JP2021195754A - Marine gravity-based foundation - Google Patents

Marine gravity-based foundation Download PDF

Info

Publication number
JP2021195754A
JP2021195754A JP2020101322A JP2020101322A JP2021195754A JP 2021195754 A JP2021195754 A JP 2021195754A JP 2020101322 A JP2020101322 A JP 2020101322A JP 2020101322 A JP2020101322 A JP 2020101322A JP 2021195754 A JP2021195754 A JP 2021195754A
Authority
JP
Japan
Prior art keywords
foundation
pyramidal
force
seabed
horizontal force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020101322A
Other languages
Japanese (ja)
Inventor
宏紹 笠原
Hirotsugu Kasahara
直志 中村
Naoshi Nakamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Engineering Co Ltd
Original Assignee
Nippon Steel Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Engineering Co Ltd filed Critical Nippon Steel Engineering Co Ltd
Priority to JP2020101322A priority Critical patent/JP2021195754A/en
Publication of JP2021195754A publication Critical patent/JP2021195754A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Foundations (AREA)

Abstract

To provide a marine gravity-base foundation allowing resistance performance against omnidirectional horizontal force to be improved.SOLUTION: A marine gravity-based foundation 11 has a bottom part 12 located on a sea bottom 13, wherein a concave or convex cone surface 14 is formed on a lower surface of the bottom part 12, the cone surface 14 and the sea bottom are tightly adhered to each other. Resistance force R generated by friction between the sea bottom 13 and the bottom part 12 in accordance with horizontal force P is R=r×W in a case of a dead weight W of the marine gravity-based foundation 11, the horizontal force P acting on the bottom part 12, and a coefficient r sharing the horizontal force. As the coefficient r increases according to a gradient angle θ with inclination in a friction direction, the resistance force are able to be increased. The gradient angle θ of the cone surface 14 is 1 degree or more to 10 degree or less. Scouring-protection bodies 18 expanding downward are arranged around the bottom part 12.SELECTED DRAWING: Figure 2

Description

本発明は海洋重力式基礎に関する。 The present invention relates to an ocean gravity foundation.

洋上風力発電設備などの海洋構造物の固定式基礎として、杭打ちにより海底に固定される杭式基礎や、重量の大きな基礎ブロックを海底に載置して構造物を支持する重力式基礎などが用いられている(特許文献1,2参照)。
地盤が強固な場合、杭式基礎等は海上施工が煩雑になり工費・工期が増大するため、重力式基礎が用いられることが多い。
As fixed foundations for offshore wind power generation facilities, there are pile foundations that are fixed to the seabed by pile driving, and gravity foundations that support structures by placing heavy foundation blocks on the seabed. It is used (see Patent Documents 1 and 2).
When the ground is strong, the gravity type foundation is often used because the pile type foundation etc. is complicated to construct at sea and the construction cost and construction period increase.

特開2002−206474号公報Japanese Unexamined Patent Publication No. 2002-206474 特開2006−322400号公報Japanese Unexamined Patent Publication No. 2006-322400

前述の重力式基礎では、海底または海底に敷いた砕石などに基礎の底部を載置し、基礎に固定したタワーやブレード等の上部構造を支持している。これにより、上部構造および基礎自体の重量は、基礎から海底へと鉛直下向きに作用する。
また、基礎には風荷重や波力・潮流力・地震力などにより、360度の全方位から水平力および転倒モーメントが作用するが、これらも基礎の底部から海底に負担させている。
地盤が良好な場合、重力式基礎は鉛直下向きに作用する荷重に対して比較的容易に抵抗できる。転倒モーメントに対しては、基礎の底部を大きくすることで抵抗モーメントを増大させることができる。しかしながら、水平力対しては基礎の重量に比例する摩擦力で抵抗するため、抵抗力を増大させるには基礎を大きく重くする必要がある。基礎が大きくなると波力や地震力などの外力も増大するため、基礎がさらに大きくなり、施工性の悪化や建設コストの増大につながるという問題があった。
In the above-mentioned gravity foundation, the bottom of the foundation is placed on the seabed or crushed stone laid on the seabed to support superstructures such as towers and blades fixed to the foundation. This causes the weight of the superstructure and the foundation itself to act vertically downward from the foundation to the seabed.
In addition, horizontal force and overturning moment act from all directions of 360 degrees on the foundation due to wind load, wave force, tidal current force, seismic force, etc., which are also borne by the bottom of the foundation to the sea floor.
If the ground is good, the gravity foundation can resist the vertically downward load relatively easily. For the overturning moment, the resistance moment can be increased by increasing the bottom of the foundation. However, since it resists the horizontal force with a frictional force proportional to the weight of the foundation, it is necessary to make the foundation significantly heavier in order to increase the resistance. As the foundation becomes larger, external forces such as wave power and seismic force also increase, so that the foundation becomes larger, which causes a problem that the workability deteriorates and the construction cost increases.

本発明の目的は、全方位からの水平力に対する抵抗性能を高められる海洋重力式基礎を提供することにある。 An object of the present invention is to provide an ocean gravity foundation capable of enhancing resistance to horizontal forces from all directions.

本発明の海洋重力式基礎は、底部が海底に載置される海洋重力式基礎であって、前記底部の下面に凹状または凸状の錐体面が形成され、前記錐体面と前記海底とが密接されていることを特徴とする。
本発明において、錐体面は、円錐面または多角錐面であり、多角錐面は三角錐面、四角錐面ないしそれ以上の面数の角錐面を含む。本発明の錐体面は、偏平な錐体形状つまり底面径に対して高さが十分小さく、後述するように勾配角度が緩やかな形状が好ましい。
このような本発明では、凹状の錐体面に密接する海底は凸状となり、凸状の錐体面に密接する海底は凹状となる。このような底部に対し、任意の方向から水平力が加えられた場合、底部と接触する海底に水平力に応じた抗力が生じるとともに、この抗力は前述した錐体面(円錐形状もしくは多角錐形状)の勾配によって増大される。
The ocean gravity foundation of the present invention is an ocean gravity foundation whose bottom is placed on the seabed, and a concave or convex cone surface is formed on the lower surface of the bottom, and the cone surface and the seabed are in close contact with each other. It is characterized by being done.
In the present invention, the pyramid surface is a conical surface or a polygonal pyramid surface, and the polygonal pyramid surface includes a triangular pyramid surface, a quadrangular pyramid surface, or a pyramid surface having a number of faces equal to or more than that. The pyramidal surface of the present invention preferably has a flat pyramidal shape, that is, a shape having a sufficiently small height with respect to the bottom diameter and a gentle gradient angle as described later.
In the present invention as described above, the seabed in close contact with the concave pyramidal surface is convex, and the seabed in close contact with the convex pyramid surface is concave. When a horizontal force is applied to such a bottom from any direction, a drag force corresponding to the horizontal force is generated on the sea floor in contact with the bottom, and this drag force is the above-mentioned pyramid surface (conical or polygonal pyramid shape). Is increased by the gradient of.

図1(A)において、海洋重力式基礎1の底部2と海底3とが凹状の錐体面4で接する際には、海洋重力式基礎1の自重W、底部2にかかる水平力P、水平力を分担する係数rとして、水平力Pに応じて海底3と底部2との摩擦により生じる抗力RはR=r×Wとなる。この係数rは、錐体面4の勾配角度θ(母線の傾斜角度)、勾配がない状態での本来の摩擦係数μとして、r=(sinθ+μcosθ)/(cosθ−μsinθ)で与えられる。つまり、係数rは摩擦方向が傾斜することで勾配角度θに応じて増加し、従って抗力Rを増大させることができる。 In FIG. 1 (A), when the bottom 2 of the ocean gravity foundation 1 and the sea floor 3 are in contact with each other on the concave pyramidal surface 4, the own weight W of the ocean gravity foundation 1, the horizontal force P applied to the bottom 2, and the horizontal force are applied. As the coefficient r that shares the above, the drag force R generated by the friction between the seabed 3 and the bottom 2 according to the horizontal force P is R = r × W. This coefficient r is given by r = (sinθ + μcosθ) / (cosθ−μsinθ) as the gradient angle θ (inclination angle of the generatrix) of the pyramidal surface 4 and the original friction coefficient μ in the absence of a gradient. That is, the coefficient r increases according to the gradient angle θ as the friction direction is inclined, and therefore the drag force R can be increased.

r=(sinθ+μcosθ)/(cosθ−μsinθ)は下記の通り導かれる。
自重Wの斜面直交成分Wcosθ、水平力Pの斜面直交成分Psinθ、として斜面直交荷重Wb=Wcosθ+Psinθとなり、斜面に沿った摩擦力はμ・Wb=μ(Wcosθ+Psinθ)となる。
一方、自重Wの斜面平行成分Wsinθ、水平力Pの斜面平行成分Pcosθ、として斜面平行荷重Pb=Wsinθ−Pcosθとなる。
海洋重力式基礎1が水平力Pでも動かないためには斜面平行荷重Pb<摩擦力(μ・Wb)が必要であり、言い換えると安全率SF=μ・Wb/PbとしてSF>1が必要である。
r = (sinθ + μcosθ) / (cosθ−μsinθ) is derived as follows.
As the slope orthogonal component Wcosθ of the own weight W and the slope orthogonal component Psinθ of the horizontal force P, the slope orthogonal load Wb = Wcosθ + Psinθ, and the frictional force along the slope is μ · Wb = μ (Wcosθ + Psinθ).
On the other hand, the slope parallel component Wsinθ of the own weight W, the slope parallel component Pcosθ of the horizontal force P, and the slope parallel load Pb = Wsinθ−Pcosθ.
In order for the ocean gravity foundation 1 not to move even with a horizontal force P, a slope parallel load Pb <friction force (μ · Wb) is required, in other words, a safety factor SF = μ · Wb / Pb and SF> 1 is required. be.

図1(B)において、海洋重力式基礎1の底部2と海底3とが凸状の円錐面4Aで接する際でも同様であり、係数rは摩擦方向が傾斜することで勾配角度θに応じて増加し、従って抗力Rを増大させることができる。 In FIG. 1B, the same applies when the bottom 2 of the ocean gravity foundation 1 and the sea bottom 3 are in contact with each other on the convex conical surface 4A, and the coefficient r is determined according to the gradient angle θ due to the inclination of the friction direction. It can be increased and thus the drag R can be increased.

このような勾配を有する接触面による抗力の増大作用は、底部と海底とが錐体面で接触するため、水平力が360度のどの方向から作用しても、同じように得ることができる。
なお、錐体面は、頂点が尖った円錐形状もしくは多角錐形状であってもよく、頂点が平らな円錐台もしくは多角錐台などの錐台状であってもよい。また、底部の錐体面の周囲には平坦部があってもよいが、底部を有効利用するため、なるべく底部に対する錐体面の面積比率を高めることが望ましい。
Since the bottom and the seabed are in contact with each other on the pyramidal surface, the effect of increasing the drag force by the contact surface having such a gradient can be obtained in the same manner regardless of the direction in which the horizontal force acts at 360 degrees.
The pyramid surface may have a conical shape or a polygonal pyramid shape with sharp vertices, or may have a cone shape such as a truncated cone or a polygonal cone with flat apex. Further, although there may be a flat portion around the pyramidal surface of the bottom, it is desirable to increase the area ratio of the pyramidal surface to the bottom as much as possible in order to effectively utilize the bottom.

本発明の海洋重力式基礎において、前記錐体面の勾配角度は1度以上で10度以下であることが好ましい。
前述の通り、本発明では、錐体面の勾配角度を増すことで、底部とこれに密接する海底との間の摩擦力を増加させ、水平力に対する抗力を増すことができる。しかし、勾配角度が10度を超えると、海洋重力式基礎が滑り出す前に海底面が自己崩壊を起こす可能性がある。これに対し、本発明においては、勾配角度を10度以下とすることで、前述した抗力を確保しつつ安定した抵抗性能を高める効果を得ることができる。
In the ocean gravity foundation of the present invention, the gradient angle of the pyramidal surface is preferably 1 degree or more and 10 degrees or less.
As described above, in the present invention, by increasing the slope angle of the pyramidal surface, the frictional force between the bottom and the seabed in close contact with the bottom can be increased, and the drag against the horizontal force can be increased. However, if the gradient angle exceeds 10 degrees, the seafloor may self-destruct before the ocean gravity foundation slides out. On the other hand, in the present invention, by setting the gradient angle to 10 degrees or less, it is possible to obtain the effect of enhancing stable resistance performance while ensuring the above-mentioned drag force.

本発明の海洋重力式基礎において、前記底部には前記錐体面が複数設けられていることが好ましい。
このような本発明では、特定方向の水平力に対して、複数箇所で十分な抗力を生じさせることができる。また、底部に複数の錐体面を配置することで、底部に対する錐体面の面積比率を高めることができる。
なお、複数の錐体面の配置は、全方位の水平力に対応できるように、底部に対して点対称に配置するのがよい。また、径寸法(円錐面では底面の直径、多角錐面では底面の外接円または内接円の直径)が異なる複数の錐体面を組み合わせてもよい。
In the ocean gravity foundation of the present invention, it is preferable that the bottom thereof is provided with a plurality of pyramidal surfaces.
In such an invention, a sufficient drag force can be generated at a plurality of points against a horizontal force in a specific direction. Further, by arranging a plurality of pyramidal surfaces on the bottom, the area ratio of the pyramidal surface to the bottom can be increased.
It is preferable that the plurality of pyramidal surfaces are arranged point-symmetrically with respect to the bottom so as to be able to cope with horizontal forces in all directions. Further, a plurality of cone surfaces having different diameter dimensions (diameter of the bottom surface for a conical surface and diameter of an circumscribed circle or an inscribed circle of the bottom surface for a polygonal cone surface) may be combined.

本発明の海洋重力式基礎において、前記底部の周囲には下向きに拡がる錐台状の洗掘防止体が設けられていることが好ましい。
このような本発明では、海底に沿った潮流による洗掘防止が図れる。
In the ocean gravity foundation of the present invention, it is preferable that a frustum-shaped scouring preventive body extending downward is provided around the bottom.
In the present invention as described above, it is possible to prevent scouring due to the tidal current along the seabed.

本発明によれば、全方位からの水平力に対する抵抗性能を高められる海洋重力式基礎を提供することができる。 INDUSTRIAL APPLICABILITY According to the present invention, it is possible to provide an ocean gravity type foundation capable of enhancing resistance performance against horizontal force from all directions.

本発明の原理を示す模式図。The schematic diagram which shows the principle of this invention. 本発明の第1実施形態の海洋重力式基礎を示す側面図。The side view which shows the ocean gravity type foundation of 1st Embodiment of this invention. 前記第1実施形態の設置状態を示す側面図。The side view which shows the installation state of the 1st Embodiment. 本発明の第2実施形態を示す側面図。The side view which shows the 2nd Embodiment of this invention. 本発明の第3実施形態を示す底面図。The bottom view which shows the 3rd Embodiment of this invention.

以下に本発明の実施形態を図面に基づいて説明する。
〔第1実施形態〕
図2において、洋上風力発電装置10は、風力発電設備19を洋上に支持する海洋重力式基礎11を備えている。
海洋重力式基礎11は、重量のあるコンクリート構造体あるいは鉄骨構造体で構成され、底部12が海底13に載置され、自重により固定されている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[First Embodiment]
In FIG. 2, the offshore wind power generation device 10 includes an ocean gravity foundation 11 that supports the wind power generation facility 19 offshore.
The ocean gravity foundation 11 is composed of a heavy concrete structure or a steel frame structure, and the bottom portion 12 is placed on the seabed 13 and fixed by its own weight.

底部12の下面には凹状の錐体面14が形成されている。
海底13には、凹状の錐体面14と同形状の凸部15が形成され、この凸部15が錐体面14に収まることで錐体面14と海底13とが密接した状態とされている。
A concave pyramidal surface 14 is formed on the lower surface of the bottom portion 12.
A convex portion 15 having the same shape as the concave pyramidal surface 14 is formed on the seabed 13, and the convex portion 15 fits into the pyramid surface 14 so that the pyramid surface 14 and the seabed 13 are in close contact with each other.

錐体面14は円錐面とされ、その勾配角度(母線の傾斜角度)は1度以上で10度以下とされている。なお、錐体面14は多角錐面であってもよい。
底部12の周囲には、洗掘防止体18が設けられている。
洗掘防止体18は、底部12の周面途中から下向きに拡がる錐台状(円錐台状または角錐面台状)の鋼板製の部材であり、外側となる下縁が海底13に接続した状態で設置されている。
The pyramidal surface 14 is a conical surface, and its gradient angle (inclination angle of the generatrix) is 1 degree or more and 10 degrees or less. The pyramid surface 14 may be a polygonal pyramid surface.
A scouring preventive body 18 is provided around the bottom portion 12.
The scouring preventive body 18 is a member made of a frustum-shaped (conical cone-shaped or pyramidal-shaped) steel plate that extends downward from the middle of the peripheral surface of the bottom portion 12, and the outer lower edge is connected to the seabed 13. It is installed in.

図3において、海洋重力式基礎11を海底13に設置する際には、海底13に大まかな形状で凸部15を形成しておく。そして、凸部15の上方から底部12を被せることで、凸部15が錐体面14の内部に導入され、互いに密接される。
海洋重力式基礎11を海底13に設置したのち、その上に風力発電設備19を設置するとともに、底部12の周囲に洗掘防止体18を設置することで、洋上風力発電装置10を構築することができる。
In FIG. 3, when the ocean gravity foundation 11 is installed on the seabed 13, a convex portion 15 is formed on the seabed 13 in a rough shape. Then, by covering the bottom portion 12 from above the convex portion 15, the convex portion 15 is introduced into the inside of the pyramidal surface 14 and is brought into close contact with each other.
After installing the ocean gravity foundation 11 on the seabed 13, the offshore wind power generation device 10 is constructed by installing the wind power generation equipment 19 on the seabed 13 and installing the scour prevention body 18 around the bottom 12. Can be done.

本実施形態においては、図3のように、海洋重力式基礎11の底部12に対し、任意の方向から水平力Pが加えられた場合、海底13に水平力Pに応じた抗力Rが生じる。この際、抗力Rは錐体面14および凸部15の錐体面状の勾配によって増大される。 In the present embodiment, as shown in FIG. 3, when a horizontal force P is applied to the bottom 12 of the ocean gravity foundation 11 from an arbitrary direction, a drag force R corresponding to the horizontal force P is generated on the sea bottom 13. At this time, the drag force R is increased by the pyramidal surface-like gradient of the pyramidal surface 14 and the convex portion 15.

底部12の凹状の錐体面14と、海底13の凸部15とが接する際には、海洋重力式基礎11の自重W、底部12にかかる水平力P、水平力を分担する係数rとして、水平力Pに応じて海底13と底部12との摩擦により生じる抗力RはR=r×Wとなる。この係数rは、錐体面14の勾配角度θ(母線の傾斜角度)、勾配がない状態での摩擦係数μとして、r=(sinθ+μcosθ)/(cosθ−μsinθ)で与えられる。つまり、係数rは摩擦方向が傾斜することで勾配角度θに応じて増加し、従って抗力Rを増大させることができる。
その結果、本実施形態によれば、海洋重力式基礎11において、全方位からの水平力Pに対する抵抗性能を高めることができる。
When the concave pyramidal surface 14 of the bottom 12 and the convex portion 15 of the sea bottom 13 come into contact with each other, the weight W of the ocean gravity foundation 11, the horizontal force P applied to the bottom 12, and the coefficient r that shares the horizontal force are horizontal. The drag force R generated by the friction between the sea bottom 13 and the bottom 12 according to the force P is R = r × W. This coefficient r is given by r = (sinθ + μcosθ) / (cosθ−μsinθ) as the gradient angle θ (inclination angle of the generatrix) of the cone surface 14 and the friction coefficient μ in the absence of a gradient. That is, the coefficient r increases according to the gradient angle θ as the friction direction is inclined, and therefore the drag force R can be increased.
As a result, according to the present embodiment, in the ocean gravity type foundation 11, the resistance performance against the horizontal force P from all directions can be enhanced.

本実施形態では、錐体面14の勾配角度θを1度以上で10度以下の任意の角度としたため、抗力Rを確保しつつ安定した抵抗性能を高める効果を得ることができる。
すなわち、錐体面14の勾配角度θを増すことで、底部12の錐体面14とこれに密接する海底13の凸部15との間の摩擦力を増加させ、水平力Pに対する抗力Rを増すことができる。しかし、勾配角度が10度を超えると、海洋重力式基礎11が滑り出す前に海底13が自己崩壊を起こす可能性がある。これに対し、勾配角度を10度以下とすることで、抗力Rを確保しつつ安定した抵抗性能を高める効果を得ることができる。
In the present embodiment, since the gradient angle θ of the pyramidal surface 14 is set to an arbitrary angle of 1 degree or more and 10 degrees or less, it is possible to obtain the effect of enhancing stable resistance performance while ensuring the drag force R.
That is, by increasing the gradient angle θ of the pyramidal surface 14, the frictional force between the pyramidal surface 14 of the bottom portion 12 and the convex portion 15 of the seabed 13 in close contact with the pyramidal surface 14 is increased, and the drag force R against the horizontal force P is increased. Can be done. However, if the gradient angle exceeds 10 degrees, the seafloor 13 may self-destruct before the ocean gravity foundation 11 slides out. On the other hand, by setting the gradient angle to 10 degrees or less, it is possible to obtain the effect of enhancing stable resistance performance while ensuring the drag force R.

本実施形態では、底部12の周囲に下向きに拡がる錐台状の洗掘防止体18を設けたため、海底13に沿った潮流による洗掘を防止することができる。このことにより、海底13の凹凸形状を洗堀されることが無いため、抵抗性能を維持ないし高めることができる。 In the present embodiment, since the frustum-shaped scouring preventive body 18 that extends downward is provided around the bottom portion 12, scouring due to the tidal current along the seabed 13 can be prevented. As a result, the uneven shape of the seabed 13 is not washed away, so that the resistance performance can be maintained or enhanced.

〔第2実施形態〕
前述した第1実施形態では、洋上風力発電装置10の海洋重力式基礎11において、底部12の下面に凹状の錐体面14を形成し、海底13に形成した凸部15を錐体面14に密着させていた。
図4に示すように、本実施形態では、洋上風力発電装置10Aの海洋重力式基礎11Aにおいて、底部12の下面に凸状の錐体面14Aを形成し、海底13に形成した凹部15Aを錐体面14Aに密着させている。
なお、洋上風力発電装置10Aのその他の構成は、前述した洋上風力発電装置10と同様であり、重複する説明は省略する。
[Second Embodiment]
In the first embodiment described above, in the ocean gravity type foundation 11 of the offshore wind power generation device 10, a concave pyramidal surface 14 is formed on the lower surface of the bottom portion 12, and the convex portion 15 formed on the seabed 13 is brought into close contact with the pyramidal surface 14. Was there.
As shown in FIG. 4, in the present embodiment, in the ocean gravity type foundation 11A of the offshore wind power generation device 10A, a convex cone surface 14A is formed on the lower surface of the bottom portion 12, and the recess 15A formed on the seabed 13 is formed on the cone surface. It is in close contact with 14A.
The other configurations of the offshore wind power generation device 10A are the same as those of the above-mentioned offshore wind power generation device 10, and overlapping description will be omitted.

このような本実施形態においても、凸状の錐体面14Aと凹部15Aとが接する際に、水平力Pに応じて海底13と底部12Aとの摩擦により抗力RはR=r×Wが生じる。この係数rは、第1実施形態と同様に、錐体面14Aの勾配角度θ(母線の傾斜角度)、勾配がない状態での本来の摩擦係数μとして、r=(sinθ+μcosθ)/(cosθ−μsinθ)で与えられる。つまり、係数rは摩擦方向が傾斜することで勾配角度θに応じて増加し、従って抗力Rを増大させることができる。
その結果、本実施形態によっても、海洋重力式基礎11Aにおいて、全方位からの水平力Pに対する抵抗性能を高めることができる。
Also in this embodiment as described above, when the convex cone surface 14A and the concave portion 15A come into contact with each other, the drag force R is R = r × W due to the friction between the seabed 13 and the bottom 12A according to the horizontal force P. As in the first embodiment, this coefficient r has a gradient angle θ (inclination angle of the generatrix) of the cone surface 14A and an original friction coefficient μ in the absence of a gradient, and r = (sinθ + μcosθ) / (cosθ−μsinθ). ). That is, the coefficient r increases according to the gradient angle θ as the friction direction is inclined, and therefore the drag force R can be increased.
As a result, the resistance performance against the horizontal force P from all directions can be enhanced in the ocean gravity type foundation 11A also by this embodiment.

〔第3実施形態〕
前述した第1実施形態および第2実施形態では、底部12,12Aの下面に、凹状または凸状の錐体面14,14Aを1つ形成していた。ただし、このような錐体面14,14Aは複数形成してもよい。
図5において、本実施形態において、洋上風力発電装置10Bの海洋重力式基礎11Bは、底部12Bの下面には4つの錐体面14Bおよび5つの錐体面14Cが形成されている。図5に示す本実施形態の錐体面14B,14Cは円錐面であるが、多角錐面であってもよい。
[Third Embodiment]
In the first embodiment and the second embodiment described above, one concave or convex pyramidal surface 14, 14A is formed on the lower surface of the bottom portions 12, 12A. However, a plurality of such pyramidal surfaces 14, 14A may be formed.
In FIG. 5, in the present embodiment, in the ocean gravity type foundation 11B of the offshore wind power generation device 10B, four pyramidal surfaces 14B and five pyramidal surfaces 14C are formed on the lower surface of the bottom portion 12B. The pyramid surfaces 14B and 14C of the present embodiment shown in FIG. 5 are conical surfaces, but may be polygonal pyramid surfaces.

4つの錐体面14Bは、それぞれ錐体面14Cよりも大径とされている。5つの錐体面14Cは、それぞれ錐体面14Bの間に配置され、そのうち1つは底部12Bの下面の中心に配置されている。
本実施形態においては、複数の錐体面14B,14Cの大小異なる寸法とすることで、底部12Bの下面に大小の錐体面14B,14Cをなるべく隙間無く配置することができ、従って底部12Bの下面における錐体面14B,14Cの面積比率を高めることができる。
Each of the four pyramidal surfaces 14B has a larger diameter than the pyramidal surface 14C. The five pyramidal surfaces 14C are each disposed between the pyramidal surfaces 14B, one of which is located in the center of the lower surface of the bottom 12B.
In the present embodiment, by making the sizes of the plurality of pyramidal surfaces 14B and 14C different in size, the large and small pyramidal surfaces 14B and 14C can be arranged on the lower surface of the bottom portion 12B as closely as possible, and therefore on the lower surface of the bottom portion 12B. The area ratio of the pyramidal surfaces 14B and 14C can be increased.

〔変形例〕
なお、本発明は前述した実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形などは本発明に含まれる。
第3実施形態において、錐体面14B,14Cは全て同じ径寸法としてもよく、3種類以上の径寸法としてもよい。また、錐体面14B,14Cは全て凹状としてもよく、または全て凸状としてもよく、あるいは一部が凸状で他が凹状としてもよい。
[Modification example]
The present invention is not limited to the above-described embodiment, and modifications to the extent that the object of the present invention can be achieved are included in the present invention.
In the third embodiment, the pyramidal surfaces 14B and 14C may all have the same diameter dimension, or may have three or more types of diameter dimensions. Further, the pyramidal surfaces 14B and 14C may be all concave or all convex, or may be partially convex and the other concave.

第1実施形態および第2実施形態において、錐体面14,14Aは底部12,12Aの全面に形成してもよいが、錐体面14,14Aをやや小径に形成し、錐体面14,14Aの周辺に底部12,12Aの下面が残されていてもよい。錐体面14,14Aとしては、円錐面または多角錐面のいずれも用いてもよく、多角錐面としては三角錐面、四角錐面、あるいはそれ以上の面数であってもよく、これらの異なる種類の錐体面を混合して用いてもよい。
前記各実施形態において、底部12,12A,12Bは円柱状に限らず、角柱状その他の形状であってもよく、その下面の形状も円形や矩形に限らず他の形状であってもよい。
前記各実施形態において、海洋重力式基礎11,11A,11Bは、洋上風力発電装置10,10A,10Bの基礎に限らず、風力発電設備19とは異なる設備を洋上に支持するものであってもよい。
前記実施形態では、底部12の周囲に下向きに拡がる錐台状の洗掘防止体18を設けたが、これは省略してもよい。
In the first embodiment and the second embodiment, the pyramidal surfaces 14, 14A may be formed on the entire surface of the bottoms 12, 12A, but the pyramidal surfaces 14, 14A are formed to have a slightly smaller diameter, and the periphery of the pyramidal surfaces 14, 14A is formed. The lower surface of the bottoms 12 and 12A may be left on the bottom. As the pyramid surfaces 14, 14A, either a conical surface or a polygonal pyramid surface may be used, and the polygonal pyramid surface may be a triangular pyramid surface, a quadrangular pyramid surface, or a larger number of surfaces, and these are different. You may use a mixture of different types of pyramid surfaces.
In each of the above-described embodiments, the bottom portions 12, 12A, and 12B are not limited to a columnar shape, and may have a prismatic or other shape, and the shape of the lower surface thereof may be not limited to a circle or a rectangle, but may be another shape.
In each of the above embodiments, the ocean gravity foundations 11, 11A, 11B are not limited to the foundations of the offshore wind power generation devices 10, 10A, 10B, and may support equipment different from the wind power generation equipment 19 at sea. good.
In the above embodiment, a frustum-shaped scour prevention body 18 that extends downward is provided around the bottom portion 12, but this may be omitted.

本発明は海洋重力式基礎に利用できる。 The present invention can be used for ocean gravity foundations.

10,10A,10B…洋上風力発電装置、11,11A,11B…海洋重力式基礎、12,12A,12B…底部、13…海底、14,14A,14B,14C…錐体面、15…凸部、15A…凹部、18…洗掘防止体、19…風力発電設備、θ…勾配角度。 10, 10A, 10B ... Offshore wind power generator, 11, 11A, 11B ... Ocean gravity foundation, 12, 12A, 12B ... Bottom, 13 ... Sea bottom, 14, 14A, 14B, 14C ... Pyramid surface, 15 ... Convex, 15A ... recess, 18 ... scour prevention body, 19 ... wind power generation equipment, θ ... gradient angle.

Claims (4)

底部が海底に載置される海洋重力式基礎であって、
前記底部の下面に凹状または凸状の錐体面が形成され、前記錐体面と前記海底とが密接されていることを特徴とする海洋重力式基礎。
It is an ocean gravity foundation whose bottom is placed on the seabed.
An ocean gravity foundation characterized in that a concave or convex pyramidal surface is formed on the lower surface of the bottom portion, and the pyramidal surface and the seabed are in close contact with each other.
請求項1に記載した海洋重力式基礎において、
前記錐体面の勾配角度は1度以上で10度以下であることを特徴とする海洋重力式基礎。
In the ocean gravity foundation according to claim 1,
An ocean gravity foundation characterized in that the gradient angle of the pyramidal surface is 1 degree or more and 10 degrees or less.
請求項1または請求項2に記載した海洋重力式基礎において、
前記底部には前記錐体面が複数設けられていることを特徴とする海洋重力式基礎。
In the ocean gravity foundation according to claim 1 or 2.
An ocean gravity foundation characterized in that a plurality of pyramidal surfaces are provided on the bottom.
請求項1から請求項3のいずれか一項に記載した海洋重力式基礎において、
前記底部の周囲には下向きに拡がる錐台状の洗掘防止体が設けられていることを特徴とする海洋重力式基礎。
In the ocean gravity foundation according to any one of claims 1 to 3.
An ocean gravity foundation characterized by a frustum-shaped scour prevention body that extends downward around the bottom.
JP2020101322A 2020-06-11 2020-06-11 Marine gravity-based foundation Pending JP2021195754A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020101322A JP2021195754A (en) 2020-06-11 2020-06-11 Marine gravity-based foundation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020101322A JP2021195754A (en) 2020-06-11 2020-06-11 Marine gravity-based foundation

Publications (1)

Publication Number Publication Date
JP2021195754A true JP2021195754A (en) 2021-12-27

Family

ID=79197350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020101322A Pending JP2021195754A (en) 2020-06-11 2020-06-11 Marine gravity-based foundation

Country Status (1)

Country Link
JP (1) JP2021195754A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022033309A (en) * 2018-02-15 2022-02-28 株式会社三洋物産 Game machine
JP2022033312A (en) * 2018-02-15 2022-02-28 株式会社三洋物産 Game machine
JP2022033310A (en) * 2018-02-15 2022-02-28 株式会社三洋物産 Game machine
JP2022033311A (en) * 2018-02-15 2022-02-28 株式会社三洋物産 Game machine
JP2022033308A (en) * 2018-02-15 2022-02-28 株式会社三洋物産 Game machine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022033309A (en) * 2018-02-15 2022-02-28 株式会社三洋物産 Game machine
JP2022033312A (en) * 2018-02-15 2022-02-28 株式会社三洋物産 Game machine
JP2022033310A (en) * 2018-02-15 2022-02-28 株式会社三洋物産 Game machine
JP2022033311A (en) * 2018-02-15 2022-02-28 株式会社三洋物産 Game machine
JP2022033308A (en) * 2018-02-15 2022-02-28 株式会社三洋物産 Game machine

Similar Documents

Publication Publication Date Title
JP2021195754A (en) Marine gravity-based foundation
JP2021510793A (en) Multi-wind turbines for wind and solar power and floating platforms that self-align against the wind supporting solar, and how to build them
JP5636372B2 (en) Float for wave energy converter (WEC)
KR20130123040A (en) A cap for protecting foundation scouring for offshore wind turbine
US20140270979A1 (en) Flexible post for use as a pile
CN115180082A (en) Single-column photovoltaic power generation array platform
US9771700B2 (en) Structures for offshore installations
KR20230114233A (en) Protection device for sea water cable
JP2005180239A (en) Foundation of water surface wind power generation device
KR20140012263A (en) Floating platform and manufacturing method of floating platform
JP3636923B2 (en) Foundation structure
JP2002348836A (en) Wave dissipation block for covering breakwater
JP5023270B1 (en) Fixing device and method of work or building using earth anchor with rotating bearing
JP2016084660A (en) Foundation structure of off-shore wind turbine generator
CN214194682U (en) Assembled marine wind power basis scour prevention dissipation structure
WO2022231511A1 (en) A buoyant structure for receiving a tower of a wind turbine in offshore deployment
US20220126957A1 (en) Minimizing movements of offshore wind turbines
JP6322488B2 (en) Structure
JP2020190152A (en) Offshore wind turbine monopile foundation support structural body and offshore wind turbine monopile foundation support structure
KR20200003986A (en) Floater and assembly for mooring floater
JP4519591B2 (en) Wave-dissipating block
JP2002302924A (en) Assembly type revetment structural body
JP6508945B2 (en) Damping structure and supporting structure of building
JP3092244U (en) Seismic isolation foundation structure, sliding layer used for it, and structure using the earthquake isolation foundation structure
JP7465509B2 (en) Foundation structure for offshore wind power generation facilities

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230829

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20231024

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231214

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20240227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240527