JP2021196302A - Estimation device - Google Patents

Estimation device Download PDF

Info

Publication number
JP2021196302A
JP2021196302A JP2020104136A JP2020104136A JP2021196302A JP 2021196302 A JP2021196302 A JP 2021196302A JP 2020104136 A JP2020104136 A JP 2020104136A JP 2020104136 A JP2020104136 A JP 2020104136A JP 2021196302 A JP2021196302 A JP 2021196302A
Authority
JP
Japan
Prior art keywords
equation
input
data
solving
equations
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020104136A
Other languages
Japanese (ja)
Other versions
JP7400635B2 (en
Inventor
孝則 林
Takanori Hayashi
肇 久保
Hajime Kubo
隼 比嘉
Hayato Higa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP2020104136A priority Critical patent/JP7400635B2/en
Publication of JP2021196302A publication Critical patent/JP2021196302A/en
Application granted granted Critical
Publication of JP7400635B2 publication Critical patent/JP7400635B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Complex Calculations (AREA)

Abstract

To provide an internal state estimation device capable of achieving the acceleration of calculation of a thermal circuit network model or the like.SOLUTION: Information on a voltage command value of an IGBT 4, a current measured value and a case temperature measured value is inputted into an analyzer 2, respectively. The analyzer estimates a junction temperature (internal temperature) of the IGBT 4 by solving the simultaneous ordinary differential equations in an RC thermal network model 1. At this time, the simultaneous ordinary differential equations are simplified in advance and a portion in which the constant calculation can be performed shall be calculated in advance.SELECTED DRAWING: Figure 2

Description

本発明は、入力値から内部状態を推定する推定装置に関し、主に半導体デバイスの内部温度推定装置や振動シミュレーション装置などに用いられる。 The present invention relates to an estimation device that estimates an internal state from an input value, and is mainly used in an internal temperature estimation device or a vibration simulation device of a semiconductor device.

例えばIGBT(Insulated Gate Bipolar Transistor:絶縁ゲート型バイポーラトランジスタ)などの半導体デバイスのジャンクション温度(電源供給されているときのパッケージ内のシリコンダイの温度)は、熱設計などで重要な情報となる。 For example, the junction temperature (temperature of the silicon die in the package when power is supplied) of a semiconductor device such as an IGBT (Insulated Gate Bipolar Transistor) is important information in thermal design and the like.

ジャンクション温度について半導体メーカは詳細な解析情報を保持しているものの、半導体デバイスの利用者には必ずしも公開されていない。そのため、実物から過渡熱抵抗を計測する方法が標準化され(JESD51−14規格)、その方法を使ってラダー状のRC熱回路網モデルに対応する構造関数を生成する方法も公知となっている(非特許文献1参照)。 Although semiconductor manufacturers hold detailed analysis information on junction temperatures, they are not always disclosed to users of semiconductor devices. Therefore, a method for measuring transient thermal resistance from the actual product has been standardized (JESD51-14 standard), and a method for generating a structural function corresponding to a ladder-shaped RC thermal network model using that method is also known (JESD51-14 standard). See Non-Patent Document 1).

図1に基づきRC熱回路モデルの一例を説明する。RC熱回路網モデル1は、熱抵抗「R」と熱容量「C」とが階段状に繋がって構成され、熱流と電流・温度と電圧の対応から電気回路と同様に保存則に基づく連立微分方程式を立てることができ、これを解くことで各部の温度を算出することが可能である。 An example of the RC thermal circuit model will be described with reference to FIG. The RC thermal network model 1 is configured by connecting the thermal resistance "R" and the thermal capacity "C" in a stepped manner, and from the correspondence between the heat flow, current, temperature, and voltage, simultaneous differential equations based on the conservation law, similar to the electric circuit. It is possible to calculate the temperature of each part by solving this.

この連立微分方程式を使って、計測できるケース温度Tと投入熱量Qとからジャンクション温度T0を含む各部の温度を計測する。この連立微分方程式は、式(1)(2)のように記述できる。 Using this simultaneous differential equation, the temperature of each part including the junction temperature T 0 is measured from the measurable case temperature T and the input heat amount Q. This simultaneous differential equation can be described as Eqs. (1) and (2).

Figure 2021196302
Figure 2021196302

Figure 2021196302
Figure 2021196302

式(1)(2)中の「x」は内部状態を示し、「u」は入力を示し、「y」は出力を示し、それぞれ次の通りである。
・x=t(T01234
・u=t(Q T)
・y=t(T0
・式(1)中の「A」,「B」を式(3)に示す。
In equations (1) and (2), "x" indicates an internal state, "u" indicates an input, and "y" indicates an output, which are as follows.
・ X = t (T 0 T 1 T 2 T 3 T 4 )
・ U = t (Q T)
・ Y = t (T 0 )
-"A" and "B" in the formula (1) are shown in the formula (3).

Figure 2021196302
Figure 2021196302

式(3)中の「R0〜R4」は熱抵抗を示し、「C0〜C4」は熱容量を示している。 "R 0 to R 4 " in the formula (3) indicate the thermal resistance, and "C 0 to C 4 " indicate the heat capacity.

図1および式(3)では、熱抵抗「R」と熱容量「C」とが5段のRC熱回路網モデルを示しているが、段数が異なっていても行列の次数が変わるだけで式(1)(2)の形は同様である。また、「y」を求める式(2)は、単なる行列の積和演算であるから、式(1)が重要である。 In FIG. 1 and equation (3), an RC thermal network model in which the thermal resistance “R” and the heat capacity “C” have five stages is shown. 1) The shape of (2) is the same. Further, since the equation (2) for obtaining "y" is a mere product-sum operation of a matrix, the equation (1) is important.

連立常微分方程式である式(1)は、非特許文献2〜4に記載されているように、一般に微分を差分近似して「x」を初期値から段階的に積算していくことで数値的に解くことができる。その際、計測値からの入力「u」は必要なら補間してステップ毎にその時刻での値を入力する。 As described in Non-Patent Documents 2 to 4, the equation (1), which is a simultaneous ordinary differential equation, is generally a numerical value obtained by differentially approximating the differential and gradually integrating "x" from the initial value. Can be solved. At that time, the input "u" from the measured value is interpolated if necessary, and the value at that time is input for each step.

篠田卓也 井上鑑孝 伊藤哲也 “半導体デバイス熱抵抗θJCの国際標準規格に対する提言”,Thermal Science&Engineering Vol.23 No.1(2015) pp.1-4[online] 2020年3月23日検索インターネット<URL:https://www.jstage.jst.go.jp/article/tse/23/1/23_1/_pdf/-char/ja>Takuya Shinoda Noritaka Inoue Tetsuya Ito “Proposals for International Standards for Semiconductor Device Thermal Resistance θJC”, Thermal Science & Engineering Vol.23 No.1 (2015) pp.1-4 [online] March 23, 2020 Search Internet <URL : Https://www.jstage.jst.go.jp/article/tse/23/1/23_1/_pdf/-char/ja> “第10章 常微分方程式(Ordinary Differential Equation:ODE)の解法とその応用”[online] 2020年3月23日検索インターネット<URL:http://www.nuce.nagoya-u.ac.jp/e8/Matsuoka/070ctaveNum/LectureDocPub/07CompA|go_05_pub.pdf>2020年6月8日検索"Chapter 10 Ordinary Differential Equation (ODE) Solving Method and Its Application" [online] March 23, 2020 Search Internet <URL: http://www.nuce.nagoya-u.ac.jp/ e8 / Matsuoka / 070ctaveNum / LectureDocPub / 07CompA | go_05_pub.pdf> Search on June 8, 2020 “scipy integrate.solve_ivp"[online] 2020年3月23日検索インターネット<URL:https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.solve_ivp.html>“Scipy integrate.solve_ivp” [online] March 23, 2020 Search Internet <URL: https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.solve_ivp.html> “常微分方程式/常微分方程式の初期値問題のソルバー”[online] 2020年3月23日検索インターネット<URL:https://jp.mathworks.com/help/matlab/ordinary-differential-equations.html>"Ordinary differential equation / solver of initial value problem of ordinary differential equation" [online] March 23, 2020 Search Internet <URL: https://jp.mathworks.com/help/matlab/ordinary-differential-equations.html > “第6章 放熱設計方法” 富士電機株式会社[online] 2020年3月23日検索インターネット<URL:https://www.fujielectric.co.jp/products/semiconductor/model/igbt/application/box/doc/pdf/RH984b/RH984b_06.pdf>"Chapter 6 Heat Dissipation Design Method" Fuji Electric Co., Ltd. [online] March 23, 2020 Search Internet <URL: https://www.fujielectric.co.jp/products/semiconductor/model/igbt/application/box/ doc / pdf / RH984b / RH984b_06.pdf>

式(1)に示すRC熱回路網モデル1の連立微分方程式は、熱抵抗R・熱容量Cがジャンクション側とケース側とで100倍以上も異なるため、一般に硬い(stiff)と呼ばれる問題になり、差分を取る時間間隔をかなり小さくしないと計算が収束しない。 The simultaneous differential equations of the RC thermal network model 1 shown in the equation (1) are generally called stiff because the thermal resistance R and the heat capacity C differ by 100 times or more between the junction side and the case side. The calculation does not converge unless the time interval for taking the difference is made considerably small.

このため、計算ステップを非常に細かく刻む必要があり、過大な演算時間がかかるおそれがある。例えば10kHzサンプリングで計測した10万データ(10秒分)を入力に使って数値解析ソフトウェア(「SciPy」の「solve_inv」)で解いたところ、解が50万ステップ以上となり、演算時間に10分以上もかかった。 Therefore, it is necessary to finely chop the calculation steps, which may take an excessive calculation time. For example, when 100,000 data (10 seconds) measured by 10 kHz sampling was used as an input and solved with numerical analysis software ("solve_inv" of "SciPy"), the solution became 500,000 steps or more, and the calculation time was 10 minutes or more. It also took.

本発明は、このような従来の問題を解決するためになされ、半導体デバイスのジャンクション温度推定の演算などの高速化を図ることを解決課題としている。 The present invention has been made to solve such a conventional problem, and an object of the present invention is to speed up the calculation of junction temperature estimation of a semiconductor device.

(1)本発明の一態様は、
入力データに基づきユニットの内部状態を推定する装置であって、
外力データ群を収集して前記入力データとして随時入力し、
前記入力データに対する運動方程式を解くことで前記内部状態の値を演算し、
あらかじめ前記運動方程式を簡略し、かつ定数計算できる部分を事前に算出しておくことを特徴としている。
(1) One aspect of the present invention is
A device that estimates the internal state of the unit based on the input data.
Collect the external force data group and input it as the input data at any time.
By solving the equation of motion for the input data, the value of the internal state is calculated.
The feature is that the equation of motion is simplified and the part where the constant can be calculated is calculated in advance.

(2)本発明の他の態様は、半導体デバイスの内部温度を、熱抵抗と熱容量が階段状に繋がったRC熱回路網モデルに基づき推定する装置であって、
前記半導体デバイスの電圧指令値,電流の計測値,ケース温度の計測値のそれぞれの情報が入力される一方、前記内部温度を前記RC熱回路網モデルの連立常微分方程式を解くことで推定し、
前記連立方程式をあらかじめ式(10)に簡略し、
式(8)(9)に示す定数計算できる部分を事前に計算しておくことを特徴としている。
(2) Another aspect of the present invention is a device that estimates the internal temperature of a semiconductor device based on an RC thermal network model in which thermal resistance and heat capacity are connected in a stepped manner.
While the information of the voltage command value, the current measurement value, and the case temperature measurement value of the semiconductor device is input, the internal temperature is estimated by solving the simultaneous ordinary differential equations of the RC thermal network model.
The simultaneous equations are simplified in advance to equation (10).
It is characterized in that the part where the constant can be calculated shown in the equations (8) and (9) is calculated in advance.

Figure 2021196302
Figure 2021196302

Figure 2021196302
Figure 2021196302

Figure 2021196302
Figure 2021196302

・u(t)=入力
・x(t)=内部温度
・A,Bは、式(3)のとおりとする。
-U (t) = input-x (t) = internal temperature-A and B are as shown in equation (3).

Figure 2021196302
Figure 2021196302

・R0〜R4=熱抵抗
・C0〜C4=熱容量
(3)本発明のさらに他の対象は、半導体デバイスの内部温度を、熱抵抗と熱容量が階段状に繋がったRC熱回路網モデルに基づき推定する装置であって、
前記半導体デバイスの電圧指令値、電流の計測値、ケース温度のそれぞれの情報が入力される一方、
前記入力されたデータを線形近似させ、前記内部温度を前記RC熱回路モデルの連立常微分法方程式を解くことで推定し、
前記連立常微分方程式を解く際、式(15)〜式(17)を用いることを特徴としている。
-R 0 to R 4 = thermal resistance-C 0 to C 4 = heat capacity (3) Another object of the present invention is an RC thermal circuit network in which the internal temperature of a semiconductor device is connected in a stepwise manner by thermal resistance and heat capacity. It is a device that estimates based on a model.
While the voltage command value, current measurement value, and case temperature information of the semiconductor device are input, while
The input data is linearly approximated, and the internal temperature is estimated by solving the simultaneous ordinary differential equations of the RC thermal circuit model.
When solving the simultaneous ordinary differential equations, equations (15) to (17) are used.

Figure 2021196302
Figure 2021196302

Figure 2021196302
Figure 2021196302

Figure 2021196302
Figure 2021196302

・A,Bは、式(3)のとおりとする。 ・ A and B are as shown in equation (3).

Figure 2021196302
Figure 2021196302

・R0〜R4=熱抵抗
・C0〜C4=熱容量
(4)本発明のさらに他の態様は、1次振動系で異常によって発生する外力の時系列データを用意し、該外力時系列データが与えられたときの質点振動を推定して模擬した振動データを作成する装置であって、
前記外力時系列データを入力として、前記1次振動系の質点の運動方程式を解くことにより前記振動データを取得し、
前記運動方程式を解くにあたって、式(19)(20)を用いることを特徴としている。
-R 0 to R 4 = thermal resistance-C 0 to C 4 = thermal capacity (4) In yet another aspect of the present invention, time-series data of an external force generated by an abnormality in the primary vibration system is prepared, and the external force is applied. It is a device that estimates the mass point vibration when series data is given and creates simulated vibration data.
The vibration data is acquired by solving the equation of motion of the mass point of the primary vibration system by inputting the external force time series data.
In solving the equation of motion, equations (19) and (20) are used.

Figure 2021196302
Figure 2021196302

Figure 2021196302
Figure 2021196302

式19中、「x」は1次元振動系の質点(内部状態兼出力)を示し、「u」は入力を示している。 In Equation 19, "x" indicates a mass point (internal state and output) of the one-dimensional vibration system, and "u" indicates an input.

本発明によれば、半導体デバイスのジャンクション温度推定の演算などを高速化することができる。 According to the present invention, it is possible to speed up the calculation of junction temperature estimation of a semiconductor device.

RC熱回路網モデルの一例を示す構成図。The block diagram which shows an example of the RC thermal network model. 実施例1の構成図。The block diagram of Example 1. 実施例2の構成図。The block diagram of Example 2. 実施例3の構成図。The block diagram of Example 3.

以下、本発明の実施形態に係る推定装置を実施例1〜3に基づき説明する。 Hereinafter, the estimation device according to the embodiment of the present invention will be described with reference to Examples 1 to 3.

(1)構成例
図2に基づき実施例1の構成を説明する。本実施例は、IGBT4の素子に流れる電流値,電圧指令値,チップ直下のケース温度を高頻度で計測し、これらの計測情報に基づきリアルタイムにジャンクション温度を推定するジャンクション温度推定装置を構成する。
(1) Configuration Example The configuration of the first embodiment will be described with reference to FIG. This embodiment constitutes a junction temperature estimation device that frequently measures the current value, voltage command value, and case temperature directly under the chip flowing through the element of the IGBT 4, and estimates the junction temperature in real time based on these measurement information.

図2中の2は、前記ジャンクション温度推定装置を構成する解析装置を示している。この解析装置2は、コンピュータにより構成され、高頻度で収集された以下のA〜Cの情報が随時入力されている。
A:制御装置3からIGBT4への電圧指令値
B:電流計5で計測されたIGBT4に流れる電流値
C:IGBT4の直下の温度計6で計測されたケース温度の計測値
ここではIGBT4の構成関数は、あらかじめ非特許文献1の手法などで計測されてRC熱回路網モデルが作られているものとする。具体的には解析装置2は、周期が10kH程度のサンプリングで前記情報(A〜C)のデータを収集し、収集されたデータに基づき温度推定を行う。
Reference numeral 2 in FIG. 2 shows an analysis device constituting the junction temperature estimation device. The analysis device 2 is configured by a computer, and the following information A to C collected at high frequency is input at any time.
A: Voltage command value from the control device 3 to the IGBT 4 B: Current value flowing through the IGBT 4 measured by the ammeter 5 C: Measured value of the case temperature measured by the thermometer 6 directly under the IGBT 4 Here, the constituent function of the IGBT 4. Is measured in advance by the method of Non-Patent Document 1 or the like, and it is assumed that an RC thermal network model has been created. Specifically, the analysis device 2 collects the data of the information (A to C) by sampling with a period of about 10 kHz, and estimates the temperature based on the collected data.

このとき温度推定に必要な構造関数は、別途事前に計測され、解析装置2に組み込まれているものとする。また、解析装置2によるジャンクション温度推定は、式(1)の連立常微分方程式を解くことで行われる。 At this time, it is assumed that the structural function required for temperature estimation is separately measured in advance and incorporated in the analysis device 2. Further, the junction temperature estimation by the analysis device 2 is performed by solving the simultaneous ordinary differential equations of the equation (1).

RC熱回路網モデルへの投入熱量Qは、IGBT4のデータシートを利用して計算する。すなわち、「電流=デバイス電圧」の相関表を使って計測された電流値からデバイスの電圧値を読み取る。また、電圧指令値から決まるデューディ比と、デバイスの電圧値・電流値とから導通損を求める。 The heat input Q to the RC thermal network model is calculated using the data sheet of the IGBT 4. That is, the voltage value of the device is read from the current value measured using the correlation table of "current = device voltage". In addition, the due diligence ratio determined from the voltage command value and the voltage / current value of the device are used to obtain the conduction loss.

さらにスイッチング損も電流との相関表から読み取り、それらを加算した総損失が投入熱量Qとなる。なお、IGBT4などのデバイス特性はジャンクション温度で変化する部分があるため、相関表の読み取りにあたってジャンクション温度が必要となる。このジャンクション温度は、最初の時刻では温度計6で計測したケース温度の計測値を使い、それ以降は前回推定したジャンクション温度を用いる。このときIGBT4は切替動作になるので、該IGBT4が導通していないタイミングでは「Q=0」である(非特許文献5参照)。 Further, the switching loss is also read from the correlation table with the current, and the total loss obtained by adding them is the input heat amount Q. Since the device characteristics of the IGBT 4 and the like have a part that changes depending on the junction temperature, the junction temperature is required to read the correlation table. For this junction temperature, the measured value of the case temperature measured by the thermometer 6 is used at the first time, and the junction temperature estimated last time is used thereafter. At this time, since the IGBT 4 is in a switching operation, it is “Q = 0” at the timing when the IGBT 4 is not conducting (see Non-Patent Document 5).

(2)ジャンクション温度の推定処理
前述のように解析装置2によるジャンクション温度推定は、式(1)の連立常微分方程式を解くことで行われる。その際、あらかじめ数式レベルで解いて簡略化しておき、定数計算できる部分を先に計算しておくものとする。以下、詳細を説明する。
(2) Junction temperature estimation process As described above, the junction temperature estimation by the analyzer 2 is performed by solving the simultaneous ordinary differential equations of the equation (1). At that time, it is assumed that the part that can be calculated as a constant is calculated first by solving it at the mathematical formula level in advance and simplifying it. The details will be described below.

まず、式(1)で与えられる連立常微分方程式の一般解は、式(4)となる。 First, the general solution of the simultaneous ordinary differential equations given by Eq. (1) is Eq. (4).

Figure 2021196302
Figure 2021196302

式(4)中の「C」は積文定数である。この「C」を時刻「t0」での値「x(t0)」から定めると式(5)となる。 "C" in the equation (4) is a Sekibunkan constant. When this "C" is determined from the value "x (t 0 )" at the time "t 0 ", the equation (5) is obtained.

Figure 2021196302
Figure 2021196302

ここで「t0」と「t」との間隔がデータ計測周期ほどであり、その間に「u(s)」の値が一定であるとみなすと、式(5)を式(6)に変形することができる。 Here, assuming that the interval between "t 0 " and "t" is about the data measurement cycle and the value of "u (s)" is constant during that period, the equation (5) is transformed into the equation (6). can do.

Figure 2021196302
Figure 2021196302

式(6)中の積分は計算できるので、式(7)となる。 Since the integral in the equation (6) can be calculated, it becomes the equation (7).

Figure 2021196302
Figure 2021196302

ここで「t−t0=T」が一定であれば、式(8)(9)は時間に依存しない定数行例となり、計算データが与えられる前に計算しておくことができる。 Here, if "t-t 0 = T" is constant, the equations (8) and (9) become time-independent constant line examples, and can be calculated before the calculation data is given.

Figure 2021196302
Figure 2021196302

Figure 2021196302
Figure 2021196302

その結果、計測データが与えられた時の計算は、式(10)と行列の簡単な積和演算となる。 As a result, the calculation when the measurement data is given is a simple product-sum operation of the equation (10) and the matrix.

Figure 2021196302
Figure 2021196302

そうすると解析装置2は、入力「u(t)」からIGBT4の内部状態(内部温度)「x(t)」を、式(10)により計算することが可能となる。このとき解析装置2は、あらかじめ構造関数からIGBT4の連立常微分方程式の解における「R」および「S」を式(8)(9)により求めておくものとする。また、最初の「x(t0)」は、IBBT4の内部温度をすべてケース温度の計測値で初期化しておくものとする。 Then, the analysis device 2 can calculate the internal state (internal temperature) “x (t)” of the IGBT 4 from the input “u (t)” by the equation (10). At this time, the analysis device 2 shall obtain in advance "R" and "S" in the solution of the simultaneous ordinary differential equations of the IGBT 4 from the structural function by the equations (8) and (9). Further, for the first "x (t 0 )", it is assumed that all the internal temperatures of the IBBT 4 are initialized with the measured values of the case temperature.

そして、周期Sで新たな入力「u(t)」を取得し、これと前回の「x(t0)」とから式(10)で最新の内部温度「x(t)」を計算する動作を繰り返し、計算結果をジャンクション温度として推定する。この場合の計算は簡単な行列の積和演算なため、非常に高速であり、この点でジャンクション温度計算の高速化を図ることが可能となる。 Then, the operation of acquiring a new input "u (t)" in the period S and calculating the latest internal temperature "x (t)" by the equation (10) from this and the previous "x (t 0)". Is repeated, and the calculation result is estimated as the junction temperature. Since the calculation in this case is a simple matrix product-sum operation, it is very fast, and in this respect, it is possible to speed up the junction temperature calculation.

例えば10kHzサンプリングで計測した10万データ(10秒分)を入力に一括計算した際には入力の計測データから投入熱量Qの算出を含めて2秒で計算することができた。なお、計測値からリアルタイムに内部温度を推定(計算)する場合には、若干効率が落ちるものの、十分なリアルタイム処理が可能となる。 For example, when 100,000 data (for 10 seconds) measured by 10 kHz sampling were collectively calculated for input, it was possible to calculate in 2 seconds including the calculation of the input heat amount Q from the input measurement data. When the internal temperature is estimated (calculated) in real time from the measured value, although the efficiency is slightly reduced, sufficient real-time processing is possible.

ここで式(8)の「R=exp(TA)」に出てくる行列の指数関数は、指数関数のテーラー級数に行列TAを代入したものであり、適当な項数までの有限和で近似計算することができる。また、式(7)中の「A」を「A=PDP-1」と対角化できる場合には、前記「R=exp(TA)」を式(11)と表すことができる。 Here, the exponential function of the matrix appearing in "R = exp (TA)" of the equation (8) is the one in which the matrix TA is substituted into the tailor series of the exponential function, and is approximated by a finite sum up to an appropriate number of terms. Can be calculated. Further, when "A" in the formula (7) can be diagonalized to "A = PDP-1 ", the above "R = exp (TA)" can be expressed as the formula (11).

Figure 2021196302
Figure 2021196302

式(11)中の「D」は対角行列なため、同「exe(TD)」は各対角成分に該当対角成分の指数関数を並べたものとなり、指数関数のテーラー級数を適当な項数まで計算するのと比べて非常に簡単となり、この点でも高速化に寄与できる。ただし、式(11)の計算は初期化時にのみ実行されるものとする。 Since "D" in equation (11) is a diagonal matrix, the same "exe (TD)" is an exponential function of the corresponding diagonal component arranged for each diagonal component, and the Taylor series of the exponential function is appropriate. It is much easier than calculating up to the number of terms, which also contributes to speeding up. However, it is assumed that the calculation of the equation (11) is executed only at the time of initialization.

このように実施例1によれば、式(1)の連立常微分方程式を解く際、あらかじめ数式レベルで解いて式(10)に簡略し、式(8)(9)に示す定数計算できる部分を事前に計算しておくことにより、各時刻の内部温度の推定を非常に高速に実行することが可能となる。 As described above, according to the first embodiment, when solving the simultaneous ordinary differential equations of the equation (1), the part that can be solved in advance at the mathematical expression level and simplified to the equation (10) to calculate the constants shown in the equations (8) and (9). By calculating in advance, it is possible to estimate the internal temperature at each time at a very high speed.

図3に基づき実施例2を説明する。本実施例の解析装置2は、IGBT4の素子に流れる電流値,電圧指令値,チップ直下のケース温度を高頻度で計測してデータベース8に保管し、保管されたデータに基づきジャンクション温度を推定するジャンクション推定装置を構成する。 The second embodiment will be described with reference to FIG. The analysis device 2 of this embodiment frequently measures the current value, the voltage command value, and the case temperature directly under the chip that flow through the element of the IGBT 4, stores them in the database 8, and estimates the junction temperature based on the stored data. Configure a junction estimation device.

ここでは高頻度(例えば10kHzサンプリング)で計測された前記情報(A〜C)のデータは、データベース8に保管される。このときIGBT4の構造関数は、実施例1と同様、あらかじめ非特許文献1などの手法で計測され、RC熱回路網モデルが作成されているものとする。 Here, the data of the information (A to C) measured with high frequency (for example, 10 kHz sampling) is stored in the database 8. At this time, it is assumed that the structural function of the IGBT 4 is measured in advance by a method such as Non-Patent Document 1 as in the first embodiment, and an RC thermal network model is created.

そして、解析装置2は、データベース8から前記情報(A〜C)のデータを時系列データとして取得し、ジャンクション温度の推定を行う。ただし、データベース8は、前記情報(A〜C)のデータを蓄積保管できればよく、DBMS(DataBase Management System)で管理されるシステムには限定されず、ファイル/ファイル群などでもよい。具体的に解析装置2のジャンクション温度推定は、実施例1と同様の計算でもよいが、本実施例の方法を採用することで精度を上げることが可能である。 Then, the analysis device 2 acquires the data of the information (A to C) from the database 8 as time series data, and estimates the junction temperature. However, the database 8 is not limited to a system managed by a DBMS (DataBase Management System) as long as it can store and store the data of the information (A to C), and may be a file / file group or the like. Specifically, the junction temperature estimation of the analysis device 2 may be calculated in the same manner as in the first embodiment, but the accuracy can be improved by adopting the method of the present embodiment.

実施例1は、式(5)の積分区間[t0,t]において「u(s)」が一定であるとみなした。これに対して本実施例は、「u(s)」を「u(t0)」と「u(t)」の間で次の線形近似を考える。 In Example 1, "u (s)" was considered to be constant in the integration interval [t 0, t] of the equation (5). On the other hand, in this embodiment, the following linear approximation is considered between "u (s)" and "u (t 0 )" and "u (t)".

Figure 2021196302
Figure 2021196302

式(12)を式(5)に代入すると、式(13)となる。 Substituting equation (12) into equation (5) yields equation (13).

Figure 2021196302
Figure 2021196302

式(13)の第二項について、部分積分を使って積分を実行すると、式(14)となる。 When the second term of the equation (13) is integrated by using integration by parts, the equation (14) is obtained.

Figure 2021196302
Figure 2021196302

式(14)を式(13)に代入して整理し直すと式(15)となる。 Substituting the equation (14) into the equation (13) and rearranging it gives the equation (15).

Figure 2021196302
Figure 2021196302

ただし、式(15)中の「V」,「W」は、式(16)(17)に示すように、時間に依存しない定数行列であり、計測データが与えられる前に計算を終了しておくことができる。 However, "V" and "W" in the equation (15) are time-independent constant matrices as shown in the equations (16) and (17), and the calculation is completed before the measurement data is given. Can be left.

Figure 2021196302
Figure 2021196302

Figure 2021196302
Figure 2021196302

ここでは解析装置2は、あらかじめ構造関数から式(15)に示すIGBT4の連立常微分方程式の解における「R」,「V」,「W」を求めておくものとする。
また、式(15)中の「x(t0)」について、最初は内部温度をすべてケース温度の計測値で初期化しておくものとする。
Here, it is assumed that the analysis device 2 obtains “R”, “V”, and “W” in the solution of the simultaneous ordinary differential equations of the IGBT 4 shown in the equation (15) from the structural function in advance.
Further, regarding "x (t 0 )" in the equation (15), it is assumed that all the internal temperatures are initially initialized with the measured values of the case temperature.

その後、周期Sでその時刻の入力「u(t)」と前回の入力「u(t0)」とを用意し、これと前回の「x(t0)」とから式(15)を用いて、最新の内部温度「x(t)」を計算する動作を繰り返し、計算結果をジャンクション温度として推定する。このような実施例2によれば、入力データを線形近似することで演算量をそれほど増やすことなく、推定精度を向上させることができる。 After that, the input "u (t)" of the time and the previous input "u (t 0 )" are prepared in the cycle S, and the equation (15) is used from this and the previous input "x (t 0)". Then, the operation of calculating the latest internal temperature "x (t)" is repeated, and the calculation result is estimated as the junction temperature. According to the second embodiment, the estimation accuracy can be improved by linearly approximating the input data without increasing the amount of calculation so much.

図4に基づき実施例3を説明する。本実施例は、RC熱回路網モデル以外の実施例として、1次元振動系での質点シミュレーションへの適用例を示している。 Example 3 will be described with reference to FIG. This embodiment shows an application example to mass point simulation in a one-dimensional vibration system as an example other than the RC thermal network model.

例えば機械設備の振動技術を評価する際、該機械設備の振動データを模擬的に作成したいという要求がある。そこで、本実施例は、簡単な一次元振動系で異常によって発生する外力時系列データを用意し、外力時系列データが与えられたときの質的振動を推定して模擬した振動データを作成する。 For example, when evaluating the vibration technology of a machine or equipment, there is a demand to simulate the vibration data of the machine or equipment. Therefore, in this embodiment, external force time-series data generated by an abnormality in a simple one-dimensional vibration system is prepared, and qualitative vibration when the external force time-series data is given is estimated and simulated vibration data is created. ..

すなわち、あらかじめデータベース9には外力の時系列データが保管され、解析装置2はデータベース9の補完データを入力とし、連立常微分方程式を解いて質点の変位・速度・加速度の時系列データを得る。 That is, the time-series data of the external force is stored in the database 9 in advance, and the analysis device 2 takes the complementary data of the database 9 as input and solves the simultaneous ordinary differential equations to obtain the time-series data of the displacement, velocity, and acceleration of the mass point.

ここで外力「u(t)」の働く1次元振動系の質点「x」の運動方程式は、式(18)で与えられる。 Here, the equation of motion of the mass point "x" of the one-dimensional vibration system in which the external force "u (t)" acts is given by the equation (18).

Figure 2021196302
Figure 2021196302

式(18)は二階の常微分方程式であるが、追加の変数「v=(d/dt)x」を導入することにより式(19)の連立常微分方程式にできる。 Equation (18) is a second-order ODE, but it can be made into a simultaneous ODE of Eq. (19) by introducing an additional variable "v = (d / dt) x".

Figure 2021196302
Figure 2021196302

式(19)中、「内部状態兼出力x=t(x、v)」で示され、「入力u=t(u(t))」と示され、「A」および「B」は式(20)で示される。 In the formula (19), "internal state and output x = t (x, v)" is shown, "input u = t (u (t))" is shown, and "A" and "B" are shown in the formula ( 20).

Figure 2021196302
Figure 2021196302

その結果、実施例1,2で扱うものと同じ形式となり、同様に解くことで外力の時系列データ「u(t)」が与えられた時の質点の位置および速度の時系列値を取得でき、また加速度も速度を時間微分することで取得できる。これにより一階常微分方程式だけでなく、二階以上の常微分方程式でも同様に処理できる効果が得られる。なお、本発明は、上記実施形態に限定されるものではなく、各請求項に記載された範囲内で変形して実施できるものとする。 As a result, the format is the same as that used in Examples 1 and 2, and by solving in the same way, the time-series value of the mass point position and velocity when the time-series data "u (t)" of the external force is given can be obtained. Also, the acceleration can be obtained by differentiating the velocity with respect to time. As a result, not only the first-order ordinary differential equation but also the second-order or higher-order ordinary differential equation can be processed in the same manner. It should be noted that the present invention is not limited to the above embodiment, and can be modified and implemented within the scope described in each claim.

1…RC熱回路網モデル
2…解析装置(推定装置)
3…制御装置
4…IGBT(半導体デバイス)
5…電流計
6…温度計
7…交流電源
8,9…データベース
1 ... RC thermal network model 2 ... Analytical device (estimating device)
3 ... Control device 4 ... IGBT (semiconductor device)
5 ... Ammeter 6 ... Thermometer 7 ... AC power supply 8, 9 ... Database

Claims (5)

入力データに基づきユニットの内部状態を推定する装置であって、
外力データ群を収集して前記入力データとして随時入力し、
前記入力データに対する運動方程式を解くことで前記内部状態の値を演算し、
あらかじめ前記運動方程式を簡略し、かつ定数計算できる部分を事前に算出しておくことを特徴とする推定装置。
A device that estimates the internal state of the unit based on the input data.
Collect the external force data group and input it as the input data at any time.
By solving the equation of motion for the input data, the value of the internal state is calculated.
An estimation device characterized in that the equation of motion is simplified in advance and a part that can be calculated as a constant is calculated in advance.
前記入力データを線形近似させることを特徴とする請求項1記載の推定装置。 The estimation device according to claim 1, wherein the input data is linearly approximated. 半導体デバイスの内部温度を、熱抵抗と熱容量が階段状に繋がったRC熱回路網モデルに基づき推定する装置であって、
前記半導体デバイスの電圧指令値,電流の計測値,ケース温度の計測値のそれぞれの情報が入力される一方、前記内部温度を前記RC熱回路網モデルの連立常微分方程式を解くことで推定し、
前記連立方程式をあらかじめ式(10)に簡略し、
式(8)(9)に示す定数計算できる部分を事前に計算しておくことを特徴とする推定装置。
Figure 2021196302
Figure 2021196302
Figure 2021196302
・u(t)=入力
・x(t)=内部温度
・A,Bは、式(3)のとおりとする。
Figure 2021196302
・R0〜R4=熱抵抗
・C0〜C4=熱容量
A device that estimates the internal temperature of a semiconductor device based on an RC thermal network model in which thermal resistance and heat capacity are connected in a stepped manner.
While the information of the voltage command value, the current measurement value, and the case temperature measurement value of the semiconductor device is input, the internal temperature is estimated by solving the simultaneous ordinary differential equations of the RC thermal network model.
The simultaneous equations are simplified in advance to equation (10).
An estimation device characterized in that a portion capable of calculating a constant shown in equations (8) and (9) is calculated in advance.
Figure 2021196302
Figure 2021196302
Figure 2021196302
-U (t) = input-x (t) = internal temperature-A and B are as shown in equation (3).
Figure 2021196302
・ R 0 to R 4 = thermal resistance ・ C 0 to C 4 = heat capacity
半導体デバイスの内部温度を、熱抵抗と熱容量が階段状に繋がったRC熱回路網モデルに基づき推定する装置であって、
前記半導体デバイスの電圧指令値、電流の計測値、ケース温度のそれぞれの情報が入力される一方、
前記入力されたデータを線形近似させ、前記内部温度を前記RC熱回路モデルの連立常微分法方程式を解くことで推定し、
前記連立常微分方程式を解く際、式(15)〜式(17)を用いることを特徴とする推定装置。
Figure 2021196302
Figure 2021196302
Figure 2021196302
・A,Bは、式(3)のとおりとする。
Figure 2021196302
・R0〜R4=熱抵抗
・C0〜C4=熱容量
A device that estimates the internal temperature of a semiconductor device based on an RC thermal network model in which thermal resistance and heat capacity are connected in a stepped manner.
While the voltage command value, current measurement value, and case temperature information of the semiconductor device are input, while
The input data is linearly approximated, and the internal temperature is estimated by solving the simultaneous ordinary differential equations of the RC thermal circuit model.
An estimation device characterized in that equations (15) to (17) are used when solving simultaneous ordinary differential equations.
Figure 2021196302
Figure 2021196302
Figure 2021196302
・ A and B are as shown in equation (3).
Figure 2021196302
・ R 0 to R 4 = thermal resistance ・ C 0 to C 4 = heat capacity
1次振動系で異常によって発生する外力の時系列データを用意し、該外力時系列データが与えられたときの質点振動を推定して模擬した振動データを作成する装置であって、
前記外力時系列データを入力として、前記1次振動系の質点の運動方程式を解くことにより前記振動データを取得し、
前記運動方程式を解くにあたって、式(19)(20)を用いることを特徴とする推定装置。
Figure 2021196302
Figure 2021196302
式19中、「x」は1次元振動系の質点(内部状態兼出力)を示し、「u」は入力を示している。
It is a device that prepares time-series data of external force generated by an abnormality in the primary vibration system, estimates the mass point vibration when the external force time-series data is given, and creates simulated vibration data.
The vibration data is acquired by solving the equation of motion of the mass point of the primary vibration system by inputting the external force time series data.
An estimation device characterized in that equations (19) and (20) are used in solving the equation of motion.
Figure 2021196302
Figure 2021196302
In Equation 19, "x" indicates a mass point (internal state and output) of the one-dimensional vibration system, and "u" indicates an input.
JP2020104136A 2020-06-17 2020-06-17 estimation device Active JP7400635B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020104136A JP7400635B2 (en) 2020-06-17 2020-06-17 estimation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020104136A JP7400635B2 (en) 2020-06-17 2020-06-17 estimation device

Publications (2)

Publication Number Publication Date
JP2021196302A true JP2021196302A (en) 2021-12-27
JP7400635B2 JP7400635B2 (en) 2023-12-19

Family

ID=79198069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020104136A Active JP7400635B2 (en) 2020-06-17 2020-06-17 estimation device

Country Status (1)

Country Link
JP (1) JP7400635B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000088666A (en) * 1998-09-11 2000-03-31 Fujikura Ltd Method and apparatus for calculating conductor temperature of power cable in underground duct
JP2019144081A (en) * 2018-02-20 2019-08-29 Necプラットフォームズ株式会社 Temperature sensor, temperature sensing method, and temperature sensing program

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5278007B2 (en) 2009-02-02 2013-09-04 株式会社オートネットワーク技術研究所 Fuse temperature estimation method and fuse device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000088666A (en) * 1998-09-11 2000-03-31 Fujikura Ltd Method and apparatus for calculating conductor temperature of power cable in underground duct
JP2019144081A (en) * 2018-02-20 2019-08-29 Necプラットフォームズ株式会社 Temperature sensor, temperature sensing method, and temperature sensing program

Also Published As

Publication number Publication date
JP7400635B2 (en) 2023-12-19

Similar Documents

Publication Publication Date Title
Szekely et al. Electro-thermal and logi-thermal simulation of VLSI designs
Evans et al. Automated fast extraction of compact thermal models for power electronic modules
Okoro Steady and transient states thermal analysis of a 7.5-kW squirrel-cage induction machine at rated-load operation
Evans et al. Design tools for rapid multidomain virtual prototyping of power electronic systems
Starzak et al. Behavioral approach to SiC MPS diode electrothermal model generation
JP7003047B2 (en) Data processing to characterize the thermal behavior of the battery
Ma et al. Modeling and characterization of frequency-domain thermal impedance for IGBT module through heat flow information
Rodríguez et al. Thermal parameter and state estimation for digital twins of e-powertrain components
Benedikt et al. Automated configuration for non-iterative co-simulation
CN106104234B (en) Method and apparatus for calculating the junction temperature of RF power MOSFET
Janicki et al. Generation of reduced dynamic thermal models of electronic systems from time constant spectra of transient temperature responses
Polom et al. Exploiting distinct thermal response properties for power semiconductor module health monitoring
Wang et al. A fast leakage-aware full-chip transient thermal estimation method
Tannous et al. Model-based temperature estimation of power electronics systems
JP7400635B2 (en) estimation device
Kiewkanya et al. Constructing C++ software size estimation model from class diagram
JP2015078903A (en) Parameter setting method and simulation device
JP5678192B2 (en) Numerical analysis system
Noebauer Creating compact models using standard spreadsheet software
CN104572427B (en) A kind of method, server and the system of page test
Meir et al. Blast: Efficient computation of nonlinear delay sensitivities in electronic and biological networks using barycentric lagrange enabled transient adjoint analysis
Biagetti et al. SiSMA-a tool for efficient analysis of analog CMOS integrated circuits affected by device mismatch
JP2009048505A (en) Circuit operation verification device, circuit operation verification method, method for manufacturing semiconductor integrated circuit, control program, and computer-readable storage medium
JP6246548B2 (en) Simulation apparatus and computer program
Yue et al. Reduced Models and Uncertainty Quantification

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220922

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230530

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230808

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230915

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231120

R150 Certificate of patent or registration of utility model

Ref document number: 7400635

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150