JP2021192339A - Non-aqueous electrolyte secondary battery - Google Patents

Non-aqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2021192339A
JP2021192339A JP2020098499A JP2020098499A JP2021192339A JP 2021192339 A JP2021192339 A JP 2021192339A JP 2020098499 A JP2020098499 A JP 2020098499A JP 2020098499 A JP2020098499 A JP 2020098499A JP 2021192339 A JP2021192339 A JP 2021192339A
Authority
JP
Japan
Prior art keywords
battery case
electrode body
insulating film
surface roughness
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020098499A
Other languages
Japanese (ja)
Inventor
彰 齊藤
Akira Saito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2020098499A priority Critical patent/JP2021192339A/en
Publication of JP2021192339A publication Critical patent/JP2021192339A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Cell Separators (AREA)

Abstract

To provide a non-aqueous electrolyte secondary battery in a state where an electrode body is more stably held by a battery case via an insulator film.SOLUTION: A non-aqueous electrolyte secondary battery comprises a battery case 40, an electrode body (a wound electrode body 10 in Fig. 3), a non-aqueous electrolyte 20 and an insulator film 30. The insulator film 30 is disposed between the battery case 40 and the electrode body (the wound electrode body 10). When a sum of surface roughness Ra(A2) [μm] of an inner surface of the battery case 40 and surface roughness Ra(A2) [μm] of a surface of the insulator film 30 opposed to the inner surface of the battery case 40 is defined as Ra(A) and a sum of surface roughness Ra(B1) [μm] of an outer surface of the electrode body (the wound electrode body 10) and Ra(A1) [μm] is defined as Ra(B), the condition: 0.749≤Ra(A)/Ra(B)≤1.022 is satisfied.SELECTED DRAWING: Figure 3

Description

本発明は、非水電解液二次電池に関する。詳しくは、電池ケースと、該電池ケース内に収容された非水電解液と、該電池ケース内に絶縁フィルムを介して収容された電極体と、を備える非水電解液二次電池に関する。 The present invention relates to a non-aqueous electrolyte secondary battery. More specifically, the present invention relates to a non-aqueous electrolyte secondary battery including a battery case, a non-aqueous electrolyte solution housed in the battery case, and an electrode body housed in the battery case via an insulating film.

リチウムイオン二次電池等の二次電池は、軽量で高いエネルギー密度を得られることから、パソコンや携帯端末等のポータブル電源、あるいはEV(電気自動車)、HV(ハイブリッド自動車)、PHV(プラグインハイブリッド自動車)等の車両駆動用電源として広く用いられている。二次電池の一例として、金属製の電池ケース内に絶縁フィルムを介して電極体を収容する電池が知られている。電池ケースと電極体の間に絶縁フィルムを介在させることで、電池ケースと電極体の電気的な接続を隔離した状態で、電極体を電池ケースに保持させることができる。 Since secondary batteries such as lithium-ion secondary batteries are lightweight and can obtain high energy density, they are portable power sources such as personal computers and mobile terminals, or EVs (electric vehicles), HVs (hybrid vehicles), and PHVs (plug-in hybrids). It is widely used as a power source for driving vehicles such as automobiles. As an example of a secondary battery, a battery in which an electrode body is housed in a metal battery case via an insulating film is known. By interposing an insulating film between the battery case and the electrode body, the electrode body can be held in the battery case in a state where the electrical connection between the battery case and the electrode body is isolated.

例えば、特許文献1には、絶縁フィルムの電池ケースの内面に対向する面の三次元平均表面粗さを、絶縁フィルムの電極体側に対向する面の三次元平均表面粗さよりも大きくし、かつ、絶縁フィルムの両面の三次元平均表面粗さが一定の値を超えるような構成の電池が開示されている。かかる構成により、電池ケースと絶縁フィルム間の静摩擦係数が向上するため、より小さな拘束荷重(電極体の厚み方向に押圧する外圧)により電極体を電池ケースに保持させることができる。 For example, in Patent Document 1, the three-dimensional average surface roughness of the surface of the insulating film facing the inner surface of the battery case is made larger than the three-dimensional average surface roughness of the surface of the insulating film facing the electrode body side. A battery having a configuration in which the three-dimensional average surface roughness on both sides of the insulating film exceeds a certain value is disclosed. With this configuration, the coefficient of static friction between the battery case and the insulating film is improved, so that the electrode body can be held in the battery case with a smaller restraining load (external pressure pressed in the thickness direction of the electrode body).

特開2016−189303号公報Japanese Unexamined Patent Publication No. 2016-189303

ところで、電極体が絶縁フィルムを介して電池ケースに保持されるためには、電池ケースと絶縁フィルム間、および電極体と絶縁フィルム間を密着させることが重要である。絶縁フィルムが電極体および電池ケースに密着しなければ、電極体が電池ケース内で位置ずれが生じ、集電端子が露出してしまう可能性がある。 By the way, in order for the electrode body to be held in the battery case via the insulating film, it is important that the battery case and the insulating film and the electrode body and the insulating film are in close contact with each other. If the insulating film does not adhere to the electrode body and the battery case, the electrode body may be misaligned in the battery case and the current collecting terminal may be exposed.

本発明の目的は、より安定に電極体が絶縁フィルムを介して、電池ケースに保持された状態の非水電解液二次電池を提供することである。 An object of the present invention is to provide a non-aqueous electrolyte secondary battery in a state where the electrode body is more stably held in a battery case via an insulating film.

ここに開示される非水電解液二次電池は、電池ケースと、該電池ケース内に収容される電極体、非水電解液および絶縁フィルムと、を備える非水電解液二次電池であって、上記絶縁フィルムは上記電池ケースと上記電極体の間に配置されており、上記電池ケースの内面の表面粗さRa(A1)[μm]と、上記絶縁フィルムの該電池ケースの内面に対向する面の表面粗さRa(A2)[μm]との和をRa(A)、上記電極体の外面の表面粗さRa(B1)[μm]と、上記Ra(A1)[μm]との和をRa(B)としたとき、条件:0.749≦Ra(A)/Ra(B)≦1.022を具備する、非水電解液二次電池である。
本発明者の検討により、電池ケースの内面の表面粗さ、絶縁フィルムの表面粗さおよび電極体の外面の表面粗さを調整することで、電池ケースと絶縁フィルム間、または電極体と絶縁フィルム間のいずれか一方が滑ることを防止できることが見出された。具体的には、上記Ra(A)を上記Ra(B)で割った商が、0.749≦Ra(A)/Ra(B)≦1.022の条件を具備するように、電池ケースの内面の表面粗さ、絶縁フィルムの電池ケースの内面に対向する面の表面粗さおよび電極体の外面の表面粗さを調整した。
The non-aqueous electrolyte secondary battery disclosed herein is a non-aqueous electrolyte secondary battery including a battery case, an electrode body housed in the battery case, a non-aqueous electrolyte solution, and an insulating film. The insulating film is arranged between the battery case and the electrode body, and faces the surface roughness Ra (A1) [μm] of the inner surface of the battery case and the inner surface of the battery case of the insulating film. The sum of the surface roughness Ra (A2) [μm] is Ra (A), and the sum of the surface roughness Ra (B1) [μm] of the outer surface of the electrode body and the Ra (A1) [μm]. Is Ra (B), the non-aqueous electrolyte secondary battery satisfies the condition: 0.749 ≦ Ra (A) / Ra (B) ≦ 1.022.
According to the study of the present inventor, by adjusting the surface roughness of the inner surface of the battery case, the surface roughness of the insulating film, and the surface roughness of the outer surface of the electrode body, the surface roughness between the battery case and the insulating film or the electrode body and the insulating film can be adjusted. It was found that one of the spaces could be prevented from slipping. Specifically, the battery case so that the quotient obtained by dividing the Ra (A) by the Ra (B) satisfies the condition of 0.749 ≦ Ra (A) / Ra (B) ≦ 1.022. The surface roughness of the inner surface, the surface roughness of the surface of the insulating film facing the inner surface of the battery case, and the surface roughness of the outer surface of the electrode body were adjusted.

かかる構成によると、電池ケースと絶縁フィルム間、または電極体と絶縁フィルム間のいずれか一方が滑ることを防止することができる。したがって、電極体がより安定に電池ケースに保持されるため、電極体の位置ずれが生じず、集電端子が露出することを防止することができる。 According to such a configuration, it is possible to prevent slipping between the battery case and the insulating film, or between the electrode body and the insulating film. Therefore, since the electrode body is more stably held in the battery case, the position of the electrode body does not shift, and it is possible to prevent the current collecting terminal from being exposed.

一実施形態に係る二次電池1の内部構造を模式的に示す断面図である。It is sectional drawing which shows typically the internal structure of the secondary battery 1 which concerns on one Embodiment. 一実施形態に係る二次電池1の捲回電極体10の構成を示す模式図である。It is a schematic diagram which shows the structure of the winding electrode body 10 of the secondary battery 1 which concerns on one Embodiment. 図1におけるIII−III線矢視方向断面図である。FIG. 3 is a cross-sectional view taken along the line III-III in FIG. 静摩擦係数測定方法を表す模式図である。It is a schematic diagram which shows the static friction coefficient measuring method.

以下、本開示における典型的な実施形態の1つについて、図面を参照しつつ詳細に説明する。本明細書において、特に言及している事項以外の事柄であって実施に必要な事柄は、当該分野における従来技術に基づく当業者の設計事項として把握される。ここに開示される電池は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。 Hereinafter, one of the typical embodiments in the present disclosure will be described in detail with reference to the drawings. Matters other than those specifically mentioned in the present specification and necessary for implementation are grasped as design matters of those skilled in the art based on the prior art in the art. The batteries disclosed herein can be implemented on the basis of what is disclosed herein and common general knowledge in the art.

本明細書において、「電池」とは、電気エネルギーを取り出し可能な蓄電デバイス一般を指す用語であって、一次電池および二次電池を含む概念である。「二次電池」とは、繰り返し充放電可能な蓄電デバイス一般をいい、リチウムイオン二次電池、ニッケル水素電池、ニッケルカドミウム電池等のいわゆる蓄電池(すなわち化学電池)の他、電気二重層キャパシタ等のキャパシタ(すなわち物理電池)を包含する。以下、二次電池の一種である扁平角形のリチウムイオン二次電池を例示して詳細に説明する。ただし、本開示に係る二次電池は以下の実施形態に記載されたものに限定することを意図していない。 As used herein, the term "battery" refers to a general storage device capable of extracting electrical energy, and is a concept including a primary battery and a secondary battery. "Secondary battery" refers to a general storage device that can be charged and discharged repeatedly, and includes so-called storage batteries (that is, chemical batteries) such as lithium ion secondary batteries, nickel hydrogen batteries, and nickel cadmium batteries, as well as electric double layer capacitors and the like. Includes capacitors (ie, physical batteries). Hereinafter, a flat-angle lithium-ion secondary battery, which is a type of secondary battery, will be described in detail by way of example. However, the secondary battery according to the present disclosure is not intended to be limited to those described in the following embodiments.

また、本明細書おいて、「表面粗さRa」とは、いわゆる「算術平均粗さ」と呼ばれる高さ方向のパラメーターである。表面粗さRaは、粗さ曲線からその平均線の方向に基準長さLだけを抜き取り、この抜き取り部分の平均線の方向にx軸、該x軸の垂直方向にy軸を取り、y=f(x)で表したときに、以下の式(1)で求められる値をマイクロメートル(μm)で表したものをいう。

Figure 2021192339
Further, in the present specification, the "surface roughness Ra" is a so-called "arithmetic mean roughness", which is a parameter in the height direction. For the surface roughness Ra, only the reference length L is extracted from the roughness curve in the direction of the average line, the x-axis is taken in the direction of the average line of the extracted portion, and the y-axis is taken in the direction perpendicular to the x-axis. When expressed by f (x), it means the value obtained by the following equation (1) expressed in micrometer (μm).
Figure 2021192339

図1に示す二次電池1は、捲回電極体10、非水電解液20、絶縁フィルム30、および電池ケース40を備える。電池ケース40は、捲回電極体10、非水電解液20、および絶縁フィルム30を、内部に密閉した状態で収容する。本実施形態における電池ケース40の形状は、扁平角形である。ただし、電池ケース40の形状は、角形以外の箱状(例えば有底の円筒形の箱形状等)であってもよい。電池ケース40は、一端に開口部を有する有底箱型のケース本体42と、該ケース本体の開口部を塞ぐ板状の蓋体44を備える。蓋体44には、電池ケース40内の内圧が所定のレベル以上に上昇した場合、該内圧を開放する安全弁46と、非水電解液20を電池ケース40の内部に供給するための供給口である注液口(図示せず)が設けられている。また、蓋体44には外部接続用の正極集電端子52および負極集電端子54が設けられている。電池ケース40の材質としては、例えば、アルミニウム、ステンレス鋼、ニッケルめっき鋼等の軽量で熱伝導性の良い金属材料が用いられる。ただし、電池ケースの構成を変更することも可能である。例えば、電池ケースとして、可撓性を有するラミネートが用いられてもよい。 The secondary battery 1 shown in FIG. 1 includes a wound electrode body 10, a non-aqueous electrolytic solution 20, an insulating film 30, and a battery case 40. The battery case 40 houses the wound electrode body 10, the non-aqueous electrolytic solution 20, and the insulating film 30 in a sealed state inside. The shape of the battery case 40 in this embodiment is a flat square shape. However, the shape of the battery case 40 may be a box shape other than a square shape (for example, a bottomed cylindrical box shape). The battery case 40 includes a bottomed box-shaped case body 42 having an opening at one end, and a plate-shaped lid 44 that closes the opening of the case body. The lid 44 has a safety valve 46 that releases the internal pressure when the internal pressure inside the battery case 40 rises above a predetermined level, and a supply port for supplying the non-aqueous electrolytic solution 20 to the inside of the battery case 40. A liquid injection port (not shown) is provided. Further, the lid 44 is provided with a positive electrode current collecting terminal 52 and a negative electrode current collecting terminal 54 for external connection. As the material of the battery case 40, for example, a lightweight metal material having good thermal conductivity such as aluminum, stainless steel, and nickel-plated steel is used. However, it is also possible to change the configuration of the battery case. For example, a flexible laminate may be used as the battery case.

図2に示すように、本実施形態の捲回電極体10は、長尺上の正極(正極シート)60、長尺状のセパレータ80、長尺状の負極(負極シート)70、長尺状のセパレータ80の順で長さ方向を揃えて重ね合わされ、該長尺な正負極の長手方向に捲回されている。詳細には、正極60では、長尺状の正極集電体62の片面または両面に、長手方向に沿って正極活物質層64が形成されている。負極70では、長尺状の負極集電体72の片面または両面に、長手方向に沿って負極活物質層74が形成されている。正極活物質層非形成部分66、および負極活物質層非形成部分76は、捲回電極体10の捲回軸WLの方向(上記長手方向に直交するシート幅方向)の両端部の各々に位置する。正極60の正極活物質層非形成部分66と負極70の負極活物質層非形成部分76は、セパレータの幅方向において互いに反対側にはみ出るように重ねられている。正極活物質層非形成部分66は、正極活物質層64が形成されずに正極集電体62が露出した部分である。正極活物質層非形成部分66は、正極内部端子52a(図1参照)が接合され、正極集電端子52(図1参照)と電気的に接合されている。また、負極活物質層非形成部分76は、負極活物質層74が形成されずに負極集電体72が露出した部分である。負極活物質層非形成部分76は、負極内部端子54a(図1参照)が接合され、負極集電端子54(図1参照)と電気的に接続される。 As shown in FIG. 2, the wound electrode body 10 of the present embodiment has a long positive electrode (positive electrode sheet) 60, a long separator 80, a long negative electrode (negative electrode sheet) 70, and a long shape. The separators 80 are stacked in the same order in the length direction, and are wound in the longitudinal direction of the long positive electrode and negative electrode. Specifically, in the positive electrode 60, the positive electrode active material layer 64 is formed along the longitudinal direction on one side or both sides of the long positive electrode current collector 62. In the negative electrode 70, the negative electrode active material layer 74 is formed along the longitudinal direction on one side or both sides of the long negative electrode current collector 72. The positive electrode active material layer non-formed portion 66 and the negative electrode active material layer non-formed portion 76 are located at both ends of the wound electrode body 10 in the direction of the winding axis WL (the sheet width direction orthogonal to the longitudinal direction). do. The positive electrode active material layer non-forming portion 66 of the positive electrode 60 and the negative electrode active material layer non-forming portion 76 of the negative electrode 70 are overlapped so as to protrude from each other in the width direction of the separator. The positive electrode active material layer non-forming portion 66 is a portion where the positive electrode current collector 62 is exposed without forming the positive electrode active material layer 64. The positive electrode active material layer non-forming portion 66 is bonded to a positive electrode internal terminal 52a (see FIG. 1) and electrically bonded to a positive electrode current collecting terminal 52 (see FIG. 1). Further, the negative electrode active material layer non-forming portion 76 is a portion where the negative electrode current collector 72 is exposed without forming the negative electrode active material layer 74. The negative electrode active material layer non-forming portion 76 is bonded to the negative electrode internal terminal 54a (see FIG. 1) and electrically connected to the negative electrode current collecting terminal 54 (see FIG. 1).

捲回電極体10の正負極を構成する材料、部材は、従来の一般的な二次電池に用いられるものと同様のものを制限なく使用可能である。例えば、正極集電体62には、この種の二次電池の正極集電体として用いられるものを特に制限なく使用し得る。典型的には、良好な導電性を有する金属製の正極集電体が好ましい。例えば、アルミニウム、ニッケル、チタン、ステンレス鋼等の金属材を正極集電体62として採用できる。正極活物質層64の正極活物質としては、例えば層状構造やスピネル構造等のリチウム複合金属酸化物(例えば、LiNi1/3Co1/3Mn1/3、LiNiO、LiCoO、LiFeO、LiMn、LiNi0.5Mn1.5,LiCrMnO、LiFePO等)が挙げられる。正極活物質層64は、正極活物質と、必要に応じて用いられる材料(導電材、バインダ等)とを適当な溶媒(例えばN−メチル−2−ピロリドン:NMP)に分散させ、ペースト状(またはスラリー状)の組成物を調製し、該組成物の適当量を正極集電体62の表面に塗工し、乾燥することによって形成することができる。 As the materials and members constituting the positive and negative electrodes of the wound electrode body 10, the same materials and members as those used for conventional general secondary batteries can be used without limitation. For example, as the positive electrode current collector 62, those used as the positive electrode current collector of this type of secondary battery can be used without particular limitation. Typically, a metal positive electrode current collector having good conductivity is preferred. For example, a metal material such as aluminum, nickel, titanium, or stainless steel can be adopted as the positive electrode current collector 62. Examples of the positive electrode active material of the positive electrode active material layer 64 include lithium composite metal oxides such as a layered structure and a spinel structure (for example, LiNi 1/3 Co 1/3 Mn 1/3 O 2 , LiNiO 2 , LiCoO 2 , LiFeO). 2 , LiMn 2 O 4 , LiNi 0.5 Mn 1.5 O 4 , LiCrMnO 4 , LiFePO 4, etc.). In the positive electrode active material layer 64, the positive electrode active material and a material (conductive material, binder, etc.) used as needed are dispersed in an appropriate solvent (for example, N-methyl-2-pyrrolidone: NMP) to form a paste (paste). Alternatively, it can be formed by preparing a composition (in the form of a slurry), applying an appropriate amount of the composition to the surface of the positive electrode current collector 62, and drying the composition.

負極集電体72には、この種の二次電池の負極集電体として用いられるものを特に制限なく使用し得る。典型的には、良好な導電性を有する金属製の負極集電体が好ましく、例えば、銅(例えば銅箔)や銅を主体とする合金を用いることができる。負極活物質層64の負極活物質としては、例えば、少なくとも一部にグラファイト構造(層状構造)を含む粒子状(或いは球状、鱗片状)の炭素材料、リチウム遷移金属複合酸化物(例えば、LiTi12等のリチウムチタン複合酸化物)、リチウム遷移金属複合窒化物等が挙げられる。負極活物質層74は、負極活物質と必要に応じて用いられる材料(バインダ等)とを適当な溶媒(例えばイオン交換水)に分散させ、ペースト状(またはスラリー状)の組成物を調製し、該組成物の適当量を負極集電体72の表面に塗工し、乾燥することによって形成することができる。 As the negative electrode current collector 72, those used as the negative electrode current collector of this type of secondary battery can be used without particular limitation. Typically, a metal negative electrode current collector having good conductivity is preferable, and for example, copper (for example, copper foil) or an alloy mainly composed of copper can be used. Examples of the negative electrode active material of the negative electrode active material layer 64 include a particle-like (or spherical or scaly) carbon material containing a graphite structure (layered structure) at least in part, and a lithium transition metal composite oxide (for example, Li 4). Lithium-titanium composite oxides such as Ti 5 O 12 ), lithium transition metal composite nitrides and the like. In the negative electrode active material layer 74, a negative electrode active material and a material (binder or the like) used as needed are dispersed in an appropriate solvent (for example, ion-exchanged water) to prepare a paste-like (or slurry-like) composition. , An appropriate amount of the composition can be applied to the surface of the negative electrode current collector 72 and dried.

セパレータ80としては、従来公知の多孔質シートからなるセパレータを特に制限なく使用することができる。例えば、ポリエチレン(PE)、ポリプロピレン(PP)等のポリオレフィン樹脂から成る多孔質シート(フィルム、不織布等)が挙げられる。かかる多孔質シートは、単層構造であってもよく、二層以上の複数構造(例えば、PE層の両面にPP層が積層された三層構造)であってもよい。また、多孔質シートの片面または両面に、耐熱性および絶縁性を有する耐熱粒子からなる耐熱層(Heat Resistant Layer:HRL)を備える構成のものであってもよい。この耐熱層は、例えば、無機フィラーとバインダとを含む層(フィラー層ともいう。)であり得る。無機フィラーとしては、例えばアルミナ、ベーマイト、シリカ等を好ましく採用し得る。 As the separator 80, a separator made of a conventionally known porous sheet can be used without particular limitation. For example, a porous sheet (film, non-woven fabric, etc.) made of a polyolefin resin such as polyethylene (PE) and polypropylene (PP) can be mentioned. The porous sheet may have a single-layer structure or a plurality of structures having two or more layers (for example, a three-layer structure in which PP layers are laminated on both sides of a PE layer). Further, the porous sheet may be configured to have a heat-resistant layer (Heat Resistant Layer: HRL) made of heat-resistant particles having heat resistance and insulating properties on one or both sides of the porous sheet. This heat-resistant layer can be, for example, a layer containing an inorganic filler and a binder (also referred to as a filler layer). As the inorganic filler, for example, alumina, boehmite, silica and the like can be preferably adopted.

捲回電極体10とともに電池ケース40に収容される非水電解液20は、典型的には適当な非水溶媒に支持塩を含有するものであり、従来公知の非水電解液を特に制限なく採用することができる。例えば、非水溶媒として、エチレンカーボネート(EC)、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)等を用いることができる。また、支持塩としては、例えばリチウム塩(例えば、LiBOB、LiPF等)を好適に用いることができる。 The non-aqueous electrolyte solution 20 housed in the battery case 40 together with the wound electrode body 10 typically contains a supporting salt in a suitable non-aqueous solvent, and the conventionally known non-aqueous electrolytic solution is not particularly limited. Can be adopted. For example, as the non-aqueous solvent, ethylene carbonate (EC), diethyl carbonate (DEC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC) and the like can be used. Further, as the supporting salt, for example, a lithium salt (for example, LiBOB, LiPF 6, etc.) can be preferably used.

図1に示すように、捲回電極体10と電池ケース40の内面の間には、捲回電極体10と電池ケース40とを隔離する絶縁フィルム30が配置されている。かかる絶縁フィルム30によって、発電要素である捲回電極体10と電池ケース40の直接的な接触を防ぎ、捲回電極体10と電池ケース40のとの電気的な絶縁を確保することができる。
絶縁フィルム30の材質は、絶縁部材として機能し得る材料で構成される。典型的には、柔軟な素材が好ましく、例えば、種々の熱可塑性樹脂、典型的にはポリプロピレン(PP)、ポリエチレン(PE)などのポリオレフィン樹脂材料が挙げられる。なかでも、ポリプロピレンを特に好適に用いることができる。
As shown in FIG. 1, an insulating film 30 that separates the wound electrode body 10 and the battery case 40 is arranged between the wound electrode body 10 and the inner surface of the battery case 40. With such an insulating film 30, it is possible to prevent direct contact between the wound electrode body 10 which is a power generation element and the battery case 40, and to secure electrical insulation between the wound electrode body 10 and the battery case 40.
The material of the insulating film 30 is composed of a material that can function as an insulating member. Flexible materials are typically preferred, and examples thereof include various thermoplastic resins, typically polyolefin resin materials such as polypropylene (PP) and polyethylene (PE). Among them, polypropylene can be particularly preferably used.

絶縁フィルム30の平均厚みは、概ね100μm程度であればよいが、二次電池1の構成条件などにあわせて適宜変更することができる。例えば、絶縁フィルム30の平均厚みは、20μm以上200μm以下であることが好ましい。
また、絶縁フィルム30は単層構造でもよく、二層以上の積層構造であってもよい。
The average thickness of the insulating film 30 may be about 100 μm, but can be appropriately changed according to the configuration conditions of the secondary battery 1 and the like. For example, the average thickness of the insulating film 30 is preferably 20 μm or more and 200 μm or less.
Further, the insulating film 30 may have a single-layer structure or a laminated structure having two or more layers.

絶縁フィルム30は、捲回電極体10を囲む袋状に形成されていてもよい。例えば、絶縁フィルム30は、上端側が開口した有底の袋状であり、かかる開口を介して、捲回電極体10をその内部に収容し得る。 The insulating film 30 may be formed in a bag shape surrounding the wound electrode body 10. For example, the insulating film 30 has a bottomed bag shape with an opening on the upper end side, and the wound electrode body 10 can be accommodated inside the insulating film 30 through such an opening.

図3は、図1中のIII−III線に沿う縦断面構造を模式的に示す縦断面図である。図3に示すとおり、絶縁フィルム30は、電池ケース40の内壁に張り付いて(即ち、密着して)保持されている。典型的には、袋状に形成された絶縁フィルム30の幅広面、幅狭面、および底面が、それぞれ電池ケース40の内壁における幅広面、幅狭面、および底面と密着して保持されている。 FIG. 3 is a vertical cross-sectional view schematically showing a vertical cross-sectional structure along lines III-III in FIG. 1. As shown in FIG. 3, the insulating film 30 is attached (that is, in close contact with) to the inner wall of the battery case 40 and held. Typically, the wide, narrow, and bottom surfaces of the bag-shaped insulating film 30 are held in close contact with the wide, narrow, and bottom surfaces of the inner wall of the battery case 40, respectively. ..

電池ケース40の内面(捲回電極体40が収容される側の面であり、絶縁フィルム30と接する面)の表面粗さRa(A1)、絶縁フィルム30の電池ケース40の内面に対向する面の表面粗さRa(A2)、絶縁フィルム30の捲回電極体10の外面に対向する面の表面粗さRa(B2)、および捲回電極体10の外面(絶縁フィルム30と接する面)の表面粗さRa(B1)は、表面粗さ測定器によって測定される。表面粗さ測定器として、接触式測定器、非接触式測定器のいずれも用いることができる。具体的には、接触式測定器として、触針式測定器や原子間顕微鏡(AFM)等を用いることができる。また、非接触式測定器として、レーザー顕微鏡や白色干渉計等を用いることができる。 Surface roughness Ra (A1) of the inner surface of the battery case 40 (the surface on the side where the wound electrode body 40 is housed and in contact with the insulating film 30), the surface of the insulating film 30 facing the inner surface of the battery case 40. Surface roughness Ra (A2), surface roughness Ra (B2) of the surface of the insulating film 30 facing the outer surface of the wound electrode body 10, and the outer surface of the wound electrode body 10 (the surface in contact with the insulating film 30). The surface roughness Ra (B1) is measured by a surface roughness measuring instrument. As the surface roughness measuring device, either a contact type measuring device or a non-contact type measuring device can be used. Specifically, as the contact type measuring instrument, a stylus type measuring instrument, an atomic force microscope (AFM), or the like can be used. Further, as the non-contact measuring instrument, a laser microscope, a white interferometer, or the like can be used.

電池ケース40の内面の表面粗さRa(A1)は、0.2μm〜0.5μmの範囲内であることが好ましい。
また、捲回電極体10の外面(絶縁フィルム30と接する面)の表面粗さRa(B1)は、0.02μm〜0.3μmの範囲内であることが好ましい。さらに、捲回電極体10の外面はセパレータ80によって構成されていることが好ましく、該外面はセパレータ80を構成する素材であれば特に限定はされない。例えば、ポリプロピレン(PP)、ポリエチレン(PE)、耐熱性および絶縁性を有する耐熱粒子からなる耐熱層が上記外面の素材として好適に用いることができる。
The surface roughness Ra (A1) of the inner surface of the battery case 40 is preferably in the range of 0.2 μm to 0.5 μm.
Further, the surface roughness Ra (B1) of the outer surface (the surface in contact with the insulating film 30) of the wound electrode body 10 is preferably in the range of 0.02 μm to 0.3 μm. Further, the outer surface of the wound electrode body 10 is preferably made of a separator 80, and the outer surface is not particularly limited as long as it is a material constituting the separator 80. For example, a heat-resistant layer made of polypropylene (PP), polyethylene (PE), and heat-resistant particles having heat resistance and insulating properties can be suitably used as the material for the outer surface.

また、絶縁フィルム30の電池ケース40の内面に対向する面の表面粗さRa(A2)は、0.02μm〜0.2μmであることが好ましい。さらに、該表面粗さRa(A2)は、0.030μm〜0.033μm、または0.12μm〜0.19μmの範囲内であることがより好ましい。
また、絶縁フィルム30の電池ケース40の内面に対向する面の表面粗さRa(A2)と、絶縁フィルム30の捲回電極体10の外面に対向する面の表面粗さRa(B2)が異なっていてもよい。例えば、絶縁フィルム30が二層以上の積層構造を有するとき、絶縁フィルム30の上記Ra(A2)を有する面および上記Ra(B2)を有する面が各々異なる材質で構成され得るため、絶縁フィルム30の上記Ra(A2)と上記Ra(B2)が異なり得る。
Further, the surface roughness Ra (A2) of the surface of the insulating film 30 facing the inner surface of the battery case 40 is preferably 0.02 μm to 0.2 μm. Further, the surface roughness Ra (A2) is more preferably in the range of 0.030 μm to 0.033 μm, or 0.12 μm to 0.19 μm.
Further, the surface roughness Ra (A2) of the surface of the insulating film 30 facing the inner surface of the battery case 40 and the surface roughness Ra (B2) of the surface of the insulating film 30 facing the outer surface of the wound electrode body 10 are different. May be. For example, when the insulating film 30 has a laminated structure of two or more layers, the surface of the insulating film 30 having the Ra (A2) and the surface having the Ra (B2) can be made of different materials, so that the insulating film 30 can be made of different materials. Ra (A2) and Ra (B2) may be different.

電池ケース40の内面の表面粗さRa(A1)と絶縁フィルム30の電池ケース40の内面に対向する面の表面粗さRa(A2)との和Ra(A)、および上記Ra(A1)と捲回電極体10の外面の表面粗さRa(B1)との和Ra(B)は、どちらも0.673μm以下であることが好ましい。 The sum Ra (A) of the surface roughness Ra (A1) of the inner surface of the battery case 40 and the surface roughness Ra (A2) of the surface of the insulating film 30 facing the inner surface of the battery case 40, and the Ra (A1) above. The sum Ra (B) with the surface roughness Ra (B1) of the outer surface of the wound electrode body 10 is preferably 0.673 μm or less.

電池ケース40の内面、絶縁フィルム30の電池ケース40の内面に対向する面、絶縁フィルム30の捲回電極体10の外面と対向する面および捲回電極体10の外面の表面粗さは、物理的な加工により表面粗さを調整することができる。例えば、レーザー照射、スパッタリング、イオンプレッティング等により表面粗さを調整することができる。 The surface roughness of the inner surface of the battery case 40, the surface of the insulating film 30 facing the inner surface of the battery case 40, the surface of the insulating film 30 facing the outer surface of the wound electrode body 10 and the outer surface of the wound electrode body 10 are physical. Surface roughness can be adjusted by specific processing. For example, the surface roughness can be adjusted by laser irradiation, sputtering, ion printing, or the like.

二次電池1は、電池ケース40の外面から捲回電極体10の厚み方向に対して拘束圧が付与されて用いられることが好ましい。かかる構成により、電池ケース40と絶縁フィルム30の間、および捲回電極体10と絶縁フィルム30間の摩擦力が増加し、より安定に捲回電極体10が電池ケース40に保持することができる。したがって、二次電池1に外部から衝撃が加えられても、捲回電極体10が電池ケース40内で位置ずれを起こす可能性を下げることができる。 It is preferable that the secondary battery 1 is used by applying a restraining pressure from the outer surface of the battery case 40 in the thickness direction of the wound electrode body 10. With such a configuration, the frictional force between the battery case 40 and the insulating film 30 and between the wound electrode body 10 and the insulating film 30 increases, and the wound electrode body 10 can be more stably held in the battery case 40. .. Therefore, even if an impact is applied to the secondary battery 1 from the outside, the possibility that the wound electrode body 10 is displaced in the battery case 40 can be reduced.

なお、一実施形態として、捲回電極体10を備えた二次電池1について説明したが、電極体を捲回電極体に限定する意図ではなく、電極体は、シート状の正極とシート状の負極がセパレータを介して交互に積層された電極体であってもよい。 Although the secondary battery 1 provided with the wound electrode body 10 has been described as one embodiment, the electrode body is not intended to be limited to the wound electrode body, and the electrode body has a sheet-shaped positive electrode body and a sheet-shaped electrode body. The negative electrode body may be an electrode body in which negative electrodes are alternately laminated via a separator.

以下、本発明に関する実施例を説明するが、本発明をかかる実施例に示すものに限定することを意図したものではない。 Hereinafter, examples relating to the present invention will be described, but the present invention is not intended to be limited to those shown in such examples.

<実施例>
[表面粗さ測定]
電池ケースの内面の表面粗さRa(A1)と絶縁フィルムの該電池ケースの内面に対向する面の表面粗さRa(A2)を触針式SE500A(株式会社小坂研究所製)により測定した。具体的には、電池ケースの内面および絶縁フィルムの該電池ケースの内面に対向する面を、触針の先端半径5μm、送り速さ0.5mm/s、測定長4mmの条件で、それぞれ異なる測定位置で3回測定し、その平均を求めた。
また、電極体の外面を構成するセパレータの表面粗さRa(B1)をレーザー顕微鏡LEXT OLS4000(オリンパス株式会社製)により測定した。具体的には、セパレータの一部を切り出し、Ptコーティングを施した後、倍率50のレンズを使用し表面粗さ(B1)を測定した。
<Example>
[Surface roughness measurement]
The surface roughness Ra (A1) of the inner surface of the battery case and the surface roughness Ra (A2) of the surface of the insulating film facing the inner surface of the battery case were measured by a stylus type SE500A (manufactured by Kosaka Laboratory Co., Ltd.). Specifically, the inner surface of the battery case and the surface of the insulating film facing the inner surface of the battery case are measured differently under the conditions of a stylus tip radius of 5 μm, a feed speed of 0.5 mm / s, and a measurement length of 4 mm. The measurement was performed three times at the position, and the average was calculated.
Further, the surface roughness Ra (B1) of the separator constituting the outer surface of the electrode body was measured with a laser microscope LEXT OLS4000 (manufactured by Olympus Corporation). Specifically, a part of the separator was cut out, Pt coated, and then the surface roughness (B1) was measured using a lens having a magnification of 50.

上記Ra(A1)を測定した電池ケースと、上記Ra(A2)を測定した絶縁フィルムと、上記Ra(B1)を測定したセパレータを外面に有する電極体を、表1の例1〜16のように組み合わせた。また、上記Ra(A1)と上記Ra(A2)との和であるRa(A)、上記Ra(A1)と上記Ra(B1)との和であるRa(B)、および上記Ra(A)を上記Ra(B)で割った商を表1に示した。 Examples 1 to 16 of Table 1 show an electrode body having a battery case measuring Ra (A1), an insulating film measuring Ra (A2), and a separator measuring Ra (B1) on the outer surface. Combined with. Further, Ra (A) which is the sum of Ra (A1) and Ra (A2), Ra (B) which is the sum of Ra (A1) and Ra (B1), and Ra (A). Is divided by Ra (B) above, and the quotient is shown in Table 1.

上述した一実施形態のとおり、正極活物質層が形成された正極、セパレータ、負極活物質層が形成された負極、セパレータの順に重ね合わせ捲回することで、捲回電極体を準備した。さらに上記捲回電極体の正極活物質層非形成部分、負極活物質層非形成部分に、それぞれ正極集電端子、負極集電端子を接合した。 As described in one embodiment described above, a wound electrode body was prepared by stacking and winding the positive electrode on which the positive electrode active material layer was formed, the separator, the negative electrode on which the negative electrode active material layer was formed, and the separator in this order. Further, a positive electrode current collector terminal and a negative electrode current collector terminal were joined to the positive electrode active material layer non-formed portion and the negative electrode active material layer non-formed portion of the wound electrode body, respectively.

絶縁フィルムの電池ケースの内面に対向する面およびセパレータを外面に有する上記捲回電極体の外面に、非水電解液を塗布し、下記の静摩擦係数測定に用いた。なお、非水電解液の塗布以降の操作は、グローブボックス内でアルゴン雰囲気中で行った。 A non-aqueous electrolytic solution was applied to the surface of the insulating film facing the inner surface of the battery case and the outer surface of the wound electrode body having a separator on the outer surface, and used for the following measurement of the coefficient of static friction. The operations after the application of the non-aqueous electrolytic solution were performed in the glove box in an argon atmosphere.

[静摩擦係数測定]
図4に示すとおり、電池ケース40内に、絶縁フィルム30と、捲回電極体10を挿入し、絶縁フィルム30を電池ケース40と捲回電極体10の間に配置した。なお、このとき捲回電極体10に接合された正極集電端子52および負極集電端子54は、電池ケース40の開口部側を向くように収容した。そして、電池ケース40を、電池ケース40の一対の幅広面と、一対の櫛歯92がそれぞれ接するように拘束治具90に固定し、櫛歯92の一つと拘束治具90の間に拘束荷重測定用ロードセル94を配置した。
次に、電池ケース40の幅広面方向からプレ拘束荷重10000Nを10秒間負荷した。そして、該拘束荷重を一般的に電極体保持に必要な下限保持荷重値である200Nに設定し、捲回電極体10に接合された集電端子(正極集電端子52および負極集電端子54)に取り付けたフォースゲージ96を、拘束荷重方向に対して垂直になるように、電池ケース40の開口部方向へ引っ張り上げた。これにより、ピーク荷重値(滑り荷重値)を求め、静摩擦係数を以下の式(2)により求め、表1に示した。
静摩擦係数=(滑り荷重値)÷200N÷2・・・(2)
[Measurement of coefficient of static friction]
As shown in FIG. 4, the insulating film 30 and the wound electrode body 10 were inserted into the battery case 40, and the insulating film 30 was arranged between the battery case 40 and the wound electrode body 10. At this time, the positive electrode current collecting terminal 52 and the negative electrode current collecting terminal 54 joined to the wound electrode body 10 were housed so as to face the opening side of the battery case 40. Then, the battery case 40 is fixed to the restraint jig 90 so that the pair of wide surfaces of the battery case 40 and the pair of comb teeth 92 are in contact with each other, and the restraint load is applied between one of the comb teeth 92 and the restraint jig 90. A load cell 94 for measurement was arranged.
Next, a pre-restraint load of 10000 N was applied for 10 seconds from the wide surface direction of the battery case 40. Then, the restraining load is set to 200N, which is the lower limit holding load value generally required for holding the electrode body, and the current collecting terminals (positive electrode current collecting terminal 52 and negative electrode current collecting terminal 54) bonded to the wound electrode body 10 are set. ), The force gauge 96 was pulled up toward the opening of the battery case 40 so as to be perpendicular to the restraint load direction. As a result, the peak load value (sliding load value) was obtained, and the coefficient of static friction was obtained by the following equation (2), which is shown in Table 1.
Coefficient of static friction = (sliding load value) ÷ 200N ÷ 2 ... (2)

なお、上記集電端子を引っ張り上げるとき、電池ケース40と絶縁フィルム30の間、または捲回電極体10と絶縁フィルム30の間のどちらか一方で滑りが生じる場合があった。かかる場合には、滑り荷重値が正確に求められず、静摩擦係数を算出できないため、表1の静摩擦係数の列にハイフン(−)で示した。 When the current collector terminal is pulled up, slippage may occur between the battery case 40 and the insulating film 30, or between the wound electrode body 10 and the insulating film 30. In such a case, the sliding load value cannot be accurately obtained and the coefficient of static friction cannot be calculated. Therefore, it is indicated by a hyphen (−) in the column of the coefficient of static friction in Table 1.

Figure 2021192339
Figure 2021192339

表1に示すように、条件:0.749≦Ra(A)/Ra(B)≦1.022を満たす例1〜8は、電池ケース40と絶縁フィルム30間、または捲回電極体10と絶縁フィルム30間のどちらか一方で滑ることはなく、静摩擦係数を求めることができた。一方、上記条件を具備しない例9〜16は、電池ケース40と絶縁フィルム30間、または捲回電極体10と絶縁フィルム30間のどちらか一方で滑りが生じ、静摩擦係数を求めることができなかった。 As shown in Table 1, Examples 1 to 8 satisfying the conditions: 0.749 ≤ Ra (A) / Ra (B) ≤ 1.022 are between the battery case 40 and the insulating film 30, or the wound electrode body 10. The coefficient of static friction could be obtained without slipping on either side of the insulating films 30. On the other hand, in Examples 9 to 16 which do not satisfy the above conditions, slippage occurs between the battery case 40 and the insulating film 30, or between the wound electrode body 10 and the insulating film 30, and the coefficient of static friction cannot be obtained. rice field.

以上、具体的な実施形態を挙げて詳細な説明を行ったが、これらは例示にすぎず、請求の範囲を限定するものではない。請求の範囲に記載の技術には、以上に記載した実施形態を様々に変形、変更したものが含まれる。 Although the detailed description has been given with reference to specific embodiments, these are merely examples and do not limit the scope of the claims. The techniques described in the claims include various modifications and modifications of the above-described embodiments.

1 二次電池
10 捲回電極体
20 非水電解液
30 絶縁フィルム
40 電池ケース
42 ケース本体
44 蓋体
46 安全弁
52 正極集電端子
52a 正極内部端子
54 負極集電端子
54a 負極内部端子
60 正極
62 正極集電体
64 正極活物質層
66 正極活物質層非形成部分
70 負極
72 負極集電体
74 負極活物質層
76 負極活物質層非形成部分
80 セパレータ
90 拘束治具
92 櫛歯
94 拘束荷重測定用ロードセル
96 フォースゲージ

1 Secondary battery 10 Winding electrode body 20 Non-aqueous electrolyte 30 Insulation film 40 Battery case 42 Case body 44 Lid body 46 Safety valve 52 Positive electrode current collecting terminal 52a Positive electrode internal terminal 54 Negative electrode current collecting terminal 54a Negative electrode internal terminal 60 Positive electrode 62 Positive electrode Collector 64 Positive electrode active material layer 66 Positive electrode active material layer Non-formed part 70 Negative electrode 72 Negative electrode current collector 74 Negative electrode active material layer 76 Negative electrode active material layer Non-formed part 80 Separator 90 Restraint jig 92 Comb tooth 94 For restraint load measurement Load cell 96 force gauge

Claims (1)

電池ケースと、
該電池ケース内に収容される電極体、非水電解液および絶縁フィルムと、
を備える非水電解液二次電池であって、
前記絶縁フィルムは前記電池ケースと前記電極体の間に配置されており、
前記電池ケースの内面の表面粗さRa(A1)[μm]と、前記絶縁フィルムの該電池ケースの内面に対向する面の表面粗さRa(A2)[μm]との和をRa(A)、
前記電極体の外面の表面粗さRa(B1)[μm]と、前記Ra(A1)[μm]との和をRa(B)としたとき、
条件:0.749≦Ra(A)/Ra(B)≦1.022
を具備する、非水電解液二次電池。

With a battery case,
The electrode body, the non-aqueous electrolyte solution, and the insulating film housed in the battery case,
A non-aqueous electrolyte secondary battery equipped with
The insulating film is arranged between the battery case and the electrode body.
Ra (A) is the sum of the surface roughness Ra (A1) [μm] of the inner surface of the battery case and the surface roughness Ra (A2) [μm] of the surface of the insulating film facing the inner surface of the battery case. ,
When the sum of the surface roughness Ra (B1) [μm] of the outer surface of the electrode body and the Ra (A1) [μm] is Ra (B),
Conditions: 0.749 ≤ Ra (A) / Ra (B) ≤ 1.022
A non-aqueous electrolyte secondary battery.

JP2020098499A 2020-06-05 2020-06-05 Non-aqueous electrolyte secondary battery Pending JP2021192339A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020098499A JP2021192339A (en) 2020-06-05 2020-06-05 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020098499A JP2021192339A (en) 2020-06-05 2020-06-05 Non-aqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2021192339A true JP2021192339A (en) 2021-12-16

Family

ID=78945580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020098499A Pending JP2021192339A (en) 2020-06-05 2020-06-05 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2021192339A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024216956A1 (en) * 2023-04-18 2024-10-24 宁德时代新能源科技股份有限公司 Battery cell, battery, and electrical device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024216956A1 (en) * 2023-04-18 2024-10-24 宁德时代新能源科技股份有限公司 Battery cell, battery, and electrical device

Similar Documents

Publication Publication Date Title
KR101847322B1 (en) Lithium ion secondary battery
US9431680B2 (en) Electric storage device, electric storage system, and manufacturing method thereof
JP6176500B2 (en) Secondary battery, method for producing the same, and method for producing negative electrode sheet used in the battery
CN103843172B (en) Dividing plate with heat-resistant insulating layer
JP6460418B2 (en) Secondary battery
CN107808975A (en) Enclosed secondary battery
JP2013093216A (en) Battery
JP5765574B2 (en) Secondary battery, method for producing the same, and method for producing negative electrode sheet used in the battery
US20220367879A1 (en) Current collector of secondary battery and secondary battery
KR102226890B1 (en) Non-aqueous electrolyte secondary battery
JP2019016494A (en) Method for manufacturing multilayer electrode body and method for manufacturing power storage element
JP2021192339A (en) Non-aqueous electrolyte secondary battery
KR101709391B1 (en) Nonaqueous electrolyte secondary battery
JP6489360B2 (en) Secondary battery
JP2019016493A (en) Electrode body sub-unit, electrode unit, multilayer electrode body and power storage element
JP2016225261A (en) Lithium secondary battery
JP6726398B2 (en) Storage element
JP7485643B2 (en) Manufacturing method for laser processed positive electrodes
JP6681017B2 (en) Secondary battery having electrode body
JP7157907B2 (en) Method for judging the bonding state of terminals
CN113130963B (en) Secondary battery
CN112952302B (en) Method for manufacturing secondary battery
JP7045644B2 (en) Sealed batteries and assembled batteries
JP6796264B2 (en) Manufacturing method of sealed battery
JP2024092439A (en) Separator and power storage device including the separator