles charging algorithm with priority index method
US20140058571A1 (en) Multi-objective energy management methods for micro-grids
Khatiri-Doost et al. Peak shaving and power losses minimization by coordination of plug-in electric vehicles charging and discharging in smart grids
CN105684257A (en) Microgrid energy management system and method for controlling operation of a microgrid
Ghanbarzadeh et al. Reliability constrained unit commitment with electric vehicle to grid using hybrid particle swarm optimization and ant colony optimization
US11843271B2 (en) Power reception control method for power storage element and power reception control device
US20220153163A1 (en) Power reception control method for power reception element and power reception control device
Bibak et al. The parametric analysis of the electric vehicles and vehicle to grid system’s role in flattening the power demand
JP2015019465A (en) Charge system and construction method for the same
JP2015530860A (en) Recharging the battery pool
Naik et al. Optimization of vehicle-to-grid (V2G) services for development of smart electric grid: a review
JP2021197862A (en) Vehicle charging planning system
WO2016190271A1 (en) Power supply control device, power supply system, power supply control method, and program
Amiri et al. Optimal charging schedule of electric vehicles at battery swapping stations in a smart distribution network
de Quevedo et al. Joint expansion planning of distribution networks, EV charging stations and wind power generation under uncertainty
Ruiz et al. An optimal battery charging and schedule control strategy for electric bus rapid transit
Kumar et al. Efficiency evaluation of coordinated charging methods used for charging electric vehicles
Infante et al. Multistakeholder planning and operational strategy for electric vehicle battery swapping stations
Zhou et al. Electric vehicle capacity forecasting model with application to load levelling
JP6942295B1 (en) Charge / discharge plan creation device, command device, power system management system, terminal device, power storage system, charge / discharge system, storage battery, electric vehicle, charge / discharge plan creation method and charge / discharge plan creation program
Kong Extending energy storage lifetime of autonomous robot-like mobile charger for electric vehicles
CN115377964A (en) Regional two-stage elastic energy management method, system, equipment and medium
Li et al. A decentralized load balancing approach for neighbouring charging stations via EV fleets