JP2021192475A - Wireless communication system, communication method, and wireless base station - Google Patents

Wireless communication system, communication method, and wireless base station Download PDF

Info

Publication number
JP2021192475A
JP2021192475A JP2020098336A JP2020098336A JP2021192475A JP 2021192475 A JP2021192475 A JP 2021192475A JP 2020098336 A JP2020098336 A JP 2020098336A JP 2020098336 A JP2020098336 A JP 2020098336A JP 2021192475 A JP2021192475 A JP 2021192475A
Authority
JP
Japan
Prior art keywords
wireless
base station
resource allocation
radio
information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020098336A
Other languages
Japanese (ja)
Other versions
JP7434068B2 (en
Inventor
真也 玉置
Shinya Tamaki
一貴 原
Kazutaka Hara
勝也 南
Katsuya Minami
亮吾 久保
Ryogo Kubo
ダビド ゴンザレス
Gonzalez David
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Keio University
Original Assignee
Nippon Telegraph and Telephone Corp
Keio University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp, Keio University filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2020098336A priority Critical patent/JP7434068B2/en
Publication of JP2021192475A publication Critical patent/JP2021192475A/en
Application granted granted Critical
Publication of JP7434068B2 publication Critical patent/JP7434068B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a wireless communication system, a communication method, and a wireless base station that can allocate wireless resources while ensuring efficiency and fairness among users by considering the communication quality or the like of each wireless terminal in real time.SOLUTION: In a wireless communication system according to the present invention, a wireless base station receives the queue length and priority information in a buffer from each wireless terminal, and determines the amount of wireless resources that can be allocated to each wireless terminal by feedback control that simultaneously considers the received queue length and priority information and the amount of wireless resources allocated in the past and the amount of wireless resources that can be allocated.SELECTED DRAWING: Figure 5

Description

本開示は、無線通信システムの無線資源割当に関する。 The present disclosure relates to radio resource allocation for radio communication systems.

無線通信システムでは1台の無線基地局と複数台の無線端末との間の通信においてデータ衝突を避けるために各無線端末に対して無線資源の割当制御が行われている。例えば、モバイル無線通信規格のLTE(Long Term Evolution)や無線LAN(Local Area Network)のIEEE 802.11axではOFDMA(Orthogonal Frequency Division Multiple Access)が採用されており、無線資源量をRB(Resource Block)ないしRU(Resource Unit)単位で各無線端末に割り当てる。RB/RUとデータレートの関係はMCS(Modulation and Coding Scheme)およびトーン数(サブキャリア数)に依存する。 In the wireless communication system, allocation control of wireless resources is performed for each wireless terminal in order to avoid data collision in communication between one wireless base station and a plurality of wireless terminals. For example, in LTE (Long Term Evolution), which is a mobile wireless communication standard, and IEEE 802.11ax, which is a wireless LAN (Local Area Network), OFDMA (Orthogonal Frequency Division Multiple Access) is adopted. Or, it is assigned to each wireless terminal in units of RU (Location Unit). The relationship between the RB / RU and the data rate depends on the MCS (Modulation and Coding Scene) and the number of tones (number of subcarriers).

LTEにおけるRBの割当には各ユーザのバッファ状態を考慮して、各ユーザ宛のデータ量に比例した無線資源割当技術や通信品質やユーザ間の公平性を考慮した無線資源割当技術が提案されている(例えば、非特許文献1〜4を参照。)。 For RB allocation in LTE, a wireless resource allocation technology proportional to the amount of data addressed to each user and a wireless resource allocation technology considering communication quality and fairness among users have been proposed in consideration of the buffer state of each user. (See, for example, Non-Patent Documents 1 to 4).

F. Capozzi, “Downlink Packet Scheduling in LTE Cellular Networks: Key Design Issues and a Survey,” IEEE Communications Surveys & Tutorials, vol. 15, no. 2, pp. 678−700, Second Quarter 2013.F. Capozzi, “Downlink Packet Scheduling in LTE Cellular Networks: Key Design Issues and a Survey,” IEEE Communications, Tutorials. 15, no. 2, pp. 678-700, Second Quarter 2013. E. Khorov et al., “A Tutorial on IEEE 802.11ax High Efficiency WLANs,” IEEE Communications Surveys & Tutorials, vol. 21, no. 1, pp. 197−216, First Quarter 2019.E. Khorov et al. , "A Tutorial on IEEE 802.11ax High Efficiency WLANs," IEEE Communications Services & Tutorials, vol. 21, no. 1, pp. 197-216, First Quarter 2019. G. Piro et al., “Two−Level Downlink Scheduling for Real−Time Multimedia Services in LTE Networks,” IEEE Transactions on Multimedia, vol. 13, no. 5, pp. 1052−1065, Oct. 2011.G. Piro et al. , "Two-Level Downlink Scheduling for Real-Time Multimedia Services in LTE Networks," IEEE Transitions on Multimedia, vol. 13, no. 5, pp. 1052-1065, Oct. 2011. 山下 他, “ワイヤレスQoS制御技術,” NTT技術ジャーナル, Vol. 16, No. 7, pp. 23−28, July 2004.Yamashita et al., “Wireless QoS Control Technology,” NTT Technology Journal, Vol. 16, No. 7, pp. 23-28, July 2004.

しかしながら、IEEE 802.11ax規格のOFDMAには、IoT(Internet of Things)の普及や災害時のアクセス集中等により無線端末数が増加すると、多様な品質要求や品質変動によりリアルタイムで効率的な無線資源割当が困難になるという課題があった。 However, in the OFDMA of the IEEE 802.11ax standard, when the number of wireless terminals increases due to the spread of IoT (Internet of Things) and access concentration in the event of a disaster, various quality requirements and quality fluctuations cause real-time and efficient wireless resources. There was a problem that allocation became difficult.

そこで、本発明は、上記課題を解決するために、リアルタイムに各無線端末の通信品質等を考慮して効率性およびユーザ間の公平性を担保した無線資源割当ができる無線通信システム、通信方法、及び無線基地局を提供することを目的とする。 Therefore, in order to solve the above problems, the present invention provides a wireless communication system and a communication method capable of allocating wireless resources while ensuring efficiency and fairness among users in real time in consideration of communication quality of each wireless terminal. And to provide radio base stations.

上記目的を達成するために、本発明に係る無線通信システムは、通信品質およびバッファ状態を考慮してフィードバック制御により無線基地局と各無線端末との無線資源割当量を決定することとした。 In order to achieve the above object, in the wireless communication system according to the present invention, it is decided to determine the wireless resource allocation amount between the wireless base station and each wireless terminal by feedback control in consideration of the communication quality and the buffer state.

具体的には、本発明に係る無線通信システムは、1つの無線基地局と複数の無線端末との間の無線接続が直交周波数分割多元接続(OFDMA:Orthogonal Frequency Division Multiple Access)である無線通信システムであって、
前記無線基地局は、
現在のバッファ内のキュー長及び優先度の情報を取得する情報取得部と、
前記キュー長及び優先度の情報を用いて、OFDMAに基づく前記無線端末との間の無線資源割当の計算を一定の時間間隔で行う演算部と、
前記無線資源割当の計算結果を前記演算部が行う次の無線資源割当の計算にフィードバックさせるフィードバック部と、
を備えることを特徴とする。
Specifically, the wireless communication system according to the present invention is a wireless communication system in which the wireless connection between one wireless base station and a plurality of wireless terminals is an orthogonal frequency division multiple access (OFDMA). And,
The radio base station is
An information acquisition unit that acquires information on the queue length and priority in the current buffer,
A calculation unit that calculates the radio resource allocation between the wireless terminal and the wireless terminal based on OFDMA at regular time intervals using the queue length and priority information.
A feedback unit that feeds back the calculation result of the radio resource allocation to the next calculation of the radio resource allocation performed by the calculation unit.
It is characterized by having.

本無線通信システムは、現在のバッファ内のキュー長や優先度から無線資源割当の計算を行うときに過去の無線資源の割当量をフィードバックすることでリアルタイム性と公平性を両立させる。
より詳細には、本無線通信システムは、複数の無線端末に対して一定の時間間隔でOFDMAに基づく無線資源割当を行う無線通信システムであって、無線基地局が、各無線端末からバッファ内のキュー長および優先度情報を受信し、受信したキュー長および優先度情報と、過去に割り当てられた無線資源量および割当可能な無線資源量とを同時に考慮したフィードバック制御によって、各無線端末へ割り当てる無線資源量を決定する。
This wireless communication system achieves both real-time performance and fairness by feeding back the past allocation amount of wireless resources when calculating the wireless resource allocation from the queue length and priority in the current buffer.
More specifically, the present wireless communication system is a wireless communication system that allocates wireless resources based on OFDMA to a plurality of wireless terminals at regular time intervals, and the wireless base station is in a buffer from each wireless terminal. The radio that receives the queue length and priority information and allocates it to each radio terminal by feedback control that simultaneously considers the received queue length and priority information and the amount of radio resources allocated in the past and the amount of radio resources that can be allocated. Determine the amount of resources.

このとき、本発明に係る無線通信システムの前記情報取得部が取得する前記情報は、前記無線基地局の前記バッファの情報であり、前記無線資源割当は、前記無線基地局から前記無線端末への下り方向の割当とすることができる。
また、本発明に係る無線通信システムの前記情報取得部が取得する前記情報は、前記無線端末の前記バッファの情報であり、前記無線資源割当は、前記無線端末から前記無線基地局への上り方向の割当とすることもできる。
すなわち、上述した無線資源割当は、下り方向にも上り方向にも適用できる。
At this time, the information acquired by the information acquisition unit of the wireless communication system according to the present invention is information in the buffer of the wireless base station, and the wireless resource allocation is performed from the wireless base station to the wireless terminal. It can be assigned in the downward direction.
Further, the information acquired by the information acquisition unit of the wireless communication system according to the present invention is information in the buffer of the wireless terminal, and the wireless resource allocation is in the upward direction from the wireless terminal to the wireless base station. It can also be an allocation of.
That is, the above-mentioned radio resource allocation can be applied to both the downlink direction and the uplink direction.

また、本発明に係る通信方法は、1つの無線基地局と複数の無線端末との間の無線接続が直交周波数分割多元接続(OFDMA:Orthogonal Frequency Division Multiple Access)である無線通信システムにおける通信方法であって、
前記無線基地局と前記無線端末の少なくとも一方の、現在のバッファ内のキュー長及び優先度の情報を取得すること、
前記キュー長及び優先度の情報を用いて、OFDMAに基づく前記無線端末との間の無線資源割当の計算を一定の時間間隔で行うこと、及び
前記無線資源割当の計算結果を次の無線資源割当の計算にフィードバックすること、
を特徴とする。
Further, the communication method according to the present invention is a communication method in a wireless communication system in which the wireless connection between one wireless base station and a plurality of wireless terminals is an orthogonal frequency division multiple access (OFDMA). There,
Obtaining information on the queue length and priority in the current buffer of at least one of the radio base station and the radio terminal.
Using the queue length and priority information, the calculation of the radio resource allocation with the radio terminal based on OFDMA is performed at regular time intervals, and the calculation result of the radio resource allocation is used as the next radio resource allocation. To feed back to the calculation of
It is characterized by.

また、本発明に係る無線基地局は、複数の無線端末との間の無線接続が直交周波数分割多元接続(OFDMA:Orthogonal Frequency Division Multiple Access)である無線基地局であって、
自身と前記無線端末の少なくとも一方の、現在のバッファ内のキュー長及び優先度の情報を取得する情報取得部と、
前記キュー長及び優先度の情報を用いて、OFDMAに基づく前記無線端末との間の無線資源割当の計算を一定の時間間隔で行う演算部と、
前記無線資源割当の計算結果を前記演算部が行う次の無線資源割当の計算にフィードバックさせるフィードバック部と、
を備えることを特徴とする。
Further, the radio base station according to the present invention is a radio base station in which the radio connection between a plurality of radio terminals is an orthogonal frequency division multiple access (OFDMA).
An information acquisition unit that acquires information on the queue length and priority in the current buffer of at least one of itself and the wireless terminal.
A calculation unit that calculates the radio resource allocation between the wireless terminal and the wireless terminal based on OFDMA at regular time intervals using the queue length and priority information.
A feedback unit that feeds back the calculation result of the radio resource allocation to the next calculation of the radio resource allocation performed by the calculation unit.
It is characterized by having.

なお、上記各発明は、可能な限り組み合わせることができる。 The above inventions can be combined as much as possible.

本発明は、リアルタイムに各無線端末の通信品質等を考慮して効率性およびユーザ間の公平性を担保した無線資源割当ができる無線通信システム、通信方法、及び無線基地局を提供することができる。 The present invention can provide a wireless communication system, a communication method, and a wireless base station capable of allocating wireless resources while ensuring efficiency and fairness among users in real time in consideration of the communication quality of each wireless terminal. ..

本発明に係る無線通信システムの基本構造を説明する図である。It is a figure explaining the basic structure of the wireless communication system which concerns on this invention. IEEE 802.11ax規格におけるRU配置(20MHzチャネル)を説明する図である。It is a figure explaining the RU arrangement (20MHz channel) in the IEEE 802.11ax standard. 本発明に係る無線通信システムの基本構造を説明する図である。It is a figure explaining the basic structure of the wireless communication system which concerns on this invention. 本発明に係る無線通信システムの基本構造を説明する図である。It is a figure explaining the basic structure of the wireless communication system which concerns on this invention. 本発明に係る無線通信システムを説明する図である。It is a figure explaining the wireless communication system which concerns on this invention. 本発明に係る通信方法を説明する図である。It is a figure explaining the communication method which concerns on this invention.

添付の図面を参照して本発明の実施形態を説明する。以下に説明する実施形態は本発明の実施例であり、本発明は、以下の実施形態に制限されるものではない。なお、本明細書及び図面において符号が同じ構成要素は、相互に同一のものを示すものとする。 An embodiment of the present invention will be described with reference to the accompanying drawings. The embodiments described below are examples of the present invention, and the present invention is not limited to the following embodiments. In addition, the components having the same reference numerals in the present specification and the drawings shall indicate the same components.

(発明の概要)
非特許文献3は、LTE向けのリアルタイムで効率的な無線資源割当技術としてフィードバック制御理論に基づいた無線資源割当およびPF(Proportional Fair)に基づくスケジューリングを開示する。しかしながら、IEEE 802.11axの無線LANのRU割当に対応していない。また、無線資源割当とスケジューリングを別の機能として具備するため機能間の双方向の情報交換が不可能であり、リアルタイムな無線資源割当とスケジュールの連携が困難である。このため、非特許文献3が開示する技術では、効率性およびユーザ間公平性の同時担保が難しい。
(Outline of the invention)
Non-Patent Document 3 discloses radio resource allocation based on feedback control theory and scheduling based on PF (Proportional Fair) as real-time and efficient radio resource allocation technology for LTE. However, it does not correspond to the RU allocation of the wireless LAN of IEEE 802.11ax. In addition, since wireless resource allocation and scheduling are provided as separate functions, bidirectional information exchange between the functions is impossible, and it is difficult to link real-time wireless resource allocation and schedule. Therefore, in the technology disclosed in Non-Patent Document 3, it is difficult to guarantee efficiency and fairness among users at the same time.

本発明は、無線基地局が、一定の時間間隔で、複数の無線端末に対してOFDMAに基づいて無線資源割当を行う無線通信システムをベースとする。本発明の無線通信システムは、現在のバッファ内のキュー長と優先度情報、割当可能な無線資源量および過去に割り当てた無線資源量を同時に考慮し、各無線端末へ割り当てる無線資源量をフィードバック制御により決定する。本発明の無線通信システムは、現在の情報と過去の情報を考慮しているため、リアルタイムに効率性およびユーザ間公平性の同時担保が可能である。 The present invention is based on a wireless communication system in which a wireless base station allocates wireless resources to a plurality of wireless terminals based on OFDMA at regular time intervals. The wireless communication system of the present invention simultaneously considers the queue length and priority information in the current buffer, the amount of radio resources that can be allocated, and the amount of wireless resources allocated in the past, and feedback-controls the amount of wireless resources allocated to each wireless terminal. Determined by. Since the wireless communication system of the present invention considers current information and past information, it is possible to simultaneously guarantee efficiency and fairness among users in real time.

なお、無線基地局から無線端末への下り方向の無線資源割当にも無線端末から無線基地局への上り方向の無線資源割当にも適用できる。
下り方向の無線資源割当の場合、無線基地局は自身のバッファ内の下りキュー長および優先度情報に基づいて各無線端末へ割り当てる無線資源量を決定する。
上り方向の無線資源割当の場合、無線端末から無線基地局へ無線端末内のバッファ内の上りキュー長および優先度情報を報告させ、無線基地局は報告された情報に基づいて各無線端末へ割り当てる無線資源量を決定して、各無線端末へ利用可能な周波数および無線資源量の情報を通知する。
It can be applied to both the downlink radio resource allocation from the radio base station to the radio terminal and the uplink radio resource allocation from the radio terminal to the radio base station.
In the case of downlink radio resource allocation, the radio base station determines the amount of radio resources to be allocated to each radio terminal based on the downlink queue length and priority information in its own buffer.
In the case of uplink wireless resource allocation, the wireless terminal causes the wireless base station to report the uplink queue length and priority information in the buffer in the wireless terminal, and the wireless base station allocates to each wireless terminal based on the reported information. The amount of wireless resources is determined, and information on the available frequency and amount of wireless resources is notified to each wireless terminal.

(実施形態)
図1は、本実施形態の無線通信システム301の基本構造を説明する図である。無線通信システム301は、1台の無線基地局10と複数台の無線端末20を備える。無線通信システム301は、無線基地局10と無線端末20との間の無線接続が直交周波数分割多元接続(OFDMA:Orthogonal Frequency Division Multiple Access)である。
(Embodiment)
FIG. 1 is a diagram illustrating a basic structure of the wireless communication system 301 of the present embodiment. The wireless communication system 301 includes one wireless base station 10 and a plurality of wireless terminals 20. In the wireless communication system 301, the wireless connection between the wireless base station 10 and the wireless terminal 20 is an orthogonal frequency division multiple access (OFDMA: Orthogonal Frequency Division Access).

図2は、IEEE 802.11ax規格のOFDMAのRU配置を説明する図である。IEEE 802.11ax規格における最小RUサイズRRU1は26トーンであり、例えば、20MHzチャネルでは最大で9個のRUを割り当てることができる。1ユーザあたり1個のRUを割り当てることが可能であり、割当可能な無線資源量として、RUサイズを26トーン(RU1)、52トーン(RU2)、106トーン(RU4)、242トーン(RU9)から選択できるものとする。各無線端末のデータレートは割り当てられたRUのトーン数およびMCSにより決定される。なお、本実施形態の無線資源割当の機能は無線基地局10に備えられる。 FIG. 2 is a diagram illustrating the RU arrangement of OFDMA of the IEEE 802.11ax standard. The minimum RU size R RU1 in the IEEE 802.11ax standard is 26 tones, for example, a maximum of 9 RUs can be assigned on a 20 MHz channel. It is possible to allocate one RU per user, and as the amount of radio resources that can be allocated, the RU size is from 26 tones (RU1), 52 tones (RU2), 106 tones (RU4), and 242 tones (RU9). It shall be possible to select. The data rate of each radio terminal is determined by the number of tones of the assigned RU and the MCS. The radio resource allocation function of the present embodiment is provided in the radio base station 10.

図3は、無線端末20の機能を説明する図である。無線端末20は、無線受信機21、バッファ22及び無線送信機23を備える。
無線受信機21は、無線基地局10から割り当られたRUサイズを含む無線資源割当情報を受信する。
バッファ22は、入力される上りデータを保管し、無線基地局10から受信した無線資源割当情報をもとにデータを出力する。無線端末20は優先度毎に複数のバッファを備えても良い。無線端末20はバッファ毎ないしフロー毎のキュー長情報q[k]および優先度情報QoS[k]を取得する(kは時刻を表す)。
無線送信機23は、無線基地局10にバッファ22から出力されるキュー長情報q[k]および優先度情報QoS[k]を送信する。複数のバッファが存在する場合、無線送信機23はバッファ毎又はフロー毎にキュー長情報q[k]および優先度情報QoS[k]を送信しても良い。
FIG. 3 is a diagram illustrating the function of the wireless terminal 20. The wireless terminal 20 includes a wireless receiver 21, a buffer 22, and a wireless transmitter 23.
The radio receiver 21 receives the radio resource allocation information including the RU size allocated from the radio base station 10.
The buffer 22 stores the input uplink data and outputs the data based on the radio resource allocation information received from the radio base station 10. The wireless terminal 20 may include a plurality of buffers for each priority. The wireless terminal 20 acquires queue length information q [k] and priority information QoS [k] for each buffer or flow (k represents time).
The radio transmitter 23 transmits the queue length information q [k] and the priority information QoS [k] output from the buffer 22 to the radio base station 10. When a plurality of buffers exist, the wireless transmitter 23 may transmit the queue length information q [k] and the priority information QoS [k] for each buffer or each flow.

図4は、無線基地局10の基本機能を説明する図である。無線基地局10は、無線受信機11、資源割当計算機12及び無線送信機13を備える。
無線受信手段11は、各無線端末20からキュー長情報q[k]および優先度情報QoS[k]を受信する。
資源割当計算機12は、無線基地局10のバッファ(不図示)から得たキュー長情報q[k]又は各無線端末20から得られたキュー長情報q[k]をもとに、各キュー長に比例したRUサイズを計算し、各無線端末20との下り通信又は上り通信に割り当てる。スケジューリング方式としては、例えば、PF(Proportional Fair)方式が採用される。
また、資源割当計算機12は、無線基地局10のバッファ(不図示)から得た優先度情報QoS[k]又は各無線端末20から得られた優先度情報QoS[k]に基づいて送信データ又は受信データを複数のバッファに振り分け、バッファ毎に異なるスケジューリング方式を適用することができる。
無線送信機13は、各無線端末20へ割り当られたRUサイズを含む無線資源割当情報を送信する。
FIG. 4 is a diagram illustrating the basic functions of the radio base station 10. The radio base station 10 includes a radio receiver 11, a resource allocation computer 12, and a radio transmitter 13.
The wireless receiving means 11 receives the queue length information q [k] and the priority information QoS [k] from each wireless terminal 20.
The resource allocation computer 12 has each queue length based on the queue length information q [k] obtained from the buffer (not shown) of the radio base station 10 or the queue length information q [k] obtained from each radio terminal 20. The RU size proportional to is calculated and assigned to the downlink communication or the uplink communication with each wireless terminal 20. As the scheduling method, for example, a PF (Proportional Fair) method is adopted.
Further, the resource allocation calculator 12 transmits data or transmission data based on the priority information QoS [k] obtained from the buffer (not shown) of the radio base station 10 or the priority information QoS [k] obtained from each wireless terminal 20. Received data can be distributed to multiple buffers, and different scheduling methods can be applied to each buffer.
The radio transmitter 13 transmits the radio resource allocation information including the RU size allocated to each radio terminal 20.

図5は、無線基地局10の追加機能を説明する図である。なお、本実施形態では、説明容易のため、上り通信について説明する。無線基地局10は、現在のバッファ内のキュー長及び優先度の情報を取得する情報取得部と、
前記キュー長及び優先度の情報を用いて、OFDMAに基づく前記無線端末との間の無線資源割当の計算を一定の時間間隔で行う演算部と、
前記無線資源割当の計算結果を前記演算部が行う次の無線資源割当の計算にフィードバックさせるフィードバック部と、
を備える。
FIG. 5 is a diagram illustrating an additional function of the radio base station 10. In this embodiment, uplink communication will be described for the sake of simplicity. The radio base station 10 has an information acquisition unit for acquiring information on the queue length and priority in the current buffer, and an information acquisition unit.
A calculation unit that calculates the radio resource allocation between the wireless terminal and the wireless terminal based on OFDMA at regular time intervals using the queue length and priority information.
A feedback unit that feeds back the calculation result of the radio resource allocation to the next calculation of the radio resource allocation performed by the calculation unit.
To prepare for.

具体的には、無線基地局10は、品質係数計算機14、公平性係数計算機15及び重み係数計算機16をさらに備える。前記情報取得部は、無線受信機11や無線基地局10のバッファ(不図示)からキュー長情報q[k]および優先度情報QoS[k]を取得する機能部(不図示)である。前記演算部は、品質係数計算機14、重み係数計算機16及び資源割当計算機12である。前記フィードバック部は、公平性係数計算機15である。 Specifically, the radio base station 10 further includes a quality coefficient computer 14, a fairness coefficient computer 15, and a weighting coefficient computer 16. The information acquisition unit is a functional unit (not shown) that acquires queue length information q [k] and priority information QoS [k] from a buffer (not shown) of the radio receiver 11 or the radio base station 10. The calculation unit is a quality coefficient computer 14, a weight coefficient computer 16, and a resource allocation computer 12. The feedback unit is a fairness coefficient computer 15.

図6は、無線基地局10が行う無線資源割当方法を説明する図である。本無線資源割当方法は、
無線基地局10と無線端末20の少なくとも一方の、現在のバッファ内のキュー長及び優先度の情報を取得すること(ステップS01)、
前記キュー長及び優先度の情報を用いて、OFDMAに基づく無線端末20との間の無線資源割当の計算を一定の時間間隔で行うこと(ステップS02)、
前記無線資源割当の計算結果を次の無線資源割当の計算にフィードバックすること(ステップS03)、及び
計算結果に基づいて無線基地局10と無線端末20との間に無線資源を割り当てること(ステップS04)を特徴とする。
FIG. 6 is a diagram illustrating a radio resource allocation method performed by the radio base station 10. This radio resource allocation method is
Acquiring information on the queue length and priority in the current buffer of at least one of the radio base station 10 and the radio terminal 20 (step S01).
Using the queue length and priority information, the calculation of the radio resource allocation with the radio terminal 20 based on OFDMA is performed at regular time intervals (step S02).
The calculation result of the radio resource allocation is fed back to the calculation of the next radio resource allocation (step S03), and the radio resource is allocated between the radio base station 10 and the radio terminal 20 based on the calculation result (step S04). ).

[ステップS01]
無線受信機11は、各無線端末20からキュー長情報q[k]および優先度情報QoS[k]を受信する。
[Step S01]
The wireless receiver 11 receives the queue length information q [k] and the priority information QoS [k] from each wireless terminal 20.

[ステップS02]
品質係数計算機14は、各無線端末20から得られた優先度情報QoS[k](1≦i≦N)を要素とするN次元の優先度ベクトル{QoS[k]}を作成し、品質係数KPi(1≦i≦N )を要素とするN次元の品質係数ベクトル{K[k]}を算出する。ただし、Nは優先度を設定可能な無線端末数ないし各無線端末のバッファ数の総和ないし各無線端末のフロー数の総和である。また、{ }はベクトルを表わす。
[Step S02]
The quality coefficient calculator 14 creates an N-dimensional priority vector {QoS [k]} having priority information QoS i [k] (1 ≦ i ≦ N) obtained from each wireless terminal 20 as an element, and quality. calculating the coefficient K Pi (1 ≦ i ≦ N ) of N-dimensional quality coefficient vector whose elements {K P [k]}. However, N is the total number of wireless terminals for which priority can be set, the total number of buffers of each wireless terminal, or the total number of flows of each wireless terminal. Also, {} represents a vector.

優先度は無線端末毎あるいは各無線端末のバッファ毎あるいは各無線端末のフロー毎に設定できる。無線端末毎に設定した場合は、優先度ベクトルの要素数Nは無線端末数と等しくなり、各無線端末のバッファ毎に設定した場合は、優先度ベクトルの要素数Nは各無線端末のバッファ数の総和と等しくなり、各無線端末のフロー毎に設定した場合は、優先度ベクトルの要素数Nは各無線端末のフロー数の総和と等しくなる。 The priority can be set for each wireless terminal, each buffer of each wireless terminal, or each flow of each wireless terminal. When set for each wireless terminal, the number of elements N of the priority vector is equal to the number of wireless terminals, and when set for each buffer of each wireless terminal, the number of elements N of the priority vector is the number of buffers of each wireless terminal. When set for each flow of each wireless terminal, the number of elements N of the priority vector is equal to the total number of flows of each wireless terminal.

品質係数計算機14は、品質係数ベクトル{K[k]}を算出において、優先度の高い無線端末、バッファないしフローの品質係数が高くなるように計算する。
例えば、優先度を1からpのp段階とし、1が最も高い優先度で昇順に優先度が低くなると仮定すると、時刻kにおける品質係数ベクトル{K[k]}は時刻kにおける優先度ベクトル{QoS[k]}を用いて以下の式で算出できる。

Figure 2021192475
ただし、太字はベクトルを表わし、X[k]は各変数の時刻kにおけるXの値を示す。また、係数a、a、aは、1からpまでのQoSの範囲で品質係数KPiが単調減少となるように設定する。 Quality factor calculator 14, in the calculation of the quality factor vector {K P [k]}, a higher priority wireless terminal is calculated as the quality factor of the buffer to flow increases.
For example, a priority 1 and p stage p, the priority in ascending order 1 is the highest priority is assumed to be low, the quality coefficient vector at time k {K P [k]} is the priority at the time k vector It can be calculated by the following formula using {QoS [k]}.
Figure 2021192475
However, bold letters represent vectors, and X [k] indicates the value of X at time k of each variable. The coefficient a 0, a 1, a 2, the quality factor K Pi in a range of QoS i from 1 to p is set to be monotonically decreased.

数1は一例であり、品質係数計算機14は、上式に寄らずに品質係数KPiを優先度毎に任意の等間隔ないし不等間隔の値としてもよい。また、品質係数計算機14は、品質係数ベクトル{K[k]}を数1以外の優先度ベクトル{QoS[k]}の多項式関数や指数関数を用いることができる。 The number 1 is an example, and the quality coefficient computer 14 may set the quality coefficient KPi as an arbitrary equal or non-equidistant value for each priority without depending on the above equation. Moreover, the quality coefficient calculator 14 may use a polynomial function and an exponential function of the priority vectors having 1 except the quality factor vector {K P [k]} { QoS [k]}.

[ステップS03]
公平性係数計算機15は、資源割当計算機12より出力される割当RUサイズr3i(1≦i≦N)を要素とするN次元の割当RUサイズベクトル{r[k]}から、公平性係数b(1≦i≦N)を要素とするN次元の公平性係数ベクトル{b[k]}を算出する。割当RUサイズは、例えば、RUサイズが26トーンの場合“1”、52トーンの場合“2”、106トーンの場合“4”、242トーンの場合“9”となる。
[Step S03]
The fairness coefficient computer 15 is based on the N-dimensional allocation RU size vector {r 3 [k]} having the allocation RU size r 3i (1 ≦ i ≦ N) output from the resource allocation computer 12 as an element. b i (1 ≦ i ≦ N ) and an element N-dimensional fairness coefficient vector {b [k]} is calculated. The assigned RU size is, for example, "1" when the RU size is 26 tones, "2" when the RU size is 52 tones, "4" when the RU size is 106 tones, and "9" when the RU size is 242 tones.

公平性係数計算機15は、前サプリング時刻において無線資源を割り当てられていない無線端末、バッファないしフローの公平性係数が大きくなるように計算する。例えば、ペナルティ係数を“penalty”とすると、時刻k+1における公平性係数b[k+1]は、時刻kにおける公平性係数b[k]と時刻kにおける割当RUサイズr3i[k]を用いて以下の式で算出できる。

Figure 2021192475
ただし、X[k]は時刻kにおける変数Xの値を示す。 The fairness coefficient computer 15 calculates so that the fairness coefficient of the radio terminal, the buffer, or the flow to which the radio resource is not allocated at the previous supplementing time becomes large. For example, if the penalty factor "penalty", the time k + 1 fairness coefficient at b i [k + 1], using the fairness coefficient b i [k] and assigned RU size r 3i at time k [k] at time k It can be calculated by the following formula.
Figure 2021192475
However, X [k] indicates the value of the variable X at time k.

数2では、無線端末、バッファないしフローに対する無線資源の割り当ての有無で判断しているが、しきい値を設けて、しきい値以上の割り当てが過去に行われていたか否かで判定しても良い。また、1サンプリング前の値のみを用いても良いし、複数サンプリング前の値を任意に組み合わせて用いても良い。ペナルティ係数の大きさは、無線端末数ないしバッファ数ないしフロー数によって決定し、例えば10台の無線端末であれば“1/接続台数”により0.1と設定することができる。 In the number 2, the judgment is made based on whether or not the wireless resource is allocated to the wireless terminal, buffer or flow, but a threshold value is set and the judgment is made based on whether or not the allocation above the threshold value has been made in the past. Is also good. Further, only the value before one sampling may be used, or the values before a plurality of samplings may be used in any combination. The magnitude of the penalty coefficient is determined by the number of wireless terminals, the number of buffers, or the number of flows. For example, in the case of 10 wireless terminals, it can be set to 0.1 by "1 / number of connected devices".

[ステップS02]
重み係数計算機16は、各無線端末20から得られたキュー長情報q[k](1≦i≦N)を要素とするN次元のキュー長ベクトル{q[k]}を作成し、これと、品質係数計算機14により出力された品質係数ベクトル{K[k]}と、公平性係数計算機15により出力された公平性係数ベクトル{b[k]}と、から重み係数w[k](1≦i≦N)を要素とするN次元の重み係数ベクトル{w[k]}を算出する。
[Step S02]
The weighting coefficient calculator 16 creates an N-dimensional queue length vector {q [k]} having the queue length information q i [k] (1 ≦ i ≦ N) obtained from each wireless terminal 20 as an element. When an output quality coefficient vector by the quality coefficient calculator 14 {K P [k]} , a fairness factor fairness coefficient vector outputted by computer 15 {b [k]}, weighting coefficients from w i [k ] (1 ≦ i ≦ N) as an element, the N-dimensional weighting coefficient vector {w [k]} is calculated.

重み係数はキュー長に比例するように品質係数と公平性係数と組み合わせて算出することができる。例えば、キュー長に比例させる場合、時刻kにおける重み係数ベクトル{w[k]}は、時刻kにおけるキュー長ベクトル{q[k]}と時刻kにおける品質係数ベクトル{K[k]}と時刻kにおける公平性係数ベクトル{b[k]}を用いて以下の式で算出できる。

Figure 2021192475
ただし、[k]は各変数の時刻kにおける値を示す。また、演算子“〇”はアダマール積を表していて、要素毎の積を計算する。 The weighting factor can be calculated in combination with the quality factor and the fairness factor so as to be proportional to the queue length. For example, in the case of proportional to the queue length, the weighting coefficient vector at time k {w [k]} is the queue length vector at time k {q [k]} and the quality coefficient vector at time k {K P [k]} and It can be calculated by the following formula using the fairness coefficient vector {b [k]} at time k.
Figure 2021192475
However, [k] indicates the value of each variable at time k. In addition, the operator "○" represents the Hadamard product, and the product for each element is calculated.

また、数3の計算以外に、重み係数はキュー長の変化速度やキュー長の積算値を組み合わせて算出してもよい。この場合、{q[k]}の微分値ないし積分値の項を線形結合することができる。 In addition to the calculation of Equation 3, the weighting coefficient may be calculated by combining the rate of change in the cue length and the integrated value of the cue length. In this case, the terms of the differential value or the integral value of {q [k]} can be linearly combined.

[ステップS02]
資源割当計算機12の追加機能を説明する。資源割当計算機12は、重み係数計算機16より出力された重み係数ベクトル{w[k]}から割当RUサイズベクトル{r[k]}を算出する。割当RUサイズベクトル{r[k]}の算出例を以下に説明する。
[Step S02]
The additional function of the resource allocation computer 12 will be described. The resource allocation computer 12 calculates the allocation RU size vector {r 3 [k]} from the weight coefficient vector {w [k]} output from the weight coefficient computer 16. An example of calculating the assigned RU size vector {r 3 [k]} will be described below.

まず、重み係数ベクトル{w[k]}のN個の要素の内、値の大きい順に利用可能なRUの最大数であるM個分だけ要素を選択する。例えば、図2(A)であればM=9、図2(B)であればM=5、図2(C)であればM=3、図2(D)であればM=1となる。複数の要素が同じ値の場合はランダムに選択する。選択されたM個の要素は、新たに定義するN次元の重み係数ベクトル{w’[k]}の同じ要素に同じ値を代入する。選択されなかった要素には0を代入する。 First, among the N elements of the weighting coefficient vector {w [k]}, only M elements, which is the maximum number of RUs that can be used, are selected in descending order of value. For example, M = 9 for FIG. 2 (A), M = 5 for FIG. 2 (B), M = 3 for FIG. 2 (C), and M = 1 for FIG. 2 (D). Become. If multiple elements have the same value, select them randomly. The selected M elements substitute the same value for the same element of the newly defined N-dimensional weighting coefficient vector {w'[k]}. 0 is assigned to the element that is not selected.

各無線端末、バッファないしフローに対して重み係数に比例するように無線資源を割り当てる。例えば、以下の式で、暫定割当レートr1i[k](1≦i≦N)を要素とするN次元の時刻kにおける暫定割当レートベクトル{r[k]}を算出する。

Figure 2021192475
ただし、[k]は各変数の時刻kにおける値を示す。また、Rは利用可能なデータレートである。例えば、20MHzチャネルで16−QAM、符号化率3/4の場合はRを48.8Mbpsとする。 Allocate radio resources to each radio terminal, buffer or flow in proportion to the weighting factor. For example, the provisional allocation rate vector {r 1 [k]} at the N-dimensional time k having the provisional allocation rate r 1i [k] (1 ≦ i ≦ N) as an element is calculated by the following formula.
Figure 2021192475
However, [k] indicates the value of each variable at time k. Also, RT is an available data rate. For example, if at 20MHz channel 16-QAM, the coding rate 3/4 to 48.8Mbps the R T.

次に、暫定割当レートベクトル{r[k]}から暫定割当RUサイズr2i(1≦i≦N)を要素とするN次元の時刻kにおける暫定割当RUサイズベクトル{r[k]}を算出する。暫定割当RUサイズr2iは整数値のみを取るため、小数点以下の端数処理を行う。例えば、端数処理に四捨五入を用いた場合、暫定割当RUサイズベクトル{r[k]}は以下のように算出できる。

Figure 2021192475
また、[k]は各変数の時刻kにおける値を示す。RRU1は26トーンの場合のデータレートを表している。端数処理には、四捨五入以外に切り上げや切り捨てを用いても良い。 Next, from the provisional allocation rate vector {r 1 [k]}, the provisional allocation RU size vector {r 2 [k]} at the N-dimensional time k having the provisional allocation RU size r 2i (1 ≦ i ≦ N) as an element. Is calculated. Since the provisional allocation RU size r 2i takes only an integer value, rounding to the nearest whole number is performed. For example, when rounding is used for rounding, the provisional allocation RU size vector {r 2 [k]} can be calculated as follows.
Figure 2021192475
Further, [k] indicates the value of each variable at time k. RRU1 represents the data rate for 26 tones. In addition to rounding, rounding up or rounding down may be used for rounding.

割当RUサイズr3i[k]が取りうる値は、あらかじめ決められた整数値に限定される。例えば、20MHzチャネルの場合、RUサイズは図2のように1、2、4、9(26トーン(RU1)、52トーン(RU2)、106トーン(RU4)、242トーン(RU9))のいずれかであるため、割当RUサイズベクトル{r[k]}の各要素が取れる値も同様に1、2、4、9のいずれかとなる。 The value that the assigned RU size r 3i [k] can take is limited to a predetermined integer value. For example, in the case of a 20 MHz channel, the RU size is one of 1, 2, 4, 9 (26 tones (RU1), 52 tones (RU2), 106 tones (RU4), 242 tones (RU9)) as shown in FIG. Therefore, the value that can be taken by each element of the assigned RU size vector {r 3 [k]} is also 1, 2, 4, or 9.

最終的に割当RUサイズベクトル{r[k]}は次のように生成する。
暫定割当RUサイズベクトル{r[k]}の値の大きな要素から順に割当RUサイズベクトル{r[k]}の同じ要素に値を代入する。複数の要素が同じ値の場合はランダムに選択する。{r[k]}に代入した各要素の値を積算し、当該積算値が利用可能なRUの最大数Mを超えない範囲で値の代入を繰り返す。積算値がMを超えたら代入を停止し、残りの要素には0を代入する。
Finally, the assigned RU size vector {r 3 [k]} is generated as follows.
Temporary allocation The values are assigned to the same elements of the RU size vector {r 3 [k]} in order from the element with the largest value of the RU size vector {r 2 [k]}. If multiple elements have the same value, select them randomly. The value of each element assigned to {r 3 [k]} is integrated, and the value assignment is repeated within the range where the integrated value does not exceed the maximum number M of available RUs. When the integrated value exceeds M, the substitution is stopped, and 0 is substituted for the remaining elements.

[ステップS04]
無線送信機13は、資源割当計算機12が計算した割当RUサイズベクトル{r[k]}を受け取り、各無線端末、バッファないしフローに割り当られたRUサイズを含む無線資源割当情報を無線端末20へ送信する。
[Step S04]
The radio transmitter 13 receives the allocation RU size vector {r 3 [k]} calculated by the resource allocation computer 12, and transmits the radio resource allocation information including the RU size allocated to each radio terminal, buffer or flow to the radio terminal. Send to 20.

(他の実施形態)
上記の実施形態では、上り通信の無線資源割当方式について記載したが、下り通信にも適用できることは明らかである。
上記の実施形態では、IEEE 802.11ax規格に基づく無線通信システムについて記載したが、OFDMAを採用するあらゆる通信システムに適用できることは明らかである。
また、無線基地局10は、コンピュータとプログラムによっても実現でき、プログラムを記録媒体に記録することも、ネットワークを通して提供することも可能である。
(Other embodiments)
In the above embodiment, the wireless resource allocation method for uplink communication has been described, but it is clear that the method can also be applied to downlink communication.
In the above embodiment, the wireless communication system based on the IEEE 802.11ax standard has been described, but it is clear that it can be applied to any communication system that adopts OFDMA.
Further, the radio base station 10 can be realized by a computer and a program, and the program can be recorded on a recording medium or provided through a network.

10:無線基地局
11:無線受信機
12:資源割当計算機
13:無線送信機
14:品質係数計算機
15:公平性係数計算機
16:重み係数計算機
20:無線端末
21:無線受信機
22:バッファ
23:無線送信機
301:無線通信システム
10: Wireless base station 11: Wireless receiver 12: Resource allocation calculator 13: Wireless transmitter 14: Quality coefficient calculator 15: Fairness coefficient calculator 16: Weight coefficient calculator 20: Wireless terminal 21: Wireless receiver 22: Buffer 23: Wireless transmitter 301: Wireless communication system

Claims (5)

1つの無線基地局と複数の無線端末との間の無線接続が直交周波数分割多元接続(OFDMA:Orthogonal Frequency Division Multiple Access)である無線通信システムであって、
前記無線基地局は、
現在のバッファ内のキュー長及び優先度の情報を取得する情報取得部と、
前記キュー長及び優先度の情報を用いて、OFDMAに基づく前記無線端末との間の無線資源割当の計算を一定の時間間隔で行う演算部と、
前記無線資源割当の計算結果を前記演算部が行う次の無線資源割当の計算にフィードバックさせるフィードバック部と、
を備えることを特徴とする無線通信システム。
A wireless communication system in which the wireless connection between one wireless base station and a plurality of wireless terminals is an orthogonal frequency division multiple access (OFDMA).
The radio base station is
An information acquisition unit that acquires information on the queue length and priority in the current buffer,
A calculation unit that calculates the radio resource allocation between the wireless terminal and the wireless terminal based on OFDMA at regular time intervals using the queue length and priority information.
A feedback unit that feeds back the calculation result of the radio resource allocation to the next calculation of the radio resource allocation performed by the calculation unit.
A wireless communication system characterized by being provided with.
前記情報取得部が取得する前記情報は、前記無線基地局の前記バッファの情報であり、
前記無線資源割当は、前記無線基地局から前記無線端末への下り方向の割当であることを特徴とする請求項1に記載の無線通信システム。
The information acquired by the information acquisition unit is information in the buffer of the radio base station.
The wireless communication system according to claim 1, wherein the wireless resource allocation is a downlink allocation from the wireless base station to the wireless terminal.
前記情報取得部が取得する前記情報は、前記無線端末の前記バッファの情報であり、
前記無線資源割当は、前記無線端末から前記無線基地局への上り方向の割当であることを特徴とする請求項1に記載の無線通信システム。
The information acquired by the information acquisition unit is information in the buffer of the wireless terminal.
The wireless communication system according to claim 1, wherein the wireless resource allocation is an uplink allocation from the wireless terminal to the wireless base station.
1つの無線基地局と複数の無線端末との間の無線接続が直交周波数分割多元接続(OFDMA:Orthogonal Frequency Division Multiple Access)である無線通信システムにおける通信方法であって、
前記無線基地局と前記無線端末の少なくとも一方の、現在のバッファ内のキュー長及び優先度の情報を取得すること、
前記キュー長及び優先度の情報を用いて、OFDMAに基づく前記無線端末との間の無線資源割当の計算を一定の時間間隔で行うこと、及び
前記無線資源割当の計算結果を次の無線資源割当の計算にフィードバックすること、
を特徴とする通信方法。
A communication method in a wireless communication system in which a wireless connection between one wireless base station and a plurality of wireless terminals is an orthogonal frequency division multiple access (OFDMA).
Obtaining information on the queue length and priority in the current buffer of at least one of the radio base station and the radio terminal.
Using the queue length and priority information, the calculation of the radio resource allocation with the radio terminal based on OFDMA is performed at regular time intervals, and the calculation result of the radio resource allocation is used as the next radio resource allocation. To feed back to the calculation of
A communication method characterized by.
複数の無線端末との間の無線接続が直交周波数分割多元接続(OFDMA:Orthogonal Frequency Division Multiple Access)である無線基地局であって、
自身と前記無線端末の少なくとも一方の、現在のバッファ内のキュー長及び優先度の情報を取得する情報取得部と、
前記キュー長及び優先度の情報を用いて、OFDMAに基づく前記無線端末との間の無線資源割当の計算を一定の時間間隔で行う演算部と、
前記無線資源割当の計算結果を前記演算部が行う次の無線資源割当の計算にフィードバックさせるフィードバック部と、
を備えることを特徴とする無線基地局。
A wireless base station in which the wireless connection between a plurality of wireless terminals is an orthogonal frequency division multiple access (OFDMA).
An information acquisition unit that acquires information on the queue length and priority in the current buffer of at least one of itself and the wireless terminal.
A calculation unit that calculates the radio resource allocation between the wireless terminal and the wireless terminal based on OFDMA at regular time intervals using the queue length and priority information.
A feedback unit that feeds back the calculation result of the radio resource allocation to the next calculation of the radio resource allocation performed by the calculation unit.
A radio base station characterized by being equipped with.
JP2020098336A 2020-06-05 2020-06-05 Wireless communication system, communication method, and wireless base station Active JP7434068B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020098336A JP7434068B2 (en) 2020-06-05 2020-06-05 Wireless communication system, communication method, and wireless base station

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020098336A JP7434068B2 (en) 2020-06-05 2020-06-05 Wireless communication system, communication method, and wireless base station

Publications (2)

Publication Number Publication Date
JP2021192475A true JP2021192475A (en) 2021-12-16
JP7434068B2 JP7434068B2 (en) 2024-02-20

Family

ID=78890646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020098336A Active JP7434068B2 (en) 2020-06-05 2020-06-05 Wireless communication system, communication method, and wireless base station

Country Status (1)

Country Link
JP (1) JP7434068B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110158203A1 (en) 2009-12-31 2011-06-30 Alvarion Ltd. Proportional fair scheduling with packet transmission
US20170332385A1 (en) 2016-05-11 2017-11-16 Qualcomm Incorporated Buffer status reporting in a wireless local area network (wlan)
US11146367B2 (en) 2016-05-27 2021-10-12 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for frequency selective scheduling in OFDMA based WLANs

Also Published As

Publication number Publication date
JP7434068B2 (en) 2024-02-20

Similar Documents

Publication Publication Date Title
Liao et al. An efficient downlink radio resource allocation with carrier aggregation in LTE-advanced networks
US8744339B2 (en) Wireless telecommunication system including a base station, relay node and method for global fair scheduling
US7586990B2 (en) Method and system for allocating subcarriers to subscriber devices
US8797983B2 (en) Apparatuses and methods for allocating spectrum resources in a wireless communication network
EP2018712B1 (en) Traffic load dependent power allocation in multi user wireless communication network with proportional fair scheduling in time and frequency domain
EP2698026B1 (en) Scheduling data packet and control information in a telecommunication network
US7760751B2 (en) System for supporting consecutive and distributed subcarrier channels in OFDMA networks
US8964867B2 (en) LTE scheduling
CN109392022A (en) Transmit method, terminal device and the network equipment of data
US9065603B2 (en) Method and apparatus for controlling the total overhead used to transmit channel state information in a wireless network
Triantafyllopoulou et al. QoS and energy efficient resource allocation in uplink SC-FDMA systems
WO2011160542A1 (en) System and method for scheduling in multi-hop environment
US11382110B2 (en) Radio MAC scheduling based on front-haul transport capacity constraints
JP2008289127A (en) Method for scheduling heterogeneous traffic in b3g/4g cellular network with multiple channels
Gerasin et al. Flexible multiplexing of grant-free URLLC and eMBB in uplink
Sun et al. Practical scheduling algorithms with contiguous resource allocation for next-generation wireless systems
JP7144326B2 (en) Communication device, transmission method and integrated circuit
JP2021192475A (en) Wireless communication system, communication method, and wireless base station
Krasilov et al. Efficient multiplexing of downlink eMBB and URLLC traffic with massive MU-MIMO
KR20060038786A (en) System and method for between physical layer and medium access control of resource allocation in a radio connection protocol
Tsai et al. Downlink radio resource allocation with Carrier Aggregation in MIMO LTE-advanced systems
CN113473401A (en) Wireless resource allocation method for power Internet of things application
KR100837080B1 (en) The method to manage radio resources for packet scheduling, and system using the same
Al-Janabi et al. Model guaranteed transmission rate providing in WIMAX downlink
Pan et al. Cross-layer resource allocation based on equivalent bandwidth in OFDMA systems

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200910

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230912

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240207

R150 Certificate of patent or registration of utility model

Ref document number: 7434068

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150