JP2021195434A - Manufacturing method of carbon-based nanoparticle luminescent material and fluorescent labeling method of cell and animal and plant using the same - Google Patents

Manufacturing method of carbon-based nanoparticle luminescent material and fluorescent labeling method of cell and animal and plant using the same Download PDF

Info

Publication number
JP2021195434A
JP2021195434A JP2020102130A JP2020102130A JP2021195434A JP 2021195434 A JP2021195434 A JP 2021195434A JP 2020102130 A JP2020102130 A JP 2020102130A JP 2020102130 A JP2020102130 A JP 2020102130A JP 2021195434 A JP2021195434 A JP 2021195434A
Authority
JP
Japan
Prior art keywords
carbon
luminescent material
resorcinol
condensation reaction
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020102130A
Other languages
Japanese (ja)
Inventor
祐一 伊藤
Yuichi Ito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2020102130A priority Critical patent/JP2021195434A/en
Publication of JP2021195434A publication Critical patent/JP2021195434A/en
Pending legal-status Critical Current

Links

Abstract

To introduce a water soluble substituent for improving excellently dissolubility and dispersibility to a culture solution and a culture medium so that a carbon quantum dot luminescent material can be used for fluorescent labeling in a living body such as bioimaging, in view of the fact that the carbon quantum dot luminescent material of a narrow band width-luminescence triangular shape, derived from solvothermal reaction of resorcinol having high biocompatibility without containing a heavy metal, a sharp luminescence peak, a high luminous efficiency, and light resistance is studied for application to a luminescent material for a light-emission diode.SOLUTION: A manufacturing method of a carbon-based nanoparticle luminescent material includes subjecting to dehydration condensation reaction by adding 3,5-dihydroxyphenyl-β-D-glucopyranoside to a solution of a compound refined in the middle of or after dehydration condensation reaction of a solution of phloroglucinol and resorcinol, in a water-solubility improvement method of the carbon-based nanoparticle luminescent material by dehydration condensation reaction of phloroglucinol and resorcinol.SELECTED DRAWING: None

Description

本発明は、水溶性を向上した蛍光標識用発光材料に関するものである。 The present invention relates to a light emitting material for a fluorescent label having improved water solubility.

細胞の蛍光標識等のバイオイメージング用途に、一般的な蛍光色素より耐光性が高く、粒子サイズによって発光色を変えられ多色同時観察に適した鋭い発光スペクトルを有する半導体量子ドットが研究されている。半導体量子ドットにはCdSeやCdTe等を発光コアとし、コアよりもエネルーギャップの大きいZnS等をシェルとし覆い、表面にカルボキシル化ポリエチレングリコールやアクリル酸ポリマー等をコートし水溶性化した量子ドット等が研究され、最近では鉛ペロブスカイトからなる量子ドットも研究されている。 For bioimaging applications such as fluorescent labeling of cells, semiconductor quantum dots, which have higher light resistance than general fluorescent dyes, can change the emission color depending on the particle size, and have a sharp emission spectrum suitable for simultaneous multicolor observation, are being studied. .. The semiconductor quantum dots are covered with CdSe, CdTe, etc. as the light emitting core, ZnS, etc., which has a larger energy gap than the core, as the shell, and the surface is coated with carboxylated polyethylene glycol, acrylic acid polymer, etc. to make them water-soluble. It has been studied, and recently quantum dots consisting of lead perovskite have also been studied.

しかし、半導体量子ドット材料中に細胞毒性の強い重金属のカドミウムや鉛が含まれる場合、体内や細胞内で溶け出し害を与える懸念があった。そのため重金属を用いないInP系の量子ドットも開発されている(非特許文献1)。しかし、InPの発がん性も指摘され始めている(非特許文献2)。 However, if the semiconductor quantum dot material contains cadmium or lead, which are highly cytotoxic heavy metals, there is a concern that they will dissolve out and cause damage in the body or cells. Therefore, InP-based quantum dots that do not use heavy metals have also been developed (Non-Patent Document 1). However, the carcinogenicity of InP has also begun to be pointed out (Non-Patent Document 2).

そこでより安全な発光材料として重金属を含まず生体親和性の高い天然物を原料とした炭素系ナノ粒子発光材料(以下カーボンドット発光材料と言う、または吸収や発光の粒子サイズ依存を示すものはカーボン量子ドット発光材料とも言われる)の可能性が期待され、各種の合成方法での製造が検討されている(非特許文献3)。 Therefore, as a safer light-emitting material, carbon-based nanoparticle light-emitting materials made from natural products that do not contain heavy metals and have high biocompatibility (hereinafter referred to as carbon dot light-emitting materials, or those that show particle size dependence of absorption or light emission are carbon. It is expected to be a quantum dot light emitting material), and its production by various synthetic methods is being studied (Non-Patent Document 3).

カーボンドット発光材料の主な合成方法として水中で加熱する水熱合成法や有機溶媒中で加熱するソルボサーマル法がある。テフロン(登録商標)ライナーを内部に設けたステンレス製密閉容器からなるオートクレーブ中に原料と溶媒、必要に応じて触媒を加え数時間から数十時間、100〜200数十℃の高温高圧下で反応を行う方法が広く用いられている。また電子レンジで数分間以上加熱する方法も検討されている。 The main methods for synthesizing carbon dot luminescent materials include a hydrothermal synthesis method in which heating is performed in water and a solvothermal method in which heating is performed in an organic solvent. A raw material, a solvent, and a catalyst as needed are added to an autoclave consisting of a closed stainless steel container with a Teflon (registered trademark) liner inside, and the reaction is carried out for several hours to several tens of hours under high temperature and high pressure of 100 to 200 and several tens of degrees Celsius. Is widely used. Also, a method of heating in a microwave oven for several minutes or more is being studied.

カーボンドット発光材料は、細胞の蛍光標識、特にがん細胞のイメージングのために研究される例も多い。多くのがん細胞の膜表面にはグルコーストランスポーターやアミノ酸トランスポーター、葉酸レセプター等の膜タンパクが過剰発現している(非特許文献4)。そこで葉酸を原料として水熱合成されたカーボンドット発光材料を用いると、その表面の葉酸残基によりがん細胞表面に過剰発現した葉酸レセプターと結合し蛍光を発するためイメージングに利用される(非特許文献5)。 Carbon dot luminescent materials are often studied for fluorescent labeling of cells, especially for imaging cancer cells. Membrane proteins such as glucose transporters, amino acid transporters, and folic acid receptors are overexpressed on the membrane surface of many cancer cells (Non-Patent Document 4). Therefore, if a carbon dot luminescent material hydrothermally synthesized using folic acid as a raw material is used, it is used for imaging because it binds to the folic acid receptor overexpressed on the surface of cancer cells by the folic acid residue on the surface and emits fluorescence (non-patented). Document 5).

またグルコースとアミノ酸の混合物からそれらの残基を表面に有するカーボンドット発光材料は、ナノ材料であることから血液脳関門を通り脳腫瘍細胞中に送り込むことができ、がん細胞表面に結合しがん組織の蛍光イメージング画像を得ることも可能となる(非特許文献6)。 In addition, carbon dot luminescent materials having those residues on the surface from a mixture of glucose and amino acids can be sent into brain tumor cells through the blood-brain barrier because they are nanomaterials, and bind to the surface of cancer cells to cause cancer. It is also possible to obtain a fluorescence imaging image of a tissue (Non-Patent Document 6).

またカーボンドット発光材料はがんのイメージングだけでなく治療に利用する研究もおこなわれている。例えば子牛血清アルブミンに吸着させた葉酸修飾カーボンドットに抗がん剤Doxorubicinを結合させた発光材料をがん細胞に運ぶドラッグデリバリーシステムも研究されている(非特許文献7)。 In addition, research is being conducted to use carbon dot luminescent materials not only for cancer imaging but also for treatment. For example, a drug delivery system in which a luminescent material in which an anticancer agent Doxorubicin is bound to folic acid-modified carbon dots adsorbed on bovine serum albumin is transported to cancer cells has also been studied (Non-Patent Document 7).

またRNA干渉による治療にカーボンドット発光材料を利用する研究もおこなわれている。例えば血管増殖因子のmRNAを阻害するsiRNA(アニオン性)をポリエチレン
イミンでカチオン変性したクエン酸カーボンドットに吸着させることで細胞内で分解され難くし、RNA干渉でがん細胞への血管増殖を抑制させる研究もされている(非特許文献8)。
Research is also being conducted on the use of carbon dot luminescent materials for the treatment of RNA interference. For example, by adsorbing siRNA (anionic) that inhibits mRNA of vascular growth factor on carbon dots citrate cation-modified with polyethyleneimine, it is difficult to be degraded in cells, and RNA interference suppresses vascular growth to cancer cells. There is also research to make it (Non-Patent Document 8).

またがん組織に集積させたカーボンドット発光材料にレーザー光照射することでがん細胞を破壊し治療する方法も研究されている。例えばポリチオフェン系ポリマーから合成されたカーボンドット赤色発光材料をがん組織に集積させ蛍光イメージングを行うと共に、カーボンドットが集積したがん組織に赤外線レーザーを照射し活性酸素を発生させがん細胞を死滅させる光線力学療法が研究されている(非特許文献9)。 In addition, a method of destroying and treating cancer cells by irradiating a carbon dot luminescent material accumulated in cancer tissue with laser light is also being studied. For example, carbon dot red luminescent material synthesized from a polythiophene polymer is accumulated in cancer tissue for fluorescence imaging, and the cancer tissue in which carbon dots are accumulated is irradiated with an infrared laser to generate active oxygen and kill cancer cells. Photodynamic therapy to cause is being studied (Non-Patent Document 9).

またがん細胞は熱に弱いため、カーボンドットが集積したがん細胞にレーザー照射して発熱させ、がん細胞を死滅させる光熱切除療法等も研究されている(非特許文献10)。 Further, since cancer cells are sensitive to heat, photothermal excision therapy and the like in which cancer cells accumulating carbon dots are irradiated with a laser to generate heat and kill the cancer cells are also being studied (Non-Patent Document 10).

また、重金属を含まず細胞毒性の低いカーボンドット発光材料は、動植物の餌や培地の成分として用いると動植物を生きたまま蛍光染色することも可能となっている。例えば鑑賞植物に青色蛍光を有するカーボンドット発光材料を吸収させ青蛍光を有する花が得られている(非特許文献11)。また線虫のエサに果実を原料としたカーボンドット発光材料を混ぜ励起波長により赤、青、緑に発光する発光性線虫が得られている(非特許文献12)。さらにカイコのエサに混ぜ蛍光性のシルクが得られている(非特許文献13)。 In addition, the carbon dot luminescent material, which does not contain heavy metals and has low cytotoxicity, can be fluorescently stained while animals and plants are alive when used as a food or medium component for animals and plants. For example, a flower having blue fluorescence is obtained by absorbing a carbon dot light emitting material having blue fluorescence in an ornamental plant (Non-Patent Document 11). Further, a luminescent nematode that emits red, blue, and green light depending on the excitation wavelength is obtained by mixing a carbon dot light emitting material made from a fruit with the food of the nematode (Non-Patent Document 12). Further, fluorescent silk is obtained by mixing with silk moth food (Non-Patent Document 13).

また発光生物の発光基質からカーボンドット発光材料へのエネルギー移動を起こさせる研究もされている(非特許文献14)。将来的には発光キノコや発光魚、発光昆虫等の発光生物に吸収させ黄色や緑色のオリジナルの発光をより長波長の発光色に変えて発光させられる可能性もある。 Research has also been conducted to cause energy transfer from a luminescent substrate of a luminescent organism to a carbon dot luminescent material (Non-Patent Document 14). In the future, it may be absorbed by luminescent organisms such as luminescent mushrooms, luminescent fish, and luminescent insects, and the original yellow or green emission may be changed to a longer wavelength emission color to emit light.

カーボンドット発光材料の発光色は青色のものが多く、2018年頃までは発光効率の高い赤色発光のカーボンドットの報告は少なかった(非特許文献15)。 Most of the carbon dot light emitting materials have a blue emission color, and until around 2018, there were few reports of red emission carbon dots having high luminous efficiency (Non-Patent Document 15).

また従来のカーボンドット発光材料は粒径や官能基の状態が不揃いだったり、分子構造の欠陥等のためバンド端発光できずブロードな発光スペクトルであり、発光半値幅が狭い狭バンド幅発光材料が無かった。しかし、2018年6月に北京師範大学等のグループはフロログルシノールを原料としエタノール中、オートクレーブ中200℃で、数時間から24時間加熱するソルボサーマル法を用いて青から赤まで鋭い発光スペクトルを可能とする狭バンド幅発光三角形状カーボン量子ドット発光材料(アームチェア型三角形グラフェンナノディスクに相当)を合成した。従来、同様の分子骨格を有する三角形状カーボンドットを合成するには例えば非特許文献16のように数工程の合成と精製を要したが、簡単なソルボサーマル法で収率は不明だが容易に合成できるようになった。 In addition, the conventional carbon dot light emitting material has a broad emission spectrum because the band end cannot emit light due to irregular particle size and functional group state, molecular structure defects, etc., and a narrow band width light emitting material having a narrow emission half width is available. There wasn't. However, in June 2018, a group of Beijing Normal University and others used the solvothermal method of heating at 200 ° C in ethanol and autoclave for several hours to 24 hours using fluoroluminol as a raw material to produce a sharp emission spectrum from blue to red. A narrow band width light emitting triangular carbon quantum dot light emitting material (corresponding to an armchair type triangular graphene nanodisk) was synthesized. Conventionally, synthesis of triangular carbon dots having a similar molecular skeleton required several steps of synthesis and purification as in Non-Patent Document 16, for example, but the yield is unknown by a simple solvothermal method, but synthesis is easy. I can now do it.

合成時間や酸触媒添加により分子粒径の成長を制御し、かつカラムクロマトグラフィーで精製することで青、緑、赤の発光材料を作り分け、かつそれらの発光スペクトルの半値幅が30nm程度と極めて狭い発光材料が得られている。例えば赤の発光材料はエタノール溶液中で発光ピーク598nm、発光量子収率54%、発光スペクトルの半値幅29nmが報告されている。それらの発光材料は、その狭い発光スペクトルを利用し有機EL素子の発光材料として利用が検討された。しかし広色域の4K8Kディスプレイ用に用いるには原色の赤では630nm近い発光ピーク波長が要求され、発光量子収率の改良も必要であった(非特許文献17、特許文献1)。 The growth of molecular particle size is controlled by the synthesis time and the addition of an acid catalyst, and blue, green, and red luminescent materials are produced separately by purification by column chromatography, and the half width of their emission spectra is extremely as about 30 nm. A narrow luminescent material is obtained. For example, it has been reported that the red luminescent material has a luminescence peak of 598 nm, a luminescence quantum yield of 54%, and a half width of 29 nm in the luminescence spectrum in an ethanol solution. Utilization of these light-emitting materials as light-emitting materials for organic EL devices was examined by utilizing their narrow emission spectra. However, in order to use it for a wide color gamut 4K8K display, an emission peak wavelength close to 630 nm is required for the primary color red, and it is also necessary to improve the emission quantum yield (Non-Patent Document 17, Patent Document 1).

また、半値幅の狭い発光は水溶性を高められれば蛍光メージングでの多色同時観察化への応用可能性が期待できた。 In addition, if the light emission with a narrow half-value width can be made more water-soluble, it can be expected to be applicable to simultaneous multicolor observation in fluorescence maging.

その後2019年に北京師範大学等のグループは、原料をフロログルシノールよりも反応性が高いレゾルシノールを用い発光効率やピーク波長を改良した三角形状のカーボン量子ドット発光材料を合成した。より短い反応時間で緑と赤の発光材料を作り分けることができた。原料の反応性が高くなることで加熱反応時間を1/5程度に短くでき、ナノ粒子の粒径もフロログルシノールを用いた場合よりも増すことができ、エタノール溶液中で発光ピーク610nm、発光量子収率72%、発光スペクトルの半値幅33nmの高性能の赤色カーボン量子ドット発光材料が得られた(非特許文献18)。 After that, in 2019, a group such as Beijing Normal University synthesized a triangular carbon quantum dot light emitting material with improved luminous efficiency and peak wavelength using resorcinol, which is more reactive than phloroglucinol. It was possible to produce green and red luminescent materials separately in a shorter reaction time. By increasing the reactivity of the raw material, the heating reaction time can be shortened to about 1/5, the particle size of the nanoparticles can be increased as compared with the case of using fluoroglucolcinol, and the emission peak is 610 nm in the ethanol solution. A high-performance red carbon quantum dot light emitting material having a quantum yield of 72% and a half-value width of 33 nm in the emission spectrum was obtained (Non-Patent Document 18).

しかし水酸基が2つのレゾルシノールを原料に用いることでカーボン量子ドット分子側面の水酸基の数が3つのみになり、水酸基を3つ有するフロログリシロールを原料に用いた場合より大幅に少なくなるため、有機EL素子の発光ドーパント等の電子デバイスに用いる場合には吸湿による劣化が低下し良いと考えられるが、バイオイメージングで用いる場合は水溶性が高い方が逆に望ましいと考えられた。 However, when resorcinol with two hydroxyl groups is used as the raw material, the number of hydroxyl groups on the side surface of the carbon quantum dot molecule becomes only three, which is significantly smaller than when fluoroglycylol having three hydroxyl groups is used as the raw material. When used in an electronic device such as a light emitting dopant of an EL element, it is considered that deterioration due to moisture absorption may be reduced, but when used in bioimaging, it is considered that a higher water solubility is conversely desirable.

また2019年にはインド科学栽培協会のグループは、レゾルシノールを空気中で酸素酸化させながら、リン酸と共に190℃、6時間加熱し水溶性のカーボンドット発光材料を得ている。しかしその発光ピークは600nmだが、水中での発光量子収率25%と低かった(非特許文献19)。 In 2019, a group of the Indian Scientific Cultivation Association obtained a water-soluble carbon dot luminescent material by heating resorcinol with phosphoric acid at 190 ° C. for 6 hours while oxygen-oxidizing it in the air. However, although the emission peak was 600 nm, the emission quantum yield in water was as low as 25% (Non-Patent Document 19).

現在、重金属を含まない高生体親和性、高水溶性、狭バンド幅発光(小半値幅)、高発光効率のカーボンドット発光材料の開発が期待されている。 Currently, development of carbon dot light emitting materials having high biocompatibility, high water solubility, narrow bandwidth emission (small half price width), and high luminous efficiency that do not contain heavy metals is expected.

国際公開第2019/134068号(WO,A1)International Publication No. 2019/134068 (WO, A1)

Synthesis of super bright indium phosphide colloidal quantum dots through thermal diffusion., Mitchell T. Clarke, Francesco Narda Viscomi, Thomas W. Chamberlain, Nicole Hondow, Ali M. Adawi, Justin Sturge, Steven C. Erwin, Jean-Sebastien G. Bouillard, Sudarsan Tamang & Graeme J. Stasiuk., Communications Chemistry volume 2, Article number: 36 (2019)Synthesis of super bright indium phosphide colloidal quantum dots through thermal diffusion., Mitchell T. Clarke, Francesco Narda Viscomi, Thomas W. Chamberlain, Nicole Hondow, Ali M. Adawi, Justin Sturge, Steven C. Erwin, Jean-Sebastien G. Bouillard , Sudarsan Tamang & Graeme J. Stasiuk., Communications Chemistry volume 2, Article number: 36 (2019) 太陽電池素材の生体影響―インジウムの経気道性吸入による実験的研究―田中 昭代,平田美由紀, 日衛誌 (Jpn. J. Hyg.),68,83-87(2013).Biological effects of solar cell materials-Experimental study by trans-airway inhalation of indium-Akiyo Tanaka, Miyuki Hirata, Jpn. J. Hyg., 68, 83-87 (2013). Natural-Product-Derived Carbon Dots: From Natural Products to Functional Materials., Xinyue Zhang, Mingyue Jiang,Na Niu, ZhijunChen,Shujun Li, Shouxin Liu and Jian Li, ChemSusChem 2018, 11, 11 - 24.Natural-Product-Derived Carbon Dots: From Natural Products to Functional Materials., Xinyue Zhang, Mingyue Jiang, Na Niu, ZhijunChen, Shujun Li, Shouxin Liu and Jian Li, ChemSusChem 2018, 11, 11 --24. Selecting targets for tumor imaging: an overview of cancer-associated membrane proteins., Martin C. Boonstra, Susanna W.L. de Geus, Hendrica A.J.M. Prevoo, Lukas J.A.C. Hawinkels,CornelisJ.H. van de Velde, Peter J.K. Kuppen, Alexander L. Vahrmeijer and CornelisF.M. Sier,BIOMARKERS IN CANCER,2016,119-133ページ.Selecting targets for tumor imaging: an overview of cancer-associated membrane proteins., Martin C. Boonstra, Susanna WL de Geus, Hendrica AJM Prevoo, Lukas JAC Hawinkels, Cornelis J.H. van de Velde, Peter JK Kuppen, Alexander L. Vahrmeijer and Cornelis F.M. Sier, BIOMARKERS IN CANCER, 2016, pp. 119-133. Synthesis of Luminescent Carbon Dots with Ultrahigh Quantum Yield and Inherent Folate Receptor-Positive Cancer Cell Targetability, Haifang Liu, Zhaohui Li, Yuanqiang Sun, Xin Geng, Yalei Hu, Hongmin Meng, Jia Ge & Lingbo Qu, Scientific Reports volume 8, Article number: 1086 (2018).Synthesis of Luminescent Carbon Dots with Ultrahigh Quantum Yield and Inherent Folate Receptor-Positive Cancer Cell Targetability, Haifang Liu, Zhaohui Li, Yuanqiang Sun, Xin Geng, Yalei Hu, Hongmin Meng, Jia Ge & Lingbo Qu, Scientific Reports volume 8, Article number : 1086 (2018). Exploring the optimal ratio of d-glucose/l-aspartic acid for targeting carbon dots toward brain tumor cells., Suna Fan, XiaotingZheng, Qi Zhan, Huihui Zhang, HuiliShao, Jiexin Wang,ChengboCao, Meifang Zhu, Dan Wang, YaopengZhang,Material Science & Engineering:C, 85巻,1-6ページ(2018).Exploring the optimal ratio of d-glucose / l-aspartic acid for targeting carbon dots toward brain tumor cells., Suna Fan, XiaotingZheng, Qi Zhan, Huihui Zhang, HuiliShao, Jiexin Wang, ChengboCao, Meifang Zhu, Dan Wang, Yaopeng Zhang, Material Science & Engineering: C, Volume 85, pp. 1-6 (2018). Carbon Dots as Targeted Drug Delivery System for Treatment of Cancer Cells., Bhupendra Mewada Ashmi,http://doi.org/10.20602/00003234.Carbon Dots as Targeted Drug Delivery System for Treatment of Cancer Cells., Bhupendra Mewada Ashmi, http://doi.org/10.20602/00003234. Highly efficient gene silencing and bioimaging based on fluorescent carbon dots in vitro and in vivo. SeongchanKim, Yuri Choi, Ginam Park, CheolheeWon, Young-Joon Park, YounghoonLee, Byeong-Su Kim & Dal-HeeMin, Nano Research volume 10, pages503-519(2017).Highly efficient gene silencing and bioimaging based on fluorescent carbon dots in vitro and in vivo. SeongchanKim, Yuri Choi, Ginam Park, CheolheeWon, Young-Joon Park, YounghoonLee, Byeong-Su Kim & Dal-HeeMin, Nano Research volume 10, pages503- 519 (2017). A graphene quantum dot photodynamic therapy agent with high singlet oxygen generation, Jiechao Ge, Minhuan Lan, Bingjiang Zhou, Weimin Liu, Liang Guo, Hui Wang, Qingyan Jia, Guangle Niu, Xing Huang, Hangyue Zhou, XiangminMeng, Pengfei Wang, Chun-Sing Lee, Wenjun Zhang & XiaodongHan, Nature Communications volume 5, Article number: 4596 (2014).A graphene quantum dot photodynamic therapy agent with high singlet oxygen generation, Jiechao Ge, Minhuan Lan, Bingjiang Zhou, Weimin Liu, Liang Guo, Hui Wang, Qingyan Jia, Guangle Niu, Xing Huang, Hangyue Zhou, XiangminMeng, Pengfei Wang, Chun- Sing Lee, Wenjun Zhang & XiaodongHan, Nature Communications volume 5, Article number: 4596 (2014). Red-Emissive Carbon Dots for Fluorescent, Photoacoustic, and Thermal Theranosticsin Living Mice, Jiechao Ge Qingyan Jia Weimin Liu Liang Guo Qingyun Liu MinhuanLan HongyanZhang XiangminMeng Pengfei Wang, Adv Mater. 2015 Jul 22;27(28):4169-77.Red-Emissive Carbon Dots for Fluorescent, Photoacoustic, and Thermal Theranosticsin Living Mice, Jiechao Ge Qingyan Jia Weimin Liu Liang Guo Qingyun Liu MinhuanLan HongyanZhang XiangminMeng Pengfei Wang, Adv Mater. 2015 Jul 22; 27 (28): 4169-77. Cultivating Fluorescent Flowers with Highly Luminescent Carbon Dots Fabricated by a Double Passivation Method., Shuai Han, Tao Chang , Haiping Zhao , Huanhuan Du , Shan Liu, BaoshuangWu and Shenjun Qin, Nanomaterials 2017, 7, 176.Cultivating Fluorescent Flowers with Highly Luminescent Carbon Dots Fabricated by a Double Passivation Method., Shuai Han, Tao Chang, Haiping Zhao, Huanhuan Du, Shan Liu, BaoshuangWu and Shenjun Qin, Nanomaterials 2017, 7, 176. Indian Gooseberry-Derived Tunable Fluorescent Carbon Dots as a Promise for In Vitro/In Vivo Multicolor Bioimaging and Fluorescent Ink., R.Atchudan, T.N.J.I.Edison, S.Perumal, and Y.R.Lee, ACS Omega 2018年、3巻、17590-17601ヘ゜ーシ゛Indian Gooseberry-Derived Tunable Fluorescent Carbon Dots as a Promise for In Vitro / In Vivo Multicolor Bioimaging and Fluorescent Ink., R.Atchudan, TNJIEdison, S.Perumal, and YRLee, ACS Omega 2018, Volume 3, 17590-17601 Page Super-strong and Intrinsically Fluorescent Silkworm Silk from Carbon Nanodots Feeding., Suna Fan, Xiaoting Zheng, Qi Zhan, Huihui Zhang, HuiliShao, Jiexin Wang, ChengboCao, Meifang Zhu, Dan Wang, YaopengZhang, Nano-Micro Lett.(2019) 11:75.Super-strong and Intrinsically Fluorescent Silkworm Silk from Carbon Nanodots Feeding., Suna Fan, Xiaoting Zheng, Qi Zhan, Huihui Zhang, HuiliShao, Jiexin Wang, ChengboCao, Meifang Zhu, Dan Wang, YaopengZhang, Nano-Micro Lett. (2019) 11 : 75. Self-illumination of Carbon Dots by Bioluminescence ResonanceEnergy Transfer. ,JisuSong & Jin Zhang, Scientific Reports (2019) 9巻:13796ページ.Self-illumination of Carbon Dots by Bioluminescence ResonanceEnergy Transfer., JisuSong & Jin Zhang, Scientific Reports (2019) Volume 9: Page 13796. The fluorescence mechanism of carbon dots, and methods for tuning their emission color: a review, Fanyong Yan, ZhonghuiSun, Hao Zhang, XiaodongSun, Yingxia Jiang & ZhangjunBai, Microchimica Actavolume 186, Article number: 583 (2019).The fluorescence mechanism of carbon dots, and methods for tuning their emission color: a review, Fanyong Yan, ZhonghuiSun, Hao Zhang, XiaodongSun, Yingxia Jiang & ZhangjunBai, Microchimica Actavolume 186, Article number: 583 (2019). Supramolecular Organization and Photovoltaics of Triangle-shaped Discotic GraphenesWith Swallow-tailed Alkyl Substituents, Xinliang Feng , Miaoyin Liu, Wojciech Pisula, Masayoshi Takase, Jiaoli Li, Klaus Mullen, Adv.Mater.2008, 20, 2684.Supramolecular Organization and Photovoltaics of Triangle-shaped Discotic GraphenesWith Swallow-tailed Alkyl Substituents, Xinliang Feng, Miaoyin Liu, Wojciech Pisula, Masayoshi Takase, Jiaoli Li, Klaus Mullen, Adv.Mater.2008, 20, 2684. Engineering triangular carbon quantum dots with unprecedented narrow bandwidth emission for multicolored LEDs, Fanglong Yuan, Ting Yuan, Laizhi Sui, Zhibin Wang, Zifan Xi, Yunchao Li, Xiaohong Li, Louzhen Fan, Zhan’ao Tan, Anmin Chen, Mingxing Jin & Shihe Yang, Nature Communications volume 9, Article number: 2249 (2018).Engineering triangular carbon quantum dots with unprecedented narrow bandwidth emission for multicolored LEDs, Fanglong Yuan, Ting Yuan, Laizhi Sui, Zhibin Wang, Zifan Xi, Yunchao Li, Xiaohong Li, Louzhen Fan, Zhan'ao Tan, Anmin Chen, Mingxing Jin & Shihe Yang, Nature Communications volume 9, Article number: 2249 (2018). Highly efficient and stable white LEDs based on pure red narrow bandwidth emission triangular carbon quantum dots for wide-color gamut backlight displays, Fanglong Yuan, Ping He, Zifan Xi, Xiaohong Li, Yunchao Li, Haizheng Zhong, Louzhen Fan & Shihe Yang, Nano Research volume 12, pages1669-1674(2019).Highly efficient and stable white LEDs based on pure red narrow bandwidth emission triangular carbon quantum dots for wide-color gamut backlight displays, Fanglong Yuan, Ping He, Zifan Xi, Xiaohong Li, Yunchao Li, Haizheng Zhong, Louzhen Fan & Shihe Yang, Nano Research volume 12, pages 1669-1674 (2019). Water Dispersible Red Fluorescent Carbon Nanoparticles via Carbonization of Resorcinol, Santu GhoshSantu Ghosh、Haydar Ali and Nikhil R. Jana,ACS Sustainable Chem. Eng. 2019, 7, 14, 12629-12637.Water Dispersible Red Fluorescent Carbon Nanoparticles via Carbonization of Resorcinol, Santu GhoshSantu Ghosh, Haydar Ali and Nikhil R. Jana, ACS Sustainable Chem. Eng. 2019, 7, 14, 12629-12637.

多色化可能な蛍光標識やディスプレイに用いられる鋭い発光スペクトルを有する半導体量子ドットはCdを含み人や環境に有害である課題があった。近年重金属を含まず生体親和性が高く、鋭い発光ピーク、高発光効率、耐光性を有するレゾルシノールのソルボサーマル反応由来の狭バンド幅発光三角形状カーボン量子ドットが開発され発光ダイオード用の発光材料等として研究されている。それらのカーボン量子ドット発光材料をバイオイメージング等の生体への蛍光標識にも用いることができきるよう、培養液や培地への良好な溶解性、分散性を向上させるための発光材料の製造方法を提供することを課題とした。 Semiconductor quantum dots having a sharp emission spectrum used for fluorescent labels and displays that can be multicolored contain Cd and have a problem of being harmful to humans and the environment. In recent years, a narrow band width emission triangular carbon quantum dot derived from the sorbothermal reaction of resorcinol, which does not contain heavy metals and has high biocompatibility, sharp emission peak, high emission efficiency, and light resistance, has been developed and used as a light emitting material for light emitting diodes. Has been studied. A method for producing a luminescent material for improving good solubility and dispersibility in a culture solution or a medium so that these carbon quantum dot luminescent materials can be used for fluorescent labeling in a living body such as bioimaging. The issue was to provide.

本発明は、フロログルシノールおよびレゾルシノールの脱水縮合反応による炭素系ナノ粒子発光材料の製造方法において、フロログルシノールおよびレゾルシノールの溶液の脱水縮合反応時、または反応後に精製した化合物に3,5-ジヒドロキシフェニル-β-D-グルコピラノシドを加えて脱水縮合反応させることにより炭素系ナノ粒子発光材料の製造方法である。 The present invention is a method for producing a carbon-based nanoparticles luminescent material by a dehydration condensation reaction of phloroglucinol and resorcinol. This is a method for producing a carbon-based nanoparticles luminescent material by adding phenyl-β-D-glucopyranoside and causing a dehydration condensation reaction.

また、フロログルシノールおよびレゾルシノールの脱水縮合反応による炭素系ナノ粒子発光材料の製造方法において、フロログルシノールおよびレゾルシノールの溶液の脱水縮合反応後に精製された炭素系ナノ粒子材料と、3,5-ジヒドロキシフェニル-β-D-グルコピラノシドを加えた溶液を脱水縮合反応させることによる炭素系ナノ粒子発光材料の製造方法である。さらに、前記炭素系ナノ粒子発光材料を水溶液に溶解して生体および細胞に吸収させることによる細胞および動植物の蛍光標識方法である。 Further, in the method for producing a carbon-based nanoparticle light-emitting material by a dehydration-condensation reaction of fluoroglucolcinol and resorcinol, a carbon-based nanoparticles material purified after the dehydration-condensation reaction of a solution of fluoroglucolcinol and resorcinol and 3,5-dihydroxy. This is a method for producing a carbon-based nanoparticle luminescent material by subjecting a solution containing phenyl-β-D-glucopyranoside to a dehydration condensation reaction. Further, it is a fluorescent labeling method for cells and animals and plants by dissolving the carbon-based nanoparticles luminescent material in an aqueous solution and allowing the living body and cells to absorb the material.

高発光効率で鋭い発光スペクトルが得られる狭バンド幅発光三角状カーボン量子ドット発光材料の側鎖にβ-D-グルコピラノシド基由来の基を導入することで水溶性が高まり、細胞の培養液や動植物の培地や餌に加え易くなり、またカーボン量子ドットの水溶液中での凝集や濃度消光を抑制し蛍光標識やバイオイメージングへの利用、がん細胞のグルコーストランスポータによる取り込みも期待できるようになる。 Narrow band width emission triangular carbon quantum dot that can obtain a sharp emission spectrum with high emission efficiency By introducing a group derived from β-D-glucopyranoside group into the side chain of the emission material, water solubility is increased, and cell culture medium and animals and plants are improved. It will be easier to add to the medium and food, and it will be expected to be used for fluorescent labeling and bioimaging by suppressing aggregation and concentration quenching of carbon quantum dots in an aqueous solution, and to be taken up by a glucose transporter of cancer cells.

次に、本発明の実施形態について図面を参照して説明する。 Next, an embodiment of the present invention will be described with reference to the drawings.

<非特許文献17によるPGを原料とした狭バンド幅発光三角形状カーボン量子ドット合成法>
フロログルシノール(以下PGともいう)およびレゾルシノールの脱水縮合反応による炭素系ナノ粒子発光材料の製造は特許文献1、非特許文献17、18の狭バンド幅発光三角形状カーボン量子ドットの合成法にしたがって合成することができる。
<Narrow band width light emitting triangular carbon quantum dot synthesis method using PG as a raw material according to Non-Patent Document 17>
The production of carbon-based nanoparticles luminescent material by dehydration condensation reaction of phloroglucinol (hereinafter also referred to as PG) and resorcinol is carried out according to the synthetic method of narrow band width luminescent triangular carbon quantum dots of Patent Document 1, Non-Patent Documents 17 and 18. Can be synthesized.

<青色と緑色発光材料の合成法>
500mg(3.96mmol)のPGを10mlのエタノールに溶解し、10分間超音波をかけてから25mlのテフロン(登録商標)の内容器付きオートクレーブに移し200℃、9時間(青)、24時間(緑)加熱し反応させる。反応後水冷または自然冷却で室温に戻す。
<Synthesis of blue and green luminescent materials>
Dissolve 500 mg (3.96 mmol) of PG in 10 ml of ethanol, sonicate for 10 minutes and then transfer to an autoclave with a 25 ml Teflon® inner container at 200 ° C., 9 hours (blue), 24 hours (blue). Green) Heat and react. After the reaction, return to room temperature by water cooling or natural cooling.

<黄色と赤色の発光材料の合成法>
500mg(3.96mmol)のPGを10mlのエタノールに溶解し、2mlの濃塩酸又は濃硫酸を触媒として加える。得られた透明溶液を25mlのテフロン(登録商標)の内容器付きオートクレーブに移し200℃、2時間(黄)、5時間(赤)加熱し反応させる。反応後水冷または自然冷却で室温に戻し、30分間溶液を直接加熱して塩酸を除くか、水酸化ナトリウムで中和し上澄みを遠心分離機で集める。
<Synthesis of yellow and red luminescent materials>
500 mg (3.96 mmol) of PG is dissolved in 10 ml of ethanol and 2 ml of concentrated hydrochloric acid or concentrated sulfuric acid is added as a catalyst. The obtained transparent solution is transferred to an autoclave with an inner container of 25 ml of Teflon (registered trademark) and heated at 200 ° C. for 2 hours (yellow) and 5 hours (red) to react. After the reaction, the solution is returned to room temperature by water cooling or natural cooling, and the solution is directly heated for 30 minutes to remove hydrochloric acid, or neutralized with sodium hydroxide and the supernatant is collected by a centrifuge.

合成された青〜緑のカーボン量子ドットはPGの脱水縮合が進むにつれ式1〜式2で示される構造のカーボン量子ドットを含むと推測されている。また、水熱合成中に水酸基の付加、転移、脱離が生じる場合もあるため式2は式3に含めて示される。 It is presumed that the synthesized blue-green carbon quantum dots include carbon quantum dots having the structures represented by the formulas 1 to 2 as the dehydration condensation of PG progresses. Further, since addition, transition, and desorption of hydroxyl groups may occur during hydrothermal synthesis, Equation 2 is included in Equation 3.

Figure 2021195434
Figure 2021195434

Figure 2021195434
Figure 2021195434

Figure 2021195434
Figure 2021195434

さらに赤色発光の構造はさらに縮合が進み式4で表せる構造を含むものと考えられる。 Further, it is considered that the structure of red emission includes a structure in which condensation proceeds further and can be represented by the formula 4.

Figure 2021195434
Figure 2021195434

溶媒はエタノール以外に、反応条件を最適化することでホルムアミド、N,N−ジメチルホルムアミド、水等一般的な溶媒に代えることもできる。加えてエタノール、ホルムアルデヒド、N,N−ジメチルホルムアミドのような色々な一般的な溶媒でも最適条件化により発光波長の異なる狭バンド幅発光三角形状カーボン量子ドットを合成できる。 In addition to ethanol, the solvent can be replaced with a general solvent such as formamide, N, N-dimethylformamide, and water by optimizing the reaction conditions. In addition, various general solvents such as ethanol, formaldehyde, and N, N-dimethylformamide can also synthesize narrow band width emission triangular carbon quantum dots having different emission wavelengths by optimum conditions.

例えば、赤の狭バンド幅発光三角形状カーボン量子ドットは濃塩酸または濃硫酸とエタノール中でPGの還流によって作ることもできる。緑と黄色の狭発光三角形状カーボン量子ドットは触媒として少量の濃塩酸または濃硫酸とN,N-ジメチルホルムアミドとホルムアミド中でPGの還流によって作ることもできる。 For example, red narrow band width luminescent triangular carbon quantum dots can also be made by reflux of PG in concentrated hydrochloric acid or concentrated sulfuric acid and ethanol. Green and yellow narrow luminescent triangular carbon quantum dots can also be produced by reflux of PG in a small amount of concentrated hydrochloric acid or concentrated sulfuric acid, N, N-dimethylformamide and formamide as a catalyst.

<非特許文献17による精製法>
狭バンド幅発光三角形状カーボン量子ドットはシリカカラムクロマトグラフィーによって精製する。展開溶媒にジクロロメタンとメタノールを使い分離精製の効率化を確実にするため途中でジクロロメタンとメタノールの比を動的に変える。具体的には分離精製プロセス中に体積比を青の場合6:1から2:1に、緑の場合10:1から4:1に、黄色の場合16:1から8:1に、赤の場合25:1から10:1に変える。純粋な狭バンド幅発光三角形状カーボン量子ドットを得るためにシリカカラムクロマトグラフィーは数回繰り返す。
<Purification method according to Non-Patent Document 17>
Narrowbandwidth luminescent triangular carbon quantum dots are purified by silica column chromatography. Dichloromethane and methanol are used as developing solvents, and the ratio of dichloromethane to methanol is dynamically changed on the way to ensure the efficiency of separation and purification. Specifically, during the separation and purification process, the volume ratio was 6: 1 to 2: 1 for blue, 10: 1 to 4: 1 for green, 16: 1 to 8: 1 for yellow, and red. Case change from 25: 1 to 10: 1. Silica column chromatography is repeated several times to obtain pure narrowband width emission triangular carbon quantum dots.

<非特許文献18によるレゾルシノール原料からの合成、精製法>
50mg(454μmol)のレゾルシノールを10mlのエタノールに溶かし25mlのテフロン(登録商標)の内容器付きオートクレーブに移し200℃、7時間(赤)、4時間(緑)加熱後、自然冷却で室温に冷却する。得られた溶液を展開溶媒に石油エーテルと酢酸エチルの混合物を用いシリカカラムクロマトグラフィーで精製する。
<Synthesis and purification method from resorcinol raw material according to Non-Patent Document 18>
Dissolve 50 mg (454 μmol) of resorcinol in 10 ml of ethanol, transfer to an autoclave with an inner container of 25 ml of Teflon (registered trademark), heat at 200 ° C. for 7 hours (red) and 4 hours (green), and then cool to room temperature by natural cooling. .. The obtained solution is purified by silica column chromatography using a mixture of petroleum ether and ethyl acetate as a developing solvent.

非特許文献18で合成、精製された分子構造として式5に示す構造が記載されている。非特許文献16に示される式6で示される物質がクロロホルム中緑色蛍光であることも考慮すると、式5の構造の発光物質は緑色の発光成分を含むと考えられる。 The structure represented by the formula 5 is described as a molecular structure synthesized and purified in Non-Patent Document 18. Considering that the substance represented by the formula 6 shown in Non-Patent Document 16 is green fluorescence in chloroform, it is considered that the luminescent substance having the structure of the formula 5 contains a green luminescent component.

Figure 2021195434
Figure 2021195434

Figure 2021195434
Figure 2021195434

また、水熱合成中に水酸基の付加、転移、脱離が生じる場合もあるため式3で示される化合物が生成していると考えられる。 Further, since the addition, transition, and desorption of hydroxyl groups may occur during hydrothermal synthesis, it is considered that the compound represented by the formula 3 is produced.

さらに脱水縮合が進んで赤色発光材料になると式4で示される構造の化合物が赤色発光成分として生じ含まれていると考えられる。 Further, when dehydration condensation progresses to become a red light emitting material, it is considered that a compound having a structure represented by the formula 4 is generated and contained as a red light emitting component.

本発明では、非特許文献17、18で示されるようにフロログルシノール、レゾルシノールの縮合工程による三角形状カーボンドットの合成工程を途中まで第1ステップとして行う。その際オートクレーブでの反応の際は二酸化炭素による原料および反応物のカルボキシル化を防ぐため脱気溶媒を用い、ヘリウム、アルゴン等の不活性雰囲気であることが望ましい。 In the present invention, as shown in Non-Patent Documents 17 and 18, the step of synthesizing triangular carbon dots by the step of condensing phloroglucinol and resorcinol is performed halfway as the first step. At that time, during the reaction in the autoclave, it is desirable to use a degassing solvent in order to prevent the carboxylation of the raw materials and the reactants by carbon dioxide, and to have an inert atmosphere such as helium and argon.

次に第2ステップとしてフロリン(3,5-ジヒドロキシフェニル-β-D-グルコピラノシド)を加えて第1ステップで得られたカーボンドットの側方のフェノール性基との縮合反応を継続して行う。第2ステップは第1ステップに連続して行うこともできるが、第1ステップで合成できた化合物を精製した後、フロリンを加えて第2ステップを行うことが純度の高い材料を得るために望ましい。その際グルコピラノシド基同士のキャラメル化による縮合オリゴマー化反応を防ぐため、グルコースのキャラメル化温度の160℃未満で反応を行うことが望ましい。 Next, as a second step, fluoroline (3,5-dihydroxyphenyl-β-D-glucopyranoside) is added, and the condensation reaction with the lateral phenolic group of the carbon dots obtained in the first step is continued. Although the second step can be carried out continuously to the first step, it is desirable to carry out the second step by adding florin after purifying the compound synthesized in the first step in order to obtain a highly pure material. .. At that time, in order to prevent the condensation oligomerization reaction due to caramelization of glucopyranoside groups, it is desirable to carry out the reaction at a glucose caramelization temperature of less than 160 ° C.

低温で反応を行う場合、反応容器の外側を水又はオイルを流すジャケットまたは内部を水またはオイルを流すパイプを通し室温から100℃未満の一定の温度に冷却し保持することもできる。さらに反応物を効率的に加熱し縮合反応を促進するためするためには誘電損失が小さくマイクロ波を吸収し難い溶媒やそれらを含む混合溶媒を使いマイクロ波照射し非加熱効果による反応促進をさせることもできる。溶媒の誘電損失はエタノールは22.87であるが、水(9.9)、ブチルアルコール(9.76)、ジメチルホルムアミド(6.07)、ジクロロメタン(0.38)、テトラヒドロフラン(0.35)、トルエン(0.1)等のエタノールよりも誘電損失が小さくマイクロ波を吸収し難い溶媒やそれらを含む混合溶媒を使ってマイクロ波照射を行なうことでエタノールを用いた場合よりも低温で反応を行なうこともできる。 When the reaction is carried out at a low temperature, the outside of the reaction vessel can be cooled to a constant temperature of less than 100 ° C. from room temperature through a jacket for flowing water or oil or a pipe for flowing water or oil inside. Furthermore, in order to efficiently heat the reactants and promote the condensation reaction, microwave irradiation is performed using a solvent having a small dielectric loss and difficult to absorb microwaves or a mixed solvent containing them, and the reaction is promoted by a non-heating effect. You can also do it. The dielectric loss of the solvent is 22.87 for ethanol, but water (9.9), butyl alcohol (9.76), dimethylformamide (6.07), dichloromethane (0.38), tetrahydrofuran (0.35). By irradiating microwaves with a solvent that has a smaller dielectric loss than ethanol such as toluene (0.1) and is difficult to absorb microwaves or a mixed solvent containing them, the reaction is carried out at a lower temperature than when ethanol is used. You can also do it.

また、フロリンのグルコピラノシド基の水酸基をベンジル基、アセチル基、フェニルボロン酸エステル基などで保護してから反応させ、最終的に脱保護反応を行うこともできる。 Further, it is also possible to protect the hydroxyl group of the glucopyranoside group of Florin with a benzyl group, an acetyl group, a phenylboronic acid ester group or the like and then react them to finally carry out a deprotection reaction.

グルコピラノシド基、およびその残基を導入された本発明の発光材料は水溶性を高めることができ、動植物細胞の蛍光染色に利用できる他、グルコーストランスポーターの働きで血液脳関門を通過し易くなり脳内のがん細胞にも取り込まれやすくなり蛍光標識としての利用が期待できる。 The luminescent material of the present invention into which a glucopyranoside group and its residues have been introduced can enhance water solubility, can be used for fluorescent staining of animal and plant cells, and can easily cross the blood-brain barrier by the action of a glucose transporter. It is easily taken up by the cancer cells inside, and can be expected to be used as a fluorescent label.

<実施例1>
グルコピラノシド基を含むフロログルシノール12.61mg(100μmol)、レゾルシノール66.06mg(600μmol)を12mlのエタノールに溶かし25mlのテフロン(登録商標)の内容器付きオートクレーブに移しアルゴン置換した後200℃で3時間加熱後、130℃以下に温度を下げオートクレーブ内圧を1MPa以下に下げエタノール約12mlに溶解したフロリン84.68mg(300μmol)を高圧不活性ガスによりオートクレーブ中に滴下混合しさらに2時間攪拌しながら室温まで冷却する。
<Example 1>
12.61 mg (100 μmol) of phloroglucinol containing a glucopyranoside group and 66.06 mg (600 μmol) of resorcinol were dissolved in 12 ml of ethanol, transferred to an autoclave with an inner container of 25 ml of Teflon (registered trademark), substituted with argon, and then replaced with argon at 200 ° C. for 3 hours. After heating, the temperature was lowered to 130 ° C. or lower, the internal pressure of the autoclave was lowered to 1 MPa or lower, and 84.68 mg (300 μmol) of phloroglucinol dissolved in about 12 ml of ethanol was dropped and mixed in the autoclave with a high-pressure inert gas, and the mixture was further stirred for 2 hours to room temperature. Cooling.

原料の仕込みモル比はフロログルシノール:レゾルシノール:フロリンのモル比1:6:3となる。その後HPLCで精製する。生成物には少なくとも式7、および式8の構造の緑色発光成分を含む式5の化合物よりも水溶性の高い水溶性発光物質およびそのグルコピラノシド基の脱水縮合体オリゴマーと考えられる構造の水溶性発光材料を含むと考えられる。 The molar ratio of the raw material charged is phloroglucinol: resorcinol: florin molar ratio 1: 6: 3. Then purify by HPLC. The product contains at least a water-soluble luminescent substance having a higher water solubility than the compound of the formula 5 containing a green luminescent component having the structure of the formula 7 and the structure of the formula 8, and a water-soluble luminescence having a structure considered to be a dehydration condensate oligomer of the glucopyranoside group thereof. It is thought to contain materials.

Figure 2021195434
Figure 2021195434

Figure 2021195434
Figure 2021195434

<実施例2>
フロログルシノール3.8mg(30μmol)を約10mlのエタノールに溶かし25mlのテフロン(登録商標)の内容器付きオートクレーブに移し200℃で5時間加熱後、室温まで冷却しHPLCで式9の化合物を分取する。
<Example 2>
Dissolve 3.8 mg (30 μmol) of phloroglucinol in about 10 ml of ethanol, transfer to an autoclave with an inner container of 25 ml of Teflon (registered trademark), heat at 200 ° C. for 5 hours, cool to room temperature, and divide the compound of formula 9 by HPLC. Take.

Figure 2021195434
Figure 2021195434

次に式9の化合物3.24mg(10μmol)とフロリン(3,5-ジヒドロキシフェニル-β-D-グルコピラノシド)33.9mg(120μmol)をジメチルホルムアミド約20mlに溶かし水冷ジャケット付き耐圧フラスコに入れアルゴン置換した後、マイクロ波を15分間照射し反応させる。その後HPLCで精製する。最終的な原料の仕込みモル比はフロログルシノール:フロリンのモル比は1:12であるので、生成物にはフロログルシノールの3分子縮合体コア1分子を取り囲みフロリン12分子が縮合した式10、式11に示す赤色発光成分を含む式5の化合物より水溶性の高い発光材料およびそのグルコピラノシド基の脱水縮合体オリゴマーからなる水溶性発光材料が含まれていると考えられる。 Next, 3.24 mg (10 μmol) of the compound of the formula 9 and 33.9 mg (120 μmol) of fluoroline (3,5-dihydroxyphenyl-β-D-glucopyranoside) were dissolved in about 20 ml of dimethylformamide, placed in a pressure-resistant flask with a water-cooled jacket, and replaced with argon. After that, it is irradiated with microwaves for 15 minutes to react. Then purify by HPLC. Since the molar ratio of the final raw material to be charged is fluoroglucolcinol: florin, the molar ratio is 1:12. , It is considered that a water-soluble luminescent material composed of a luminescent material having a higher water solubility than the compound of the formula 5 containing the red luminescent component represented by the formula 11 and a dehydrated condensate oligomer of the glucopyranoside group thereof is contained.

Figure 2021195434
Figure 2021195434

Figure 2021195434
Figure 2021195434

実施例1、2で得られる発光材料は、動植物細胞の蛍光染色や標識に利用することができる。 The luminescent material obtained in Examples 1 and 2 can be used for fluorescent staining and labeling of animal and plant cells.

<実施例3>
実施例1で得られた緑色発光成分を含む発光材料と実施例2で得られた赤色蛍光成分を含む発光材料を(各10mg/L)含むハイポニカ液体肥料を含む水溶液をバケツに入れ、ダイコンの主根部をつけて1週間溶液を吸わせると、ダイコンの細胞が染色され紫外線励起で緑と赤の蛍光成分を含む発光を示す観賞用ダイコンが得られる。
<Example 3>
An aqueous solution containing a hyponica liquid fertilizer containing a luminescent material containing a green luminescent component obtained in Example 1 and a luminescent material containing a red fluorescent component obtained in Example 2 (10 mg / L each) was placed in a bucket of radish. When the main root is attached and the solution is inhaled for one week, the cells of the radish are stained and an ornamental radish showing emission including green and red fluorescent components is obtained by ultraviolet excitation.

Claims (3)

フロログルシノールおよびレゾルシノールの脱水縮合反応による炭素系ナノ粒子発光材料の製造方法において、フロログルシノールおよびレゾルシノールの溶液の加熱縮合反応時に3,5-ジヒドロキシフェニル-β-グルコピラノシドを加えて脱水縮合反応させることを特徴とする炭素系ナノ粒子発光材料の製造方法。 In the method for producing a carbon-based nanoparticle luminescent material by a dehydration condensation reaction of phloroglucinol and resorcinol, 3,5-dihydroxyphenyl-β-glucopyranoside is added during a heat condensation reaction of a solution of phloroglucinol and resorcinol to cause a dehydration condensation reaction. A method for producing a carbon-based nanoparticle light emitting material. フロログルシノールおよびレゾルシノールの脱水縮合反応による炭素系ナノ粒子発光材料の製造方法において、フロログルシノールおよびレゾルシノールの溶液の脱水縮合反応後に精製された炭素系ナノ粒子材料と、3,5-ジヒドロキシフェニル-β-グルコピラノシドを加えた溶液を脱水縮合反応させることを特徴とする炭素系ナノ粒子発光材料の製造方法。 In the method for producing a carbon-based nanoparticle luminescent material by a dehydration condensation reaction of fluoroglucolcinol and resorcinol, a carbon-based nanoparticles material purified after a dehydration-condensation reaction of a solution of fluoroglucolcinol and resorcinol and 3,5-dihydroxyphenyl- A method for producing a carbon-based nanoparticle luminescent material, which comprises subjecting a solution to which β-glucopyranoside is added to a dehydration condensation reaction. 前記請求項1または2記載の炭素系ナノ粒子発光材料を水溶液に溶解して生体および細胞に吸収させることによる細胞および動植物の蛍光標識方法。 A method for fluorescent labeling of cells and animals and plants by dissolving the carbon-based nanoparticles luminescent material according to claim 1 or 2 in an aqueous solution and allowing the living body and cells to absorb the material.
JP2020102130A 2020-06-12 2020-06-12 Manufacturing method of carbon-based nanoparticle luminescent material and fluorescent labeling method of cell and animal and plant using the same Pending JP2021195434A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020102130A JP2021195434A (en) 2020-06-12 2020-06-12 Manufacturing method of carbon-based nanoparticle luminescent material and fluorescent labeling method of cell and animal and plant using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020102130A JP2021195434A (en) 2020-06-12 2020-06-12 Manufacturing method of carbon-based nanoparticle luminescent material and fluorescent labeling method of cell and animal and plant using the same

Publications (1)

Publication Number Publication Date
JP2021195434A true JP2021195434A (en) 2021-12-27

Family

ID=79197217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020102130A Pending JP2021195434A (en) 2020-06-12 2020-06-12 Manufacturing method of carbon-based nanoparticle luminescent material and fluorescent labeling method of cell and animal and plant using the same

Country Status (1)

Country Link
JP (1) JP2021195434A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114836207A (en) * 2022-04-25 2022-08-02 陕西煤业化工集团神木天元化工有限公司 Hydrogen sulfide fluorescent nano fluorescent probe, preparation method and application thereof
CN114989820A (en) * 2022-05-31 2022-09-02 哈尔滨工程大学 Construction method of carbazolyl fluorescent carbon dots with large Stokes displacement
CN116144355A (en) * 2023-03-09 2023-05-23 郑州大学 Ultra-long-time near-infrared water-soluble afterglow luminous carbon dot and preparation method and application thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114836207A (en) * 2022-04-25 2022-08-02 陕西煤业化工集团神木天元化工有限公司 Hydrogen sulfide fluorescent nano fluorescent probe, preparation method and application thereof
CN114836207B (en) * 2022-04-25 2023-11-24 陕西煤业化工集团神木天元化工有限公司 Hydrogen sulfide nano fluorescent probe, preparation method and application thereof
CN114989820A (en) * 2022-05-31 2022-09-02 哈尔滨工程大学 Construction method of carbazolyl fluorescent carbon dots with large Stokes displacement
CN114989820B (en) * 2022-05-31 2024-03-26 哈尔滨工程大学 Construction method of carbazolyl fluorescent carbon dots with large Stokes displacement
CN116144355A (en) * 2023-03-09 2023-05-23 郑州大学 Ultra-long-time near-infrared water-soluble afterglow luminous carbon dot and preparation method and application thereof

Similar Documents

Publication Publication Date Title
JP2021195434A (en) Manufacturing method of carbon-based nanoparticle luminescent material and fluorescent labeling method of cell and animal and plant using the same
Li et al. Far-red carbon dots as efficient light-harvesting agents for enhanced photosynthesis
Tan et al. Enhanced photoluminescence and characterization of multicolor carbon dots using plant soot as a carbon source
Yang et al. Carbon dots with red-shifted photoluminescence by fluorine doping for optical bio-imaging
Sun et al. Synthesis of fluorinated and nonfluorinated graphene quantum dots through a new top‐down strategy for long‐time cellular imaging
Gao et al. Recent advance in red-emissive carbon dots and their photoluminescent mechanisms
Song et al. Deep-ultraviolet emissive carbon nanodots
Li et al. Oxidation-induced quenching mechanism of ultrabright red carbon dots and application in antioxidant RCDs/PVA film
CN108128767A (en) A kind of method and its application that carbon quantum dot is quickly prepared in room temperature environment
Mohan et al. Dual band emission in carbon dots
Fang et al. State-of-the-art of biomass-derived carbon dots: Preparation, properties, and applications
Ren et al. Green process of biomass waste derived fluorescent carbon quantum dots for biological imaging in vitro and in vivo
Su et al. One-pot degradation of cellulose into carbon dots and organic acids in its homogeneous aqueous solution
CN108753283B (en) Method for safely and simply preparing double-doped nitrogen and phosphorus carbon quantum dots
CN113292993B (en) Preparation method and application of oil-soluble carbon dots
CN112080278B (en) Up/down conversion dual-mode luminescent nanocrystal and preparation method and application thereof
CN108753282B (en) Method for synthesizing red fluorescent carbon dots under excitation of visible light source
Vithalani et al. Glowing photoluminescene in carbon-based nanodots: current state and future perspectives
Li et al. Synthesis of carbon dots with strong luminescence in both dispersed and aggregated states by tailoring sulfur doping
CN113512423A (en) Fluorescent carbon quantum dot based on metal organic framework and preparation method thereof
CN106701069A (en) Preparation method of wavelength-controllable long wavelength emitting fluorescent carbon-based nanodots
Dang et al. An efficient green approach to constructing adenine sulfate-derived multicolor sulfur-and nitrogen-codoped carbon dots and their bioimaging applications
Hallaji et al. Fluorescent carbon dot as an optical amplifier in modern agriculture
CN110922967A (en) Method for synthesizing high-fluorescence boron-nitrogen co-doped graphene quantum dots by one-pot hydrothermal method
Rossi et al. Carbon quantum dots: An environmentally friendly and valued approach to sludge disposal