JP2021196707A - System, method, and program for estimating injuries and diseases - Google Patents

System, method, and program for estimating injuries and diseases Download PDF

Info

Publication number
JP2021196707A
JP2021196707A JP2020101094A JP2020101094A JP2021196707A JP 2021196707 A JP2021196707 A JP 2021196707A JP 2020101094 A JP2020101094 A JP 2020101094A JP 2020101094 A JP2020101094 A JP 2020101094A JP 2021196707 A JP2021196707 A JP 2021196707A
Authority
JP
Japan
Prior art keywords
user
injury
adrenaline
illness
estimation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020101094A
Other languages
Japanese (ja)
Inventor
平 加治佐
Taira Kajisa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
World Tryout Co Ltd
Worldtryout
Original Assignee
World Tryout Co Ltd
Worldtryout
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by World Tryout Co Ltd, Worldtryout filed Critical World Tryout Co Ltd
Priority to JP2020101094A priority Critical patent/JP2021196707A/en
Publication of JP2021196707A publication Critical patent/JP2021196707A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Medical Treatment And Welfare Office Work (AREA)

Abstract

To provide a system for estimating injuries and diseases which estimates the possibility that a user will get injured or sick from information when the user is doing an exercise.SOLUTION: The system for estimating injuries and diseases includes: a storage unit for storing a learning model which has learned the relation between the blood sugar of a user when the user is doing an exercise and the injuries and diseases of the user; a reception unit for receiving an input of blood sugar information on the blood sugar of a target user when the target user is doing an exercise; an estimation unit for estimating the possibility that the target user will get injured or sick, by using the blood sugar information received by the reception unit and the learning model; and an output unit for outputting information on the possibility estimated by the estimation unit.SELECTED DRAWING: Figure 1

Description

本発明は、傷病を推定する傷病推定システム、傷病推定方法および傷病推定プログラムに関する。 The present invention relates to an injury / illness estimation system, an injury / illness estimation method, and an injury / illness estimation program for estimating injury / illness.

従来、血糖値の管理は人間の健康状態の維持管理のために用いられてきた。例えば、特許文献1には、ユーザの血糖値を予測する血糖値予測装置が開示されている。 Traditionally, blood glucose control has been used to maintain human health. For example, Patent Document 1 discloses a blood glucose level predictor that predicts a user's blood glucose level.

特許第6659049号Patent No. 6659049

ところで、血糖値の上昇は、食事の摂取の他、副腎髄質より分泌されるアドレナリンが肝臓に作用してグリコーゲンを分解することにより発生する。血糖値は高すぎても低すぎても人体に悪影響を及ぼすことが一般的に知られている。上記特許文献1の技術を用いれば、血糖値を予測することはできるものの、予測された血糖値がどのような影響を人体に及ぼすのかについては予測できないという問題がある。また、血糖値の上昇に関連するアドレナリンの分泌が人体に与える影響についても予測できない。 By the way, the increase in blood glucose level is caused by ingestion of food and adrenaline secreted from the adrenal medulla acting on the liver to decompose glycogen. It is generally known that if the blood sugar level is too high or too low, it has an adverse effect on the human body. Although the blood glucose level can be predicted by using the technique of Patent Document 1, there is a problem that it is not possible to predict what kind of effect the predicted blood glucose level will have on the human body. In addition, the effect of adrenaline secretion associated with elevated blood glucose levels on the human body cannot be predicted.

そこで、本発明は上記問題に鑑みてなされたものであり、ユーザの血糖値を利用して、ユーザが負う可能性のある傷病を推定することができる傷病推定システム、傷病推定方法、および傷病推定プログラムを提供することを目的とする。 Therefore, the present invention has been made in view of the above problems, and is an injury / illness estimation system, an injury / illness estimation method, and an injury / illness estimation that can estimate an injury / illness that a user may incur by using the blood glucose level of the user. The purpose is to provide a program.

本発明の一態様に係る傷病推定システムは、ユーザの運動時の血糖値と、ユーザの傷病との関係を学習した学習モデルを記憶する記憶部と、対象ユーザの運動時の血糖値に関する血糖値情報の入力を受け付ける受付部と、受付部が受け付けた血糖値情報と、学習モデルとを用いて、対象ユーザが、傷病を負う可能性を推定する推定部と、推定部が推定した可能性に関する情報を出力する出力部と、を備える。 The injury / illness estimation system according to one aspect of the present invention has a storage unit that stores a learning model that learns the relationship between the user's exercise blood glucose level and the user's injury / illness, and the blood glucose level related to the exercise blood glucose level of the target user. Regarding the estimation unit that estimates the possibility that the target user will suffer injury or illness, and the possibility that the estimation unit estimates, using the reception unit that accepts the input of information, the blood glucose level information received by the reception unit, and the learning model. It is equipped with an output unit that outputs information.

また、上記傷病推定システムにおいて、学習モデルは、ユーザの運動時の血糖値の推移と、ユーザの傷病との関係を学習した学習モデルであり、受付部は、対象ユーザの運動時の血糖値の推移に関する血糖値情報の入力を受け付けることとしてもよい。 Further, in the above-mentioned injury / illness estimation system, the learning model is a learning model that learns the relationship between the transition of the blood glucose level during exercise of the user and the injury / illness of the user, and the reception unit is the reception unit of the blood glucose level during exercise of the target user. It may be possible to accept the input of blood glucose level information regarding the transition.

また、上記傷病推定システムにおいて、学習モデルは、さらに、ユーザの運動時の酸化還元電位と、ユーザの傷病との関係を学習したモデルであり、受付部は、さらに、対象ユーザの運動時の酸化還元電位に関する酸化還元電位情報の入力を受け付け、推定部は、受付部が受け付けた血糖値情報と酸化還元電位情報と、学習モデルとを用いて、対象ユーザが傷病を負う可能性を推定することとしてもよい。 Further, in the above-mentioned injury / illness estimation system, the learning model is a model in which the relationship between the redox potential during exercise of the user and the injury / illness of the user is further learned, and the reception unit further oxidizes during exercise of the target user. Upon receiving the input of redox potential information regarding the reduction potential, the estimation unit estimates the possibility that the target user will be injured or ill by using the blood glucose level information, the redox potential information received by the reception unit, and the learning model. May be.

また、本発明の一態様に係る傷病推定システムは、ユーザの運動時のアドレナリン分泌量と、ユーザの傷病との関係を学習した学習モデルを記憶する記憶部と、対象ユーザの運動時のアドレナリンの分泌量に関するアドレナリン情報の入力を受け付ける受付部と、受付部が受け付けたアドレナリン情報と、学習モデルとを用いて、対象ユーザが、傷病を負う可能性を推定する推定部と、推定部が推定した可能性に関する情報を出力する出力部と、を備える。 Further, the injury / illness estimation system according to one aspect of the present invention includes a storage unit that stores a learning model that learns the relationship between the amount of adrenaline secreted by the user during exercise and the user's injury / illness, and the adrenaline during exercise of the target user. Using the reception unit that accepts the input of adrenaline information regarding the amount of secretion, the adrenaline information received by the reception unit, and the learning model, the estimation unit estimates the possibility that the target user will suffer injury or illness, and the estimation unit estimates. It is provided with an output unit that outputs information about the possibility.

また、上記傷病推定システムにおいて、アドレナリン分泌量は、ユーザの運動時に測定した血糖値を、所定の演算によりアドレナリンに変換した結果得られた値を示すものであることとしてもよい。 Further, in the above-mentioned injury / illness estimation system, the adrenaline secretion amount may indicate a value obtained as a result of converting the blood glucose level measured during the exercise of the user into adrenaline by a predetermined calculation.

また、上記傷病推定システムにおいて、学習モデルは、ユーザの運動時のアドレナリン分泌量の推移と、ユーザの傷病との関係を学習した学習モデルであり、受付部は、ユーザの運動時のアドレナリン分泌量の推移に関するアドレナリン情報の入力を受け付けることとしてもよい。 Further, in the above-mentioned injury / illness estimation system, the learning model is a learning model that learns the relationship between the transition of the adrenaline secretion amount during exercise of the user and the injury / illness of the user, and the reception unit is the adrenaline secretion amount during exercise of the user. It may be possible to accept the input of adrenaline information regarding the transition of.

また、上記傷病推定システムにおいて、記憶部は、血糖値と、アドレナリンとの関係を学習した第2の学習モデルを記憶し、ユーザの血糖値を測定した血糖値情報を取得する取得部と、取得部が取得した血糖値情報と、学習モデルとに基づいて、ユーザのアドレナリン分泌量を推定する第2推定部と、を備え、受付部は、第2推定部により推定されたアドレナリン分泌量を受け付けることとしてもよい。 Further, in the above-mentioned injury / illness estimation system, the storage unit stores a second learning model in which the relationship between the blood glucose level and adrenaline is learned, and acquires the acquisition unit for acquiring the blood glucose level information obtained by measuring the blood glucose level of the user. A second estimation unit that estimates the user's adrenaline secretion amount based on the blood glucose level information acquired by the unit and a learning model is provided, and the reception unit receives the adrenaline secretion amount estimated by the second estimation unit. It may be that.

また、上記傷病推定システムにおいて、学習モデルは、さらに、ユーザの運動時の酸化還元電位と、ユーザの傷病との関係を学習したモデルであり、受付部は、さらに、対象ユーザの運動時の酸化還元電位に関する酸化還元電位情報の入力を受け付け、推定部は、受付部が受け付けたアドレナリン情報と酸化還元電位情報と、学習モデルとを用いて、対象ユーザが傷病を負う可能性を推定することとしてもよい。 Further, in the above-mentioned injury / illness estimation system, the learning model is a model in which the relationship between the redox potential during exercise of the user and the injury / illness of the user is further learned, and the reception unit further oxidizes during exercise of the target user. Upon receiving the input of redox potential information regarding the reduction potential, the estimation unit estimates the possibility that the target user will be injured or ill by using the adrenaline information and the redox potential information received by the reception unit and the learning model. May be good.

また、本発明の一態様に係る傷病推定方法は、コンピュータが、対象ユーザの運動時の血糖値に関する血糖値情報の入力を受け付ける受付ステップと、受付部が受け付けた血糖値情報と、ユーザの運動時の血糖値とユーザの傷病との関係を学習した学習モデルとを用いて、対象ユーザが、傷病を負う可能性を推定する推定ステップと、推定ステップが推定した可能性に関する情報を出力する出力ステップと、を実行する。 Further, in the injury / illness estimation method according to one aspect of the present invention, the computer receives the input of the blood glucose level information regarding the blood glucose level during exercise of the target user, the blood glucose level information received by the reception unit, and the user's exercise. Using a learning model that learns the relationship between the blood glucose level at the time and the user's injury or illness, an estimation step that estimates the possibility that the target user will suffer injury or illness, and an output that outputs information about the possibility that the estimation step estimated. Step and execute.

また、本発明の一態様に係る傷病推定プログラムは、コンピュータに、対象ユーザの運動時の血糖値に関する血糖値情報の入力を受け付ける受付機能と、受付部が受け付けた血糖値情報と、ユーザの運動時の血糖値とユーザの傷病との関係を学習した学習モデルとを用いて、対象ユーザが、傷病を負う可能性を推定する推定機能と、推定機能が推定した可能性に関する情報を出力する出力機能と、を実現させる。 Further, the injury / illness estimation program according to one aspect of the present invention has a reception function for receiving input of blood glucose level information regarding the blood glucose level during exercise of the target user, blood glucose level information received by the reception unit, and user's exercise. Using a learning model that learns the relationship between the blood glucose level at the time and the user's injury or illness, an estimation function that estimates the possibility that the target user will suffer injury or illness, and an output that outputs information about the possibility that the estimation function estimated. Realize the function.

また、本発明の一態様に係る傷病推定方法は、コンピュータが、対象ユーザの運動時のアドレナリンの分泌量に関するアドレナリン情報の入力を受け付ける受付ステップと、受付ステップが受け付けたアドレナリン情報と、ユーザの運動時のアドレナリン分泌量とユーザの傷病との関係を学習した学習モデルとを用いて、対象ユーザが、傷病を負う可能性を推定する推定ステップと、推定ステップが推定した可能性に関する情報を出力する出力ステップと、を実行する。 Further, in the injury / illness estimation method according to one aspect of the present invention, the computer receives the input of adrenaline information regarding the amount of adrenaline secreted during exercise of the target user, the adrenaline information received by the reception step, and the user's exercise. Using a learning model that learns the relationship between the amount of adrenaline secreted at the time and the user's injury or illness, the target user outputs information about the estimation step for estimating the possibility of suffering injury and illness and the possibility estimated by the estimation step. Perform the output step and.

また、本発明の一態様に係る傷病推定プログラムは、コンピュータに、対象ユーザの運動時のアドレナリンの分泌量に関するアドレナリン情報の入力を受け付ける受付機能と、受付機能が受け付けたアドレナリン情報と、ユーザの運動時のアドレナリン分泌量とユーザの傷病との関係を学習した学習モデルとを用いて、対象ユーザが、傷病を負う可能性を推定する推定機能と、推定機能が推定した可能性に関する情報を出力する出力機能と、を実現させる。 Further, the injury / illness estimation program according to one aspect of the present invention has a reception function that accepts input of adrenaline information regarding the amount of adrenaline secreted by the target user during exercise, adrenaline information received by the reception function, and user exercise. Using a learning model that learns the relationship between the amount of adrenaline secreted at the time and the user's injury or illness, the target user outputs information on the estimation function that estimates the possibility of suffering injury and illness and the possibility that the estimation function estimates. Realize the output function.

また、本発明の一態様に係るアドレナリン推定システムは、血糖値と、アドレナリンとの関係を学習した学習モデルを記憶する記憶部と、ユーザの血糖値を測定した血糖値情報を取得する取得部と、取得部が取得した血糖値情報と、学習モデルとに基づいて、ユーザのアドレナリン分泌量を推定する推定部と、推定部が推定したアドレナリン分泌量を出力する出力部と、を備える。 Further, the adrenaline estimation system according to one aspect of the present invention includes a storage unit that stores a learning model that learns the relationship between the blood glucose level and adrenaline, and an acquisition unit that acquires blood glucose level information obtained by measuring the blood glucose level of the user. It is provided with an estimation unit that estimates the adrenaline secretion amount of the user based on the blood glucose level information acquired by the acquisition unit and a learning model, and an output unit that outputs the adrenaline secretion amount estimated by the estimation unit.

また、本発明の一態様に係るアドレナリン推定方法は、コンピュータが、ユーザの血糖値を測定した血糖値情報を取得する取得ステップと、取得ステップが取得した血糖値情報と、血糖値と、アドレナリンとの関係を学習した学習モデルとに基づいて、ユーザのアドレナリン分泌量を推定する推定ステップと、推定ステップが推定したアドレナリン分泌量を出力する出力ステップと、を実行する。 Further, in the adrenaline estimation method according to one aspect of the present invention, an acquisition step in which a computer acquires blood glucose level information obtained by measuring a user's blood glucose level, blood glucose level information acquired by the acquisition step, blood glucose level, and adrenaline are used. Based on the learning model that learned the relationship between, an estimation step for estimating the adrenaline secretion amount of the user and an output step for outputting the estimated adrenaline secretion amount by the estimation step are executed.

また、本発明の一態様に係るアドレナリン推定プログラムは、コンピュータに、ユーザの血糖値を測定した血糖値情報を取得する取得機能と、取得機能が取得した血糖値情報と、血糖値とアドレナリンとの関係を学習した学習モデルとに基づいて、ユーザのアドレナリン分泌量を推定する推定機能と、推定機能が推定したアドレナリン分泌量を出力する出力機能と、を実現させる。 Further, the adrenaline estimation program according to one aspect of the present invention has an acquisition function for acquiring blood glucose level information obtained by measuring a user's blood glucose level, blood glucose level information acquired by the acquisition function, and blood glucose level and adrenaline. Based on the learning model in which the relationship is learned, an estimation function for estimating the adrenaline secretion amount of the user and an output function for outputting the estimated adrenaline secretion amount by the estimation function are realized.

本発明の一態様に係る傷病推定システムは、ユーザの運動時の血糖値と、ユーザの傷病との関係を学習した学習モデルを用いることで、他のユーザの運動時の血糖値を得ることで、ユーザが傷病を負う可能性を推定することができる。その結果、例えば、推定内容からユーザの生活改善、運動改善のための情報を得ることができる。 The injury / illness estimation system according to one aspect of the present invention obtains the blood glucose level during exercise of another user by using a learning model that learns the relationship between the blood glucose level during exercise of the user and the injury / illness of the user. , It is possible to estimate the possibility that the user will be injured or sick. As a result, for example, it is possible to obtain information for improving the user's life and exercise from the estimated contents.

傷病推定システムの概要を示すシステム図である。It is a system diagram which shows the outline of an injury / disease estimation system. 傷病推定サーバの構成例を示すブロック図である。It is a block diagram which shows the configuration example of the injury / disease estimation server. 傷病推定学習モデルを生成するための教師データの一例を示すデータ概念図である。It is a data conceptual diagram which shows an example of teacher data for generating an injury / disease estimation learning model. アドレナリン推定サーバの構成例を示すブロック図である。It is a block diagram which shows the configuration example of the adrenaline estimation server. アドレナリン推定学習モデルを生成するための教師データの一例を示すデータ概念図である。It is a data conceptual diagram which shows an example of teacher data for generating an adrenaline estimation learning model. センサの構成例を示すブロック図である。It is a block diagram which shows the configuration example of a sensor. センサの検知部の具体構成の一例を示す図である。It is a figure which shows an example of the specific structure of the detection part of a sensor. 傷病推定システムに係る各装置間のやり取りの例を示すシーケンス図である。It is a sequence diagram which shows the example of the exchange between each apparatus which concerns on an injury / disease estimation system. センサの動作例を示すフローチャートである。It is a flowchart which shows the operation example of a sensor. アドレナリン推定サーバの動作例を示すフローチャートである。It is a flowchart which shows the operation example of the adrenaline estimation server. 傷病推定サーバの動作例を示すフローチャートである。It is a flowchart which shows the operation example of the injury / disease estimation server. ユーザ端末の表示例を示す図である。It is a figure which shows the display example of a user terminal. 傷病推定システムの他の構成例を示すシステム図である。It is a system diagram which shows the other configuration example of an injury / disease estimation system. 傷病推定学習モデルを生成するための教師データの一例を示すデータ概念図である。It is a data conceptual diagram which shows an example of teacher data for generating an injury / disease estimation learning model. 傷病推定サーバの動作例を示すフローチャートである。It is a flowchart which shows the operation example of the injury / disease estimation server. センサの検知部の他の具体構成の一例を示す図である。It is a figure which shows an example of another concrete structure of the detection part of a sensor. センサの検知部の他の具体構成の一例を示す図である。It is a figure which shows an example of another concrete structure of the detection part of a sensor. 傷病推定学習モデルを生成するための教師データの一例を示すデータ概念図である。It is a data conceptual diagram which shows an example of teacher data for generating an injury / disease estimation learning model. 傷病推定システムに係る各装置間のやり取りの例を示すシーケンス図である。It is a sequence diagram which shows the example of the exchange between each apparatus which concerns on an injury / disease estimation system.

<第1実施形態>
図1は、第1実施形態に係る傷病推定システムの概要を示すシステム図である。図1に示すように傷病推定システムは、傷病推定サーバ100と、アドレナリン推定サーバ200とを含み、センサ300と、ユーザ端末500とを含んでもよい。傷病推定サーバ100と、アドレナリン推定サーバ200と、センサ300と、ユーザ端末500とは、ネットワーク400を介して互いに通信可能に接続されていてよい。なお、図1に示す各装置について1台ずつ示しているが、各端末、サーバは、1台に限定されるものではなく複数台あってよい。
<First Embodiment>
FIG. 1 is a system diagram showing an outline of the injury / illness estimation system according to the first embodiment. As shown in FIG. 1, the injury / illness estimation system includes an injury / illness estimation server 100, an adrenaline estimation server 200, and may include a sensor 300 and a user terminal 500. The injury / illness estimation server 100, the adrenaline estimation server 200, the sensor 300, and the user terminal 500 may be communicably connected to each other via the network 400. Although one device is shown for each device shown in FIG. 1, the number of terminals and servers is not limited to one, and a plurality of devices may be used.

傷病推定サーバ100は、ユーザ30が傷病を負う可能性を、ユーザ30の運動時のアドレナリン分泌量から推定するサーバ装置(情報処理装置)である。アドレナリン推定サーバ200は、ユーザ30のアドレナリン分泌量を、ユーザ30の運動時の血糖値(グルコース分泌量)から推定するサーバ装置(情報処理装置)である。センサ300は、ユーザ30の体液からグルコース分泌量を検知して出力するセンサである。ユーザ端末500は、ユーザ30が保持する情報処理端末であり、所謂スマートフォン、タブレット端末、携帯電話機、PC等により実現されてよい。 The injury / illness estimation server 100 is a server device (information processing device) that estimates the possibility of the user 30 suffering an injury / illness from the amount of adrenaline secreted during exercise of the user 30. The adrenaline estimation server 200 is a server device (information processing device) that estimates the adrenaline secretion amount of the user 30 from the blood glucose level (glucose secretion amount) during exercise of the user 30. The sensor 300 is a sensor that detects and outputs the amount of glucose secreted from the body fluid of the user 30. The user terminal 500 is an information processing terminal held by the user 30, and may be realized by a so-called smartphone, tablet terminal, mobile phone, PC, or the like.

図1に示す傷病推定システムは、ユーザ30の運動時のアドレナリン分泌量に基づいて、ユーザ30が傷病に罹っている可能性あるいは傷病を負う可能性を推定する推定システムである。図1に示すように、ユーザ30は、運動時の血糖値をセンサ300により測定する。センサ300は、測定したセンシングデータ31をアドレナリン推定サーバ200に送信する。アドレナリン推定サーバ200は、受信したユーザ30の血糖値を示すセンシングデータ31に基づいて、ユーザ30のアドレナリン分泌量を推定する。アドレナリン推定サーバ200は、推定したアドレナリン分泌量を示すアドレナリン情報21を傷病推定サーバ100に送信する。傷病推定サーバ100は、受信したアドレナリン情報21に基づいて、ユーザ30が傷病を負う(または負っている)可能性を推定する。そして、傷病推定サーバ100は、推定した傷病を負う可能性を示す傷病推定情報11を、ユーザ30のユーザ端末500に送信する。ユーザ端末500は受信した傷病推定情報11を表示する。これによって、ユーザ30は自信が傷病を負う可能性を認識することができる。 The injury / illness estimation system shown in FIG. 1 is an estimation system that estimates the possibility of the user 30 having an injury or illness or the possibility of suffering an injury or illness based on the amount of adrenaline secreted during exercise of the user 30. As shown in FIG. 1, the user 30 measures the blood glucose level during exercise by the sensor 300. The sensor 300 transmits the measured sensing data 31 to the adrenaline estimation server 200. The adrenaline estimation server 200 estimates the adrenaline secretion amount of the user 30 based on the sensing data 31 indicating the blood glucose level of the user 30 that has been received. The adrenaline estimation server 200 transmits the adrenaline information 21 indicating the estimated adrenaline secretion amount to the injury / disease estimation server 100. The injury / illness estimation server 100 estimates the possibility that the user 30 suffers (or bears) the injury / illness based on the received adrenaline information 21. Then, the injury / illness estimation server 100 transmits the injury / illness estimation information 11 indicating the possibility of suffering the estimated injury / illness to the user terminal 500 of the user 30. The user terminal 500 displays the received injury / illness estimation information 11. This allows the user 30 to recognize that self-confidence may be injured.

以下、詳細に説明する。なお、ネットワーク400は、各種の機器との間を相互に接続させるためのネットワークであり、例えば、無線ネットワークや有線ネットワークである。具体的には、ネットワークは、ワイヤレスLAN(wireless LAN:WLAN)や広域ネットワーク(wide area network:WAN)、ISDNs(integrated service digital networks)、無線LANs、LTE(long term evolution)、LTE−Advanced、第4世代(4G)、第5世代(5G)、CDMA(code division multiple access)、WCDMA(登録商標)、イーサネット(登録商標)などである。また、ネットワークは、これらの例に限られず、例えば、公衆交換電話網(Public Switched Telephone Network:PSTN)やブルートゥース(Bluetooth(登録商標))、ブルートゥースローエナジー(Bluetooth Low Energy)、光回線、ADSL(Asymmetric Digital Subscriber Line)回線、衛星通信網などであってもよく、どのようなネットワークであってもよい。ネットワークは、ユーザの住居に備えられる場合には、ホームネットワークと呼称されることもある。また、ネットワークは、例えば、NB−IoT(Narrow Band IoT)や、eMTC(enhanced Machine Type Communication)であってもよい。なお、NB−IoTやeMTCは、IoT向けの無線通信方式であり、低コスト、低消費電力で長距離通信が可能なネットワークである。また、ネットワークは、これらの組み合わせであってもよい。また、ネットワークは、これらの例を組み合わせた複数の異なるネットワークを含むものであってもよい。例えば、ネットワークは、LTEによる無線ネットワークと、閉域網であるイントラネットなどの有線ネットワークとを含むものであってもよい。 Hereinafter, it will be described in detail. The network 400 is a network for connecting various devices to each other, and is, for example, a wireless network or a wired network. Specifically, the network includes wireless LAN (WILES LAN: WLAN), wide area network (wide area network: WAN), ISDNs (integrated service digital networks), wireless LANs, LTE (long term evolution), and LTE. 4th generation (4G), 5th generation (5G), CDMA (code division network access), WCDMA (registered trademark), Ethernet (registered trademark) and the like. The network is not limited to these examples, and the network is not limited to these examples, for example, the public switched telephone network (Public Switched Telephone Network: PSTN), Bluetooth (Bluetooth (registered trademark)), Bluetooth Low Energy, optical line, ADSL (ADSL). It may be an Asymmetric Digital Subscriber Line) line, a satellite communication network, or any other network. A network is sometimes referred to as a home network when it is provided in a user's residence. Further, the network may be, for example, NB-IoT (Narrow Band IoT) or eMTC (enhanced Machine Type Communication). NB-IoT and eMTC are wireless communication systems for IoT, and are networks capable of long-distance communication at low cost and low power consumption. Further, the network may be a combination of these. The network may also include a plurality of different networks that combine these examples. For example, the network may include a wireless network by LTE and a wired network such as an intranet which is a closed network.

<傷病推定サーバ100の構成例>
図2は、傷病推定サーバ100の構成例を示すブロック図である。前述の通り、傷病推定サーバ100は、ユーザの運動時のアドレナリン分泌量に基づいて、ユーザが傷病を負う可能性を推定するサーバ装置(情報処理装置)である。
<Configuration example of injury / illness estimation server 100>
FIG. 2 is a block diagram showing a configuration example of the injury / illness estimation server 100. As described above, the injury / illness estimation server 100 is a server device (information processing device) that estimates the possibility of the user suffering from injury / illness based on the amount of adrenaline secreted during exercise of the user.

図2に示すように、傷病推定サーバ100は、通信部110と、入力部120と、制御部130と、記憶部140と、出力部150と、を備える。通信部110と、入力部120と、制御部130と、記憶部140と、出力部150とは、バス160を介して互いに通信可能に構成されてよい。 As shown in FIG. 2, the injury / illness estimation server 100 includes a communication unit 110, an input unit 120, a control unit 130, a storage unit 140, and an output unit 150. The communication unit 110, the input unit 120, the control unit 130, the storage unit 140, and the output unit 150 may be configured to be communicable with each other via the bus 160.

通信部110は、他の装置と通信を実行するための機能を有する通信インターフェースである。通信部110は、他の装置と通信可能であれば、いずれの通信プロトコルにより通信を行ってもよく、有線、無線のいずれでの通信であってよい。通信部110は制御部130からの指示にしたがって、アドレナリン推定サーバ200やユーザ端末500と通信を行う。通信部110は、例えば、アドレナリン推定サーバ200から送信されたアドレナリン情報21を、ネットワーク400を介して受信する。また、通信部110は、例えば、傷病推定サーバ100により推定されたユーザ30が傷病を負う可能性を示す傷病推定情報11を、ネットワーク400を介してユーザ端末500に送信する。 The communication unit 110 is a communication interface having a function for executing communication with another device. The communication unit 110 may perform communication by any communication protocol as long as it can communicate with other devices, and may be communication by wire or wireless. The communication unit 110 communicates with the adrenaline estimation server 200 and the user terminal 500 according to the instruction from the control unit 130. The communication unit 110 receives, for example, the adrenaline information 21 transmitted from the adrenaline estimation server 200 via the network 400. Further, the communication unit 110 transmits, for example, the injury / illness estimation information 11 indicating that the user 30 estimated by the injury / illness estimation server 100 may suffer an injury or illness to the user terminal 500 via the network 400.

入力部120は、傷病推定サーバ100のオペレータ等からの入力を受け付けて、制御部130に伝達する機能を有する入力インターフェースである。入力部120は、タッチパネル等のソフトキーにより実現されてもよいし、ハードキーにより実現されてもよい。また、あるいは、入力部120は、音声入力を受け付けるためのマイクであってもよい。また、入力部120は、フラッシュメモリ等の記憶媒体からの入力を受け付けるポートであってもよい。入力部120は、例えば、アドレナリン情報(例えば、時間毎の、アドレナリン分泌量の数値)の直接入力を受け付けて制御部130に伝達する。 The input unit 120 is an input interface having a function of receiving input from an operator or the like of the injury / illness estimation server 100 and transmitting the input to the control unit 130. The input unit 120 may be realized by a soft key such as a touch panel, or may be realized by a hard key. Alternatively, the input unit 120 may be a microphone for receiving voice input. Further, the input unit 120 may be a port that receives input from a storage medium such as a flash memory. The input unit 120 receives, for example, a direct input of adrenaline information (for example, a numerical value of the amount of adrenaline secreted every hour) and transmits it to the control unit 130.

記憶部140は、傷病推定サーバ100が動作上必要とする各種のプログラム及びデータを記憶する機能を有する。記憶部140は、例えば、HDD(Hard Disc Drive)、SSD(Solid State Drive)、フラッシュメモリ等により実現することができる。記憶部140は、傷病推定学習モデル141を記憶している。傷病推定学習モデル141は、傷病推定サーバ100により生成されたモデルであってもよいし、他の装置により生成されたものを記憶していることとしてもよい。 The storage unit 140 has a function of storing various programs and data required for operation by the injury / illness estimation server 100. The storage unit 140 can be realized by, for example, an HDD (Hard Disc Drive), an SSD (Solid State Drive), a flash memory, or the like. The storage unit 140 stores the injury / illness estimation learning model 141. The injury / illness estimation learning model 141 may be a model generated by the injury / illness estimation server 100, or may store a model generated by another device.

傷病推定学習モデル141は、ユーザの運動時のアドレナリン分泌量の推移と、そのユーザが罹患した傷病との関係を学習した学習した学習モデルであり、ユーザの運動時のアドレナリン分泌量を取得して当該ユーザが傷病に罹患する可能性(あるいは、ユーザが傷病に罹患している可能性)を推定するためのモデルである。傷病推定学習モデル141は、ユーザが負う可能性のある傷病名を出力するものであってもよいし、ユーザが負う可能性が所定以上ある傷病名を出力するものであってもよいし、傷病それぞれについてユーザが負う可能性を示す数値(例えば、パーセンテージ)や評価(例えば、大中小等の評価)を出力するものであってもよい。 The injury / disease estimation learning model 141 is a learning model that learns the relationship between the transition of the adrenaline secretion amount during exercise of the user and the injury / illness affected by the user, and acquires the adrenaline secretion amount during exercise of the user. It is a model for estimating the possibility that the user has an injury or illness (or the possibility that the user has an injury or illness). The injury / illness estimation learning model 141 may output an injury / illness name that the user may incur, may output an injury / illness name that the user may incur more than a predetermined value, or may output an injury / illness name. It may output a numerical value (for example, a percentage) or an evaluation (for example, an evaluation of large, medium, small, etc.) indicating the possibility that the user bears each of them.

図3は、傷病推定学習モデル141を生成するための教師データの一例を示すデータ概念図である。図3に示すように、教師データ1410は、被験者ID1411と、性別1412と、体重1413と、アドレナリンデータ1414と、疾患情報1415とが対応付けられた情報である。教師データ1410は、ユーザの運動時のアドレナリン分泌量と、そのユーザが罹患した傷病を示す疾患情報とが対応付けられた情報の集合である。 FIG. 3 is a data conceptual diagram showing an example of teacher data for generating an injury / disease estimation learning model 141. As shown in FIG. 3, the teacher data 1410 is information in which the subject ID 1411, the gender 1412, the weight 1413, the adrenaline data 1414, and the disease information 1415 are associated with each other. The teacher data 1410 is a set of information in which the amount of adrenaline secreted during exercise of the user and the disease information indicating the injury or illness affected by the user are associated with each other.

被験者ID1411は、傷病推定システム上で傷病推定サーバ100が、一つ一つの教師データを識別するための情報であり、ユーザ(被験者)を識別するための情報である。
性別1412は、対応する被験者ID1411で示されるユーザの性別を示す情報である。
体重1413は、対応する被験者ID1411で示されるユーザの体重を示す情報である。
The subject ID 1411 is information for the injury / illness estimation server 100 to identify each teacher data on the injury / illness estimation system, and is information for identifying a user (subject).
Gender 1412 is information indicating the gender of the user indicated by the corresponding subject ID 1411.
The body weight 1413 is information indicating the body weight of the user indicated by the corresponding subject ID 1411.

アドレナリンデータ1414は、対応する被験者ID1411で示されるユーザの運動時のアドレナリン分泌量を示す情報である。このアドレナリン分泌量は、アドレナリン推定サーバ200によりユーザの血糖値から推定された情報である。図3では、便宜的に、アドレナリンデータを保持する情報を示す識別情報を示している。 The adrenaline data 1414 is information indicating the amount of adrenaline secreted during exercise of the user indicated by the corresponding subject ID 1411. This adrenaline secretion amount is information estimated from the blood glucose level of the user by the adrenaline estimation server 200. In FIG. 3, for convenience, identification information indicating information for holding adrenaline data is shown.

疾患情報1415は、対応する被験者ID1411で示されるユーザが罹患したことがある、もしくは、罹患している傷病を示す情報である。疾患情報1415は、複数の傷病に関する情報を含んでもよい。また、疾患情報1415として一つの傷病についてのみ登録する場合には、同じユーザの他の傷病については、別のデータとして登録することとしてもよい。疾患情報1415には、更に、当該疾患、傷病に罹った日付の情報が含まれてもよい。疾患情報1415として、現在対応するユーザが負っている傷病が対応付けられていれば、傷病推定サーバ100は、現在、ユーザが傷病を負っている可能性を推定することができるようになる。また、疾患情報1415として、対応するアドレナリンデータ1414の元となる血糖値情報を測定した日付から数年後(例えば、10年後)に負った傷病の情報を用いる場合には、傷病推定サーバ100は、ユーザが将来的に負う可能性のある傷病を推定することができる。 The disease information 1415 is information indicating an injury or illness that the user indicated by the corresponding subject ID 1411 has or is affected. The disease information 1415 may include information on a plurality of injuries and illnesses. Further, when only one injury or illness is registered as the disease information 1415, other injury or illness of the same user may be registered as different data. The disease information 1415 may further include information on the date of the disease or injury or illness. If the disease information 1415 is associated with the injury or illness currently incurred by the corresponding user, the injury or illness estimation server 100 can estimate the possibility that the user is currently injured or ill. Further, when the information on the injury or illness inflicted several years (for example, 10 years) after the date when the blood glucose level information which is the source of the corresponding adrenaline data 1414 is measured is used as the disease information 1415, the injury / illness estimation server 100 Can estimate the injuries and illnesses that the user may incur in the future.

教師データ1410は、少なくともアドレナリンデータ1414と疾患情報1415とがあれば、よく、その他の情報についてはなくてもよい。また、逆に、アドレナリンデータ1414に対応する被験者に関する情報として、性別や体重以外の情報が含まれてもよく、例えば、ユーザの身長、体格、BMI(Body Mass Index)などの情報が対応付けられていてもよい。 The teacher data 1410 may have at least adrenaline data 1414 and disease information 1415, and may not have any other information. On the contrary, the information about the subject corresponding to the adrenaline data 1414 may include information other than gender and weight, and for example, information such as height, physique, and BMI (Body Mass Index) of the user is associated with the information. May be.

図2に戻って、出力部150は、制御部130からの指示にしたがって、指定された情報を出力する機能を有する。出力部150による出力は、画像信号、音声信号のいずれでの出力であってもよい。画像信号による出力の場合、傷病推定サーバ100に接続された(又は傷病推定サーバ100が備える)モニタへの出力であってよい。また、音声信号による出力の場合、傷病推定サーバ100に接続された(又は傷病推定サーバ100が備える)スピーカーへの出力であってよい。出力部150は、例えば、ユーザが傷病を負う可能性を示す情報を出力する。 Returning to FIG. 2, the output unit 150 has a function of outputting the designated information according to the instruction from the control unit 130. The output by the output unit 150 may be either an image signal or an audio signal. In the case of output by an image signal, it may be output to a monitor connected to the injury / illness estimation server 100 (or included in the injury / illness estimation server 100). Further, in the case of output by an audio signal, it may be output to a speaker connected to the injury / illness estimation server 100 (or included in the injury / illness estimation server 100). The output unit 150 outputs, for example, information indicating that the user may be injured or sick.

制御部130は、傷病推定サーバ100の各部を制御する機能を有するプロセッサである。制御部130は、シングルコアにより実現されてもよいし、マルチコアにより実現されてもよい。制御部130は、記憶部140に記憶される各種プログラムを実行することで、傷病推定サーバ100としての機能を実現する。 The control unit 130 is a processor having a function of controlling each unit of the injury / illness estimation server 100. The control unit 130 may be realized by a single core or may be realized by a multi-core. The control unit 130 realizes a function as an injury / illness estimation server 100 by executing various programs stored in the storage unit 140.

制御部130は、制御部130が実現する機能として、受付部131と、推定部132と、を備える。また、制御部130は、学習部133を備えてもよい。 The control unit 130 includes a reception unit 131 and an estimation unit 132 as functions realized by the control unit 130. Further, the control unit 130 may include a learning unit 133.

受付部131は、傷病を負う可能性があるか否かを推定する対象となるユーザのアドレナリン情報を受け付けて、推定部132に伝達する。受付部131は、通信部110から伝達される、または、入力部120から伝達されることによってユーザのアドレナリン情報を受け付ける。受付部131は、受け付けたアドレナリン情報を推定部132に伝達する。 The reception unit 131 receives the adrenaline information of the user to be estimated whether or not there is a possibility of suffering an injury or illness, and transmits the adrenaline information to the estimation unit 132. The reception unit 131 receives the user's adrenaline information by being transmitted from the communication unit 110 or transmitted from the input unit 120. The reception unit 131 transmits the received adrenaline information to the estimation unit 132.

推定部132は、受付部131から伝達されたアドレナリン情報を入力として、記憶部140に記憶されている傷病推定学習モデル141を用いて、入力したアドレナリン情報に対応するユーザが、何らかの傷病を負う可能性があるかを推定する。推定部132は、ユーザが罹患する可能性のある傷病名を推定することとしてよく、推定する傷病名は、一つであってもよいし、複数であってもよい。傷病を負う可能性がない場合には、推定部132は、傷病を負う可能性はないと推定してよい。また、推定部132は、ユーザが負う可能性が最も高い傷病を推定してもよいし、負う可能性(例えば、30%以上)が所定以上ある傷病を推定することとしてもよい。 The estimation unit 132 uses the adrenaline information transmitted from the reception unit 131 as an input, and uses the injury / illness estimation learning model 141 stored in the storage unit 140, so that the user corresponding to the input adrenaline information may suffer some injury or illness. Estimate if there is sex. The estimation unit 132 may estimate the injury / illness name that the user may be affected by, and the estimation unit may have one or more injury / illness names. If there is no possibility of suffering injury or illness, the estimation unit 132 may estimate that there is no possibility of suffering injury or illness. Further, the estimation unit 132 may estimate the injury or illness most likely to be incurred by the user, or may estimate the injury or illness that the user is most likely to incur (for example, 30% or more).

学習部133は、ユーザの運動時のアドレナリン分泌量と、ユーザが罹患する傷病との関係を学習する。具体的には、図3に示すような教師データの入力を受け付けて、疾患情報1415を所謂ラベルとした学習を行い、傷病推定学習モデル141を生成する。学習部133が用いる学習のためのアルゴリズムとしては既存のものを用いることとしてよい。学習部133は、生成した傷病推定学習モデル141を記憶部140に記憶する。学習部133は、記憶部140に記憶されている傷病推定学習モデル141と、新たに入力された教師データを用いて、再学習を行うこととしてもよい。また、ユーザに提供した傷病推定情報による推定の真偽に関する情報をフィードバック情報として受け付けて再学習を行うこととしてもよい。
以上が傷病推定サーバ100の構成例の説明である。
The learning unit 133 learns the relationship between the amount of adrenaline secreted during exercise by the user and the injury or illness that the user suffers from. Specifically, the input of teacher data as shown in FIG. 3 is accepted, learning is performed using the disease information 1415 as a so-called label, and the injury / disease estimation learning model 141 is generated. As the learning algorithm used by the learning unit 133, an existing algorithm may be used. The learning unit 133 stores the generated injury / illness estimation learning model 141 in the storage unit 140. The learning unit 133 may perform re-learning using the injury / illness estimation learning model 141 stored in the storage unit 140 and the newly input teacher data. In addition, information on the truth of the estimation based on the injury / illness estimation information provided to the user may be accepted as feedback information and re-learning may be performed.
The above is the description of the configuration example of the injury / illness estimation server 100.

<アドレナリン推定サーバ200>
図4は、アドレナリン推定サーバ200の構成例を示すブロック図である。前述の通り、アドレナリン推定サーバ200は、ユーザの血糖値情報に基づいて、アドレナリン分泌量を推定するサーバ装置(情報処理装置)である。一般的に人間は、アドレナリンが分泌されると、血糖値が上昇することが知られている。つまり、血糖値とアドレナリンとの間には密接な関係があるといえる。したがって、逆を言えば、血糖値からアドレナリンの分泌量を推定することも可能となる。
<Adrenaline estimation server 200>
FIG. 4 is a block diagram showing a configuration example of the adrenaline estimation server 200. As described above, the adrenaline estimation server 200 is a server device (information processing device) that estimates the amount of adrenaline secretion based on the blood glucose level information of the user. It is generally known that humans have an increased blood glucose level when adrenaline is secreted. In other words, it can be said that there is a close relationship between blood glucose level and adrenaline. Therefore, conversely, it is possible to estimate the amount of adrenaline secreted from the blood glucose level.

図4に示すように、アドレナリン推定サーバ200は、通信部210と、入力部220と、制御部230と、記憶部240と、出力部250と、を備える。通信部210と、入力部220と、制御部230と、記憶部240と、出力部250とは、バス260を介して互いに通信可能に構成されてよい。 As shown in FIG. 4, the adrenaline estimation server 200 includes a communication unit 210, an input unit 220, a control unit 230, a storage unit 240, and an output unit 250. The communication unit 210, the input unit 220, the control unit 230, the storage unit 240, and the output unit 250 may be configured to be communicable with each other via the bus 260.

通信部210は、他の装置と通信を実行するための機能を有する通信インターフェースである。通信部210は、他の装置と通信可能であれば、いずれの通信プロトコルにより通信を行ってもよく、有線、無線のいずれでの通信であってよい。通信部210は制御部230からの指示にしたがって、傷病推定サーバ100と通信を行う。通信部210は、センサ300と通信を行ってもよい。 The communication unit 210 is a communication interface having a function for executing communication with another device. The communication unit 210 may perform communication by any communication protocol as long as it can communicate with other devices, and may be communication by wire or wireless. The communication unit 210 communicates with the injury / illness estimation server 100 according to the instruction from the control unit 230. The communication unit 210 may communicate with the sensor 300.

入力部220は、アドレナリン推定サーバ200のオペレータからの入力を受け付けて、制御部230に伝達する機能を有する入力インターフェースである。入力部220は、タッチパネル等のソフトキーにより実現されてもよいし、ハードキーにより実現されてもよい。また、あるいは、入力部220は、音声入力を受け付けるためのマイクであってもよい。入力部220は、オペレータから入力された入力内容を、制御部230に伝達する。入力部220は、例えば、血糖値情報(例えば、時間毎の、血糖値の数値)の直接入力を受け付けて制御部230に伝達する。 The input unit 220 is an input interface having a function of receiving an input from the operator of the adrenaline estimation server 200 and transmitting the input to the control unit 230. The input unit 220 may be realized by a soft key such as a touch panel, or may be realized by a hard key. Alternatively, the input unit 220 may be a microphone for receiving voice input. The input unit 220 transmits the input content input from the operator to the control unit 230. The input unit 220 receives, for example, a direct input of blood glucose level information (for example, a numerical value of the blood glucose level for each hour) and transmits it to the control unit 230.

記憶部240は、アドレナリン推定サーバ200が動作上必要とする各種のプログラム及びデータを記憶する機能を有する。記憶部240は、例えば、HDD(Hard Disc Drive)、SSD(Solid State Drive)、フラッシュメモリ等により実現することができる。記憶部240は、アドレナリン推定学習モデル241を記憶している。アドレナリン推定学習モデル241は、アドレナリン推定サーバ200により生成されたものであってもよいし、他の装置により生成されたものを記憶していることとしてもよい。 The storage unit 240 has a function of storing various programs and data required for operation by the adrenaline estimation server 200. The storage unit 240 can be realized by, for example, an HDD (Hard Disc Drive), an SSD (Solid State Drive), a flash memory, or the like. The storage unit 240 stores the adrenaline estimation learning model 241. The adrenaline estimation learning model 241 may be generated by the adrenaline estimation server 200, or may store the one generated by another device.

アドレナリン推定学習モデル241は、ユーザの運動時の血糖値と、アドレナリン分泌量との関係を学習した学習した学習モデルであり、ユーザの運動時の血糖値を取得して当該ユーザが分泌していると思われるアドレナリンの分泌量を推定するためのモデルである。アドレナリン推定学習モデル241は、アドレナリンの定性的な分泌量を推定する。 The adrenaline estimation learning model 241 is a learning model that learns the relationship between the user's blood glucose level during exercise and the amount of adrenaline secreted, and is secreted by the user by acquiring the blood glucose level during exercise of the user. This is a model for estimating the amount of adrenaline secreted. The adrenaline estimation learning model 241 estimates the qualitative amount of adrenaline secreted.

図5は、アドレナリン推定学習モデル241を生成するための教師データの一例を示すデータ概念図である。図5に示すように、教師データ2410は、被験者ID2411と、性別2412と、体重2413と、血糖値データ2414と、アドレナリンデータ2415とが対応付けられた情報である。教師データ2410は、ユーザの運動時のアドレナリン分泌量と、そのユーザが罹患した傷病を示す疾患情報とが対応付けられた情報の集合である。 FIG. 5 is a data conceptual diagram showing an example of teacher data for generating an adrenaline estimation learning model 241. As shown in FIG. 5, the teacher data 2410 is information in which the subject ID 2411, the gender 2412, the body weight 2413, the blood glucose level data 2414, and the adrenaline data 2415 are associated with each other. The teacher data 2410 is a set of information in which the amount of adrenaline secreted during exercise of the user and the disease information indicating the injury or illness affected by the user are associated with each other.

被験者ID2411は、傷病推定システム上でアドレナリン推定サーバ200が、一つ一つの教師データを識別するための情報であり、ユーザ(被験者)を識別するための情報である。 The subject ID 2411 is information for the adrenaline estimation server 200 to identify each teacher data on the injury / illness estimation system, and is information for identifying a user (subject).

性別2412は、対応する被験者ID2411で示されるユーザの性別を示す情報である。
体重2413は、対応する被験者ID2411で示されるユーザの体重を示す情報である。
Gender 2412 is information indicating the gender of the user indicated by the corresponding subject ID 2411.
The body weight 2413 is information indicating the weight of the user indicated by the corresponding subject ID 2411.

血糖値データ2414は、対応する被験者ID2411で示されるユーザの運動時の血糖値を示す情報である。この血糖値は、センサ300により測定されたものであってもよいし、他のセンサにより測定されたものであってもよい。図5では、便宜的に、血糖値の値を保持する情報を示す識別情報を示している。 The blood glucose level data 2414 is information indicating the blood glucose level during exercise of the user indicated by the corresponding subject ID 2411. This blood glucose level may be measured by the sensor 300 or may be measured by another sensor. FIG. 5 shows identification information indicating information for holding the blood glucose level for convenience.

アドレナリンデータ2415は、対応する被験者ID2411で示されるユーザの運動時のアドレナリン分泌量を示す情報である。このアドレナリン分泌量は、アドレナリン推定サーバ200によりユーザの血糖値から推定された情報である。図5では、便宜的に、アドレナリンデータを保持する情報を示す識別情報を示している。 The adrenaline data 2415 is information indicating the amount of adrenaline secreted during exercise of the user indicated by the corresponding subject ID 2411. This adrenaline secretion amount is information estimated from the blood glucose level of the user by the adrenaline estimation server 200. In FIG. 5, for convenience, identification information indicating information for holding adrenaline data is shown.

教師データ2410は、少なくとも血糖値データ2414とアドレナリンデータ2415とがあれば、よく、その他の情報についてはなくてもよい。また、逆に、血糖値データ2414に対応する被験者に関する情報として、性別や体重以外の情報が含まれてもよく、例えば、ユーザの身長、体格、BMI(Body Mass Index)などの情報が対応付けられていてもよい。このとき、教師データとして用いるアドレナリンデータ2415は、対応する血糖値データ2414が示す時系列上での変化からアドレナリンが分泌されていると推定できる状態や感情の発露があったタイミングにおいて、血糖値の量に応じた値のデータであってよく、アドレナリンが分泌されていないと推定できるタイミングでは血糖値が高くてもアドレナリンの分泌量としては低くなるように設定された情報であってよい。 The teacher data 2410 may have at least blood glucose level data 2414 and adrenaline data 2415, and may not have any other information. On the contrary, the information about the subject corresponding to the blood glucose level data 2414 may include information other than gender and weight, and for example, information such as height, physique, and BMI (Body Mass Index) of the user is associated with the information. It may have been. At this time, the adrenaline data 2415 used as the teacher data is a state in which adrenaline can be presumed to be secreted from the change in the time series indicated by the corresponding blood glucose level data 2414, or at the timing when the emotion is expressed. The data may be a value according to the amount, and may be information set so that the amount of adrenaline secreted is low even if the blood glucose level is high at the timing when it can be estimated that adrenaline is not secreted.

図4に戻って、出力部250は、制御部230からの指示にしたがって、指定された情報を出力する機能を有する。出力部250による出力は、画像信号、音声信号のいずれでの出力であってもよい。画像信号による出力の場合、アドレナリン推定サーバ200に接続された(又はアドレナリン推定サーバ200が備える)モニタへの出力であってよい。また、音声信号による出力の場合、アドレナリン推定サーバ200に接続された(又はアドレナリン推定サーバ200が備える)スピーカーへの出力であってよい。出力部250は、例えば、ユーザの血糖値から推定したアドレナリンの分泌量を示すアドレナリン情報を出力する。 Returning to FIG. 4, the output unit 250 has a function of outputting the designated information according to the instruction from the control unit 230. The output by the output unit 250 may be either an image signal or an audio signal. In the case of output by an image signal, it may be output to a monitor connected to the adrenaline estimation server 200 (or included in the adrenaline estimation server 200). Further, in the case of output by an audio signal, it may be output to a speaker connected to the adrenaline estimation server 200 (or included in the adrenaline estimation server 200). The output unit 250 outputs, for example, adrenaline information indicating the amount of adrenaline secreted estimated from the blood glucose level of the user.

制御部230は、アドレナリン推定サーバ200の各部を制御する機能を有するプロセッサである。制御部230は、シングルコアにより実現されてもよいし、マルチコアにより実現されてもよい。制御部230は、記憶部240に記憶される各種プログラムを実行することで、アドレナリン推定サーバ200としての機能を実現する。 The control unit 230 is a processor having a function of controlling each unit of the adrenaline estimation server 200. The control unit 230 may be realized by a single core or may be realized by a multi-core. The control unit 230 realizes the function as the adrenaline estimation server 200 by executing various programs stored in the storage unit 240.

制御部230は、制御部230が実現する機能として、受付部231と、推定部232と、を備える。また、制御部230は、学習部233を備えてもよい。 The control unit 230 includes a reception unit 231 and an estimation unit 232 as functions realized by the control unit 230. Further, the control unit 230 may include a learning unit 233.

受付部231は、傷病を負う可能性があるか否かを推定する対象となるユーザの血糖値情報を受け付けて、推定部232に伝達する。受付部231は、通信部210から伝達される、または、入力部220から伝達されることによってユーザの血糖値情報を受け付ける。受付部231は、受け付けたアドレナリン情報を推定部232に伝達する。 The reception unit 231 receives the blood glucose level information of the user to be estimated whether or not there is a possibility of suffering an injury or illness, and transmits it to the estimation unit 232. The reception unit 231 receives the user's blood glucose level information by being transmitted from the communication unit 210 or transmitted from the input unit 220. The reception unit 231 transmits the received adrenaline information to the estimation unit 232.

推定部232は、受付部231から伝達された血糖値情報を入力として、記憶部240に記憶されているアドレナリン推定学習モデル241を用いて、入力した血糖値情報に対応するユーザのアドレナリン分泌量を推定する。 The estimation unit 232 uses the adrenaline estimation learning model 241 stored in the storage unit 240 as an input of the blood glucose level information transmitted from the reception unit 231 to obtain the adrenaline secretion amount of the user corresponding to the input blood glucose level information. presume.

学習部233は、ユーザの運動時のアドレナリン分泌量と、ユーザが罹患する傷病との関係を学習する。具体的には、図3に示すような教師データの入力を受け付けて、アドレナリンデータ2415を所謂ラベルとした学習を行い、アドレナリン推定学習モデル241を生成する。学習部233が用いる学習のためのアルゴリズムとしては既存のものを用いることとしてよい。学習部233は、生成したアドレナリン推定学習モデル241を記憶部240に記憶する。学習部233は、記憶部240に記憶されているアドレナリン推定学習モデル241と、新たに入力された教師データを用いて、再学習を行うこととしてもよい。
以上が、アドレナリン推定サーバ200の構成例の説明である。
The learning unit 233 learns the relationship between the amount of adrenaline secreted during exercise by the user and the injury or illness that the user suffers from. Specifically, it accepts the input of teacher data as shown in FIG. 3, performs learning using the adrenaline data 2415 as a so-called label, and generates an adrenaline estimation learning model 241. As the learning algorithm used by the learning unit 233, an existing algorithm may be used. The learning unit 233 stores the generated adrenaline estimation learning model 241 in the storage unit 240. The learning unit 233 may perform re-learning using the adrenaline estimation learning model 241 stored in the storage unit 240 and the newly input teacher data.
The above is the description of the configuration example of the adrenaline estimation server 200.

<センサ300の構成例>
図6は、センサ300の構成例を示すブロック図である。図6に示すように、センサ300は、通信部310と、検出部320と、記憶部340と、出力部350とを備える。
<Configuration example of sensor 300>
FIG. 6 is a block diagram showing a configuration example of the sensor 300. As shown in FIG. 6, the sensor 300 includes a communication unit 310, a detection unit 320, a storage unit 340, and an output unit 350.

通信部310は、他の装置と通信を実行するための機能を有する通信インターフェースである。通信部310は、他の装置と通信可能であれば、いずれの通信プロトコルにより通信を行ってもよく、有線、無線のいずれでの通信であってよい。通信部310はアドレナリン推定サーバ200と通信を行う。通信部310は、ユーザ端末500と通信を行ってもよい。
検出部320は、センサ300を装着したユーザの体液(血液)を用いて、ユーザの血糖値を検出する。
図7は、検出部320の具体構成の一例を示す図である。
The communication unit 310 is a communication interface having a function for executing communication with another device. The communication unit 310 may perform communication by any communication protocol as long as it can communicate with other devices, and may be wired or wireless communication. The communication unit 310 communicates with the adrenaline estimation server 200. The communication unit 310 may communicate with the user terminal 500.
The detection unit 320 detects the blood glucose level of the user by using the body fluid (blood) of the user wearing the sensor 300.
FIG. 7 is a diagram showing an example of a specific configuration of the detection unit 320.

図7は第1応用形態の検出部320の主要部構成の概略図である。検出部320は所定の容器形状の検出素子321を備え、同検出素子321は計測素子700と配線接続される。検出素子321には体液採取部330が形成される。体液採取部330は公知のニードル形状であり、表面張力により血液、汗、唾液等の生体液322は採取され検出素子321内に誘導される。 FIG. 7 is a schematic diagram of the main part configuration of the detection unit 320 of the first application form. The detection unit 320 includes a detection element 321 having a predetermined container shape, and the detection element 321 is connected to the measurement element 700 by wiring. A body fluid collecting unit 330 is formed on the detection element 321. The body fluid collecting unit 330 has a known needle shape, and biological fluid 322 such as blood, sweat, and saliva is collected and guided into the detection element 321 by surface tension.

検出素子321内には、少なくとも検出対象物質としてのグルコースを識別子、体液採取部330から採取された体液中のグルコース濃度を検出するために受容体が含まれる。受容体は、識別物質と、阻害物質とを含む自己組織化単分子膜(Self Assembled Monolayers:SAM)で形成されている。SAMとは、通常、固体と液体の界面又は固体と気体の界面で、有機分子同士が自発的に集合して、自発的に単分子膜を形作っていく有機薄膜をいう。 The detection element 321 includes at least an identifier of glucose as a substance to be detected and a receptor for detecting the glucose concentration in the body fluid collected from the body fluid collection unit 330. Receptors are formed of self-assembled monolayers (SAMs) containing discriminants and inhibitors. SAM usually refers to an organic thin film in which organic molecules spontaneously aggregate at an interface between a solid and a liquid or an interface between a solid and a gas to spontaneously form a monomolecular film.

識別物質は、試料中に含まれるグルコースと結合する機能を有する。識別物質は、フェニルボロン酸を用いることができ、特にフェニルボロン酸誘導体が好ましい。このフェニルボロン酸誘導体は、同フェニルボロン酸の芳香環部分に、F(フッ素)、Cl(塩素)等のハロゲン基、または、NO(ニトロ基)を有する。芳香環部分にニトロ基を有するフェニルボロン酸誘導体を用いる方が、グルコースとの反応性は顕著であり、ハロゲン基を用いるよりも、好ましい。 The identifying substance has a function of binding to glucose contained in the sample. Phenylboronic acid can be used as the identifying substance, and a phenylboronic acid derivative is particularly preferable. This phenylboronic acid derivative has a halogen group such as F (fluorine) or Cl (chlorine) or NO 2 (nitro group) in the aromatic ring portion of the phenylboronic acid. It is preferable to use a phenylboronic acid derivative having a nitro group in the aromatic ring portion, because the reactivity with glucose is remarkable, and it is preferable to use a halogen group.

阻害物質は、非検出対象物質であるアルブミン等のタンパク質が、フェニルボロン酸誘導体と結合したり、酸化還元電位測定電極326表面に付着したりすることを抑制する。本実施形態の場合、阻害物質は、高分子化合物で形成される。高分子化合物は、分子鎖が識別物質より長いオリゴエチレングリコールを用いることができるほか、例えばポリエチレングリコールなども用いることができる。 The inhibitor suppresses that a protein such as albumin, which is a non-detection target substance, binds to a phenylboronic acid derivative or adheres to the surface of the redox potential measuring electrode 326. In the case of this embodiment, the inhibitor is formed of a polymer compound. As the polymer compound, oligoethylene glycol having a longer molecular chain than the identification substance can be used, and for example, polyethylene glycol and the like can also be used.

検出素子321内には、酸化還元電位測定電極326、参照電極329が装着されている。酸化還元電位測定電極326には、検出対象物質としてグルコース323を捕捉するためのグルコース捕捉分子327(フェニルボロン酸誘導体)が固定される。生体液322は血液(汗、唾液等であってもよい)であることから、検出対象物質としてのグルコース323の他に、酸化還元電位変動因子324、夾雑物325も存在する。酸化還元電位変動因子324、夾雑物325は、タンパク質、ごみ等である。なお、検出部320においては、グルコース以外の物質も酸化還元電位測定電極326を通じて検出するようにしてもよい。これには、検出対象物質を捕捉する抗体、アプタマーが捕捉分子327として用いられる。 A redox potential measuring electrode 326 and a reference electrode 329 are mounted in the detection element 321. A glucose trapping molecule 327 (phenylboronic acid derivative) for capturing glucose 323 as a substance to be detected is immobilized on the redox potential measuring electrode 326. Since the biological fluid 322 is blood (may be sweat, saliva, etc.), in addition to glucose 323 as a substance to be detected, a redox potential fluctuation factor 324 and impurities 325 are also present. The redox potential fluctuation factor 324 and impurities 325 are proteins, dust and the like. The detection unit 320 may also detect substances other than glucose through the redox potential measurement electrode 326. For this purpose, an antibody that captures the substance to be detected, an aptamer, is used as the capture molecule 327.

グルコース捕捉分子327は、一端が、電極328に電気的に接続される。計測素子700は、一例として、FETによって実現される。試料中のグルコースは、識別物質としてのグルコース捕捉分子327(フェニルボロン酸誘導体)と結合する。これにより、グルコース捕捉分子327は、負電荷を生じる。この負電荷は、電極328に帯電する。計測素子700は、FETである場合には、電極328の帯電に伴って変化するゲート電圧の変化を計測する。これによって、検出部320は、試料に含まれるグルコース濃度を検出する。また、あるいは、計測素子700は、参照電極329と、電極328との電位差に基づいて、グルコース濃度を検出する構成であってもよい。なお、図7に示した検出部320の構成は、あくまで一例であり、グルコース濃度を検出できるのであれば、その他の構成をとってもよい。 One end of the glucose trapping molecule 327 is electrically connected to the electrode 328. The measuring element 700 is realized by an FET as an example. Glucose in the sample binds to the glucose trapping molecule 327 (phenylboronic acid derivative) as a discriminating substance. This causes the glucose trapping molecule 327 to generate a negative charge. This negative charge charges the electrode 328. In the case of an FET, the measuring element 700 measures a change in the gate voltage that changes with the charging of the electrode 328. As a result, the detection unit 320 detects the glucose concentration contained in the sample. Alternatively, the measuring element 700 may be configured to detect the glucose concentration based on the potential difference between the reference electrode 329 and the electrode 328. The configuration of the detection unit 320 shown in FIG. 7 is only an example, and other configurations may be adopted as long as the glucose concentration can be detected.

図6に戻って、記憶部340は、検出部320が検出した血糖値情報であるセンシングデータ341を記憶する。 Returning to FIG. 6, the storage unit 340 stores the sensing data 341 which is the blood glucose level information detected by the detection unit 320.

出力部350は、記憶部340に記憶されたセンシングデータ341または検出部が検出した血糖値情報を出力する。出力部350は、例えば、USB端子等の出力端子として実現することができる。 The output unit 350 outputs the sensing data 341 stored in the storage unit 340 or the blood glucose level information detected by the detection unit. The output unit 350 can be realized as an output terminal such as a USB terminal, for example.

なお、センサ300は、検出した血糖値を出力できればよく、通信部310を備えなくともよい。例えば、出力部350をUSBポートとして実現し、検出した血糖値情報を、ユーザ端末500等に接続して出力することとしてもよい。このような場合には、アドレナリン推定サーバ200に送信される血糖値情報は、ユーザ端末500から送信されることとしてもよい。また、検出部320が測定した血糖値をそのまま通信部310あるいは出力部350から出力するのであれば、記憶部340を備えないこととしてもよい。
以上が、センサ300の構成例の説明である。
The sensor 300 may not be provided with the communication unit 310 as long as it can output the detected blood glucose level. For example, the output unit 350 may be realized as a USB port, and the detected blood glucose level information may be connected to the user terminal 500 or the like for output. In such a case, the blood glucose level information transmitted to the adrenaline estimation server 200 may be transmitted from the user terminal 500. Further, if the blood glucose level measured by the detection unit 320 is output as it is from the communication unit 310 or the output unit 350, the storage unit 340 may not be provided.
The above is the description of the configuration example of the sensor 300.

<動作>
図8は、傷病推定システムによる傷病推定の流れであって、傷病推定システムに係る各装置間のやり取りの例を示すシーケンス図である、
<Operation>
FIG. 8 is a flow of injury / illness estimation by the injury / illness estimation system, and is a sequence diagram showing an example of interaction between each device related to the injury / illness estimation system.

図8に示すように、センサ300は、ユーザ30に装着されて、ユーザの血液から、ユーザの血糖値(血液内のグルコース濃度)を検出する(ステップS801)。センサ300は、検出した血糖値を血糖値情報として、アドレナリン推定サーバ200に送信する(ステップS802)。 As shown in FIG. 8, the sensor 300 is attached to the user 30 and detects the user's blood glucose level (glucose concentration in the blood) from the user's blood (step S801). The sensor 300 transmits the detected blood glucose level as blood glucose level information to the adrenaline estimation server 200 (step S802).

アドレナリン推定サーバ200は、受信した血糖値情報から、ユーザ30が分泌したアドレナリンの量を推定する(ステップS803)。アドレナリン推定サーバ200は、推定したユーザ30のアドレナリン分泌量を示すアドレナリン情報を、傷病推定サーバ100に送信する(ステップS804)。 The adrenaline estimation server 200 estimates the amount of adrenaline secreted by the user 30 from the received blood glucose level information (step S803). The adrenaline estimation server 200 transmits the adrenaline information indicating the estimated adrenaline secretion amount of the user 30 to the injury / disease estimation server 100 (step S804).

傷病推定サーバ100は、アドレナリン情報を受信すると、受信したアドレナリン情報に基づいて、ユーザ30が傷病を負う可能性を推定する(ステップS805)。傷病推定サーバ100は、推定した傷病を負う可能性を示す傷病推定情報をユーザ端末500に送信する(ステップS806)。 When the injury / illness estimation server 100 receives the adrenaline information, the injury / illness estimation server 100 estimates the possibility that the user 30 will suffer the injury / illness based on the received adrenaline information (step S805). The injury / illness estimation server 100 transmits the injury / illness estimation information indicating the possibility of suffering the estimated injury / illness to the user terminal 500 (step S806).

ユーザ30のユーザ端末500は、受信した傷病推定情報を表示する(ステップS807)。これにより、ユーザ30は、自身が傷病を負う可能性、あるいは、傷病を負っている可能性を認識することができる。
図9は、図8に示すやり取りを実現するためのセンサ300の動作例を示すフローチャートである。
The user terminal 500 of the user 30 displays the received injury / illness estimation information (step S807). As a result, the user 30 can recognize the possibility of suffering an injury or illness or the possibility of suffering an injury or illness.
FIG. 9 is a flowchart showing an operation example of the sensor 300 for realizing the exchange shown in FIG.

図9に示すように、センサ300の検出部320は、ユーザ30(被験者)のグルコース値を測定する(ステップS901)。検出部320は、測定したグルコース値を記憶部340に記憶する。 As shown in FIG. 9, the detection unit 320 of the sensor 300 measures the glucose value of the user 30 (subject) (step S901). The detection unit 320 stores the measured glucose value in the storage unit 340.

通信部310は、記憶部340に記憶されたセンシングデータを、アドレナリン推定サーバに送信する(ステップS902)。なお、このセンシングデータには、センサ300を示す識別情報(センサID)またはセンサ300を使用しているユーザ30を示す識別情報(被験者ID)が含まれる。
センサ300は、ユーザ30から取り外される、または、センサ300の起動スイッチがOFFされるまで図9に示す処理を実行し続ける。
図10は、図8に示すやり取りを実現するためのアドレナリン推定サーバ200の動作例を示すフローチャートである。
The communication unit 310 transmits the sensing data stored in the storage unit 340 to the adrenaline estimation server (step S902). The sensing data includes identification information (sensor ID) indicating the sensor 300 or identification information (subject ID) indicating the user 30 using the sensor 300.
The sensor 300 continues to execute the process shown in FIG. 9 until it is removed from the user 30 or the start switch of the sensor 300 is turned off.
FIG. 10 is a flowchart showing an operation example of the adrenaline estimation server 200 for realizing the exchange shown in FIG.

図10に示すように、アドレナリン推定サーバ200の通信部210は、センサ300から送信されたユーザ30の血糖値を示す血糖値情報を受信する(ステップS1001)。通信部210は、受信した血糖値情報を制御部230に伝達する。制御部230の受付部231は、通信部210から伝達された血糖値情報を、傷病を負う可能性を推定する被験者の情報として受け付けて、推定部232に伝達する。 As shown in FIG. 10, the communication unit 210 of the adrenaline estimation server 200 receives the blood glucose level information indicating the blood glucose level of the user 30 transmitted from the sensor 300 (step S1001). The communication unit 210 transmits the received blood glucose level information to the control unit 230. The reception unit 231 of the control unit 230 receives the blood glucose level information transmitted from the communication unit 210 as the information of the subject who estimates the possibility of suffering an injury or illness, and transmits the information to the estimation unit 232.

推定部232は、血糖値情報を伝達されると、伝達された血糖値情報を入力として、記憶部240に記憶されているアドレナリン推定学習モデル241を用いて、ユーザ30のアドレナリン分泌量を推定する(ステップS1002)。 When the blood glucose level information is transmitted, the estimation unit 232 estimates the adrenaline secretion amount of the user 30 by using the transmitted blood glucose level information as an input and using the adrenaline estimation learning model 241 stored in the storage unit 240. (Step S1002).

そして、推定部232は、推定したアドレナリン分泌量を示すアドレナリン情報を、通信部210を介して、傷病推定サーバ100に送信し(ステップS1003)、処理を終了する。アドレナリン推定サーバ200から傷病推定サーバ100に送信されるアドレナリン情報には、どのユーザの情報であるかを識別するための識別情報が含まれる。アドレナリン推定サーバ200は、図10に示す処理を、血糖値情報を受信するごとに実行する。
図11は、図8に示すやり取りを実現するための傷病推定サーバ100の動作例を示すフローチャートである。
Then, the estimation unit 232 transmits the adrenaline information indicating the estimated adrenaline secretion amount to the injury / illness estimation server 100 via the communication unit 210 (step S1003), and ends the process. The adrenaline information transmitted from the adrenaline estimation server 200 to the injury / illness estimation server 100 includes identification information for identifying which user's information is. The adrenaline estimation server 200 executes the process shown in FIG. 10 every time the blood glucose level information is received.
FIG. 11 is a flowchart showing an operation example of the injury / illness estimation server 100 for realizing the exchange shown in FIG.

図11に示すように、傷病推定サーバ100の通信部110は、アドレナリン推定サーバ200から送信されたユーザ30の血糖値に基づいて推定されたアドレナリン分泌量を示すアドレナリン情報を受信する(ステップS1101)。通信部110は、受信したアドレナリン情報を制御部130に伝達する。制御部130の受付部131は、通信部110から伝達されたアドレナリン情報を、傷病を負う可能性を推定する被験者の情報として受け付けて、推定部132に伝達する。 As shown in FIG. 11, the communication unit 110 of the injury / illness estimation server 100 receives the adrenaline information indicating the amount of adrenaline secretion estimated based on the blood glucose level of the user 30 transmitted from the adrenaline estimation server 200 (step S1101). .. The communication unit 110 transmits the received adrenaline information to the control unit 130. The reception unit 131 of the control unit 130 receives the adrenaline information transmitted from the communication unit 110 as the information of the subject who estimates the possibility of suffering an injury or illness, and transmits the information to the estimation unit 132.

推定部132は、アドレナリン情報を伝達されると、伝達されたアドレナリン情報を入力として、記憶部140に記憶されている傷病推定学習モデル141を用いて、ユーザ30が傷病を負う可能性、もしくは、傷病を負っている可能性を推定する(ステップS1102)。 When the adrenaline information is transmitted, the estimation unit 132 uses the transmitted adrenaline information as an input and uses the injury / illness estimation learning model 141 stored in the storage unit 140 to cause the user 30 to be injured or ill. Estimate the possibility of suffering an injury or illness (step S1102).

そして、推定部132は、推定したユーザ30が傷病を負う可能性を示す傷病推定情報を、通信部110を介して、ユーザ端末500に送信し(ステップS1103)、処理を終了する。傷病推定サーバ100からユーザ端末500に送信される傷病推定情報には、どのユーザの情報であるかを識別するための識別情報が含まれてもよい。傷病推定サーバ100は、図10に示す処理を、アドレナリン情報を受信するごとに実行する。
以上が、傷病推定システムにおけるユーザの運動時のアドレナリン分泌量に基づく傷病を負う可能性の推定の手法である。
Then, the estimation unit 132 transmits the injury / illness estimation information indicating that the estimated user 30 may suffer an injury / illness to the user terminal 500 via the communication unit 110 (step S1103), and ends the process. The injury / illness estimation information transmitted from the injury / illness estimation server 100 to the user terminal 500 may include identification information for identifying which user's information is. The injury / illness estimation server 100 executes the process shown in FIG. 10 every time it receives adrenaline information.
The above is the method of estimating the possibility of suffering an injury or illness based on the amount of adrenaline secreted during exercise by the user in the injury or illness estimation system.

図12は、ユーザ端末500等に表示されるユーザ30の傷病推定情報の表示例を示す図である。図12は、ユーザ端末500をスマートフォンと想定した場合の表示例を示している。 FIG. 12 is a diagram showing a display example of injury / illness estimation information of the user 30 displayed on the user terminal 500 or the like. FIG. 12 shows a display example when the user terminal 500 is assumed to be a smartphone.

図12に示すように、ユーザ端末500は、傷病推定情報として、ユーザ端末500の保持者であるユーザ30が負う可能性がある傷病情報1212を表示する。図12では、傷病情報1212として、傷病名と、その傷病名を負う確率を表示する例を示しており、ここでは、肥満になる可能性が80%あること、糖尿になる可能性が40%ある例を示している。また、ユーザ端末500は、傷病推定情報として、傷病情報1212の元となった、ユーザのアドレナリンの分泌量を示すアドレナリン情報1211を表示してもよい。図12では、アドレナリン情報1211として、時間毎のアドレナリンの分泌量の推移をグラフで表す例を示している。 As shown in FIG. 12, the user terminal 500 displays the injury / illness information 1212 that the user 30 who is the holder of the user terminal 500 may bear as the injury / illness estimation information. FIG. 12 shows an example of displaying the name of the injury or illness and the probability of suffering the name of the injury or illness as the injury or illness information 1212. Here, the possibility of becoming obese is 80% and the possibility of becoming diabetes is 40%. Here is an example. Further, the user terminal 500 may display the adrenaline information 1211 indicating the amount of adrenaline secreted by the user, which is the source of the injury / illness information 1212, as the injury / illness estimation information. FIG. 12 shows an example in which the transition of the amount of adrenaline secreted over time is graphically represented as the adrenaline information 1211.

<第1実施形態まとめ>
上記第1実施形態に示したように、傷病推定サーバ100は、ユーザ30の運動時のアドレナリン分泌量に基づいて、ユーザ30が傷病を負う可能性、傷病を負っている可能性を推定することができる。ユーザ30が運動時において、特に、緊迫した場面などにおいては多量のアドレナリンが分泌されていると推定され、それに応じて血糖値の値を高くなる。また、アドレナリンはユーザの血糖値上昇に関与することから、ユーザの健康状態を左右する可能性があり、アドレナリンの分泌量とユーザが負った傷病の履歴とから、他のユーザの運動時のアドレナリンの分泌量を用いて、他のユーザが傷病を負う可能性を推定することができる。したがって、何らかの傷病を負う可能性があると推定されたユーザは、その傷病を負わないための善後策を講じることができる。
<Summary of the first embodiment>
As shown in the first embodiment, the injury / illness estimation server 100 estimates the possibility that the user 30 is injured or injured based on the amount of adrenaline secreted during exercise of the user 30. Can be done. It is presumed that a large amount of adrenaline is secreted when the user 30 is exercising, especially in a tense situation, and the blood glucose level is increased accordingly. In addition, since adrenaline is involved in the increase in blood glucose level of the user, it may affect the health condition of the user. Based on the amount of adrenaline secreted and the history of the injury or illness inflicted by the user, adrenaline during exercise of other users. The amount of adrenaline secreted can be used to estimate the likelihood of other users being injured or ill. Therefore, a user who is presumed to have some kind of injury or illness can take good measures to prevent the injury or illness.

<第2実施形態>
上記第1実施形態においては、ユーザ30が傷病を負う可能性を、ユーザの運動時のアドレナリン分泌量に基づいて推定することとしたが、これは、その限りではない。傷病推定サーバ100は、ユーザ30のアドレナリン分泌量ではなく、血糖値(グルコース分泌量)から、直接傷病を推定することとしてもよい。
<Second Embodiment>
In the first embodiment, the possibility that the user 30 will be injured or sick is estimated based on the amount of adrenaline secreted during exercise of the user, but this is not the case. The injury / illness estimation server 100 may estimate the injury / illness directly from the blood glucose level (glucose secretion amount) instead of the adrenaline secretion amount of the user 30.

図13は、第2実施形態に係る傷病推定システムの構成例を示すシステム図である。図13に示すように、傷病推定システムは、傷病推定サーバ100を含み、センサ300やユーザ端末500を含んでもよい。図13に示すように、第1実施形態と異なり、傷病推定システムには、アドレナリン推定サーバ200が含まれていない。 FIG. 13 is a system diagram showing a configuration example of the injury / illness estimation system according to the second embodiment. As shown in FIG. 13, the injury / illness estimation system includes an injury / illness estimation server 100, and may include a sensor 300 and a user terminal 500. As shown in FIG. 13, unlike the first embodiment, the injury / disease estimation system does not include the adrenaline estimation server 200.

図13に示す傷病推定システムでは、センサ300は、測定したセンシングデータ(血糖値情報)を、直接、傷病推定サーバ100に送信する。そして、傷病推定サーバ100は、受信した血糖値情報から、ユーザ30が傷病を負う可能性を推定する。そして、傷病推定サーバ100は、血糖値に基づいて推定した傷病推定情報を、ユーザ30のユーザ端末500に送信する。このように、第2実施形態では、傷病推定システムは、アドレナリン分泌量に変換することなく、ユーザ30の運動時の血糖値から、ユーザ30が傷病を負う可能性を推定する。以下、具体的に説明するが、第2実施形態においては、第1実施形態との差異についてのみ説明する。
傷病推定サーバ100の構成としては、図2に示す構成と同様である。一方で、各機能部が実現する機能において差異が存在する。
まず、受付部131は、ユーザ30の運動時のアドレナリン情報に代えて、ユーザ30の運動時の血糖値情報を受け付け、推定部132に伝達する。
In the injury / illness estimation system shown in FIG. 13, the sensor 300 directly transmits the measured sensing data (blood glucose level information) to the injury / illness estimation server 100. Then, the injury / illness estimation server 100 estimates the possibility that the user 30 will be injured or ill from the received blood glucose level information. Then, the injury / illness estimation server 100 transmits the injury / illness estimation information estimated based on the blood glucose level to the user terminal 500 of the user 30. Thus, in the second embodiment, the injury / illness estimation system estimates the possibility that the user 30 will be injured or ill from the blood glucose level during exercise of the user 30 without converting it into the adrenaline secretion amount. Hereinafter, although it will be specifically described, in the second embodiment, only the difference from the first embodiment will be described.
The configuration of the injury / illness estimation server 100 is the same as the configuration shown in FIG. On the other hand, there are differences in the functions realized by each functional unit.
First, the reception unit 131 receives the blood glucose level information during exercise of the user 30 instead of the adrenaline information during exercise of the user 30, and transmits the information to the estimation unit 132.

また、推定部132は、アドレナリン情報ではなく、血糖値情報と、傷病推定学習モデルとから、ユーザ30が傷病を負う可能性を推定する。ここで、第2実施形態に係る傷病推定学習モデルについて説明する。 Further, the estimation unit 132 estimates the possibility that the user 30 will suffer an injury or illness from the blood glucose level information and the injury / illness estimation learning model instead of the adrenaline information. Here, the injury / illness estimation learning model according to the second embodiment will be described.

第2実施形態に係る傷病推定学習モデルは、ユーザの運動時の血糖値情報と、そのユーザが負った傷病との関係を学習したモデルであり、ユーザ30の運動時の血糖値情報の入力を受け付けて、そのユーザ30が傷病を負う可能性(または負っている可能性)を推定するために用いるモデルである。 The injury / illness estimation learning model according to the second embodiment is a model that learns the relationship between the user's blood glucose level information during exercise and the injury / illness inflicted by the user, and inputs the blood glucose level information during exercise of the user 30. It is a model used for accepting and estimating the possibility (or possibility of suffering) of injury or illness of the user 30.

図14は、第2実施形態に係る傷病推定学習モデルを生成するために用いる教師データ3410のデータ構成例を示すデータ概念図である。図14に示す教師データ3410のデータ構成例は、おおよそ、図3に示す教師データ1410と同様であるが、第1実施形態に示す教師データ1410が、アドレナリンデータ1414を保持していたのに対して、本第2実施形態においては、アドレナリンデータ1414に代えて血糖値データ2414を保持している点において相違する。したがって、図14に示す教師データ3410を用いて学習した場合に生成されるモデルは、血糖値と、傷病を負う可能性との関係を学習したモデルとなる。教師データ3410は、少なくとも血糖値データ2414と、疾患情報1415とが、対応付けられていればよく、必要に応じて、他の情報は削除してもよいし、対応するユーザに関する他の情報が追加されてもよい。 FIG. 14 is a data conceptual diagram showing a data configuration example of the teacher data 3410 used to generate the injury / disease estimation learning model according to the second embodiment. The data configuration example of the teacher data 3410 shown in FIG. 14 is substantially the same as the teacher data 1410 shown in FIG. 3, whereas the teacher data 1410 shown in the first embodiment holds the adrenaline data 1414. The second embodiment is different in that the blood glucose level data 2414 is retained in place of the adrenaline data 1414. Therefore, the model generated when learning using the teacher data 3410 shown in FIG. 14 is a model that learns the relationship between the blood glucose level and the possibility of suffering injury or illness. In the teacher data 3410, at least the blood glucose level data 2414 and the disease information 1415 may be associated with each other, and if necessary, other information may be deleted, or other information regarding the corresponding user may be obtained. May be added.

図15は、第2実施形態に係る傷病推定サーバ100の動作例を示すフローチャートである。 FIG. 15 is a flowchart showing an operation example of the injury / illness estimation server 100 according to the second embodiment.

図15に示すように、傷病推定サーバ100の通信部110は、センサ300からユーザ30(被験者)の血糖値情報を受信する(ステップS1501)。通信部110は、受信した血糖値情報を、制御部130に伝達する。 As shown in FIG. 15, the communication unit 110 of the injury / illness estimation server 100 receives the blood glucose level information of the user 30 (subject) from the sensor 300 (step S1501). The communication unit 110 transmits the received blood glucose level information to the control unit 130.

制御部130の受付部131は、伝達された血糖値情報を、ユーザ30が傷病を負う可能性を推定するための情報として受け付ける。受付部131は、受け付けた血糖値情報を制御部130に伝達する。制御部130の推定部132は、受け付けた血糖値情報を入力として、傷病推定学習モデル141を用いて、ユーザ30が傷病を負う可能性を推定する(ステップS1502)。 The reception unit 131 of the control unit 130 receives the transmitted blood glucose level information as information for estimating the possibility that the user 30 will be injured or sick. The reception unit 131 transmits the received blood glucose level information to the control unit 130. The estimation unit 132 of the control unit 130 estimates the possibility that the user 30 will suffer an injury or illness by using the injury / illness estimation learning model 141 with the received blood glucose level information as an input (step S1502).

推定部132は、推定した傷病を負う可能性を示す傷病推定情報を生成し、生成した傷病推定情報を、通信部110を介して、ユーザ端末500に送信し(ステップS1503)、処理を終了する。 The estimation unit 132 generates injury / illness estimation information indicating the possibility of suffering an estimated injury / illness, transmits the generated injury / illness estimation information to the user terminal 500 via the communication unit 110 (step S1503), and ends the process. ..

このように、傷病推定サーバ100は、ユーザのアドレナリン分泌量ではなく、血糖値情報に基づいて、ユーザ30が傷病を負う可能性を推定することができる。 In this way, the injury / illness estimation server 100 can estimate the possibility that the user 30 will be injured or ill based on the blood glucose level information, not the amount of adrenaline secreted by the user.

なお、ユーザ端末500は、一般的なスマートフォンやタブレット端末と同様であり、少なくとも通信機能とデータを表示する表示機能とを有していれば従来の端末と同様であるので、詳細な構成の説明については省略する。 The user terminal 500 is the same as a general smartphone or tablet terminal, and is the same as a conventional terminal as long as it has at least a communication function and a display function for displaying data. Is omitted.

<第2実施形態のまとめ>
第2実施形態に係る傷病推定システムによれば、ユーザの運動時の血糖値から直接、ユーザが傷病を負う可能性を推定することができる。
<Summary of the second embodiment>
According to the injury / illness estimation system according to the second embodiment, it is possible to estimate the possibility of the user suffering an injury / illness directly from the blood glucose level during exercise of the user.

<補足>
上記実施形態に係る傷病推定システムは、上記実施形態に限定されるものではなく、各構成は、他の手法により実現されてもよい。以下、各種変形例について説明する。
<Supplement>
The injury / illness estimation system according to the above embodiment is not limited to the above embodiment, and each configuration may be realized by another method. Hereinafter, various modification examples will be described.

(1)上記第1実施形態においては、血糖値からアドレナリンを推定するために、血糖値とアドレナリンとの関係を学習した学習モデルを用いて推定することとしたが、これはその限りではない。血糖値を入力とし、アドレナリン値を出力する予め定められた関数により算出することとしてよい。このとき、時系列のデータとなる血糖値のデータに対してアドレナリンを分泌していると推定されるタイミング(または、分泌していないと推定されるタイミング)に対して重み付けを行ってアドレナリン値を推定することとしてもよい。 (1) In the first embodiment, in order to estimate adrenaline from the blood glucose level, it is decided to estimate using a learning model in which the relationship between the blood glucose level and adrenaline is learned, but this is not the case. It may be calculated by a predetermined function that inputs the blood glucose level and outputs the adrenaline level. At this time, the adrenaline value is calculated by weighting the timing at which adrenaline is presumed to be secreted (or the timing at which it is presumed not to be secreted) with respect to the blood glucose level data which is the time-series data. It may be estimated.

(2)上記実施形態に示した検出部320の構成は、図7の構成に限定するものではない。他の構成により実現されてもよい。 (2) The configuration of the detection unit 320 shown in the above embodiment is not limited to the configuration of FIG. 7. It may be realized by other configurations.

図16は他の検出部320(他項目生体分子計測器)の主要部構成の概略図である。検出部320は所定の容器形状の検出素子321を備え、同検出素子321は計測素子700と配線接続される。検出素子321には体液採取部330が形成される。体液採取部330は公知のニードル形状であり、表面張力により皮膚表面の汗、唾液等の生体液322は採取され検出素子321内に誘導される。 FIG. 16 is a schematic diagram of the main part configuration of another detection unit 320 (other item biomolecule measuring instrument). The detection unit 320 includes a detection element 321 having a predetermined container shape, and the detection element 321 is connected to the measurement element 700 by wiring. A body fluid collecting unit 330 is formed on the detection element 321. The body fluid collecting unit 330 has a known needle shape, and biological fluid 322 such as sweat and saliva on the skin surface is collected and guided into the detection element 321 by surface tension.

検出素子321内には、酸化還元電位測定電極326、参照電極329が装着されている。酸化還元電位測定電極326には、検出対象物質としてグルコース323を捕捉するためのグルコース捕捉分子327(フェニルボロン酸誘導体)が固定される。生体液322は血液、汗、唾液等であることから、検出対象物質としてのグルコース323の他に、タンパク質、ごみ等の酸化還元電位変動因子324、夾雑物325も存在する。なお、検出部320においては、グルコース以外の物質も酸化還元電位測定電極326を通じて検出するようにしてもよい。これには、検出対象物質を捕捉する抗体、アプタマーが捕捉分子327として用いられる。 A redox potential measuring electrode 326 and a reference electrode 329 are mounted in the detection element 321. A glucose trapping molecule 327 (phenylboronic acid derivative) for capturing glucose 323 as a substance to be detected is immobilized on the redox potential measuring electrode 326. Since the biological fluid 322 is blood, sweat, saliva, etc., in addition to glucose 323 as a substance to be detected, redox potential fluctuation factors 324 such as proteins and dust, and impurities 325 are also present. The detection unit 320 may also detect substances other than glucose through the redox potential measurement electrode 326. For this purpose, an antibody that captures the substance to be detected, an aptamer, is used as the capture molecule 327.

検出部320(他項目生体分子計測器)にあっては、計測素子700は、グルコース323の酸化還元電位測定電極326と、参照電極329との電位差を測定する構成である。そこで、電圧の変化からグルコースの量が推定される。
また、検出部320は、図17に示す態様で実現されてもよい。
In the detection unit 320 (other item biomolecular measuring instrument), the measuring element 700 is configured to measure the potential difference between the redox potential measuring electrode 326 of glucose 323 and the reference electrode 329. Therefore, the amount of glucose is estimated from the change in voltage.
Further, the detection unit 320 may be realized in the embodiment shown in FIG.

図17は他の検出部320(他項目生体分子計測器)の主要部構成の概略図である。検出部320は所定の容器形状の検出素子321を備え、同検出素子321は計測素子700と配線接続される。検出素子321には体液採取部330が形成される。体液採取部330は公知のニードル形状であり、表面張力により皮膚表面の汗、唾液等の生体液322は採取され検出素子321内に誘導される。 FIG. 17 is a schematic diagram of the main part configuration of another detection unit 320 (other item biomolecule measuring instrument). The detection unit 320 includes a detection element 321 having a predetermined container shape, and the detection element 321 is connected to the measurement element 700 by wiring. A body fluid collecting unit 330 is formed on the detection element 321. The body fluid collecting unit 330 has a known needle shape, and biological fluid 322 such as sweat and saliva on the skin surface is collected and guided into the detection element 321 by surface tension.

検出素子321内には、酸化還元電位測定電極326、参照電極329、対電極331が装着されている。酸化還元電位測定電極326には、検出対象物質としてグルコース323を捕捉するためのグルコース捕捉分子(フェニルボロン酸誘導体)が固定される。生体液322は汗、唾液等であることから、検出対象物質としてのグルコース323の他に、タンパク質、ごみ等の酸化還元電位変動因子324、夾雑物325も存在する。なお、検出部320においても、グルコース以外の物質も酸化還元電位測定電極326を通じて検出するようにしてもよい。これには、検出対象物質を捕捉する抗体、アプタマーが捕捉分子として用いられる。 A redox potential measuring electrode 326, a reference electrode 329, and a counter electrode 331 are mounted in the detection element 321. A glucose trapping molecule (phenylboronic acid derivative) for capturing glucose 323 as a substance to be detected is immobilized on the redox potential measuring electrode 326. Since the biological fluid 322 is sweat, saliva, etc., in addition to glucose 323 as a substance to be detected, redox potential fluctuation factors 324 such as proteins and dust, and impurities 325 are also present. The detection unit 320 may also detect substances other than glucose through the redox potential measurement electrode 326. For this purpose, an antibody or aptamer that captures the substance to be detected is used as a capture molecule.

検出部320(他項目生体分子計測器)にあっては、計測素子700は、グルコース323の酸化還元電位測定電極326について、参照電極329と対電極331を通じて電流量の変化が計測される構成である。そこで、電流の変化からグルコースの量が推定される。検出部320はこのように構成されてもよい。 In the detection unit 320 (other item biomolecular measuring instrument), the measuring element 700 has a configuration in which the change in the amount of current of the redox potential measuring electrode 326 of glucose 323 is measured through the reference electrode 329 and the counter electrode 331. be. Therefore, the amount of glucose is estimated from the change in current. The detection unit 320 may be configured in this way.

(3)上記実施の形態においては、ユーザの運動時の血糖値から推定されたアドレナリン分泌量、あるいは、血糖値に基づいて、ユーザが傷病を負う可能性を推定する傷病推定システムについて説明した。また、その血糖値を測定するセンサとしては、図7、図16、図17に一例を示した。 (3) In the above-described embodiment, the injury / illness estimation system for estimating the possibility of the user suffering an injury / illness based on the adrenaline secretion amount estimated from the blood glucose level during exercise of the user or the blood glucose level has been described. Further, as a sensor for measuring the blood glucose level, an example is shown in FIGS. 7, 16 and 17.

ところで、上述のセンサは、血糖値の値だけでなく、酸化還元電位の測定も行うことができる。そこで、上記傷病推定システムにおいて、更に、酸化還元電位を利用しての傷病推定も行ってもよい。本補足においては、その酸化還元電位も利用しての傷病を負う可能性の推定を行うことができる傷病推定システムについて説明する。 By the way, the above-mentioned sensor can measure not only the blood glucose level but also the redox potential. Therefore, in the above-mentioned injury / illness estimation system, injury / illness estimation may be further performed using the redox potential. In this supplement, an injury / illness estimation system that can estimate the possibility of injuries / illnesses by using the redox potential will be described.

図19は、本補足における教師データのデータ構成例を示すデータ概念図である。図19に示すように、本補足における教師データ1410は、被験者ID1411と、性別1412と、体重1413と、アドレナリンデータ1414と、酸化還元電位データ1801と、疾患情報1415とが対応付けられた情報である。教師データ1410は、ユーザの運動時のアドレナリン分泌量と、ユーザの運動時の酸化還元電位の推移と、そのユーザが罹患した傷病を示す疾患情報とが対応付けられた情報の集合である。これらの情報のうち、上記実施の形態に示した情報と同じ内容の情報については同一の符号を付し、詳細な説明を省略する。 FIG. 19 is a data conceptual diagram showing an example of data composition of teacher data in this supplement. As shown in FIG. 19, the teacher data 1410 in this supplement is information in which subject ID 1411, gender 1412, weight 1413, adrenaline data 1414, redox potential data 1801, and disease information 1415 are associated with each other. be. The teacher data 1410 is a set of information in which the adrenaline secretion amount during exercise of the user, the transition of the redox potential during exercise of the user, and the disease information indicating the injury or illness affected by the user are associated with each other. Of these information, information having the same content as the information shown in the above embodiment is designated by the same reference numerals, and detailed description thereof will be omitted.

図19に示す教師データ1410における酸化還元電位データ1801は、対応する被験者ID1411で示されるユーザの運動時の酸化還元電位の推移を示す情報である。酸化還元電位は、体液の状態が酸化状態にあるか還元状態にあるかを測定することができる。外因的なストレスや、傷病によって、活性酸素を中心とするフリーラジカルなどが過剰に生じることで、体液は酸化状態となる。高脂肪体や高血糖状態が長期間続くことで、血管内にはフリーラジカルが生じ、血管内皮にダメージを与え、腎障害、網膜症、歯周病など様々な生活習慣病を引き起こすことが知られている(Wells-Knecht, K.J. et al. Biochem. 34, 3702-3709 (1995)など)。さらに、近年、健常者と、メタボリックシンドローム患者および2型糖尿病患者での血液の酸化還元電位を測定した報告があり(Spanidis, Y. et al. Exp. Therap. Med. 11, 895-903 (2016))、健常者の血中酸化還元電位に対して、メタボリックシンドローム患者および2型糖尿病患者のそれは、酸化還元電位が高く、血中が酸化状態にあることが明らかとなっているしたがって、酸化還元電位の推移は、傷病の推定の参考とすることができる。酸化還元電位データ1801は、対応するアドレナリンデータ1414と同じ時系列で測定された情報である。酸化還元電位データ1801とアドレナリンデータ1414とのその変化の推移に係るタイムスタンプは互いに同期していることが望ましいが、共に運動時の測定データであれば、異なるタイミングで測定されたデータであってもよい。 The redox potential data 1801 in the teacher data 1410 shown in FIG. 19 is information indicating the transition of the redox potential during exercise of the user indicated by the corresponding subject ID 1411. The redox potential can measure whether the state of the body fluid is in the oxidized state or the reduced state. Due to extrinsic stress and injury or illness, excessive generation of free radicals centered on active oxygen causes the body fluid to become in an oxidized state. It is known that if a high fat body or hyperglycemia continues for a long period of time, free radicals are generated in the blood vessels, damaging the vascular endothelium and causing various lifestyle-related diseases such as renal disorder, retinopathy, and periodontal disease. (Wells-Knecht, KJ et al. Biochem. 34, 3702-3709 (1995), etc.). Furthermore, in recent years, there have been reports of measuring blood redox potentials in healthy subjects and patients with metabolic syndrome and type 2 diabetes (Spanidis, Y. et al. Exp. Therap. Med. 11, 895-903 (2016). )), Compared to the blood redox potential of healthy subjects, that of metabolic syndrome patients and type 2 diabetic patients has a high redox potential, and it has been clarified that the blood is in an oxidized state. The transition of the potential can be used as a reference for estimating the injury or illness. The redox potential data 1801 is information measured in the same time series as the corresponding adrenaline data 1414. It is desirable that the time stamps related to the transition of the changes in the redox potential data 1801 and the adrenaline data 1414 are synchronized with each other, but if both are measurement data during exercise, the data are measured at different timings. May be good.

図19に示した教師データ1410を用いて学習モデルを生成することで、この学習モデルは、ユーザの運動時の酸化還元電位の推移と、同ユーザの運動時のアドレナリン分泌量の推移とから、ユーザが傷病を負う可能性を推定することができるモデルとなる。なお、このモデルは、酸化還元電位の推移と、アドレナリン分泌量の推移のいずれかだけの入力で、ユーザが傷病を負う可能性を推定することができるが、双方の入力があることが望ましい。 By generating a learning model using the teacher data 1410 shown in FIG. 19, this learning model is based on the transition of the redox potential during exercise of the user and the transition of the adrenaline secretion amount during exercise of the user. It is a model that can estimate the possibility that the user will suffer injury or illness. In this model, it is possible to estimate the possibility that the user will be injured or sick by inputting only one of the transition of the redox potential and the transition of the adrenaline secretion amount, but it is desirable to have both inputs.

図20は、本補足における傷病推定システムによるユーザが傷病を負う可能性を推定する手順を示したシーケンス図であり、傷病推定システムに係る各装置間のやり取りの例を示す図である。図20は、上記実施形態1に示した傷病推定システムに準拠した構成のシステムでの推定を行う例を示している。 FIG. 20 is a sequence diagram showing a procedure for estimating the possibility of a user suffering an injury or illness by the injury or illness estimation system in this supplement, and is a diagram showing an example of interaction between each device related to the injury or illness estimation system. FIG. 20 shows an example of performing estimation with a system having a configuration based on the injury / illness estimation system shown in the first embodiment.

図20に示すように、センサ300は、センサ300を装着しているユーザの運動時の血糖値と、酸化還元電位を検出する(ステップS1901)。センサ300は、測定したデータのうち、血糖値の推移を示す血統情報はアドレナリン推定サーバ200に送信し(ステップS802)、酸化還元電位の推移を示す酸化還元電位情報は、傷病推定サーバ100に送信する(ステップS1902)。このとき送信される血糖値情報及び酸化還元電位情報には、共に、どのユーザの情報であるかを一意に特定できるユーザの識別情報といつ測定されたものであるかを示す日時情報とを含んでよい。このユーザの識別情報及び日時情報は、傷病推定サーバ100が、酸化還元電位情報と、アドレナリン推定サーバ200が推定するアドレナリン分泌量とについて同じユーザのものであることを特定するための情報である。ここでの識別情報及び日時情報の付与は、酸化還元電位情報及び血糖値情報それぞれにシステム上で固有となる同じ識別情報を付与することによっても実現することができる。 As shown in FIG. 20, the sensor 300 detects the blood glucose level during exercise of the user wearing the sensor 300 and the redox potential (step S1901). Of the measured data, the sensor 300 transmits the pedigree information indicating the transition of the blood glucose level to the adrenaline estimation server 200 (step S802), and the redox potential information indicating the transition of the redox potential is transmitted to the injury / disease estimation server 100. (Step S1902). The blood glucose level information and the redox potential information transmitted at this time both include user identification information that can uniquely identify which user's information is and date and time information indicating when the information was measured. It's fine. The user identification information and date / time information are information for identifying that the injury / disease estimation server 100 belongs to the same user with respect to the redox potential information and the adrenaline secretion amount estimated by the adrenaline estimation server 200. The addition of the identification information and the date and time information here can also be realized by adding the same identification information unique to the system to each of the redox potential information and the blood glucose level information.

アドレナリン推定サーバ200は、上記実施形態1に示したように、血糖値情報から、アドレナリン分泌量を推定し、その推移を示すアドレナリン情報を傷病推定サーバ100に送信する(ステップS803、S804)。このアドレナリン情報には、推定されたアドレナリン分泌量の推移を示す情報の他、血糖値情報に含まれていたユーザの識別情報と日時情報とが含まれる。 As shown in the first embodiment, the adrenaline estimation server 200 estimates the amount of adrenaline secreted from the blood glucose level information, and transmits the adrenaline information indicating the transition to the injury / disease estimation server 100 (steps S803 and S804). This adrenaline information includes information indicating the transition of the estimated adrenaline secretion amount, as well as user identification information and date and time information included in the blood glucose level information.

傷病推定サーバ100は、センサ300から酸化還元電位情報を受信する。また、傷病推定サーバ100は、アドレナリン推定サーバ200から、アドレナリン情報を受信する。傷病推定サーバ100は、受信した酸化還元電位情報とアドレナリン情報とが同じユーザのものであるかを、それぞれに含まれるユーザの識別情報と日時情報とを照合して確かめたうえで、酸化還元電位情報とアドレナリン情報とを学習モデルに入力する。そして、当該入力にしたがって、傷病推定サーバ100の推定部132は、ユーザが傷病を負う可能性を推定する(ステップS1903)。そして、傷病推定サーバ100は、推定した結果を示す傷病推定情報をユーザ端末500に送信する(ステップS806)。 The injury / disease estimation server 100 receives redox potential information from the sensor 300. Further, the injury / illness estimation server 100 receives adrenaline information from the adrenaline estimation server 200. The injury / disease estimation server 100 confirms whether the received redox potential information and the adrenaline information belong to the same user by collating the user's identification information and the date / time information included in each, and then confirms that the redox potential. Input information and adrenaline information into the learning model. Then, according to the input, the estimation unit 132 of the injury / illness estimation server 100 estimates the possibility that the user will be injured (step S1903). Then, the injury / illness estimation server 100 transmits the injury / illness estimation information indicating the estimated result to the user terminal 500 (step S806).

ユーザ端末500は、傷病推定情報を受信すると、その内容を表示する(ステップS807)。これにより、ユーザは、ユーザの運動時の酸化還元電位の推移およびアドレナリン分泌量の推移から、自身が傷病を負う可能性がどの程度あるのか、どのような傷病を負う可能性があるのかを認識することができる。 When the user terminal 500 receives the injury / illness estimation information, the user terminal 500 displays the content thereof (step S807). As a result, the user recognizes how likely he / she is likely to be injured and what kind of injury / illness he / she is likely to suffer from the transition of the redox potential and the transition of the adrenaline secretion amount during the user's exercise. can do.

なお、本補足における傷病推定システムにおいては、教師データとして、ユーザの運動時のアドレナリン分泌量の推移と、酸化還元電位の推移と、を含む情報を学習することで、ユーザの運動時のアドレナリン分泌量の推移と酸化還元電位の推移とに基づく傷病を負う可能性の推定を行うことができているが、酸化還元電位の推移を用いた推定はこれに限定するものではない。本補足で示した態様以外の例をとってもよいことはいうまでもない。 In the injury / illness estimation system in this supplement, by learning information including the transition of the adrenaline secretion amount during the user's exercise and the transition of the redox potential as teacher data, the adrenaline secretion during the user's exercise is learned. Although it is possible to estimate the possibility of suffering injury or illness based on the transition of the amount and the transition of the redox potential, the estimation using the transition of the redox potential is not limited to this. Needless to say, examples other than those shown in this supplement may be taken.

例えば、図18に示した教師データにおいて、アドレナリン分泌量の推移に代えて、血糖値の推移を用いてもよい。この場合には、ユーザの運動時の血糖値の推移と、酸化還元電位の推移との入力を受け付けて、ユーザが傷病を負う可能性を示す情報を出力する傷病推定システムを提供することができる。 For example, in the teacher data shown in FIG. 18, the transition of the blood glucose level may be used instead of the transition of the adrenaline secretion amount. In this case, it is possible to provide an injury / illness estimation system that accepts inputs of the transition of the blood glucose level during exercise of the user and the transition of the redox potential and outputs information indicating the possibility of the user suffering an injury or illness. ..

また、上記実施形態1、実施形態2において、アドレナリン分泌量の推移や血糖値の推移に基づくユーザの傷病の可能性の推定とは個別に、ユーザの運動時の酸化還元電位の推移に基づいてユーザが傷病を負う可能性を推定することとしてもよい。即ち、傷病推定システムは、ユーザの運動時のアドレナリン分泌量の推移に基づいて、ユーザが傷病を負う可能性を推定し、ユーザの運動時の酸化還元電位の推移に基づいて、ユーザが傷病を負う可能性を推定し、双方の推定結果を出力することとしてもよい。また、双方の推定結果を出力するのではなく、双方の推定結果において、双方において共に同種の傷病を負う可能性が高いと推定した、その傷病の情報を出力することとしてもよい。また、双方の推定結果それぞれで傷病を負う可能性が高いと推定した傷病のうち、傷病を負う可能性が所定の閾値以上となった傷病の情報を出力することとしてもよい。 Further, in the first and second embodiments, the estimation of the possibility of injury or illness of the user based on the transition of the adrenaline secretion amount and the transition of the blood glucose level is different from the estimation of the possibility of injury or illness of the user, based on the transition of the redox potential during exercise of the user. It may be possible to estimate the possibility that the user will be injured or sick. That is, the injury / illness estimation system estimates the possibility that the user will suffer injury / illness based on the transition of the adrenaline secretion amount during exercise of the user, and the user causes injury / illness based on the transition of the redox potential during exercise of the user. It is also possible to estimate the possibility of incurring and output the estimation results of both. Further, instead of outputting the estimation results of both, it may be possible to output the information of the injury or illness estimated that both of them are likely to suffer the same kind of injury or illness in both estimation results. Further, among the injuries and illnesses estimated to have a high possibility of injuries and illnesses based on the estimation results of both, information on the injuries and illnesses in which the possibility of injuries and illnesses is equal to or higher than a predetermined threshold value may be output.

本補足に示したように、血糖値あるいは血糖値に基づくアドレナリン分泌量以外の情報としてユーザの運動時の酸化還元電位の推移を用いてユーザが傷病を負う可能性を推定することで、血糖値あるいはアドレナリン分泌量からだけでは推定することができない傷病を負う可能性を推定することができたり、ユーザの運動時の血糖値あるいはアドレナリン分泌量から推定した傷病を負う可能性の確度を高めたりすることができる。 As shown in this supplement, the blood glucose level is estimated by using the transition of the oxidation-reduction potential during the user's exercise as information other than the blood glucose level or the amount of adrenaline secreted based on the blood glucose level. Alternatively, it is possible to estimate the possibility of suffering an injury or illness that cannot be estimated only from the amount of adrenaline secretion, or to increase the probability of suffering an injury or illness estimated from the blood glucose level during exercise of the user or the amount of adrenaline secretion. be able to.

(4)上記実施の形態においては、傷病推定システムにおける傷病を負う可能性を推定する手法として、傷病推定サーバのプロセッサが傷病推定プログラム等を実行することにより、推定することとしているが、これは装置に集積回路(IC(Integrated Circuit)チップ、LSI(Large Scale Integration))等に形成された論理回路(ハードウェア)や専用回路によって実現してもよい。また、これらの回路は、1または複数の集積回路により実現されてよく、上記実施の形態に示した複数の機能部の機能は1つの集積回路により実現されることとしてもよい。LSIは、集積度の違いにより、VLSI、スーパーLSI、ウルトラLSIなどと呼称されることもある。 (4) In the above embodiment, as a method of estimating the possibility of suffering an injury or illness in the injury or illness estimation system, the processor of the injury or illness estimation server executes an injury or illness estimation program or the like to estimate the possibility. It may be realized by a logic circuit (hardware) or a dedicated circuit formed in an integrated circuit (IC (Integrated Circuit) chip, LSI (Large Scale Integration)) or the like in the apparatus. Further, these circuits may be realized by one or a plurality of integrated circuits, and the functions of the plurality of functional units shown in the above embodiment may be realized by one integrated circuit. LSI may be referred to as VLSI, super LSI, ultra LSI, or the like depending on the degree of integration.

上記傷病推定プログラムは、プロセッサが読み取り可能な記録媒体に記録されていてよく、記録媒体としては、「一時的でない有形の媒体」、例えば、テープ、ディスク、カード、半導体メモリ、プログラマブルな論理回路などを用いることができる。また、上記傷病推定プログラムは、当該傷病推定プログラムを伝送可能な任意の伝送媒体(通信ネットワークや放送波等)を介して上記プロセッサに供給されてもよい。つまり、例えば、スマートフォン等の情報処理機器を利用して、ネットワーク上から傷病推定プログラムをダウンロードして実行する構成としてもよい。本発明は、上記傷病推定プログラムが電子的な伝送によって具現化された、搬送波に埋め込まれたデータ信号の形態でも実現され得る。 The injury / illness estimation program may be recorded on a recording medium that can be read by a processor, and the recording medium may be a "non-temporary tangible medium" such as a tape, a disk, a card, a semiconductor memory, or a programmable logic circuit. Can be used. Further, the injury / illness estimation program may be supplied to the processor via any transmission medium (communication network, broadcast wave, etc.) capable of transmitting the injury / illness estimation program. That is, for example, an information processing device such as a smartphone may be used to download and execute the injury / illness estimation program from the network. The present invention can also be realized in the form of a data signal embedded in a carrier wave, in which the injury / disease estimation program is embodied by electronic transmission.

なお、上記傷病推定プログラムは、例えば、ActionScript、JavaScript(登録商標)などのスクリプト言語、Objective-C、Java(登録商標)、C++、Python、Rなどのオブジェクト指向プログラミング言語などを用いて実装できる。 The injury / illness estimation program can be implemented using, for example, a script language such as ActionScript or JavaScript (registered trademark), or an object-oriented programming language such as Objective-C, Java (registered trademark), C ++, Python, or R.

(4)上記実施形態および補足に示す各種の構成は適宜組み合わせることとしてよい。 (4) The various configurations shown in the above embodiments and supplements may be combined as appropriate.

100 傷病推定サーバ
110 通信部
120 入力部
130 制御部
131 受付部
132 推定部
133 学習部
140 記憶部
141 傷病推定学習モデル
150 出力部
200 アドレナリン推定サーバ
210 通信部
220 入力部
230 制御部
231 受付部
232 推定部
233 学習部
240 記憶部
241 アドレナリン推定学習モデル
250 出力部
300 センサ
310 通信部
320 検出部
340 記憶部
341 センシングデータ
350 出力部
100 Injury and illness estimation server 110 Communication unit 120 Input unit 130 Control unit 131 Reception unit 132 Estimate unit 133 Learning unit 140 Storage unit 141 Injury and illness estimation learning model 150 Output unit 200 Adrenaline estimation server 210 Communication unit 220 Input unit 230 Control unit 231 Reception unit 232 Estimating unit 233 Learning unit 240 Storage unit 241 Adrenaline estimation learning model 250 Output unit 300 Sensor 310 Communication unit 320 Detection unit 340 Storage unit 341 Sensing data 350 Output unit

Claims (15)

ユーザの運動時の血糖値と、前記ユーザの傷病との関係を学習した学習モデルを記憶する記憶部と、
対象ユーザの運動時の血糖値に関する血糖値情報の入力を受け付ける受付部と、
前記受付部が受け付けた血糖値情報と、前記学習モデルとを用いて、前記対象ユーザが、傷病を負う可能性を推定する推定部と、
前記推定部が推定した可能性に関する情報を出力する出力部と、
を備える傷病推定システム。
A storage unit that stores a learning model that learns the relationship between the user's blood glucose level during exercise and the user's injury or illness.
A reception unit that accepts input of blood glucose level information related to the blood glucose level during exercise of the target user,
Using the blood glucose level information received by the reception unit and the learning model, an estimation unit that estimates the possibility that the target user will suffer an injury or illness,
An output unit that outputs information about the possibility estimated by the estimation unit, and an output unit.
Injury and illness estimation system equipped with.
前記学習モデルは、前記ユーザの運動時の血糖値の推移と、前記ユーザの傷病との関係を学習した学習モデルであり、
受付部は、前記対象ユーザの運動時の血糖値の推移に関する血糖値情報の入力を受け付ける
ことを特徴とする請求項1に記載の傷病推定システム。
The learning model is a learning model that learns the relationship between the transition of the blood glucose level of the user during exercise and the injury or illness of the user.
The injury / illness estimation system according to claim 1, wherein the reception unit accepts an input of blood glucose level information regarding a transition of the blood glucose level during exercise of the target user.
前記学習モデルは、さらに、ユーザの運動時の酸化還元電位と、前記ユーザの傷病との関係を学習したモデルであり、
前記受付部は、さらに、前記対象ユーザの運動時の酸化還元電位に関する酸化還元電位情報の入力を受け付け、
前記推定部は、前記受付部が受け付けた前記血糖値情報と前記酸化還元電位情報と、前記学習モデルとを用いて、前記対象ユーザが傷病を負う可能性を推定する
ことを特徴とする請求項1または2に記載の傷病推定システム。
The learning model is a model in which the relationship between the redox potential during exercise of the user and the injury or illness of the user is further learned.
The reception unit further receives input of redox potential information regarding the redox potential of the target user during exercise.
The claim is characterized in that the estimation unit estimates the possibility that the target user will be injured or ill by using the blood glucose level information, the redox potential information, and the learning model received by the reception unit. The injury / illness estimation system according to 1 or 2.
ユーザの運動時のアドレナリン分泌量と、前記ユーザの傷病との関係を学習した学習モデルを記憶する記憶部と、
対象ユーザの運動時のアドレナリンの分泌量に関するアドレナリン情報の入力を受け付ける受付部と、
前記受付部が受け付けたアドレナリン情報と、前記学習モデルとを用いて、前記対象ユーザが、傷病を負う可能性を推定する推定部と、
前記推定部が推定した可能性に関する情報を出力する出力部と、
を備える傷病推定システム。
A storage unit that stores a learning model that learns the relationship between the amount of adrenaline secreted by the user during exercise and the injury or illness of the user.
A reception unit that accepts input of adrenaline information regarding the amount of adrenaline secreted by the target user during exercise,
Using the adrenaline information received by the reception unit and the learning model, an estimation unit that estimates the possibility that the target user will suffer an injury or illness,
An output unit that outputs information about the possibility estimated by the estimation unit, and an output unit.
Injury and illness estimation system equipped with.
前記アドレナリン分泌量は、前記ユーザの運動時に測定した血糖値を、所定の演算によりアドレナリンに変換した結果得られた値を示すものであることを特徴とする請求項4に記載の傷病推定システム。 The injury / illness estimation system according to claim 4, wherein the adrenaline secretion amount indicates a value obtained as a result of converting the blood glucose level measured during exercise of the user into adrenaline by a predetermined calculation. 前記学習モデルは、前記ユーザの運動時のアドレナリン分泌量の推移と、前記ユーザの傷病との関係を学習した学習モデルであり、
前記受付部は、前記ユーザの運動時のアドレナリン分泌量の推移に関するアドレナリン情報の入力を受け付ける
ことを特徴とする請求項4又は5に記載の傷病推定システム。
The learning model is a learning model that learns the relationship between the transition of the adrenaline secretion amount during exercise of the user and the injury or illness of the user.
The injury / illness estimation system according to claim 4 or 5, wherein the reception unit receives an input of adrenaline information regarding a transition of the adrenaline secretion amount during exercise of the user.
前記記憶部は、血糖値と、アドレナリンとの関係を学習した第2の学習モデルを記憶し、
ユーザの血糖値を測定した血糖値情報を取得する取得部と、
前記取得部が取得した血糖値情報と、前記学習モデルとに基づいて、前記ユーザのアドレナリン分泌量を推定する第2推定部と、を備え、
前記受付部は、前記第2推定部により推定されたアドレナリン分泌量を受け付ける
ことを特徴とする請求項4〜6のいずれか一項に記載の傷病推定システム。
The storage unit stores a second learning model in which the relationship between the blood glucose level and adrenaline is learned.
An acquisition unit that acquires blood glucose level information that measures the user's blood glucose level,
A second estimation unit that estimates the adrenaline secretion amount of the user based on the blood glucose level information acquired by the acquisition unit and the learning model is provided.
The injury / illness estimation system according to any one of claims 4 to 6, wherein the reception unit receives an adrenaline secretion amount estimated by the second estimation unit.
前記学習モデルは、さらに、ユーザの運動時の酸化還元電位と、前記ユーザの傷病との関係を学習したモデルであり、
前記受付部は、さらに、前記対象ユーザの運動時の酸化還元電位に関する酸化還元電位情報の入力を受け付け、
前記推定部は、前記受付部が受け付けた前記アドレナリン情報と前記酸化還元電位情報と、前記学習モデルとを用いて、前記対象ユーザが傷病を負う可能性を推定する
ことを特徴とする請求項4〜6のいずれか一項に記載の傷病推定システム。
The learning model is a model in which the relationship between the redox potential during exercise of the user and the injury or illness of the user is further learned.
The reception unit further receives input of redox potential information regarding the redox potential of the target user during exercise.
4. The estimation unit is characterized in that it estimates the possibility that the target user will be injured or ill by using the adrenaline information, the redox potential information, and the learning model received by the reception unit. The injury / illness estimation system according to any one of 6 to 6.
コンピュータが、
対象ユーザの運動時の血糖値に関する血糖値情報の入力を受け付ける受付ステップと、
前記受付ステップが受け付けた血糖値情報と、ユーザの運動時の血糖値と前記ユーザの傷病との関係を学習した学習モデルとを用いて、前記対象ユーザが、傷病を負う可能性を推定する推定ステップと、
前記推定ステップが推定した可能性に関する情報を出力する出力ステップと、
を実行する傷病推定方法。
The computer
A reception step that accepts input of blood glucose level information related to the blood glucose level during exercise of the target user,
Estimating the possibility that the target user will suffer an injury or illness using the blood glucose level information received by the reception step and a learning model that learns the relationship between the blood glucose level during exercise of the user and the injury or illness of the user. Steps and
An output step that outputs information about the possibility estimated by the estimation step, and an output step.
How to estimate the injury or illness to perform.
コンピュータに、
対象ユーザの運動時の血糖値に関する血糖値情報の入力を受け付ける受付機能と、
前記受付機能が受け付けた血糖値情報と、ユーザの運動時の血糖値と前記ユーザの傷病との関係を学習した学習モデルとを用いて、前記対象ユーザが、傷病を負う可能性を推定する推定機能と、
前記推定機能が推定した可能性に関する情報を出力する出力機能と、
を実現させる傷病推定プログラム。
On the computer
A reception function that accepts input of blood glucose level information related to the blood glucose level during exercise of the target user,
Estimating the possibility that the target user will suffer an injury or illness using the blood glucose level information received by the reception function and a learning model that learns the relationship between the blood glucose level during exercise of the user and the injury or illness of the user. Functions and
An output function that outputs information about the possibility estimated by the estimation function, and
Injury and illness estimation program to realize.
コンピュータが、
対象ユーザの運動時のアドレナリンの分泌量に関するアドレナリン情報の入力を受け付ける受付ステップと、
前記受付ステップが受け付けたアドレナリン情報と、ユーザの運動時のアドレナリン分泌量と前記ユーザの傷病との関係を学習した学習モデルとを用いて、前記対象ユーザが、傷病を負う可能性を推定する推定ステップと、
前記推定ステップが推定した可能性に関する情報を出力する出力ステップと、
を実行する傷病推定方法。
The computer
A reception step that accepts input of adrenaline information regarding the amount of adrenaline secreted by the target user during exercise, and
Estimating the possibility that the target user will suffer injury or illness using the adrenaline information received by the reception step and a learning model that learns the relationship between the amount of adrenaline secretion during exercise of the user and the injury or illness of the user. Steps and
An output step that outputs information about the possibility estimated by the estimation step, and an output step.
How to estimate the injury or illness to perform.
コンピュータに、
対象ユーザの運動時のアドレナリンの分泌量に関するアドレナリン情報の入力を受け付ける受付機能と、
前記受付機能が受け付けたアドレナリン情報と、ユーザの運動時のアドレナリン分泌量と前記ユーザの傷病との関係を学習した学習モデルとを用いて、前記対象ユーザが、傷病を負う可能性を推定する推定機能と、
前記推定機能が推定した可能性に関する情報を出力する出力機能と、
を実現させる傷病推定プログラム。
On the computer
A reception function that accepts input of adrenaline information regarding the amount of adrenaline secreted by the target user during exercise, and
Estimating the possibility that the target user will suffer injury or illness using the adrenaline information received by the reception function and a learning model that learns the relationship between the amount of adrenaline secretion during exercise of the user and the injury or illness of the user. Functions and
An output function that outputs information about the possibility estimated by the estimation function, and
Injury and illness estimation program to realize.
血糖値と、アドレナリンとの関係を学習した学習モデルを記憶する記憶部と、
ユーザの血糖値を測定した血糖値情報を取得する取得部と、
前記取得部が取得した血糖値情報と、前記学習モデルとに基づいて、前記ユーザのアドレナリン分泌量を推定する推定部と、
前記推定部が推定したアドレナリン分泌量を出力する出力部と、
を備えるアドレナリン推定システム。
A memory unit that stores a learning model that learned the relationship between blood glucose levels and adrenaline,
An acquisition unit that acquires blood glucose level information that measures the user's blood glucose level,
An estimation unit that estimates the amount of adrenaline secreted by the user based on the blood glucose level information acquired by the acquisition unit and the learning model.
An output unit that outputs the amount of adrenaline secreted estimated by the estimation unit, and an output unit.
Equipped with an adrenaline estimation system.
コンピュータが、
ユーザの血糖値を測定した血糖値情報を取得する取得ステップと、
前記取得ステップが取得した血糖値情報と、血糖値と、アドレナリンとの関係を学習した学習モデルとに基づいて、前記ユーザのアドレナリン分泌量を推定する推定ステップと、
前記推定ステップが推定したアドレナリン分泌量を出力する出力ステップと、
を実行するアドレナリン推定方法。
The computer
The acquisition step to acquire the blood glucose level information that measured the user's blood glucose level,
An estimation step for estimating the adrenaline secretion amount of the user based on the blood glucose level information acquired by the acquisition step, a learning model learned the relationship between the blood glucose level and adrenaline, and an estimation step.
An output step that outputs the amount of adrenaline secreted estimated by the estimation step, and an output step.
Adrenaline estimation method to perform.
コンピュータに、
ユーザの血糖値を測定した血糖値情報を取得する取得機能と、
前記取得機能が取得した血糖値情報と、血糖値とアドレナリンとの関係を学習した学習モデルとに基づいて、前記ユーザのアドレナリン分泌量を推定する推定機能と、
前記推定機能が推定したアドレナリン分泌量を出力する出力機能と、
を実現させるアドレナリン推定プログラム。
On the computer
The acquisition function to acquire the blood glucose level information that measured the user's blood glucose level,
An estimation function that estimates the amount of adrenaline secreted by the user based on the blood glucose level information acquired by the acquisition function and a learning model that learns the relationship between the blood glucose level and adrenaline.
An output function that outputs the amount of adrenaline secreted estimated by the estimation function, and
An adrenaline estimation program that realizes.
JP2020101094A 2020-06-10 2020-06-10 System, method, and program for estimating injuries and diseases Pending JP2021196707A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020101094A JP2021196707A (en) 2020-06-10 2020-06-10 System, method, and program for estimating injuries and diseases

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020101094A JP2021196707A (en) 2020-06-10 2020-06-10 System, method, and program for estimating injuries and diseases

Publications (1)

Publication Number Publication Date
JP2021196707A true JP2021196707A (en) 2021-12-27

Family

ID=79195450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020101094A Pending JP2021196707A (en) 2020-06-10 2020-06-10 System, method, and program for estimating injuries and diseases

Country Status (1)

Country Link
JP (1) JP2021196707A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022033311A (en) * 2018-02-15 2022-02-28 株式会社三洋物産 Game machine
JP2022033309A (en) * 2018-02-15 2022-02-28 株式会社三洋物産 Game machine
JP2022033310A (en) * 2018-02-15 2022-02-28 株式会社三洋物産 Game machine
JP2022033312A (en) * 2018-02-15 2022-02-28 株式会社三洋物産 Game machine
JP2022033308A (en) * 2018-02-15 2022-02-28 株式会社三洋物産 Game machine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022033311A (en) * 2018-02-15 2022-02-28 株式会社三洋物産 Game machine
JP2022033309A (en) * 2018-02-15 2022-02-28 株式会社三洋物産 Game machine
JP2022033310A (en) * 2018-02-15 2022-02-28 株式会社三洋物産 Game machine
JP2022033312A (en) * 2018-02-15 2022-02-28 株式会社三洋物産 Game machine
JP2022033308A (en) * 2018-02-15 2022-02-28 株式会社三洋物産 Game machine

Similar Documents

Publication Publication Date Title
JP2021196707A (en) System, method, and program for estimating injuries and diseases
Weintraub et al. Acute heart failure syndromes: emergency department presentation, treatment, and disposition: current approaches and future aims: a scientific statement from the American Heart Association
Rice et al. CortiWatch: Watch-based cortisol tracker
Sankhala et al. A four-channel electrical impedance spectroscopy module for cortisol biosensing in sweat-based wearable applications
Donaire-Gonzalez et al. Comparison of physical activity measures using mobile phone-based CalFit and Actigraph
Cuspidi et al. Home blood pressure measurement and its relationship with blood pressure control in a large selected hypertensive population
Pavic et al. Mobile health technologies for continuous monitoring of cancer patients in palliative care aiming to predict health status deterioration: a feasibility study
WO2017115444A1 (en) Health monitoring system, health monitoring method, and health monitoring program
Pyrkov et al. Deep longitudinal phenotyping of wearable sensor data reveals independent markers of longevity, stress, and resilience
Raghu et al. ECG-guided non-invasive estimation of pulmonary congestion in patients with heart failure
Cullen et al. Evaluation of the Helicobacter pylori stool antigen (HpSA) test in routine clinical practice--is it patient-friendly?
Denk et al. Daily-living freezing of gait as quantified using wearables in people with parkinson disease: Comparison with self-report and provocation tests
Palà et al. Blood-biomarkers and devices for atrial fibrillation screening: Lessons learned from the AFRICAT (Atrial Fibrillation Research In CATalonia) study
Afify et al. Peguero electrocardiographic left ventricular hypertrophy criteria and risk of mortality
Vaidya et al. Role of Ultrasound in Evaluation of Undifferentiated Shock in ICU Settings.
Eades et al. Smartphone-recorded physical activity for estimating cardiorespiratory fitness
JP2019120553A (en) Health monitoring system, health monitoring method and health monitoring program
CN111462910A (en) Item matching method and device, electronic equipment and storage medium
Corrales-Medina et al. Accuracy of administrative database algorithms for hospitalized pneumonia in adults: a systematic review
Friedman et al. Having a primary care provider is the strongest predictor of successful follow-up of participants in a clinical trial
JP7057927B1 (en) Information processing equipment, estimation method, and estimation program
Musa et al. Association of adiposity and fitness with triglyceride-to-high-density lipoprotein cholesterol ratio in youth
Zhang et al. Cardiovascular Outcomes of α-Blockers vs 5-α Reductase Inhibitors for Benign Prostatic Hyperplasia
Nikolić et al. Development of a portable device for urodynamic data acquisition suitable for home use
Badawy et al. Digital behavioural interventions for people with sickle cell disease

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240305

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20240501

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20240610