JP2021194662A - Method for producing special steel plate - Google Patents

Method for producing special steel plate Download PDF

Info

Publication number
JP2021194662A
JP2021194662A JP2020101406A JP2020101406A JP2021194662A JP 2021194662 A JP2021194662 A JP 2021194662A JP 2020101406 A JP2020101406 A JP 2020101406A JP 2020101406 A JP2020101406 A JP 2020101406A JP 2021194662 A JP2021194662 A JP 2021194662A
Authority
JP
Japan
Prior art keywords
dendrite
rolling
casting
special steel
slab
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020101406A
Other languages
Japanese (ja)
Other versions
JP7460903B2 (en
Inventor
浩太 渡邉
Kota Watanabe
雅文 宮嵜
Masafumi Miyazaki
直嗣 吉田
Naotada Yoshida
隆 諸星
Takashi Morohoshi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2020101406A priority Critical patent/JP7460903B2/en
Publication of JP2021194662A publication Critical patent/JP2021194662A/en
Application granted granted Critical
Publication of JP7460903B2 publication Critical patent/JP7460903B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Continuous Casting (AREA)
  • Metal Rolling (AREA)

Abstract

To provide a method for producing a special steel plate, capable of producing the special steel plate having a small dendrite inclination angle through casting by using a twin roll-type continuous casting device without performing a low speed casting.SOLUTION: A method for producing a special steel plate includes: casting a thin cast piece 5 by using a twin roll-type continuous casting device; hot-rolling the thin cast piece 5 to obtain a special steel plate material; defining a value of a coefficient a in advance for a relation between rolling reduction p during hot rolling when θ=0° and an inclination angle ω of dendrite in a steel plate, provided that θ is an inclination angle of dendrite in the thin cast piece 5, and then defining a critical rolling reduction pmax where recrystallization does not occur during the hot rolling; and adjusting the inclination angle θ of dendrite in the thin cast piece and the rolling reduction p within a range of p<pmax so that φC expressed by formula (1) satisfies -10°≤φC≤10°, where the formula (1) is as follows: φC=θ-a×p.SELECTED DRAWING: Figure 1

Description

本発明は、特殊鋼板の製造方法に関するものである。 The present invention relates to a method for manufacturing a special steel sheet.

省工程・省エネルギーの観点から、最終品に近い薄板を鋳造段階で製造する技術、すなわちニアネットシェイプ連続鋳造の開発が行われている。このうち、薄板系のニアネットシェイプ連続鋳造として有力なものとして、いわゆるストリップ連続鋳造法が知られている。ストリップ連続鋳造法とは、溶湯と鋳型ロール(あるいはベルト)を直接接触させて凝固させ、鋳造厚0.1〜10mm程度に連続鋳造するニアネットシェイプ連続鋳造法である(非特許文献1)。以下、ここでは「薄肉鋳片の連続鋳造」と呼ぶ。薄肉鋳片の連続鋳造方法としては、双ロール式連続鋳造方法、単ロール式連続鋳造方法、双ベルト式連続鋳造方法、単ベルト式連続鋳造方法などが知られている。 From the viewpoint of process saving and energy saving, a technology for manufacturing a thin plate close to the final product at the casting stage, that is, near net shape continuous casting is being developed. Of these, the so-called strip continuous casting method is known as a promising thin plate-based near-net shape continuous casting. The strip continuous casting method is a near-net shape continuous casting method in which a molten metal and a mold roll (or belt) are brought into direct contact with each other to solidify and continuously cast to a casting thickness of about 0.1 to 10 mm (Non-Patent Document 1). Hereinafter, it is referred to as "continuous casting of thin-walled slabs". As a continuous casting method for thin-walled slabs, a double-roll type continuous casting method, a single-roll type continuous casting method, a double-belt type continuous casting method, a single-belt type continuous casting method, and the like are known.

双ロール式連続鋳造装置による薄肉鋳片の連続鋳造においては、図1に示すように、一対の鋳造ロール1を配置し、ロール間の最近接距離(ギャップ最小部20のギャップ)が鋳造する薄肉鋳片5の厚みとなる。鋳造ロール1の両端に固定堰2(サイド堰ともいう。)を押し付けて溶融金属プール部3を形成し、ノズル4から溶融金属プール部3に溶湯を連続的に供給しながら一対の鋳造ロール1を互いに反対方向に回転させる。ロール周面に沿って生成した一対の凝固シェル23をロール間の最近接部位(ギャップ最小部20)で圧着し薄肉鋳片5とする。鋳造ロール1の周速が、薄肉鋳片5の鋳造速度vとなる。 In continuous casting of thin-walled slabs by a double-roll type continuous casting device, as shown in FIG. 1, a pair of casting rolls 1 are arranged and the closest contact distance between the rolls (gap of the minimum gap 20) is cast. It is the thickness of the slab 5. A fixed weir 2 (also referred to as a side weir) is pressed against both ends of the casting roll 1 to form a molten metal pool portion 3, and a pair of casting rolls 1 are continuously supplied with molten metal from a nozzle 4 to the molten metal pool portion 3. Rotate in opposite directions. A pair of solidified shells 23 formed along the peripheral surface of the roll are crimped at the closest portion (gap minimum portion 20) between the rolls to form a thin-walled slab 5. The peripheral speed of the casting roll 1 is the casting speed v of the thin-walled slab 5.

特許文献1に記載のように、双ロール鋳造においては、鋳造された鋳片のデンドライトが板面の垂線方向に対して10〜20°傾くことが知られており、ロールの回転速度を大きくするほど、デンドライトの傾角も大きくなるとしている。 As described in Patent Document 1, in double-roll casting, it is known that the dendrite of the cast slab is tilted by 10 to 20 ° with respect to the perpendicular direction of the plate surface, and the rotation speed of the roll is increased. The more the dendrite tilts, the larger it is.

特殊鋼板の製造においては、冷間圧延前の板において板面に垂直な方向に<100>方位が揃っている場合、磁気特性に優れた鋼板が製造できるとされている。特許文献1では、鋳片の鋳造組織におけるデンドライトを凝固シェルの表面に対して垂直に成長させ、板面に垂直な方向に<100>方位が揃ったデンドライトを有する鋳片の場合、磁気特性に優れた鋼板が製造できるとしている。
特許文献1においては、双ロール鋳造の2個のロール間に形成される溶湯湯溜り部に溶湯の凝固開始点を固定する接触制限板を装入して、溶融プールがロールと接触する弧長を短くし、これによって同一の厚みを有する薄肉鋳片を製造する際の鋳造ロールの周速(鋳造速度)を低下させ、デンドライトの傾角を小さくする方法が開示されている。
In the manufacture of special steel sheets, it is said that a steel sheet having excellent magnetic properties can be manufactured when the <100> orientations of the plate before cold rolling are aligned in the direction perpendicular to the plate surface. In Patent Document 1, dendrites in the cast structure of slabs are grown perpendicular to the surface of the solidified shell, and in the case of slabs having dendrites aligned in the direction perpendicular to the plate surface, the magnetic properties are changed. It is said that excellent steel sheets can be manufactured.
In Patent Document 1, a contact limiting plate for fixing the solidification start point of the molten metal is charged in the molten metal pool formed between the two rolls of the twin roll casting, and the arc length in which the molten pool contacts the rolls. Is disclosed, thereby reducing the peripheral speed (casting speed) of a casting roll when producing thin-walled slabs having the same thickness, and reducing the tilt angle of dendrites.

特開平5−277657号公報Japanese Unexamined Patent Publication No. 5-277657

第5版鉄鋼便覧 第1巻 製銑・製鋼、第456〜457頁5th Edition Steel Handbook Volume 1 Pig Iron and Steelmaking, pp. 456-457 鉄と鋼、61巻14号(1975)2982〜2990頁Iron and Steel, Vol. 61, No. 14 (1975), pp. 298-2990

特許文献1に記載の方法では、鋳片のデンドライト傾角を小さくするために鋳造ロールの周速、即ち鋳造速度を低下させており、低速鋳造のため、連続鋳造のスループットが小さくなり、生産性が悪化するという問題を有している。 In the method described in Patent Document 1, the peripheral speed of the casting roll, that is, the casting speed is lowered in order to reduce the dendrite tilt angle of the slab, and the low-speed casting reduces the throughput of continuous casting and increases the productivity. It has the problem of getting worse.

ここでは、特殊鋼板の製造において、冷間圧延前の素材を「特殊鋼板素材」と呼ぶ。本発明は、双ロール式連続鋳造装置を用いた鋳造で低速鋳造を行うことなく、デンドライト傾角が小さい特殊鋼板素材を製造することのできる、特殊鋼板の製造方法を提供することを目的とする。 Here, in the manufacture of special steel sheet, the material before cold rolling is referred to as "special steel sheet material". An object of the present invention is to provide a method for manufacturing a special steel sheet, which can manufacture a special steel sheet material having a small dendrite tilt angle without performing low-speed casting by casting using a twin-roll type continuous casting apparatus.

即ち、本発明の要旨とするところは以下のとおりである。
[1]双ロール式連続鋳造装置を用いて薄肉鋳片を鋳造し、前記薄肉鋳片を熱間圧延して特殊鋼板素材とする特殊鋼板の製造方法であって、
鋳片のデンドライトの傾きをθとし(板垂線との間の角度であって、鋳造方向を正とする。)、
あらかじめ、θ=0°のときの熱間圧延の圧下率pと鋼板のデンドライトの傾きωとの関係について、下記(2)式の係数aの値を定めるとともに、熱間圧延で再結晶しない限界圧下率pmaxを定めておき、
前記係数aを用い、下記(1)式で表すφCが、−10°≦φC≦10°を満足するように、鋳片のデンドライトの傾きθと圧下率pとを、下記(4)式の範囲内で調整することを特徴とする特殊鋼板の製造方法。
ただし、圧下率p(%)は、圧延前の板厚xと圧延後の板厚yとから下記(3)式によって求められる。
φC=θ−a×p (1)
ω=−a×p (2)
p=(x−y)/x×100 (3)
p<pmax (4)
[2]双ロール式連続鋳造装置における鋳造速度を調整することにより、鋳片のデンドライトの傾きθを調整することを特徴とする[1]に記載の特殊鋼板の製造方法。
That is, the gist of the present invention is as follows.
[1] A method for manufacturing a special steel sheet, in which a thin-walled slab is cast using a double-roll type continuous casting apparatus and the thin-walled slab is hot-rolled to obtain a special steel sheet material.
The inclination of the dendrite of the slab is θ (the angle between the dendrite and the vertical line, and the casting direction is positive).
Regarding the relationship between the rolling rolling reduction rate p when θ = 0 ° and the slope ω of the dendrite of the steel sheet, the value of the coefficient a in the following equation (2) is determined in advance, and the limit for not recrystallizing by hot rolling. Set the rolling factor p max ,
Using the coefficient a, the slope θ of the dendrite of the slab and the reduction rate p are set to the following (4) so that φ C expressed by the following equation (1) satisfies -10 ° ≤ φ C ≤ 10 °. A method for manufacturing a special steel sheet, which comprises adjusting within the range of the formula.
However, the rolling reduction ratio p (%) is obtained from the plate thickness x before rolling and the plate thickness y after rolling by the following equation (3).
φ C = θ−a × p (1)
ω = −a × p (2)
p = (xy) / xx100 (3)
p <p max (4)
[2] The method for manufacturing a special steel sheet according to [1], wherein the inclination θ of the dendrite of the slab is adjusted by adjusting the casting speed in the double-roll type continuous casting apparatus.

本発明の特殊鋼板の製造方法において、双ロール式連続鋳造と熱間圧延を用い、連続鋳造鋳片のデンドライトの傾きθを調整するとともに、熱間圧延の圧下率を調整することにより、熱間圧延後の特殊鋼板素材においてデンドライトの傾きφを最適範囲に調整して、良好な品質の特殊鋼板を製造することができる。 In the method for manufacturing a special steel sheet of the present invention, hot rolling is used by using double-roll continuous casting and hot rolling to adjust the inclination θ of the dendrite of the continuously cast slab and to adjust the rolling reduction ratio of hot rolling. It is possible to manufacture a special steel sheet of good quality by adjusting the inclination φ of the dendrite to the optimum range in the special steel sheet material after rolling.

(A)は双ロール式連続鋳造の状況を示す概念図であり、(B)は薄肉鋳片断面の拡大図である。(A) is a conceptual diagram showing the situation of double-roll type continuous casting, and (B) is an enlarged view of a cross section of a thin-walled slab. 鋳片(凝固シェル)におけるデンドライトの傾きθを示す概念図である。It is a conceptual diagram which shows the inclination θ of dendrite in a slab (solidification shell). 鋳片(デンドライトの傾きθ=0°)を圧下率pで圧延したときの、圧下率pと圧延後のデンドライトの傾きωの関係を示す図である。It is a figure which shows the relationship between the rolling ratio p, and the slope ω of dendrite after rolling when a slab (inclination θ = 0 ° of dendrite) is rolled at the rolling ratio p. 熱延圧下率と熱延後の結晶粒径の関係を示す図である。It is a figure which shows the relationship between the hot rolling reduction rate and the crystal grain size after hot rolling.

回転する1対の鋳造ロールを用いる双ロール式連続鋳造装置においては、図1に示すように、1対の鋳造ロール1を回転させ、鋳造ロール1に凝固シェル23を形成しつつ薄肉鋳片5を連続鋳造する。1対の鋳造ロール1は、お互いの表面が上方から下方に向かって距離が近接し、最も接近した部分においてギャップ最小部20を形成する。さらに、鋳造ロール1の両端に接する固定堰2を有し、1対の鋳造ロール1のギャップ最小部20の上部には、鋳造ロールと固定堰2とで囲まれた溶融金属プール部3を形成する。ノズル4を経由して溶融金属プール部3中に金属溶湯を供給すると、鋳造ロール1に接する部分で溶湯が凝固し、凝固シェル23が形成される。鋳造ロール1を相互に反対方向に回転させることにより、鋳造ロール表面に形成された凝固シェル23は鋳造ロール1とともに移動し、ギャップ最小部20で両方の鋳造ロール表面の凝固シェル23が圧着して薄肉鋳片5となり、ギャップ最小部20から下方に薄肉鋳片5が排出される。 In a double-roll type continuous casting apparatus using a pair of rotating casting rolls, as shown in FIG. 1, a pair of casting rolls 1 is rotated to form a solidification shell 23 on the casting rolls 1 while thin-walled slabs 5 are formed. Is continuously cast. The pair of cast rolls 1 are close to each other in distance from the top to the bottom, and form the minimum gap 20 at the closest portion. Further, it has fixed weirs 2 in contact with both ends of the casting roll 1, and a molten metal pool portion 3 surrounded by the casting roll and the fixed weir 2 is formed above the gap minimum portion 20 of the pair of casting rolls 1. do. When the molten metal is supplied into the molten metal pool portion 3 via the nozzle 4, the molten metal solidifies at the portion in contact with the casting roll 1 to form the solidified shell 23. By rotating the casting rolls 1 in opposite directions, the solidification shell 23 formed on the surface of the casting roll moves together with the casting roll 1, and the solidification shells 23 on the surfaces of both casting rolls are crimped at the minimum gap 20. The thin-walled slab 5 is formed, and the thin-walled slab 5 is discharged downward from the minimum gap portion 20.

鋳造ロール1表面の周方向速度が、溶融金属プール部3における凝固シェル23の走行速度となり、同時に薄肉鋳片5の鋳造速度vとなる。溶融金属プール部3の溶鋼にも湯流れが存在し、図2は、凝固シェル23が鋳造方向24に走行する状況を示す概念図である。凝固シェル表面25は鋳造ロール(図示しない)に接している。凝固シェル23と溶鋼プールとの固液界面26において、溶融金属プール部の溶鋼流速wと凝固シェル23の走行速度(鋳造速度v)との差分が、両者の間の相対速度V(凝固シェル23からみた溶鋼流速)となる。 The circumferential speed of the surface of the casting roll 1 becomes the traveling speed of the solidified shell 23 in the molten metal pool portion 3, and at the same time, the casting speed v of the thin-walled slab 5. A hot water flow also exists in the molten steel of the molten metal pool portion 3, and FIG. 2 is a conceptual diagram showing a situation in which the solidified shell 23 runs in the casting direction 24. The solidified shell surface 25 is in contact with a casting roll (not shown). At the solid-liquid interface 26 between the solidified shell 23 and the molten steel pool, the difference between the molten steel flow velocity w in the molten metal pool portion and the traveling speed (casting speed v) of the solidified shell 23 is the relative speed V (solidified shell 23) between the two. It becomes the molten steel flow velocity seen from the entwined.

凝固シェル23の固液界面26において、凝固シェル23と溶鋼プールとの間に相対速度Vが存在すると、図2に示すように、形成するデンドライト27の成長方向に傾きが生じることが知られている。薄肉鋳片(図2の凝固シェル23)において、デンドライト27の方向と、鋼板表面に対する垂線との間の角度を、デンドライトの傾きθとおく。相対速度Vが大きいほど、デンドライトの傾きθも大きくなる。相対速度Vの方向と、デンドライトの傾きの方向とは逆方向であることがわかっている。相対速度Vとデンドライトの傾きθとの関係については、岡野らによって明らかにされている。詳細は後述する。 It is known that when a relative velocity V exists between the solidified shell 23 and the molten steel pool at the solid-liquid interface 26 of the solidified shell 23, a slope occurs in the growth direction of the dendrite 27 to be formed, as shown in FIG. There is. In the thin-walled slab (solidified shell 23 in FIG. 2), the angle between the direction of the dendrite 27 and the perpendicular to the surface of the steel plate is defined as the slope θ of the dendrite. The larger the relative velocity V, the larger the slope θ of the dendrite. It is known that the direction of the relative velocity V and the direction of the inclination of the dendrite are opposite to each other. The relationship between the relative velocity V and the dendrite slope θ has been clarified by Okano et al. Details will be described later.

ここで本発明では、薄肉鋳片のデンドライトの傾きの角度は、薄肉鋳片表面の垂線となす角度が鋳造方向24を正、逆方向を負と定義した(図2参照)。 Here, in the present invention, the angle of inclination of the dendrite of the thin-walled slab is defined as the angle formed by the vertical line on the surface of the thin-walled slab in the casting direction 24 as positive and the reverse direction as negative (see FIG. 2).

通常は、凝固シェル23の走行速度(鋳造速度v)が大きくなるほど、相対速度Vも大きくなる。従って、双ロール式連続鋳造においては、鋳造速度vを変動させることにより、鋳片のデンドライトの傾きθを変化させることができる。相対速度Vは鋳造速度vの反対方向なので、図2に示すように、デンドライト27の傾斜は鋳造方向24を向き、傾きθは正の値となる。 Normally, as the traveling speed (casting speed v) of the solidified shell 23 increases, the relative speed V also increases. Therefore, in the double-roll type continuous casting, the inclination θ of the dendrite of the slab can be changed by changing the casting speed v. Since the relative speed V is in the opposite direction to the casting speed v, as shown in FIG. 2, the inclination of the dendrite 27 faces the casting direction 24, and the inclination θ is a positive value.

板材のロール圧延において、圧延前の板材にあらかじめ板表面に垂直な垂線を罫書いておき、あるいは鋳片のデンドライトが板表面に垂直である鋳片を用い、所定の圧下率で圧下を行うと、圧延の進行とともに順次材料の表面が中心部よりも先に進んだ状態になって、元の垂線は曲がったままロールから出てゆく。その結果、圧延後の板の断面において、表面から表面下1/4厚さまでの領域について見ると、圧延前に設けた罫書き線(デンドライト)(板表面に垂直)は、板の垂線との間に傾きωの傾きを有することになる。傾きωは圧下率pによって変化し、圧下率pが大きくなるほど傾きωも大きくなる。傾きωの傾斜方向は、圧延方向と反対方向である。鋳造方向と圧延方向とを同一方向とするとき、傾きωは負の値となる。 In roll rolling of a plate material, if a vertical line perpendicular to the plate surface is marked in advance on the plate material before rolling, or if a slab whose dendrite is perpendicular to the plate surface is used and the reduction is performed at a predetermined reduction rate. As the rolling progresses, the surface of the material gradually advances beyond the center, and the original perpendicular line leaves the roll while being bent. As a result, when looking at the region from the surface to the 1/4 thickness below the surface in the cross section of the plate after rolling, the scribe line (dendrite) (perpendicular to the plate surface) provided before rolling is the vertical line of the plate. It will have a slope of ω in between. The slope ω changes depending on the reduction rate p, and the larger the reduction rate p, the larger the slope ω. The inclination direction of the inclination ω is opposite to the rolling direction. When the casting direction and the rolling direction are the same, the slope ω has a negative value.

以上から明らかなように、双ロール式連続鋳造と熱間圧延を用いた薄鋼板の製造(鋳造方向と圧延方向を同一方向とする)においては、圧延前に傾きθ=0°であった鋳片のデンドライトを圧延後にデンドライトの傾きωになり、熱間圧延の圧延率を調整することにより、傾きω(負の値)を調整することが可能である。また、双ロール連続鋳造の鋳造速度等の調整により、圧延前のデンドライトの傾きθ(正の値)を種々調整することが可能である。 As is clear from the above, in the production of thin steel sheets using double-roll continuous casting and hot rolling (the casting direction and the rolling direction are the same), the inclination was θ = 0 ° before rolling. After rolling one piece of dendrite, the inclination of the dendrite becomes ω, and the inclination ω (negative value) can be adjusted by adjusting the rolling ratio of hot rolling. Further, it is possible to variously adjust the inclination θ (positive value) of the dendrite before rolling by adjusting the casting speed and the like of the double roll continuous casting.

そこで本発明では、特殊鋼板の製造方法において、双ロール式連続鋳造と熱間圧延を用い、連続鋳造鋳片のデンドライトの傾きθを調整するとともに、熱間圧延の圧下率を調整することにより、熱間圧延後のデンドライトの傾きφを最適範囲に調整して特殊鋼板素材としたとき、良好な品質の特殊鋼板を製造できるのではないか、と着想した。 Therefore, in the present invention, in the method for manufacturing a special steel sheet, double-roll continuous casting and hot rolling are used, and the inclination θ of the dendrite of the continuously cast slab is adjusted and the rolling reduction ratio of the hot rolling is adjusted. When the inclination φ of the dendrite after hot rolling was adjusted to the optimum range to make a special steel sheet material, I thought that it would be possible to manufacture a special steel sheet of good quality.

《熱間圧延によるデンドライト傾き制御(θ=0°の鋳片を使用)》
熱間圧延がデンドライトの傾きに及ぼす影響を調べるため、熱間圧延試験を行った。鋳型浸漬実験を用いて、鋳片のデンドライトの傾きθがほぼ0°の特殊鋼の片面サンプルを作製した。当該サンプルを熱間圧延し、熱間圧延の圧下率pがデンドライトの傾きω(≒φ)に及ぼす影響を調査した。鋳造した特殊鋼を900℃で5min加熱した後、熱間圧延を行った。熱延での圧下率pを調べるため、あらかじめマイクロメータにて鋳片の板厚を測定し、熱間圧延後にも測定し、(3)式を用いて圧下率pを算出した。また、得られたサンプルのL断面(鋳造方向及び板厚方向と平行)を切断し、研磨し、ピクリン酸エッチングを施す。表面から1/4厚み部のデンドライトの傾き20点を測定・平均することでデンドライトの傾きωを求めた。結果を図3に示す。図3から明らかなように、圧下率pが大きくなるほどデンドライトの傾きωは負の方向で大きくなった。
<< Dendrite tilt control by hot rolling (using slabs with θ = 0 °) >>
A hot rolling test was conducted to investigate the effect of hot rolling on the inclination of dendrites. Using a mold immersion experiment, a single-sided sample of special steel with a dendrite inclination θ of the slab of approximately 0 ° was prepared. The sample was hot-rolled, and the effect of the rolling reduction rate p on the dendrite slope ω (≈φ) was investigated. The cast special steel was heated at 900 ° C. for 5 minutes and then hot-rolled. In order to investigate the rolling reduction p, the plate thickness of the slab was measured in advance with a micrometer, measured even after hot rolling, and the rolling reduction p was calculated using Eq. (3). Further, the L cross section (parallel to the casting direction and the plate thickness direction) of the obtained sample is cut, polished, and subjected to picric acid etching. The inclination ω of the dendrite was obtained by measuring and averaging 20 points of the inclination of the dendrite in the 1/4 thickness portion from the surface. The results are shown in FIG. As is clear from FIG. 3, the inclination ω of the dendrite increases in the negative direction as the reduction rate p increases.

圧下率p(%)と傾きω(°)の関係を下記(2)式(aは定数)で表したとき、係数aは、鋼種によって変わるので、本試験例のように予め求めておくことが好ましい。発明者の諸々の試験では、例えば図3に用いた鋼種では、これらデータから最小二乗法により求めた傾き0.87を、当該鋼種に適用する係数aとした。異なる鋼種についても、同様な手法で係数aを求めることができる。
ω=−a×p (2)
p=(x−y)/x×100 (3)
When the relationship between the reduction rate p (%) and the slope ω (°) is expressed by the following equation (2) (a is a constant), the coefficient a changes depending on the steel type, so it should be obtained in advance as in this test example. Is preferable. In various tests by the inventor, for example, in the steel grade used in FIG. 3, the slope 0.87 obtained from these data by the least squares method was used as the coefficient a applied to the steel grade. For different steel types, the coefficient a can be obtained by the same method.
ω = −a × p (2)
p = (xy) / xx100 (3)

《双ロール式連続鋳造と熱間圧延の組み合わせによるデンドライト傾き制御》
図1に示すような、鋳造ロール幅400mm、直径600mmの一対の鋳造ロールを有する双ロール鋳造装置を用いて、特殊鋼の鋳造を行った。鋳造弧角ηは40°に固定した。鋳造速度は20〜100m/minまで行った。鋳造速度が速いほど、鋳片厚みが薄くなり、鋳片厚みdは鋳造速度vの平方根にほぼ反比例する。
あらかじめそれぞれの鋳造速度での薄肉鋳片5のデンドライトの傾きθを測定した。双ロール法で鋳造した鋳片を採取し、幅中央のL断面(鋳造方向と板厚方向に平行)を切り出す。その後、断面を埋め込み、研磨し、ピクリン酸エッチングを施す。その後、鋳片表面から1/4厚み位置のデンドライトの傾きを20点測定した。また、測定場所については、任意のデンドライトの傾きを選び測定した後、隣接するデンドライトを測定することを繰り返し、合計20点測定を行った。20点の平均値をデンドライトの傾きθとした。
なお、鋳造後の結晶粒径は鋳造速度にかかわらず、100μm程度だった。
<< Dendrite tilt control by combining double-roll continuous casting and hot rolling >>
Special steel was cast using a twin roll casting apparatus having a pair of casting rolls having a casting roll width of 400 mm and a diameter of 600 mm as shown in FIG. The casting arc angle η was fixed at 40 °. The casting speed was 20 to 100 m / min. The faster the casting speed, the thinner the slab thickness, and the slab thickness d is substantially inversely proportional to the square root of the casting speed v.
The inclination θ of the dendrite of the thin-walled slab 5 at each casting speed was measured in advance. A slab cast by the double roll method is collected, and an L cross section (parallel to the casting direction and the plate thickness direction) at the center of the width is cut out. After that, the cross section is embedded, polished, and subjected to picric acid etching. Then, the inclination of the dendrite at the position of 1/4 thickness from the surface of the slab was measured at 20 points. As for the measurement location, the inclination of an arbitrary dendrite was selected and measured, and then the adjacent dendrites were repeatedly measured, and a total of 20 points were measured. The average value of 20 points was defined as the slope θ of the dendrite.
The crystal grain size after casting was about 100 μm regardless of the casting speed.

その後、熱間圧延を行い、熱延後の薄鋼板(特殊鋼板素材)の板厚が1mmになるよう圧延を行った。鋳造方向と圧延方向は同一方向としている。
得られた薄鋼板(特殊鋼板素材)サンプルのL断面を観察し、デンドライトの傾きφを測定した。φの測定方法は、前述のθ、ωの測定方法と同様である。
また、同じL断面について結晶粒径を切片法(JIS G0551)にて測定し、再結晶の有無を確認した。試料の断面にナイタールエッチングを施し、鋳片の板表面から1/8厚部の任意の位置で、板表面に平行に全長2mmの直線を1本引き、この直線が横切った結晶粒の数nを求める。直線の端がその内部にある結晶粒は(1/2)個と数える。2mmを結晶粒の個数nで割り、結晶粒径を求めた。圧延によるひずみは表層に多く入るので、表層から概ね1/4厚までの範囲が再結晶する。本発明では、表層から1/8厚位置における、平均結晶粒径を上記方法により求めた。なお、再結晶による結晶径の変化は相当大きく、再結晶が起きたか否かは視覚観察によって十分判別できる。特段結晶径の臨界値があるわけではない。例えば本実施例で示すように鋳造後平均径100μmであったものが、再結晶すると平均20μm程度になる。このように平均粒径が急激に変化するときの圧下率を限界圧下率pmaxとする。限界圧下率は鋼種や圧延条件によって変わるので、必要に応じてあらかじめ測定される。特殊鋼は図4に示すように、圧下率30%以上の圧下を加えると再結晶した。
Then, hot rolling was performed, and rolling was performed so that the thickness of the thin steel plate (special steel plate material) after hot rolling was 1 mm. The casting direction and the rolling direction are the same.
The L cross section of the obtained thin steel plate (special steel plate material) sample was observed, and the inclination φ of the dendrite was measured. The method for measuring φ is the same as the method for measuring θ and ω described above.
Further, the crystal grain size was measured by the section method (JIS G0551) for the same L cross section, and the presence or absence of recrystallization was confirmed. The cross section of the sample is subjected to nital etching, and one straight line with a total length of 2 mm is drawn parallel to the plate surface at an arbitrary position 1/8 thick from the plate surface of the slab, and the number of crystal grains crossed by this straight line. Find n. The number of crystal grains whose ends of the straight line are inside is counted as (1/2). 2 mm was divided by the number of crystal grains n to determine the crystal grain size. Since a large amount of strain due to rolling enters the surface layer, the range from the surface layer to approximately 1/4 thickness is recrystallized. In the present invention, the average crystal grain size at the position 1/8 thick from the surface layer was determined by the above method. The change in crystal diameter due to recrystallization is considerably large, and it can be sufficiently determined by visual observation whether or not recrystallization has occurred. There is no particular critical value for the crystal diameter. For example, as shown in this example, what had an average diameter of 100 μm after casting becomes about 20 μm on average when recrystallized. The reduction rate when the average particle size changes rapidly in this way is defined as the limit reduction rate p max . Since the critical rolling reduction rate varies depending on the steel type and rolling conditions, it is measured in advance as necessary. As shown in FIG. 4, the special steel recrystallized when a reduction of 30% or more was applied.

製造条件及び製造結果を表1に示す。表1から明らかなように、鋳造速度vが速くなるほど、鋳片厚dが薄くなるとともに、鋳片のデンドライトの傾きθが大きくなっていることがわかる。 Table 1 shows the manufacturing conditions and manufacturing results. As is clear from Table 1, it can be seen that as the casting speed v increases, the slab thickness d becomes thinner and the dendrite inclination θ of the slab becomes larger.

Figure 2021194662
Figure 2021194662

表1に示す結果に基づき、まず、傾きθ、φと圧下率pとの間の関係を調査した。
前記(3)式にa=0.87を代入し、各実施例について(3)式に基づいてωを算出した。次に、θ、ωとφとの相互関係について評価した。その結果、
φ=θ+ω (5)
の関係が成立していることが判明した。この式に(3)式を代入すると、
φ=θ−a×p (6)
が成立する。(6)式が、θ、pとφとの関係を示す実験式である。
Based on the results shown in Table 1, the relationship between the slopes θ and φ and the reduction rate p was first investigated.
By substituting a = 0.87 into the above equation (3), ω was calculated based on the equation (3) for each example. Next, the interrelationship between θ, ω and φ was evaluated. as a result,
φ = θ + ω (5)
It turned out that the relationship was established. Substituting equation (3) into this equation
φ = θ−a × p (6)
Is established. Equation (6) is an empirical formula showing the relationship between θ, p and φ.

また、表1の「デンドライト傾角ω計算値」に示すように、熱延後のデンドライト傾角φから鋳片のデンドライト傾角θを引いた値(ω=φ−θ)と、(2)式から求めたデンドライト傾角(ω=−a×p)を比較すると、両者はほぼ一対一で対応した。これより、(6)式により熱延後のデンドライト傾角は予測できると考えられた。 Further, as shown in "Dendrite tilt angle ω calculated value" in Table 1, the value (ω = φ−θ) obtained by subtracting the dendrite tilt angle θ of the slab from the dendrite tilt angle φ after hot spreading is obtained from Eq. (2). Comparing the dendrite tilt angles (ω = -a × p), they corresponded almost one-to-one. From this, it was considered that the dendrite tilt angle after hot rolling can be predicted by Eq. (6).

前記(6)式は実験式であり、(6)式の右辺の値がφに一致するとの実験結果を表している。当該実験結果に基づいて本発明を実施するに際しては、(6)式の右辺の値を示す変数としてφCを導入し、
φC=θ−a×p (1)
なる(1)式を定義する。そして、θとpを調整して、(1)式から算出されるφCについて−10°≦φC≦10°となるように調整する。
The above equation (6) is an empirical equation, and represents an experimental result that the value on the right side of the equation (6) matches φ. When carrying out the present invention based on the experimental results, φ C was introduced as a variable indicating the value on the right side of Eq. (6).
φ C = θ−a × p (1)
(1) is defined. Then, θ and p are adjusted so that φ C calculated from Eq. (1) is −10 ° ≦ φ C ≦ 10 °.

即ち、双ロール式連続鋳造を用い、鋳片のデンドライトの傾きθを調整するとともに、連続鋳造後の熱間圧延における圧下率pを調整することにより、(1)式に基づいてφCを調整し、デンドライト傾角の小さい薄鋼板(特殊鋼板素材)の製造が可能となった。ここにおいて、製造する品種について、あらかじめ(3)式のaの値を実験により定めておく。 That is, φ C is adjusted based on the equation (1) by adjusting the inclination θ of the dendrite of the slab and adjusting the rolling reduction p in the hot rolling after the continuous casting by using the double roll type continuous casting. However, it has become possible to manufacture thin steel sheets (special steel sheet materials) with a small dendrite tilt angle. Here, the value of a in the formula (3) is determined in advance for the varieties to be produced by experiments.

さらに、予め再結晶しない限界圧下率pmaxを求めておき、下記(4)式を満たすことで、未再結晶の特殊鋼板素材が得られる。この結果、デンドライト傾角を小さくすることと生産性を両立し、高品質な特殊鋼板を製造できる。本試験で用いた2鋼種では、限界圧下率pmaxはほぼ30%同等であった。限界圧下率pmaxは鋼種毎に都度求めておけばよい。
p<pmax (4)
Further, by obtaining the critical reduction rate p max that does not recrystallize in advance and satisfying the following equation (4), an unrecrystallized special steel sheet material can be obtained. As a result, it is possible to manufacture a high-quality special steel sheet while achieving both a small dendrite tilt angle and productivity. In the two steel types used in this test, the critical reduction rate p max was almost equivalent to 30%. The critical reduction rate p max may be obtained for each steel type.
p <p max (4)

連続鋳造後の薄肉鋳片では、デンドライトの方向は<100>方向である。そのため、熱間圧延で再結晶せずに凝固組織が残っている際には、熱間圧延後の特殊鋼板素材においても、デンドライトの方向は<100>方向であるとみなされる。但し、熱間圧延で再結晶した場合には、内部から新しい結晶粒が生成・成長するため、凝固組織が完全に破壊されるので、デンドライトの傾きと<100>方向は一致しなくなり、結晶方位はランダムになる。 In the thin-walled slab after continuous casting, the direction of the dendrite is the <100> direction. Therefore, when the solidified structure remains without recrystallization in hot rolling, the dendrite direction is considered to be the <100> direction even in the special steel sheet material after hot rolling. However, when recrystallized by hot rolling, new crystal grains are generated and grown from the inside, and the solidified structure is completely destroyed. Therefore, the inclination of the dendrite and the <100> direction do not match, and the crystal orientation Will be random.

表1に示す実施例において、本発明例No.1〜13については、(1)式のφが−10°〜10°の範囲内にあり、圧下率pが(4)式を満足しており、結果として熱延後のンドライト傾角φが−10°〜10°の範囲内にあり、再結晶していない特殊鋼鋼板素材を得ることができた。 In the examples shown in Table 1, the present invention example No. For 1 to 13, the φ C of Eq. (1) is within the range of -10 ° to 10 °, the reduction rate p satisfies Eq. (4), and as a result, the undrite tilt angle φ after hot rolling is It was possible to obtain a special steel sheet material that was in the range of -10 ° to 10 ° and was not recrystallized.

一方、比較例No.1〜8は、(1)式のφ及び熱延後のデンドライト傾角φがいずれも−10°〜10°の範囲から外れていた。また、比較例No.1〜4、6、7は、圧下率が(4)式を満たさず、特殊鋼板素材において再結晶が進行していた。なお、本発明範囲から外れる数値に下線を付している。 On the other hand, Comparative Example No. In 1 to 8, both φ C of equation (1) and the dendrite tilt angle φ after hot rolling were out of the range of −10 ° to 10 °. In addition, Comparative Example No. In 1 to 4, 6 and 7, the reduction rate did not satisfy the formula (4), and recrystallization was proceeding in the special steel sheet material. Numerical values outside the scope of the present invention are underlined.

《溶鋼流動によるデンドライトの傾きθの推定》
通常の連続鋳造鋳片のデンドライトの傾きθは、岡野らによって(7)、(8)式に従うことが知られている(非特許文献2参照)。ここで、Vは溶鋼流速(溶鋼と凝固シェルとの間の相対速度)、fは凝固速度である。この式を変形すると(7)’、(8)’式で表せる。また、図2に示すように、凝固シェルと溶鋼との相対速度Vは、鋳造速度vと下降流の溶鋼流速wによって(9)式のように表せる。なお、溶鋼流速(相対速度V)が2〜100cm/sの範囲のとき、(7)’、(8)’式は適応できる。また、凝固速度fは鋳造スラブ厚などにも影響されるが、f=0.01〜1cm/sである。
<< Estimation of dendrite slope θ by molten steel flow >>
It is known by Okano et al. That the slope θ of the dendrite of a normal continuously cast slab follows equations (7) and (8) (see Non-Patent Document 2). Here, V is the molten steel flow velocity (relative velocity between the molten steel and the solidified shell), and f is the solidified rate. By transforming this equation, it can be expressed by equations (7)'and (8)'. Further, as shown in FIG. 2, the relative speed V between the solidified shell and the molten steel can be expressed as the equation (9) by the casting speed v and the molten steel flow velocity w of the downward flow. When the molten steel flow velocity (relative velocity V) is in the range of 2 to 100 cm / s, the equations (7)'and (8)' can be applied. Further, the solidification rate f is affected by the thickness of the cast slab and the like, but f = 0.01 to 1 cm / s.

このような知見から、薄肉鋳片についても、鋳造条件によっては、本式を用いてデンドライトの傾きθを推定することも可能である。
lnV=(θ+9.73・lnf+33.7)/(1.45・lnf+12.5) v<50 (7)
lnV=(θ+4.83・lnf+7.2)/(0.1・lnf+5.4) v≧50 (8)
θ=lnV×(1.45 ・lnf+12.5)−(9.73・lnf+33.7) v<50 (7)’
θ=lnV×(0.1 ・lnf+5.4)−(4.83・lnf+7.2) v≧50 (8)’
V=v−w (9)
Based on these findings, it is possible to estimate the dendrite slope θ using this equation even for thin-walled slabs, depending on the casting conditions.
lnV = (θ + 9.73 · lnf + 33.7) / (1.45 · lnf + 12.5) v <50 (7)
lnV = (θ + 4.83 ・ lnf + 7.2) / (0.1 ・ lnf + 5.4) v ≧ 50 (8)
θ = lnV × (1.45 ・ lnf + 12.5) − (9.73 ・ lnf + 33.7) v <50 (7)'
θ = lnV × (0.1 ・ lnf + 5.4) − (4.83 ・ lnf + 7.2) v ≧ 50 (8)'
V = v-w (9)

1 鋳造ロール
2 固定堰
3 溶融金属プール部
4 ノズル
5 薄肉鋳片
20 ギャップ最小部
23 凝固シェル
24 鋳造方向
25 凝固シェル表面
26 固液界面
27 デンドライト
v 鋳造速度
w 溶鋼流速
V 相対速度
θ 鋳片のデンドライトの傾き
φ 鋼板のデンドライトの傾き
ω 鋼板のデンドライトの傾き(鋳片のデンドライトの傾きが0°のとき)
η 鋳造弧角
1 Casting roll 2 Fixed dam 3 Molten metal pool part 4 Nozzle 5 Thin-walled slab 20 Gap minimum part 23 Solidification shell 24 Casting direction 25 Solidification shell surface 26 Solid-liquid interface 27 Dendrite v Casting speed w Molten steel flow velocity V Relative speed θ Dendrite tilt φ Dendrite tilt of steel plate ω Dendrite tilt of steel plate (when the dendrite tilt of the slab is 0 °)
η Casting arc angle

Claims (2)

双ロール式連続鋳造装置を用いて薄肉鋳片を鋳造し、前記薄肉鋳片を熱間圧延して特殊鋼板素材とする特殊鋼板の製造方法であって、
鋳片のデンドライトの傾きをθとし(板垂線との間の角度であって、鋳造方向を正とする。)、
あらかじめ、θ=0°のときの熱間圧延の圧下率pと鋼板のデンドライトの傾きωとの関係について、下記(2)式の係数aの値を定めるとともに、熱間圧延で再結晶しない限界圧下率pmaxを定めておき、
前記係数aを用い、下記(1)式で表すφCが、−10°≦φC≦10°を満足するように、鋳片のデンドライトの傾きθと圧下率pとを、下記(4)式の範囲内で調整することを特徴とする特殊鋼板の製造方法。
ただし、圧下率p(%)は、圧延前の板厚xと圧延後の板厚yとから下記(3)式によって求められる。
φC=θ−a×p (1)
ω=−a×p (2)
p=(x−y)/x×100 (3)
p<pmax (4)
It is a method for manufacturing a special steel sheet in which a thin-walled slab is cast using a double-roll type continuous casting apparatus and the thin-walled slab is hot-rolled to be a special steel sheet material.
The inclination of the dendrite of the slab is θ (the angle between the dendrite and the vertical line, and the casting direction is positive).
Regarding the relationship between the rolling rolling reduction rate p when θ = 0 ° and the slope ω of the dendrite of the steel sheet, the value of the coefficient a in the following equation (2) is determined in advance, and the limit for not recrystallizing by hot rolling. Set the rolling factor p max ,
Using the coefficient a, the slope θ of the dendrite of the slab and the reduction rate p are set to the following (4) so that φ C expressed by the following equation (1) satisfies -10 ° ≤ φ C ≤ 10 °. A method for manufacturing a special steel sheet, which comprises adjusting within the range of the formula.
However, the rolling reduction ratio p (%) is obtained from the plate thickness x before rolling and the plate thickness y after rolling by the following equation (3).
φ C = θ−a × p (1)
ω = −a × p (2)
p = (xy) / xx100 (3)
p <p max (4)
双ロール式連続鋳造装置における鋳造速度を調整することにより、鋳片のデンドライトの傾きθを調整することを特徴とする請求項1に記載の特殊鋼板の製造方法。 The method for manufacturing a special steel sheet according to claim 1, wherein the inclination θ of the dendrite of the slab is adjusted by adjusting the casting speed in the double-roll type continuous casting apparatus.
JP2020101406A 2020-06-11 2020-06-11 Manufacturing method of special steel plate Active JP7460903B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020101406A JP7460903B2 (en) 2020-06-11 2020-06-11 Manufacturing method of special steel plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020101406A JP7460903B2 (en) 2020-06-11 2020-06-11 Manufacturing method of special steel plate

Publications (2)

Publication Number Publication Date
JP2021194662A true JP2021194662A (en) 2021-12-27
JP7460903B2 JP7460903B2 (en) 2024-04-03

Family

ID=79196764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020101406A Active JP7460903B2 (en) 2020-06-11 2020-06-11 Manufacturing method of special steel plate

Country Status (1)

Country Link
JP (1) JP7460903B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000219940A (en) 1999-01-29 2000-08-08 Nkk Corp Hot rolled steel sheet of low thermal expansion alloy thin sheet stock for electronic parts excellent in etchability
IT1316029B1 (en) 2000-12-18 2003-03-26 Acciai Speciali Terni Spa ORIENTED GRAIN MAGNETIC STEEL PRODUCTION PROCESS.
CN103305759B (en) 2012-03-14 2014-10-29 宝山钢铁股份有限公司 Thin strip continuous casting 700MPa grade high-strength weather-resistant steel manufacturing method
JP5772767B2 (en) 2012-08-30 2015-09-02 新日鐵住金株式会社 Steel continuous casting method
JP6582892B2 (en) 2015-11-04 2019-10-02 日本製鉄株式会社 Hot rolling method for steel
JP7284403B2 (en) 2019-11-21 2023-05-31 日本製鉄株式会社 Twin roll continuous casting apparatus and twin roll continuous casting method
JP7348511B2 (en) 2019-11-22 2023-09-21 日本製鉄株式会社 Manufacturing method of thin steel plate

Also Published As

Publication number Publication date
JP7460903B2 (en) 2024-04-03

Similar Documents

Publication Publication Date Title
US8016021B2 (en) Casting steel strip with low surface roughness and low porosity
CA1213814A (en) Method and an apparatus for continuous manufacturing lead or lead alloy strip
US8701745B2 (en) Continuous casting of lead alloy strip for heavy duty battery electrodes
JP5775879B2 (en) Martensitic stainless steel and method for producing the same
EP1066897B1 (en) Continuous casting method
JP2021194662A (en) Method for producing special steel plate
JP7348511B2 (en) Manufacturing method of thin steel plate
JP2004237291A (en) Method of manufacturing continuous casting slab and steel material obtained by working the cast slab
JP3495278B2 (en) Belt type continuous casting apparatus and belt type continuous casting method
JP6816523B2 (en) Continuous steel casting method
JP4025566B2 (en) Method for producing austenitic stainless steel strip slab
Haga 600 mm-Wide Strip Casting Using Single Roll Caster Equipped with Scraper
JPH05277657A (en) Method for controlling inclined angle of columnar crystal structure in cast strip in twin roll casting
JP3063533B2 (en) Continuous casting of wide thin cast slabs
JPH0890182A (en) Method for continuously casting wide and thin cast slab
JP3394730B2 (en) Continuous casting method of steel slab
JPH09136145A (en) Method for working recessed parts on peripheral surface for continuously casting cast strip
JP2909339B2 (en) Manufacturing method of thin slab
JP3426117B2 (en) Continuous casting method of molten steel
JP2000301306A (en) Cast slab excellent in quality and working characteristic and steel material worked from this slab
JPH07290193A (en) Thin slab of cr-ni stainless steel excellent in cold rolled surface property, and its manufacture
JP2790420B2 (en) Carbon steel slab by twin roll continuous casting and its manufacturing method
JP2021087968A (en) Method of manufacturing thin cast piece
JP2831297B2 (en) Manufacturing method of stainless steel strip with excellent surface properties
JPH05285601A (en) Twin roll type continuous casting apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240304

R150 Certificate of patent or registration of utility model

Ref document number: 7460903

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150