JP2021190417A - Planar light source, and liquid crystal display device - Google Patents

Planar light source, and liquid crystal display device Download PDF

Info

Publication number
JP2021190417A
JP2021190417A JP2020207548A JP2020207548A JP2021190417A JP 2021190417 A JP2021190417 A JP 2021190417A JP 2020207548 A JP2020207548 A JP 2020207548A JP 2020207548 A JP2020207548 A JP 2020207548A JP 2021190417 A JP2021190417 A JP 2021190417A
Authority
JP
Japan
Prior art keywords
light source
light
plate portion
thin plate
planar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020207548A
Other languages
Japanese (ja)
Other versions
JP7560730B2 (en
Inventor
敏伸 勝俣
Toshinobu Katsumata
俊幸 橋本
Toshiyuki Hashimoto
直哉 柏木
Naoya Kashiwagi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Chemical Industries Ltd
Original Assignee
Nichia Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Chemical Industries Ltd filed Critical Nichia Chemical Industries Ltd
Priority to US17/331,479 priority Critical patent/US11428984B2/en
Priority to CN202110585165.XA priority patent/CN113741090A/en
Publication of JP2021190417A publication Critical patent/JP2021190417A/en
Priority to US17/869,682 priority patent/US11650455B2/en
Application granted granted Critical
Publication of JP7560730B2 publication Critical patent/JP7560730B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Planar Illumination Modules (AREA)
  • Liquid Crystal (AREA)

Abstract

To suppress luminance uniformity which occurs at a peripheral edge, in a planar light source whose planar shape is an irregular shape.SOLUTION: A planar light source comprises: a mounting board in an irregular shape; a plurality of light sources arrayed in a two-dimensional manner in a first direction and a second direction vertical to the first direction on the mounting board in a planar view; and a light diffusion plate provided above the plurality of light sources. The light diffusion plate includes a thick plate part and a thin plate part which is thinner than the thick plate part. The thin plate part is provided in at least a part of the light diffusion plate positioned outside of each of the light sources disposed in an outermost periphery in a planar view. In one light source and the other light source positioned in an end in the first direction among the plurality of light sources, a distance from an optical axis of the one light source to an outer edge of the light diffusion plate in the first direction is longer than a distance from an optical axis of the other light source to the outer edge of the optical diffusion plate in the first direction. Regarding a width of the thin plate part in the first direction in a planar view, the width in the first direction from the optical axis of the one light source to the outer edge of the light diffusion plate is larger than the width in the first direction from the optical axis of the other light source to the outer edge of the light diffusion plate.SELECTED DRAWING: Figure 5

Description

本開示は、面状光源、液晶表示装置に関する。 The present disclosure relates to a planar light source and a liquid crystal display device.

発光ダイオード等の発光素子を用いた面状光源は、液晶表示装置のバックライトやディスプレイ等の各種の光源として広く利用されている。 A planar light source using a light emitting element such as a light emitting diode is widely used as various light sources such as a backlight of a liquid crystal display device and a display.

このような面状光源の一例として、2次元に配列された発光素子と、各々の発光素子の上方に配置された光拡散板とを備える構成が挙げられる。この面状光源において、光拡散板は、発光素子の発光部からの光を拡散するための拡散粒子を含み、発光素子側の表面のうち、少なくとも発光素子の発光部に対応する領域において発光素子側になだらかな曲面状に突出する凸部が一体的に形成されている。 As an example of such a planar light source, there is a configuration including a light emitting element arranged two-dimensionally and a light diffusing plate arranged above each light emitting element. In this planar light source, the light diffusing plate contains diffused particles for diffusing light from the light emitting portion of the light emitting element, and is a light emitting element in at least a region corresponding to the light emitting portion of the light emitting element on the surface of the light emitting element side. A convex portion that protrudes in a gentle curved shape on the side is integrally formed.

特開2012−221779号公報Japanese Unexamined Patent Publication No. 2012-221779

本開示は、平面形状が異形形状である面状光源において、周縁に発生する輝度ムラの抑制を目的とする。 The present disclosure aims at suppressing the luminance unevenness generated in the peripheral edge of a planar light source having an irregular planar shape.

本開示の一実施形態に係る面状光源は、異形形状の実装基板と、平面視で、前記実装基板上の第1方向及び前記第1方向に垂直な第2方向に2次元に配列された複数の光源と、前記複数の光源の上方に設けられた光拡散板と、を有し、前記光拡散板は、厚板部と、前記厚板部よりも板厚が薄い薄板部と、を備え、前記薄板部は、平面視で、最外周に配置された各々の前記光源よりも外側に位置する前記光拡散板の少なくとも一部に設けられ、前記複数の光源のうち前記第1方向の端部に位置する一の光源と他の光源において、前記一の光源の光軸から前記第1方向の前記光拡散板の外縁までの距離が、前記他の光源の光軸から前記第1方向の前記光拡散板の外縁までの距離より長く、平面視で、前記薄板部の前記第1方向の幅は、前記一の光源の光軸から前記光拡散板の外縁に向かう前記第1方向の幅が、前記他の光源の光軸から前記光拡散板の外縁に向かう前記第1方向の幅より広い。 The planar light sources according to the embodiment of the present disclosure are two-dimensionally arranged with an irregularly shaped mounting substrate in a first direction on the mounting substrate and a second direction perpendicular to the first direction in a plan view. It has a plurality of light sources and a light diffusing plate provided above the plurality of light sources, and the light diffusing plate has a thick plate portion and a thin plate portion having a thickness thinner than the thick plate portion. The thin plate portion is provided on at least a part of the light diffusing plate located outside each of the light sources arranged on the outermost periphery in a plan view, and is provided in the first direction among the plurality of light sources. In one light source and another light source located at the end, the distance from the optical axis of the one light source to the outer edge of the light diffuser in the first direction is the distance from the optical axis of the other light source in the first direction. Longer than the distance to the outer edge of the light diffusing plate, the width of the thin plate portion in the first direction is the width of the thin plate portion in the first direction from the optical axis of the one light source toward the outer edge of the light diffusing plate. The width is wider than the width in the first direction from the optical axis of the other light source toward the outer edge of the light diffusing plate.

本開示の一実施形態によれば、平面形状が異形形状である面状光源において、周縁に発生する輝度ムラを抑制できる。 According to one embodiment of the present disclosure, it is possible to suppress the luminance unevenness generated on the peripheral edge of a planar light source having an irregular planar shape.

第1実施形態に係る面状光源を例示する模式平面図である。It is a schematic plan view which illustrates the planar light source which concerns on 1st Embodiment. 図1のE部の模式部分拡大平面図である。It is a schematic partial enlarged plan view of the E part of FIG. 図2のA−A線に沿う断面図である。It is sectional drawing which follows the AA line of FIG. 第1実施形態に係る面状光源における各光源の配置を例示する平面模式図である。It is a plane schematic diagram which illustrates the arrangement of each light source in the planar light source which concerns on 1st Embodiment. 第1実施形態に係る面状光源における光拡散板を例示する平面模式図である。It is a plane schematic diagram which illustrates the light diffusing plate in the planar light source which concerns on 1st Embodiment. 図3の光源近傍の部分拡大断面図である。It is a partially enlarged sectional view in the vicinity of a light source of FIG. 薄板部の幅について説明する模式平面図(その1)である。It is a schematic plan view (the 1) explaining the width of a thin plate part. 薄板部の幅について説明する模式平面図(その2)である。It is a schematic plan view (the 2) explaining the width of a thin plate part. 光拡散板に関するシミュレーションの結果を示す図(その1)である。It is a figure (the 1) which shows the result of the simulation about a light diffusing plate. 光拡散板に関するシミュレーションの結果を示す図(その2)である。It is a figure (the 2) which shows the result of the simulation about a light diffusing plate. 光学部材の配置について説明する模式断面図である。It is a schematic cross-sectional view explaining the arrangement of an optical member. 第1実施形態の変形例1に係る面状光源における光拡散板を例示する模式部分拡大断面図(その1)である。FIG. 1 is a schematic partially enlarged cross-sectional view (No. 1) illustrating a light diffusing plate in a planar light source according to a modification 1 of the first embodiment. 第1実施形態の変形例1に係る面状光源における光拡散板を例示する模式部分拡大断面図(その2)である。FIG. 2 is a schematic partially enlarged cross-sectional view (No. 2) illustrating a light diffusing plate in a planar light source according to a modification 1 of the first embodiment. 第1実施形態の変形例1に係る面状光源における光拡散板を例示する模式部分拡大断面図(その3)である。FIG. 3 is a schematic partially enlarged cross-sectional view (No. 3) illustrating a light diffusing plate in a planar light source according to a modification 1 of the first embodiment. 図14の光拡散板を例示する平面模式図である。FIG. 3 is a schematic plan view illustrating the light diffusing plate of FIG. 第1実施形態の変形例2に係る区画部材の模式部分拡大平面図である。It is a schematic partial enlarged plan view of the partition member which concerns on the modification 2 of 1st Embodiment. 図16のB−B線に沿う断面図である。16 is a cross-sectional view taken along the line BB of FIG. 面状光源の外縁近傍の模式部分拡大断面図(その1)である。It is a schematic partial enlarged cross-sectional view (No. 1) near the outer edge of a planar light source. 面状光源の外縁近傍の模式部分拡大断面図(その2)である。FIG. 2 is a schematic partially enlarged cross-sectional view (No. 2) near the outer edge of the planar light source. 第1実施形態の変形例3に係る面状光源における基板の外形について説明する平面模式図である。It is a plane schematic diagram explaining the outer shape of the substrate in the planar light source which concerns on the modification 3 of 1st Embodiment. 第2実施形態に係る液晶表示装置を例示する構成図である。It is a block diagram which illustrates the liquid crystal display device which concerns on 2nd Embodiment.

以下、図面を参照して発明を実施するための形態について説明する。なお、以下の説明では、必要に応じて特定の方向や位置を示す用語(例えば、「上」、「下」、及びそれらの用語を含む別の用語)を用いる。しかし、それらの用語の使用は図面を参照した発明の理解を容易にするためであって、それらの用語の意味によって本発明の技術的範囲が制限されるものではない。又、複数の図面に表れる同一符号の部分は同一もしくは同等の部分又は部材を示す。 Hereinafter, embodiments for carrying out the invention will be described with reference to the drawings. In the following description, terms indicating a specific direction or position (for example, "upper", "lower", and other terms including those terms) are used as necessary. However, the use of these terms is to facilitate understanding of the invention with reference to the drawings, and the meaning of these terms does not limit the technical scope of the invention. Further, the parts having the same reference numerals appearing in a plurality of drawings indicate the same or equivalent parts or members.

更に、以下に示す実施形態は、本発明の技術思想を具体化するための面状光源を例示するものであって、本発明を以下に限定するものではない。又、以下に記載されている構成部品の寸法、材質、形状、その相対的配置等は、特定的な記載がない限り、本発明の範囲をそれのみに限定する趣旨ではなく、例示することを意図したものである。又、一の実施形態において説明する内容は、他の実施形態や変形例にも適用可能である。又、図面が示す部材の大きさや位置関係等は、説明を明確にするため、誇張している場合がある。 Further, the embodiments shown below exemplify a planar light source for embodying the technical idea of the present invention, and do not limit the present invention to the following. Further, the dimensions, materials, shapes, relative arrangements, etc. of the components described below are not intended to limit the scope of the present invention to the specific description, but are exemplified. It was intended. Further, the contents described in one embodiment can be applied to other embodiments and modifications. In addition, the size and positional relationship of the members shown in the drawings may be exaggerated in order to clarify the explanation.

〈第1実施形態〉
(面状光源10)
図1は、第1実施形態に係る面状光源を例示する模式平面図である。図2は、図1のE部の模式部分拡大平面図である。図3は、図2のA−A線に沿う断面図である。図4は、第1実施形態に係る面状光源における各光源の配置を例示する平面模式図であり、図1から区画部材及び光拡散板を除去した図である。図5は、第1実施形態に係る面状光源における光拡散板を例示する平面模式図である。図6は、図3の光源近傍の部分拡大断面図である。
<First Embodiment>
(Surface light source 10)
FIG. 1 is a schematic plan view illustrating a planar light source according to the first embodiment. FIG. 2 is a schematic partially enlarged plan view of the E portion of FIG. FIG. 3 is a cross-sectional view taken along the line AA of FIG. FIG. 4 is a schematic plan view illustrating the arrangement of each light source in the planar light source according to the first embodiment, and is a diagram in which the partition member and the light diffusing plate are removed from FIG. FIG. 5 is a schematic plan view illustrating the light diffusing plate in the planar light source according to the first embodiment. FIG. 6 is a partially enlarged cross-sectional view in the vicinity of the light source of FIG.

図1〜図6に示すように、面状光源10は、基板11と、光源12と、区画部材13と、光拡散板14とを有する面発光型の発光装置である。但し、区画部材13は、面状光源10の必須の構成要件ではなく、必要に応じて設けられる。区画部材13を設けない場合には、例えば、光拡散板14を支持する支持体を設ければよい。 As shown in FIGS. 1 to 6, the planar light source 10 is a surface light emitting device having a substrate 11, a light source 12, a partition member 13, and a light diffusing plate 14. However, the partition member 13 is not an essential constituent requirement of the planar light source 10, but is provided as needed. When the partition member 13 is not provided, for example, a support for supporting the light diffusing plate 14 may be provided.

なお、以下の説明において、平面視とは対象物を基板11の上面11mの法線方向から視ることを指し、平面形状とは対象物を基板11の上面11mの法線方向から視た形状を指すものとする。 In the following description, the planar view means that the object is viewed from the normal direction of the upper surface 11 m of the substrate 11, and the planar shape is the shape of the object viewed from the normal direction of the upper surface 11 m of the substrate 11. Shall point to.

実装基板である基板11には、それぞれに発光ダイオードを含む複数の光源12が配置されている。なお、基板11に配置される光源12の個数に限定はなく、基板11には任意の個数の光源12が配置されてよい。 A plurality of light sources 12 including a light emitting diode are arranged on the substrate 11 which is a mounting substrate. The number of light sources 12 arranged on the substrate 11 is not limited, and any number of light sources 12 may be arranged on the substrate 11.

区画部材13は、基板11の光源12と同一側に配置されている。区画部材13は、平面視において格子状に配置された頂部13aと、平面視において光源12のそれぞれを取り囲む壁部13bとを含み、光源12を取り囲んだ領域を複数有する。区画部材13の壁部13bは、例えば、頂部13aから基板11側に延伸し、断面視において、対向する壁部13bで囲まれた領域の幅は基板11側ほど狭くなる。 The partition member 13 is arranged on the same side as the light source 12 of the substrate 11. The partition member 13 includes a top portion 13a arranged in a grid pattern in a plan view and a wall portion 13b surrounding each of the light source 12 in a plan view, and has a plurality of regions surrounding the light source 12. For example, the wall portion 13b of the partition member 13 extends from the top portion 13a toward the substrate 11, and in cross-sectional view, the width of the region surrounded by the facing wall portions 13b becomes narrower toward the substrate 11.

壁部13bで囲まれた範囲(つまり、領域及び空間)は、1つの区画Cとして規定され、区画部材13は、区画Cを複数備える。本実施形態では、1つの区画Cに1つの光源12が配置されている。但し、1つの区画Cに、2つ以上の光源12が配置されてもよい。この場合、例えば、1つの区画Cに赤色、緑色、及び青色の3つの光源12が配置されてもよい。或いは、1つの区画Cに白昼色と電球色の2つの光源12が配置されてもよい。 The range surrounded by the wall portion 13b (that is, the area and the space) is defined as one section C, and the section member 13 includes a plurality of sections C. In the present embodiment, one light source 12 is arranged in one section C. However, two or more light sources 12 may be arranged in one section C. In this case, for example, three light sources 12 of red, green, and blue may be arranged in one section C. Alternatively, two light sources 12 having a daylight color and a light bulb color may be arranged in one section C.

光拡散板14は、区画部材13の頂部13aに載置され、光源12の上方に配置された光学部材である。面状光源10は、光拡散板14を有することで、光の均一性を向上できる。本実施形態に係る光拡散板14は、面状光源10の周縁に発生する輝度ムラを抑制するために、周縁に板厚が薄い部分を備えている。 The light diffusing plate 14 is an optical member placed on the top portion 13a of the partition member 13 and arranged above the light source 12. By having the light diffusing plate 14, the planar light source 10 can improve the uniformity of light. The light diffusing plate 14 according to the present embodiment is provided with a portion having a thin plate thickness on the peripheral edge in order to suppress the luminance unevenness generated on the peripheral edge of the planar light source 10.

なお、平面視で各部材の最も外側の輪郭部分を外縁と称し、外縁を含む幅を持った領域を周縁と称する。特に、光拡散板14の周縁は、光拡散板14において、平面視で、最外周に配置された各々の光源12よりも外側に位置する領域とする。周縁は、必ずしも環状の領域を示すものではない。 In a plan view, the outermost contour portion of each member is referred to as an outer edge, and a region having a width including the outer edge is referred to as a peripheral edge. In particular, the peripheral edge of the light diffusing plate 14 is a region of the light diffusing plate 14 located outside each of the light sources 12 arranged on the outermost periphery in a plan view. The perimeter does not necessarily indicate an annular region.

以下、面状光源10を構成する各要素について詳説する。 Hereinafter, each element constituting the planar light source 10 will be described in detail.

(基板11)
基板11は、複数の光源12を載置するための部材であり、異形形状である。ここで、異形形状とは、矩形形状以外の形状を指し、例えば、特定の製品形状に合わせるために、完全な矩形形状に部分的な変形や全体的な変形を加えた形状である。
(Board 11)
The substrate 11 is a member for mounting a plurality of light sources 12, and has an irregular shape. Here, the irregular shape refers to a shape other than the rectangular shape, and is, for example, a shape obtained by adding a partial deformation or a total deformation to a perfect rectangular shape in order to match a specific product shape.

図6に示すように、基板11の上面11mには、発光素子12a等の光源12に電力を供給するための導体配線18A及び18Bが形成されている。導体配線18A及び18Bのうち、電気的な接続を行わない領域は、被覆部材15に被覆されていることが好ましい。 As shown in FIG. 6, conductor wirings 18A and 18B for supplying electric power to the light source 12 such as the light emitting element 12a are formed on the upper surface 11m of the substrate 11. Of the conductor wirings 18A and 18B, the regions that are not electrically connected are preferably covered with the covering member 15.

基板11の材料としては、少なくとも一対の導体配線18A及び18Bを絶縁分離できるものであればよく、例えば、セラミックス、樹脂、複合材料等が挙げられる。セラミックスとしては、例えば、アルミナ、ムライト、フォルステライト、ガラスセラミックス、窒化物系(例えば、AlN)、炭化物系(例えば、SiC)、LTCC等が挙げられる。樹脂としては、フェノール樹脂、エポキシ樹脂、ポリイミド樹脂、BTレジン、ポリフタルアミド(PPA)、ポリエチレンテレフタレート(PET)等が挙げられる。複合材料としては、上述した樹脂に、ガラス繊維、SiO、TiO、Al等の無機フィラーを混合したもの、ガラス繊維強化樹脂(ガラスエポキシ樹脂)、金属部材に絶縁層を形成した金属基板等が挙げられる。 The material of the substrate 11 may be any material as long as it can insulate and separate at least a pair of conductor wirings 18A and 18B, and examples thereof include ceramics, resin, and composite materials. Examples of the ceramics include alumina, mullite, forsterite, glass ceramics, nitride-based (for example, AlN), carbide-based (for example, SiC), and LTCC. Examples of the resin include phenol resin, epoxy resin, polyimide resin, BT resin, polyphthalamide (PPA), polyethylene terephthalate (PET) and the like. As the composite material, a mixture of the above-mentioned resin and an inorganic filler such as glass fiber, SiO 2 , TiO 2 , Al 2 O 3 , a glass fiber reinforced resin (glass epoxy resin), and an insulating layer formed on a metal member. Examples include metal substrates.

基板11の厚さは適宜選択できる。基板11は、ロール・ツー・ロール方式で製造可能なフレキシブル基板又はリジット基板の何れであってもよい。リジット基板は湾曲可能な薄型リジット基板であってもよい。導体配線18A及び18Bは、導電性部材であれば材料は特に限定されず、回路基板等の配線層として通常に使用される材料を用いることができる。導体配線18A及び18Bの表面には、めっき膜や光反射膜等が形成されてもよい。 The thickness of the substrate 11 can be appropriately selected. The substrate 11 may be either a flexible substrate or a rigid substrate that can be manufactured by a roll-to-roll method. The rigid substrate may be a bendable thin rigid substrate. The materials of the conductor wirings 18A and 18B are not particularly limited as long as they are conductive members, and materials normally used as a wiring layer such as a circuit board can be used. A plating film, a light reflection film, or the like may be formed on the surfaces of the conductor wirings 18A and 18B.

被覆部材15は、絶縁性の材料によって形成されていることが好ましい。被覆部材15の材料としては、基板11の材料として例示したものと同様のものが挙げられる。被覆部材15として、上述した樹脂に白色系のフィラー等を含有させたものを用いることにより、光源12から放出された光が反射されて、面状光源10の光取り出し効率を向上させることができる。 The covering member 15 is preferably made of an insulating material. Examples of the material of the covering member 15 include the same materials as those exemplified as the material of the substrate 11. By using the above-mentioned resin containing a white filler or the like as the covering member 15, the light emitted from the light source 12 is reflected, and the light extraction efficiency of the planar light source 10 can be improved. ..

(光源12)
複数の光源12は、平面視で、基板11上の第1方向、及び第1方向に垂直な第2方向に2次元に配列さている。第1方向及び第2方向は、例えば、図1等のX方向及びY方向である。
(Light source 12)
The plurality of light sources 12 are arranged two-dimensionally in a first direction on the substrate 11 and in a second direction perpendicular to the first direction in a plan view. The first direction and the second direction are, for example, the X direction and the Y direction as shown in FIG.

光源12は、光を発する部材であり、例えば、自ら光を発する発光素子そのもの、発光素子を透光性樹脂等で封止したもの、発光素子がパッケージングされた表面実装型の発光装置(LEDともいう)等を包含する。例えば、光源12としては、図6に示すように、発光素子12aを、封止部材12bで被覆したものが挙げられる。光源12は1つの発光素子12aを用いたものであってもよいが、複数個の発光素子を用いて1つの光源12としてもよい。また、光源12として、発光素子の側面を囲う光反射性材料を含む樹脂と、発光素子の上面及び光反射性材料を含む樹脂の上面を覆う透光性部材とを含む構成でもよい。発光素子の上面を覆う透光性部材と、発光素子の側面及び透光性部材の側面を囲う光反射性材料を含む樹脂と、を含む構成でもよい。ここでの透光性部材は、蛍光体を含んでもよい。発光素子と透光性部材との間には、発光素子と透光性部材とを接着する透光性の接合部材が設けられてもよい。 The light source 12 is a member that emits light, for example, a light emitting element itself that emits light by itself, a light emitting element sealed with a translucent resin or the like, or a surface-mounted light emitting device (LED) in which the light emitting element is packaged. Also called) etc. For example, as the light source 12, as shown in FIG. 6, a light emitting element 12a coated with a sealing member 12b can be mentioned. The light source 12 may be one using one light emitting element 12a, but may be one light source 12 by using a plurality of light emitting elements. Further, the light source 12 may include a resin including a light-reflecting material that surrounds the side surface of the light-emitting element, and a translucent member that covers the upper surface of the light-emitting element and the upper surface of the resin containing the light-reflecting material. The configuration may include a translucent member that covers the upper surface of the light emitting element, and a resin containing a light reflecting material that surrounds the side surface of the light emitting element and the side surface of the translucent member. The translucent member here may include a fluorescent substance. A translucent joining member for adhering the light emitting element and the translucent member may be provided between the light emitting element and the translucent member.

光源12は、どのような配光特性を有するものであってもよいが、区画部材13の壁部13bで囲まれた各区画Cにおいて輝度ムラを少なく光らせるために、広配光であることが好ましい。特に、光源12の各々がバットウイング配光特性を有していることが好ましい。これにより光源12の真上方向に出射される光量を抑制して、各々の光源12の配光を広げ、広げた光を壁部13b及び底部13cに照射することによって、壁部13bで囲まれた各区画Cにおける輝度ムラを抑制できる。 The light source 12 may have any light distribution characteristics, but it may have a wide light distribution in order to illuminate each section C surrounded by the wall portion 13b of the section member 13 with less luminance unevenness. preferable. In particular, it is preferable that each of the light sources 12 has a butt wing light distribution characteristic. As a result, the amount of light emitted in the direction directly above the light source 12 is suppressed, the light distribution of each light source 12 is expanded, and the expanded light is applied to the wall portion 13b and the bottom portion 13c, thereby being surrounded by the wall portion 13b. It is possible to suppress uneven brightness in each section C.

ここでバットウイング配光特性とは、光軸OAを0°として、0°よりも配光角の絶対値が大きい角度において0°よりも発光強度が強い発光強度分布を有するものと定義される。なお、光軸OAとは、図6に示すように、光源12の中心を通り、基板11の上面11mと垂直に交わる線で定義されるものとする。 Here, the bat wing light distribution characteristic is defined as having a light emission intensity distribution in which the light emission intensity is stronger than 0 ° at an angle where the absolute value of the light distribution angle is larger than 0 °, where the optical axis OA is 0 °. .. As shown in FIG. 6, the optical axis OA is defined by a line that passes through the center of the light source 12 and intersects the upper surface 11 m of the substrate 11 perpendicularly.

特に、バットウイング配光特性を有する光源12としては、例えば、図6に示すように、上面に光反射膜12cを有する発光素子12aを用いたものが挙げられる。発光素子12aの上面に光反射膜12cを設けることで、発光素子12aの上方向への光のほとんどが光反射膜12cで反射されて発光素子12aの直上の光量が抑制され、バットウイング配光特性を得られる。光反射膜12cは、発光素子12aに直接形成できるため、バットウイング配光とするための特別なレンズを別途組み合わせる必要がなく、光源12の厚みを薄くできる。 In particular, examples of the light source 12 having the butt wing light distribution characteristic include those using a light emitting element 12a having a light reflecting film 12c on the upper surface as shown in FIG. By providing the light reflecting film 12c on the upper surface of the light emitting element 12a, most of the upward light of the light emitting element 12a is reflected by the light reflecting film 12c, the amount of light directly above the light emitting element 12a is suppressed, and the bat wing light distribution is performed. You can get the characteristics. Since the light reflecting film 12c can be formed directly on the light emitting element 12a, it is not necessary to separately combine a special lens for bat wing light distribution, and the thickness of the light source 12 can be reduced.

光反射膜12cは、銀、銅等の金属膜、樹脂に白色系のフィラー等を含有させたもの、これらの組み合わせ等の何れでもよい。また、光反射膜12cは、誘電体多層膜(DBR膜)とし、発光素子12aの発光波長に対して、入射角に対する反射率角度依存性を有していてもよい。具体的には、光反射膜12cの反射率は、垂直入射よりも斜め入射の方が低くなるように設定することが好ましい。これにより、発光素子12aの直上における輝度の変化が緩やかになり、発光素子12aの直上が暗点になる等、極端に暗くなることを抑制できる。 The light reflecting film 12c may be a metal film such as silver or copper, a resin containing a white filler or the like, or a combination thereof. Further, the light reflecting film 12c may be a dielectric multilayer film (DBR film) and may have a reflectance angle dependence on the incident angle with respect to the emission wavelength of the light emitting element 12a. Specifically, it is preferable to set the reflectance of the light reflecting film 12c so that the oblique incident is lower than the vertical incident. As a result, the change in brightness directly above the light emitting element 12a becomes gradual, and it is possible to suppress extremely darkening such that the area directly above the light emitting element 12a becomes a dark spot.

光源12としては、例えば、基板11に直接実装された発光素子12aの高さが、100μm〜500μmのものが挙げられる。光反射膜12cの厚みは、0.1μm〜3.0μmのものが挙げられる。封止部材12bを含めても、光源12の厚みは、0.5mm〜2.0mm程度とすることができる。 Examples of the light source 12 include those having a height of the light emitting element 12a directly mounted on the substrate 11 of 100 μm to 500 μm. The thickness of the light reflecting film 12c may be 0.1 μm to 3.0 μm. Even if the sealing member 12b is included, the thickness of the light source 12 can be about 0.5 mm to 2.0 mm.

複数の光源12は、互いに独立して駆動可能であり、光源12ごとの調光制御(例えば、ローカルディミング又はハイダイナミックレンジ)が可能となるように、基板11上で配線されていることが好ましい。 It is preferable that the plurality of light sources 12 can be driven independently of each other and are wired on the substrate 11 so that dimming control (for example, local dimming or high dynamic range) for each light source 12 is possible. ..

(発光素子12a)
発光素子12aとしては、公知のものを利用できる。例えば、発光素子12aとして発光ダイオードを用いることが好ましい。発光素子12aは、任意の波長のものを選択できる。例えば、青色、緑色の発光素子としては、GaN、InGaN、AlGaN、AlInGaN等の窒化物系半導体を用いたものを用いることができる。又、赤色の発光素子としては、GaAlAs、AlInGaP等を用いることができる。更に、これ以外の材料からなる半導体発光素子を用いてもよい。用いる発光素子の組成及び発光色、大きさ、個数等は目的に応じて適宜選択できる。
(Light emitting element 12a)
As the light emitting element 12a, a known one can be used. For example, it is preferable to use a light emitting diode as the light emitting element 12a. As the light emitting element 12a, one having an arbitrary wavelength can be selected. For example, as the blue and green light emitting devices, those using a nitride semiconductor such as GaN, InGaN, AlGaN, and AlInGaN can be used. Further, as the red light emitting element, GaAlAs, AlInGaP and the like can be used. Further, a semiconductor light emitting device made of a material other than this may be used. The composition, emission color, size, number, etc. of the light emitting element to be used can be appropriately selected according to the purpose.

発光素子12aは、図6に示すように、基板11の上面11mに設けられた正負一対の導体配線18A及び18Bに跨るように、接合部材19を介してフリップチップ実装されたものが挙げられる。但し、発光素子12aはフリップチップ実装のみならず、フェイスアップ実装されたものでもよい。 As shown in FIG. 6, the light emitting element 12a may be flip-chip mounted via a joining member 19 so as to straddle a pair of positive and negative conductor wirings 18A and 18B provided on the upper surface 11m of the substrate 11. However, the light emitting element 12a may be face-up mounted as well as flip chip mounted.

接合部材19は、発光素子12aを基板又は導体配線に固定するための部材であり、絶縁性の樹脂又は導電性の部材等が挙げられる。図6に示すようなフリップチップ実装の場合は導電性の部材が用いられる。具体的にはAu含有合金、Ag含有合金、Pd含有合金、In含有合金、Pb−Pd含有合金、Au−Ga含有合金、Au−Sn含有合金、Sn含有合金、Sn−Cu含有合金、Sn−Cu−Ag含有合金、Au−Ge含有合金、Au−Si含有合金、Al含有合金、Cu−In含有合金、金属とフラックスの混合物等が挙げられる。 The joining member 19 is a member for fixing the light emitting element 12a to the substrate or the conductor wiring, and examples thereof include an insulating resin or a conductive member. In the case of flip-chip mounting as shown in FIG. 6, a conductive member is used. Specifically, Au-containing alloys, Ag-containing alloys, Pd-containing alloys, In-containing alloys, Pb-Pd-containing alloys, Au-Ga-containing alloys, Au-Sn-containing alloys, Sn-containing alloys, Sn-Cu-containing alloys, Sn- Examples thereof include Cu-Ag-containing alloys, Au-Ge-containing alloys, Au-Si-containing alloys, Al-containing alloys, Cu-In-containing alloys, and mixtures of metals and fluxes.

(封止部材12b)
封止部材12bは、発光素子12aを外部環境から保護するとともに、発光素子12aから出力される光を光学的に制御する(例えば、バッドウィング配光特性を得る)等の目的で、発光素子12aを被覆する。封止部材12bは透光性の材料で形成されている。封止部材12bの材料としては、エポキシ樹脂、シリコーン樹脂又はそれらを混合した樹脂等の透光性樹脂、ガラス等を用いることができる。これらのうち、耐光性及び成形のしやすさを考慮して、シリコーン樹脂を用いることが好ましい。封止部材12bには、発光素子12aからの光を拡散させるための拡散剤、発光素子12aの発光色に対応した着色剤等を含んでもよい。拡散剤及び着色剤等は、当該分野で公知のものを使用できる。
(Sealing member 12b)
The sealing member 12b protects the light emitting element 12a from the external environment and optically controls the light output from the light emitting element 12a (for example, obtains bad wing light distribution characteristics), and the like, the light emitting element 12a To cover. The sealing member 12b is made of a translucent material. As the material of the sealing member 12b, a translucent resin such as an epoxy resin, a silicone resin, or a resin mixed thereof, glass, or the like can be used. Of these, it is preferable to use a silicone resin in consideration of light resistance and ease of molding. The sealing member 12b may contain a diffusing agent for diffusing the light from the light emitting element 12a, a coloring agent corresponding to the light emitting color of the light emitting element 12a, and the like. As the diffusing agent, the coloring agent and the like, those known in the art can be used.

封止部材12bは、基板11と直接接触してもよい。封止部材12bは、印刷、ディスペンサ塗布等が可能である粘度に調整され、加熱処理、光照射によって硬化させることができる。封止部材12bの形状としては、例えば、略半球形状、断面視において縦長の凸形状、断面視において偏平な凸形状、平面視において円形状又は楕円形状等が挙げられるが、これに限定されない。ここで、縦長の凸形状とは、断面視において、基板11の上面11mに平行な方向の最大長さよりも、基板11の上面11mに垂直な方向の最大長さが長い形状である。又、偏平な凸形状とは、断面視において、基板11の上面11mに垂直な方向の最大長さよりも、基板11の上面11mに平行な方向の最大長さが長い形状である。封止部材12bは、発光素子12aの下面と基板11の上面11mとの間に、アンダーフィル12dとして配置されてもよい。 The sealing member 12b may be in direct contact with the substrate 11. The sealing member 12b is adjusted to a viscosity capable of printing, applying a dispenser, and the like, and can be cured by heat treatment and light irradiation. Examples of the shape of the sealing member 12b include, but are not limited to, a substantially hemispherical shape, a vertically long convex shape in a cross-sectional view, a flat convex shape in a cross-sectional view, a circular shape or an elliptical shape in a plan view, and the like. Here, the vertically long convex shape is a shape in which the maximum length in the direction perpendicular to the upper surface 11m of the substrate 11 is longer than the maximum length in the direction parallel to the upper surface 11m of the substrate 11 in a cross-sectional view. Further, the flat convex shape is a shape in which the maximum length in the direction parallel to the upper surface 11m of the substrate 11 is longer than the maximum length in the direction perpendicular to the upper surface 11m of the substrate 11 in a cross-sectional view. The sealing member 12b may be arranged as an underfill 12d between the lower surface of the light emitting element 12a and the upper surface 11m of the substrate 11.

(区画部材13)
区画部材13の壁部13bは、平面視において、格子状に配置できる。平面視において、隣接する区画Cの境界は頂部13aとみなすことができる。区画部材13は、区画C内において、壁部13bの下端と繋がる底部13cを有することが好ましい。言い換えると、区画部材13は、底部13cと壁部13bとによって区画Cを構成することが好ましい。底部13cは、平面視において、基板11の周縁まで延在してもよい。この場合、底部13cが最外周の壁部13bよりも基板11の外縁側に位置してもよい。区画部材13の周縁は、基板11の周縁と重なる部分を有してもよい。区画部材13は反射性を有する部材であることが好ましい。
(Division member 13)
The wall portions 13b of the partition member 13 can be arranged in a grid pattern in a plan view. In plan view, the boundary of adjacent compartments C can be regarded as the top 13a. The partition member 13 preferably has a bottom portion 13c connected to the lower end of the wall portion 13b in the compartment C. In other words, it is preferable that the partition member 13 constitutes the section C by the bottom portion 13c and the wall portion 13b. The bottom portion 13c may extend to the peripheral edge of the substrate 11 in a plan view. In this case, the bottom portion 13c may be located on the outer edge side of the substrate 11 with respect to the outermost peripheral wall portion 13b. The peripheral edge of the partition member 13 may have a portion that overlaps with the peripheral edge of the substrate 11. The partition member 13 is preferably a member having reflexivity.

区画部材13は、例えば、区画C内において、底部13cの略中央に、光源12が配置される貫通孔13dを有する。図6に示すように、貫通孔13d内には、光源12が配置されることが好ましい。貫通孔13dの形状及び大きさは、光源12の全部が露出される形状及び大きさであればよく、貫通孔13dの外縁が、光源12の近傍のみに位置するように設定することが好ましい。これによって、区画部材13が反射性を有する場合に、光源12からの光を底部13cでも反射させること可能となり、光の取り出し効率を向上できる。 The partition member 13 has, for example, a through hole 13d in which the light source 12 is arranged in the substantially center of the bottom portion 13c in the partition C. As shown in FIG. 6, it is preferable that the light source 12 is arranged in the through hole 13d. The shape and size of the through hole 13d may be any shape and size as long as the entire light source 12 is exposed, and it is preferable to set the outer edge of the through hole 13d so as to be located only in the vicinity of the light source 12. As a result, when the partition member 13 has reflectivity, the light from the light source 12 can be reflected even at the bottom portion 13c, and the light extraction efficiency can be improved.

頂部13aは、壁部13bの最も高い部位である。頂部13aは、平面であってもよいが、頂部13aの近傍が稜の形状であることが好ましい。つまり、頂部13aを構成する壁部13bの縦断面が、鋭角三角形を構成するものが好ましく、鋭角二等辺三角形を構成するものがより好ましい。 The top 13a is the highest part of the wall 13b. The top portion 13a may be a flat surface, but it is preferable that the vicinity of the top portion 13a has a ridge shape. That is, it is preferable that the vertical cross section of the wall portion 13b constituting the top portion 13a constitutes an acute-angled triangle, and more preferably an acute-angled isosceles triangle.

鋭角三角形又は鋭角二等辺三角形の鋭角、つまり、壁部13bの頂部13a側の角度(図6中、α)は、例えば、60°〜90°とすることが好ましい。このような範囲とすることにより、区画部材13が占める空間及び領域を低減させ、区画部材13の高さを低減でき、面状光源10の小型化及び薄型化を実現できる。 The acute angle of the acute triangle or the acute isosceles triangle, that is, the angle of the wall portion 13b on the top 13a side (α in FIG. 6) is preferably 60 ° to 90 °, for example. By setting such a range, the space and area occupied by the partition member 13 can be reduced, the height of the partition member 13 can be reduced, and the planar light source 10 can be made smaller and thinner.

区画部材13の頂部13a間のピッチPは、用いる光源の大きさ、意図する面状光源の大きさ及び性能等によって適宜調整できる。ピッチPとしては、例えば、1mm〜50mmが挙げられ、5mm〜20mmが好ましく、6mm〜15mmがより好ましい。光源12を取り囲む壁部13bは、区画C側において、底部13c及び基板11の上面11mの近傍から上部に向かって広がるように傾斜した面によって構成されることが好ましい。 The pitch P between the top portions 13a of the partition member 13 can be appropriately adjusted depending on the size of the light source used, the size and performance of the intended planar light source, and the like. Examples of the pitch P include 1 mm to 50 mm, preferably 5 mm to 20 mm, and more preferably 6 mm to 15 mm. The wall portion 13b surrounding the light source 12 is preferably composed of a surface inclined so as to spread from the vicinity of the bottom portion 13c and the upper surface 11m of the substrate 11 toward the upper portion on the partition C side.

又、区画部材13自体の高さ、つまり、区画部材13の底部13cの下面から頂部13aまで長さは、8mm以下が好ましく、より薄型の面状光源とする場合は1mm〜4mm程度であることが好ましい。又、区画部材13の底部13cの下面から光拡散板14までの距離は8mm程度以下が好ましく、より薄型の面状光源とする場合は2mm〜4mm程度とすることが好ましい。これにより、光拡散板14等の光学部材を含めたバックライトユニットを極めて薄型にできる。区画部材13の厚みとしては、例えば100μm〜300μmが挙げられる。 Further, the height of the partition member 13 itself, that is, the length from the lower surface of the bottom portion 13c of the partition member 13 to the top portion 13a is preferably 8 mm or less, and is about 1 mm to 4 mm in the case of a thinner planar light source. Is preferable. The distance from the lower surface of the bottom portion 13c of the partition member 13 to the light diffusing plate 14 is preferably about 8 mm or less, and when a thinner planar light source is used, it is preferably about 2 mm to 4 mm. As a result, the backlight unit including the optical member such as the light diffusing plate 14 can be made extremely thin. Examples of the thickness of the partition member 13 include 100 μm to 300 μm.

区画部材13が光源12を取り囲んで構成する区画Cの形状、つまり、壁部13bによって区分される領域の形状は、平面視において、四角形であるが、これに限定されない。例えば、円形、楕円形等であってもよい。但し、複数の光源12を効率的に配置させるためには、三角形、四角形、六角形等の多角形が好ましい。これにより、面状光源10の発光面の面積に応じて発光領域を壁部13bで任意の数に区分することが容易になり、発光領域を高密度に配置できる。 The shape of the compartment C formed by the compartment member 13 surrounding the light source 12, that is, the shape of the region divided by the wall portion 13b is a quadrangle in a plan view, but is not limited thereto. For example, it may be circular, oval, or the like. However, in order to efficiently arrange the plurality of light sources 12, polygons such as triangles, quadrangles, and hexagons are preferable. As a result, it becomes easy to divide the light emitting region into an arbitrary number by the wall portion 13b according to the area of the light emitting surface of the planar light source 10, and the light emitting region can be arranged at a high density.

壁部13bによって区分される区画Cの数は、任意に設定でき、面状光源の所望のサイズに応じて壁部13bの形状及び配置、区画Cの数等を変更できる。区画部材13は、基板11上に配置された光源12の数及び位置によって、平面視、例えば、3つの区画Cが隣接して3つの頂部の端が1点に集中するもの、図2に示すように4つの区画Cが隣接して4つの頂部が集中するもの、6つの区画Cが隣接して6つの頂部が1点に集中するものなど、種々の形状にできる。4つの区画Cが隣接して4つの頂部が集中する場合、区画Cの平面視における形状は四角形である。 The number of compartments C divided by the wall 13b can be arbitrarily set, and the shape and arrangement of the wall 13b, the number of compartments C, and the like can be changed according to the desired size of the planar light source. The partition member 13 is shown in FIG. 2 in a plan view, for example, in which three compartments C are adjacent to each other and the ends of the three tops are concentrated at one point, depending on the number and position of the light sources 12 arranged on the substrate 11. As described above, various shapes can be obtained, such as those in which the four compartments C are adjacent to each other and the four tops are concentrated, and those in which the six compartments C are adjacent to each other and the six tops are concentrated at one point. When the four compartments C are adjacent to each other and the four tops are concentrated, the shape of the compartment C in a plan view is quadrangular.

区画部材13は、基板11の上に配置されることが好ましく、区画部材13の底部13cの下面と基板11の上面11mとが固定されるものが好ましい。特に、光源12からの出射光が、基板11と区画部材13との間に入射しないように、貫通孔13dの周囲を、光反射性の接着部材を用いて固定することが好ましい。例えば、貫通孔13dの外縁に沿ってリング状に光反射性の接着部材を配置することがより好ましい。接着部材は、両面テープであってもよいし、ホットメルト型の接着シートであってもよいし、熱硬化性樹脂や熱可塑性樹脂等の樹脂系の接着剤であってもよい。これらの接着部材は、高い難燃性を有することが好ましい。但し、区画部材13の基板11上への固定は、ネジ止め等を利用してもよい。 The partition member 13 is preferably arranged on the substrate 11, and preferably one in which the lower surface of the bottom portion 13c of the partition member 13 and the upper surface 11m of the substrate 11 are fixed. In particular, it is preferable to fix the periphery of the through hole 13d with a light-reflecting adhesive member so that the light emitted from the light source 12 does not enter between the substrate 11 and the partition member 13. For example, it is more preferable to arrange the light-reflecting adhesive member in a ring shape along the outer edge of the through hole 13d. The adhesive member may be a double-sided tape, a hot-melt type adhesive sheet, or a resin-based adhesive such as a thermosetting resin or a thermoplastic resin. These adhesive members preferably have high flame retardancy. However, the partition member 13 may be fixed on the substrate 11 by screwing or the like.

上述したように、区画部材13は、光反射性を有していることが好ましい。これにより、光源12から出射される光を壁部13b及び底部13cによって効率よく反射させることができる。特に、壁部13bが上述したように傾斜を有する場合には、光源12から出射された光が壁部13bに照射され、上方向に光を反射させることができる。よって、隣接する区画Cが不点灯である場合においても、コントラスト比をより一層向上させることができる。又、上方向への光の反射をより効率的に行うことができる。 As described above, the partition member 13 preferably has light reflectivity. As a result, the light emitted from the light source 12 can be efficiently reflected by the wall portion 13b and the bottom portion 13c. In particular, when the wall portion 13b has an inclination as described above, the light emitted from the light source 12 is applied to the wall portion 13b, and the light can be reflected upward. Therefore, even when the adjacent compartment C is not lit, the contrast ratio can be further improved. Moreover, the light can be reflected upward more efficiently.

区画部材13は、酸化チタン、酸化アルミニウム、酸化ケイ素等の金属酸化物粒子からなる反射材を含有する樹脂等を用いて成形してもよいし、反射材を含有しない樹脂を用いて成形した後、表面に反射材を設けてもよい。或いは、微細な気泡を複数含んだ樹脂を用いてもよい。この場合、気泡の界面で光が反射する。また、区画部材13に用いる樹脂としては、アクリル樹脂、ポリカーボネイト樹脂、環状ポリオレフィン樹脂、ポリエチレンテレフタレート(PET)若しくはポリエステル等の熱可塑性樹脂、又は、エポキシ若しくはシリコーン等の熱硬化性樹脂等が挙げられる。区画部材13は、光源12からの出射光に対する反射率が70%以上となるように設定されることが好ましい。 The partition member 13 may be molded using a resin containing a reflective material composed of metal oxide particles such as titanium oxide, aluminum oxide, and silicon oxide, or after molding using a resin not containing a reflective material. , A reflective material may be provided on the surface. Alternatively, a resin containing a plurality of fine bubbles may be used. In this case, light is reflected at the interface of the bubbles. Examples of the resin used for the partition member 13 include acrylic resin, polycarbonate resin, cyclic polyolefin resin, thermoplastic resin such as polyethylene terephthalate (PET) or polyester, and thermosetting resin such as epoxy or silicone. The partition member 13 is preferably set so that the reflectance with respect to the light emitted from the light source 12 is 70% or more.

区画部材13は、金型を用いた成形方法、光造形による成形方法等によって形成できる。金型を用いた成形方法としては、射出成形、押出成形、圧縮成形、真空成形、圧空成形、プレス成形等の成形方法を適用できる。例えば、PET等で形成された反射シートを用いて真空成形することにより、底部13cと壁部13bとが一体的に形成された区画部材13を形成できる。 The partition member 13 can be formed by a molding method using a mold, a molding method by stereolithography, or the like. As a molding method using a mold, molding methods such as injection molding, extrusion molding, compression molding, vacuum molding, pressure molding, and press molding can be applied. For example, by vacuum forming using a reflective sheet formed of PET or the like, a partition member 13 in which the bottom portion 13c and the wall portion 13b are integrally formed can be formed.

(光拡散板14)
光拡散板14は、入射する光を拡散させて透過させる異形形状の部材であり、複数の光源12の上方に1つ配置できる。光拡散板14は、平坦な板状部材であることが好ましいが、その表面に凹凸が配置されてもよい。光拡散板14は、実質的に基板11に対して平行に配置されることが好ましい。
(Light diffuser plate 14)
The light diffusing plate 14 is a member having an irregular shape that diffuses and transmits incident light, and one can be arranged above a plurality of light sources 12. The light diffusion plate 14 is preferably a flat plate-shaped member, but irregularities may be arranged on the surface thereof. It is preferable that the light diffusing plate 14 is arranged substantially parallel to the substrate 11.

区画部材13の頂部13a間のピッチをP[mm]とした場合、光拡散板14と光源12との距離ODは、例えば、0.3P[mm]以下となるように、光拡散板14が配置されていることが好ましく、0.25P[mm]以下となるように配置されていることがより好ましい。ここで、距離ODとは、図6に示すように、基板11の最表面、つまり基板11がその表面に被覆層、配線層等を有する場合にはその最表面から、光拡散板14の下面までの距離を意味する。別の観点から、光拡散板14は、例えば、図6に示す区画部材13の底部13cの上面からの距離Hが1.5mm〜5mmであることが好ましく、2mm〜3mmであることがより好ましい。 When the pitch between the top portions 13a of the partition member 13 is P [mm], the light diffusing plate 14 has the light diffusing plate 14 so that the distance OD between the light diffusing plate 14 and the light source 12 is, for example, 0.3 P [mm] or less. It is preferably arranged, and more preferably it is arranged so as to be 0.25 P [mm] or less. Here, as shown in FIG. 6, the distance OD is the outermost surface of the substrate 11, that is, the lower surface of the light diffusing plate 14 from the outermost surface when the substrate 11 has a coating layer, a wiring layer, or the like on the surface thereof. Means the distance to. From another viewpoint, the light diffusing plate 14 preferably has, for example, a distance H from the upper surface of the bottom portion 13c of the partition member 13 shown in FIG. 6 of 1.5 mm to 5 mm, more preferably 2 mm to 3 mm. ..

光拡散板14は、例えば、ポリカーボネイト樹脂、ポリスチレン樹脂、アクリル樹脂、ポリエチレン樹脂等、可視光に対して光吸収の少ない材料から構成できる。入射した光を拡散させるために、光拡散板14は、その表面に凹凸を設けてもよいし、光拡散板14中に屈折率の異なる材料を分散させてもよい。凹凸は、例えば、0.01mm〜0.1mmの大きさにできる。屈折率の異なる材料としては、例えば、ポリカーボネイト樹脂、アクリル樹脂等から選択して用いることができる。 The light diffusing plate 14 can be made of a material having little light absorption with respect to visible light, such as a polycarbonate resin, a polystyrene resin, an acrylic resin, and a polyethylene resin. In order to diffuse the incident light, the light diffusing plate 14 may have irregularities on its surface, or materials having different refractive indexes may be dispersed in the light diffusing plate 14. The unevenness can be made, for example, in a size of 0.01 mm to 0.1 mm. As the material having a different refractive index, for example, a polycarbonate resin, an acrylic resin, or the like can be selected and used.

光拡散板14の厚み、光拡散の程度は、適宜設定でき、光拡散シート、ディフューザーフィルム等として市販されている部材を利用できる。例えば、光拡散板14の厚みは、最厚部で1mm〜2mmとすることができる。 The thickness of the light diffusing plate 14 and the degree of light diffusing can be appropriately set, and commercially available members such as a light diffusing sheet and a diffuser film can be used. For example, the thickness of the light diffusing plate 14 can be 1 mm to 2 mm at the thickest portion.

面状光源10では、基板11が異形形状であるため、第1方向及び第2方向に行列配列を維持しつつ可能な限り多くの光源12を基板11上に敷き詰める場合、基板11の外縁側に光源12が配置されない領域ができる。そして、何の対策も施さないと、面状光源10の周縁(例えば、区画部材13の最外周と光拡散板14の外縁との間の領域)が暗部になり、面状光源の周縁に輝度ムラが発生する場合がある。図1では、例えば、二点鎖線Fで囲まれた領域で暗部が目立つ。すなわち、何の対策も施さないと、面状光源10の周縁の一部に輝度ムラが発生する。そこで、面状光源10では、光拡散板14の周縁の一部を中央側よりも薄くすることで、輝度ムラの発生を抑制している。必要に応じて、光拡散板14の周縁の全部を中央側よりも薄くしてもよい。以下、光拡散板14の形状について詳しく説明する。 In the planar light source 10, since the substrate 11 has an irregular shape, when as many light sources 12 as possible are spread on the substrate 11 while maintaining the matrix arrangement in the first direction and the second direction, the outer edge side of the substrate 11 is used. There is an area where the light source 12 is not arranged. If no measures are taken, the peripheral edge of the planar light source 10 (for example, the region between the outermost periphery of the partition member 13 and the outer edge of the light diffusing plate 14) becomes a dark portion, and the peripheral edge of the planar light source becomes bright. Unevenness may occur. In FIG. 1, for example, a dark portion is conspicuous in the region surrounded by the alternate long and short dash line F. That is, if no measures are taken, uneven brightness will occur in a part of the peripheral edge of the planar light source 10. Therefore, in the planar light source 10, the occurrence of luminance unevenness is suppressed by making a part of the peripheral edge of the light diffusing plate 14 thinner than the central side. If necessary, the entire peripheral edge of the light diffusing plate 14 may be thinner than the central side. Hereinafter, the shape of the light diffusing plate 14 will be described in detail.

光拡散板14は、厚板部14aと、厚板部14aよりも板厚が薄い薄板部14bとを備えており、厚板部14aと薄板部14bとは隣接して配置され一体に形成されている。なお、図5では、便宜上、厚板部14aを白色、薄板部14bをドットパターンで示している。光拡散板14は、1枚で構成してもよいが、2層以上で構成してもよい。光拡散板14を2層で構成する場合、例えば、基板側の第1層の上に、第1層より横幅が狭い第2層を設ける構成にしてもよい。このとき、第1層上に第2層を配置する領域を厚板部14aにし、第1層上に第2層を配置しない領域を薄板部14bとすることができる。 The light diffusion plate 14 includes a thick plate portion 14a and a thin plate portion 14b whose plate thickness is thinner than that of the thick plate portion 14a, and the thick plate portion 14a and the thin plate portion 14b are arranged adjacent to each other and integrally formed. ing. In FIG. 5, for convenience, the thick plate portion 14a is shown in white and the thin plate portion 14b is shown in a dot pattern. The light diffusion plate 14 may be composed of one sheet, or may be composed of two or more layers. When the light diffusion plate 14 is composed of two layers, for example, a second layer having a width narrower than that of the first layer may be provided on the first layer on the substrate side. At this time, the region where the second layer is arranged on the first layer can be the thick plate portion 14a, and the region where the second layer is not arranged on the first layer can be the thin plate portion 14b.

厚板部14aと薄板部14bとの境界14cは、例えば、区画部材13の最外周の壁部13bと対向する位置にある。これにより、区画部材13の最外周の壁部13bより外縁側において、光拡散の頻度を減らして薄板部14bを透過する光を増やすことができる。その結果、面状光源10の周縁での輝度ムラの発生を抑制できる。境界14cは、区画部材13の最外周の頂部13aと対向する位置にあってもよい。 The boundary 14c between the thick plate portion 14a and the thin plate portion 14b is located, for example, at a position facing the outermost peripheral wall portion 13b of the partition member 13. As a result, the frequency of light diffusion can be reduced and the amount of light transmitted through the thin plate portion 14b can be increased on the outer edge side of the outermost peripheral wall portion 13b of the partition member 13. As a result, it is possible to suppress the occurrence of luminance unevenness at the periphery of the planar light source 10. The boundary 14c may be located at a position facing the top portion 13a of the outermost periphery of the partition member 13.

光拡散板14の厚板部14aと薄板部14bの境界の直下(図3)又は直下近傍に壁部13bがある場合、光源12から光拡散板14の薄板部14bに入射する光は、光拡散板14の厚板部14aで拡散した光の一部が薄板部14bに入射する。薄板部14bに入射した光は、薄板部14bの膜厚が薄いため、拡散の頻度が減る。これにより、薄板部14bにおける光取り出しが向上する。 When there is a wall portion 13b directly below (FIG. 3) or near the boundary between the thick plate portion 14a and the thin plate portion 14b of the light diffusing plate 14, the light incident on the thin plate portion 14b of the light diffusing plate 14 from the light source 12 is light. A part of the light diffused by the thick plate portion 14a of the diffuser plate 14 is incident on the thin plate portion 14b. Since the film thickness of the thin plate portion 14b is thin, the light incident on the thin plate portion 14b is diffused less frequently. This improves the light extraction in the thin plate portion 14b.

薄板部14bの厚みは、厚板部14aの厚みの0.5倍以下が好ましい。これにより、薄板部14bの領域から取り出される光が増え、面状光源10の周縁での輝度ムラの発生を抑制できる。 The thickness of the thin plate portion 14b is preferably 0.5 times or less the thickness of the thick plate portion 14a. As a result, the amount of light extracted from the region of the thin plate portion 14b increases, and the occurrence of luminance unevenness on the peripheral edge of the planar light source 10 can be suppressed.

厚板部14aの下面14n(光源12側の面)と薄板部14bの下面14t(光源12側の面)は同一平面上にあり、厚板部14aの上面14m(光源12とは反対側の面)と薄板部14bの上面14s(光源12とは反対側の面)とは高さ方向の位置が異なる。 The lower surface 14n of the thick plate portion 14a (the surface on the light source 12 side) and the lower surface 14t of the thin plate portion 14b (the surface on the light source 12 side) are on the same plane, and the upper surface 14m of the thick plate portion 14a (on the opposite side of the light source 12). The position in the height direction is different between the surface) and the upper surface 14s (the surface opposite to the light source 12) of the thin plate portion 14b.

すなわち、基板11の上面11mから薄板部14bの下面14tまでの高さは、基板11の上面11mから厚板部14aの下面14nまでの高さと同じである。一方、基板11の上面11mから薄板部14bの上面14sまでの高さは、基板11の上面11mから厚板部14aの上面14mまでの高さより低い。 That is, the height from the upper surface 11m of the substrate 11 to the lower surface 14t of the thin plate portion 14b is the same as the height from the upper surface 11m of the substrate 11 to the lower surface 14n of the thick plate portion 14a. On the other hand, the height from the upper surface 11m of the substrate 11 to the upper surface 14s of the thin plate portion 14b is lower than the height from the upper surface 11m of the substrate 11 to the upper surface 14m of the thick plate portion 14a.

薄板部14bは、平面視で、光拡散板14の周縁の少なくとも一部に設けられる。図5に示すように、本実施形態では、一例として、光拡散板14の周縁の全域(ドットパターンで示した部分)に薄板部14bが設けられている。光拡散板14の周縁の全域に薄板部14bが設けられることで、薄板部14bの周縁の全域の輝度を高めることでき、輝度ムラを低減できる。但し、これには限定されず、光拡散板14の周縁の一部の領域のみに薄板部14bが設けられてもよい。 The thin plate portion 14b is provided on at least a part of the peripheral edge of the light diffusing plate 14 in a plan view. As shown in FIG. 5, in the present embodiment, as an example, the thin plate portion 14b is provided over the entire peripheral edge of the light diffusing plate 14 (the portion indicated by the dot pattern). By providing the thin plate portion 14b over the entire peripheral edge of the light diffusing plate 14, the brightness of the entire peripheral edge of the thin plate portion 14b can be increased and the brightness unevenness can be reduced. However, the present invention is not limited to this, and the thin plate portion 14b may be provided only in a part of the peripheral region of the light diffusing plate 14.

面状光源10では、平面視で、X方向の端部に位置する光源12の光軸からX方向の光拡散板14の外縁までの距離が遠い部分ほど、薄板部14bのX方向の幅が広い。例えば、図7に示すように、複数の光源12のうちX方向の端部に位置する一の光源12と他の光源12において、一の光源12の光軸OAからX方向の光拡散板14の外縁までの距離Lは、他の光源12の光軸OAからX方向の光拡散板14の外縁までの距離Lより長い。この場合、図8に示すように、平面視で、薄板部14bのX方向の幅は、一の光源12の光軸OAから光拡散板14の外縁に向かうX方向の幅Wが、他の光源12の光軸OAから光拡散板14の外縁に向かうX方向の幅Wより広くなる。 In the planar light source 10, the farther the distance from the optical axis of the light source 12 located at the end in the X direction to the outer edge of the light diffusing plate 14 in the X direction is, the wider the width of the thin plate portion 14b in the X direction is. wide. For example, as shown in FIG. 7, in one light source 12 1 and the other light source 12 2 located at the end in the X direction among the plurality of light sources 12, the optical axis OA 1 of the one light source 12 1 is in the X direction. distance L 1 to the outer edge of the light diffusion plate 14 is longer than the distance L 2 from the optical axis OA 2 of the other light source 12 2 to the outer edge of the X direction of the light diffusing plate 14. In this case, as shown in FIG. 8, in a plan view, the width of the thin plate portion 14b in the X direction is the width W 1 in the X direction from the optical axis OA 1 of one light source 12 1 toward the outer edge of the light diffusion plate 14. It is wider than the X direction width W 2 toward the optical axis OA 2 of the other light sources 12 2 to the outer edge of the light diffusion plate 14.

又、平面視で、Y方向の端部に位置する光源12の光軸からY方向の光拡散板の外縁までの距離が遠い部分ほど、薄板部14bのY方向の幅が広い。例えば、図7に示すように、複数の光源12のうちY方向の端部に位置する一の光源12と他の光源12において、一の光源12の光軸OAからY方向の光拡散板14の外縁までの距離Lは、他の光源12の光軸OAからY方向の光拡散板14の外縁までの距離Lより長い。この場合、図8に示すように、平面視で、薄板部14bのY方向の幅は、一の光源12の光軸OAから光拡散板14の外縁に向かうY方向の幅Wが、他の光源12の光軸OAから光拡散板14の外縁に向かうY方向の幅Wより広くなる。 Further, in a plan view, the farther the distance from the optical axis of the light source 12 located at the end in the Y direction to the outer edge of the light diffusing plate in the Y direction, the wider the width of the thin plate portion 14b in the Y direction. For example, as shown in FIG. 7, in the light source 12 3 and the other light sources 12 4 one located at the end of the Y-direction among the plurality of light sources 12, one of the light source 12 3 from the optical axis OA 3 in the Y-direction distance L 3 to the outer edge of the light diffusion plate 14 is longer than the distance L 4 from the optical axis OA 4 of the other light sources 12 4 to the outer edge of the Y direction of the light diffusing plate 14. In this case, as shown in FIG. 8, in a plan view, Y-direction width of the thin plate section 14b, the Y-direction width W 3 toward the optical axis OA 3 of one light source 12 3 at the outer edge of the light diffusion plate 14 It is wider than the Y-direction width W 4 of the heading from the optical axis OA 4 of the other light sources 12 4 to the outer edge of the light diffusion plate 14.

図9及び10は、光拡散板に関するシミュレーションの結果を示す図である。図9は面状光源10のシミュレーション結果であり、図10は面状光源10の光拡散板14の代わりに、板厚が一定の光拡散板14Xを搭載した面状光源10Xのシミュレーション結果(比較例)である。図9及び図10において、多数の細線は光線を示している。 9 and 10 are diagrams showing the results of a simulation relating to the light diffusing plate. FIG. 9 shows the simulation result of the planar light source 10, and FIG. 10 shows the simulation result of the planar light source 10X equipped with the light diffusing plate 14X having a constant plate thickness instead of the light diffusing plate 14 of the planar light source 10. Example). In FIGS. 9 and 10, a large number of thin lines indicate light rays.

図9及び図10の破線で囲まれた部分を比較すると、薄板部14bを設けた面状光源10の方が、薄板部を設けていない面状光源10Xよりも光線の密度が高い部分が多く、光拡散板14の周縁における光取り出しが良好であることが確認できる。すなわち、光拡散板14の周縁における発光面の輝度ムラを抑制可能であることが確認できる。これは、光拡散板14に薄板部14bを設けることで、薄板部14bにおける光拡散の頻度が減り、薄板部14bを透過する光が増えたためである。又、薄板部14b側に露出する厚板部14aの側面から出た光や、薄板部14bを通って厚板部14aの側面で反射する光が光拡散板の上面側に向かうことで、光拡散板の上面側の光の密度が高くなるためである。 Comparing the portions surrounded by the broken lines in FIGS. 9 and 10, the planar light source 10 provided with the thin plate portion 14b has more portions with higher light beam densities than the planar light source 10X without the thin plate portion. It can be confirmed that the light extraction at the peripheral edge of the light diffusing plate 14 is good. That is, it can be confirmed that the uneven brightness of the light emitting surface on the peripheral edge of the light diffusing plate 14 can be suppressed. This is because by providing the thin plate portion 14b on the light diffusion plate 14, the frequency of light diffusion in the thin plate portion 14b is reduced, and the light transmitted through the thin plate portion 14b is increased. Further, the light emitted from the side surface of the thick plate portion 14a exposed to the thin plate portion 14b and the light reflected on the side surface of the thick plate portion 14a through the thin plate portion 14b are directed toward the upper surface side of the light diffusing plate. This is because the density of light on the upper surface side of the diffuser plate becomes high.

光拡散板14に関して、厚板部14aの厚さを1.2mmとし、薄板部14bの厚さを0.4mm、0.2mm、0.1mmの各値に変更した場合でシミュレーションを行い、薄板部14bの領域における薄板部14bを透過した光の輝度を算出した。表1に示すように、薄板部14bが0.4mmの場合では、薄板部14bが1.2mm(すなわち、薄板部14bが厚板部14aと同じ厚さ)の場合と比較して、1.1倍増加する結果が得られた。同様に、薄板部14bが0.2mmの場合では、1.12倍増加する結果が得られた。また、薄板部14bが0.1mmの場合では、1.17倍増加する結果が得られた。 For the light diffusing plate 14, a simulation was performed when the thickness of the thick plate portion 14a was 1.2 mm and the thickness of the thin plate portion 14b was changed to 0.4 mm, 0.2 mm, and 0.1 mm, respectively, and the thin plate portion 14b was thinned. The brightness of the light transmitted through the thin plate portion 14b in the region of the portion 14b was calculated. As shown in Table 1, when the thin plate portion 14b is 0.4 mm, the thin plate portion 14b is 1.2 mm (that is, the thin plate portion 14b has the same thickness as the thick plate portion 14a). The result was a one-fold increase. Similarly, when the thin plate portion 14b is 0.2 mm, a result of 1.12 times increase is obtained. Further, when the thin plate portion 14b was 0.1 mm, a result of 1.17 times increase was obtained.

Figure 2021190417
Figure 2021190417

又、光拡散板の側面から外に漏れる光を比べると、薄板部14bを設けた面状光源10の方が、薄板部を設けていない面状光源10Xよりも漏れが少ないことが確認できる。すなわち、面状光源10では、従来は側方に漏れていた光を光拡散板14の上面側に向かわせることができており、薄板部14bにおける光拡散の頻度が減ったことと相まって、薄板部14bの上面側の光線の密度を高めることができる。 Further, when comparing the light leaking to the outside from the side surface of the light diffusing plate, it can be confirmed that the planar light source 10 provided with the thin plate portion 14b has less leakage than the planar light source 10X not provided with the thin plate portion. That is, in the planar light source 10, the light that has conventionally leaked to the side can be directed to the upper surface side of the light diffusing plate 14, and the frequency of light diffusing in the thin plate portion 14b is reduced, so that the thin plate can be directed. The density of light rays on the upper surface side of the portion 14b can be increased.

又、面状光源10では光拡散板14に薄板部14bを設けることで、光拡散板14の側面から外に漏れる光の量を少なくできる。 Further, in the planar light source 10, by providing the thin plate portion 14b on the light diffusing plate 14, the amount of light leaking to the outside from the side surface of the light diffusing plate 14 can be reduced.

面状光源10では、光拡散板14の上方に、光源12からの光を異なる波長の光に変換する波長変換シートが配置される場合がある。光拡散板14の上方に波長変換シートを配置する場合、光拡散板の側面から外に光が漏れると、面状光源の端部が発光素子12aの発光色(例えば、青色)に見えてしまう。しかし、面状光源10では光拡散板14に薄板部14bを設けることで、光拡散板14の側面から外に漏れる光の量を少なくできるため、面状光源10の端部が発光素子12aの発光色に見えてしまう現象を抑制できる。すなわち、光拡散板14の上方に波長変換シートを配置する場合に、波長変換シートで変換される波長とは異なる波長の光が光拡散板14の側面から外に漏れる現象を抑制できる。 In the planar light source 10, a wavelength conversion sheet that converts light from the light source 12 into light having a different wavelength may be arranged above the light diffusing plate 14. When the wavelength conversion sheet is arranged above the light diffusing plate 14, if light leaks from the side surface of the light diffusing plate, the end portion of the planar light source looks like the emission color (for example, blue) of the light emitting element 12a. .. However, in the planar light source 10, by providing the thin plate portion 14b on the light diffusing plate 14, the amount of light leaking to the outside from the side surface of the light diffusing plate 14 can be reduced, so that the end portion of the planar light source 10 is the light emitting element 12a. It is possible to suppress the phenomenon of appearing as a luminescent color. That is, when the wavelength conversion sheet is arranged above the light diffusion plate 14, it is possible to suppress the phenomenon that light having a wavelength different from the wavelength converted by the wavelength conversion sheet leaks to the outside from the side surface of the light diffusion plate 14.

このように、面状光源10では、基板11が異形形状であるため、第1方向及び第2方向に行列配列を維持しつつ可能な限り多くの光源12を基板11上に敷き詰める場合、基板11の外縁側に光源12が配置されない領域ができる。そして、何の対策も施さないと、例えば、区画部材13の最外周と光拡散板14の外縁との間の領域が暗部になる。すなわち、何の対策も施さないと、面状光源10の周縁の一部に輝度ムラが発生する。しかし、光拡散板14の周縁に薄板部14bを設けることで、薄板部14bでは光拡散よりも光取り出しを優先させ、光拡散の頻度を減らして薄板部14bを透過する光を増やすことができる。その結果、面状光源10の周縁での輝度ムラの発生を抑制できる。 As described above, in the planar light source 10, since the substrate 11 has an irregular shape, when as many light sources 12 as possible are spread on the substrate 11 while maintaining the matrix arrangement in the first direction and the second direction, the substrate 11 is used. There is an area on the outer edge side of the light source 12 where the light source 12 is not arranged. If no measures are taken, for example, the region between the outermost circumference of the partition member 13 and the outer edge of the light diffusing plate 14 becomes a dark portion. That is, if no measures are taken, uneven brightness will occur in a part of the peripheral edge of the planar light source 10. However, by providing the thin plate portion 14b on the peripheral edge of the light diffusion plate 14, the thin plate portion 14b can prioritize light extraction over light diffusion, reduce the frequency of light diffusion, and increase the light transmitted through the thin plate portion 14b. .. As a result, it is possible to suppress the occurrence of luminance unevenness at the periphery of the planar light source 10.

但し、薄板部14bは、輝度ムラが発生するおそれがある部分に設ければよいため、必ずしも光拡散板14の周縁の全域に薄板部14bを設なくてもよく、光拡散板14の周縁の一部の領域のみに薄板部14bを設けてもよい。 However, since the thin plate portion 14b may be provided in a portion where uneven brightness may occur, it is not always necessary to provide the thin plate portion 14b over the entire peripheral edge of the light diffusing plate 14, and the thin plate portion 14b may be provided on the peripheral edge of the light diffusing plate 14. The thin plate portion 14b may be provided only in a part of the region.

又、同様の理由から、X方向とY方向の両方において、端部に位置する光源12の光軸から光拡散板14の外縁までの距離が遠い部分ほど薄板部14bの幅が広くなっている必要はない。すなわち、X方向とY方向の少なくとも一方において、端部に位置する光源12の光軸から光拡散板14の外縁までの距離が遠い部分ほど薄板部14bの幅が広くなっていればよい。 Further, for the same reason, the width of the thin plate portion 14b becomes wider as the distance from the optical axis of the light source 12 located at the end to the outer edge of the light diffusion plate 14 is longer in both the X direction and the Y direction. No need. That is, in at least one of the X direction and the Y direction, the width of the thin plate portion 14b may be wider as the distance from the optical axis of the light source 12 located at the end to the outer edge of the light diffusion plate 14 is longer.

なお、面状光源10は、光拡散板14の上方に、光源12からの光を異なる波長の光に変換する波長変換シート、プリズムシート、及び偏光シートからなる群から選択される少なくとも一種を備えてもよい。具体的には、図11に示すように、光拡散板14の上方に、所定距離を隔てて又は光拡散板14の上面に、直接又は間接に、波長変換シート72、プリズムシート(第1プリズムシート73及び第2プリズムシート74)、偏光シート75等の光学部材を配置し、更にその上に液晶パネルを配置し、直下型バックライト用光源として用いる面発光型の発光装置とすることができる。これらの光学部材の積層の順序は任意に設定できる。 The planar light source 10 includes at least one selected from a group consisting of a wavelength conversion sheet, a prism sheet, and a polarizing sheet that convert light from the light source 12 into light having a different wavelength above the light diffusing plate 14. You may. Specifically, as shown in FIG. 11, the wavelength conversion sheet 72 and the prism sheet (first prism) are directly or indirectly above the light diffusing plate 14 at a predetermined distance or on the upper surface of the light diffusing plate 14. An optical member such as a sheet 73 and a second prism sheet 74) and a polarizing sheet 75 can be arranged, and a liquid crystal panel can be arranged on the optical member to form a surface emitting light emitting device used as a light source for a direct backlight. .. The stacking order of these optical members can be set arbitrarily.

(波長変換シート72)
波長変換シート72は、光拡散板14の上面又は下面の何れに配置してもよいが、図11に示すように、光拡散板14の上面に配置することが好ましい。波長変換シート72は、光源12から出射する光の一部を吸収し、光源12からの出射光の波長とは異なる波長の光を発する。例えば、波長変換シート72は、光源12からの青色光の一部を吸収して黄色光、緑色光及び/又は赤色光を発し、白色光を出射する面状光源10を実現できる。波長変換シート72は、光源12の発光素子12aから離間しているため、発光素子12aの近傍では使用することが困難な、熱又は光強度に耐性の劣る蛍光体等を使用できる。これにより、面状光源10のバックライトとしての性能を向上できる。波長変換シート72は、シート形状或いは層形状を有しており、上述した蛍光体等を含む。なお、波長変換シートは、波長変換層と称される場合がある。
(Wavelength conversion sheet 72)
The wavelength conversion sheet 72 may be arranged on either the upper surface or the lower surface of the light diffusing plate 14, but it is preferably arranged on the upper surface of the light diffusing plate 14 as shown in FIG. The wavelength conversion sheet 72 absorbs a part of the light emitted from the light source 12, and emits light having a wavelength different from the wavelength of the light emitted from the light source 12. For example, the wavelength conversion sheet 72 can realize a planar light source 10 that absorbs a part of blue light from the light source 12 to emit yellow light, green light and / or red light, and emits white light. Since the wavelength conversion sheet 72 is separated from the light emitting element 12a of the light source 12, it is possible to use a phosphor or the like having inferior heat or light intensity resistance, which is difficult to use in the vicinity of the light emitting element 12a. Thereby, the performance of the planar light source 10 as a backlight can be improved. The wavelength conversion sheet 72 has a sheet shape or a layer shape, and includes the above-mentioned phosphor and the like. The wavelength conversion sheet may be referred to as a wavelength conversion layer.

(第1プリズムシート73及び第2プリズムシート74)
第1プリズムシート73及び第2プリズムシート74はその表面に、所定の方向に延びる複数のプリズムが配列された形状を有する。例えば、第1プリズムシート73は、シートの平面をX方向とX方向に直角のY方向との2次元に見て、Y方向に延びる複数のプリズムを有し、第2プリズムシート74は、X方向に延びる複数のプリズムを有することができる。第1プリズムシート73及び第2プリズムシート74は、種々の方向から入射する光を、面状光源10に対向する表示パネルへ向かう方向に屈折させることができる。これにより、面状光源10の発光面から出射する光を、主として上面に垂直な方向に出射させ、面状光源10を正面から見た場合の輝度を高めることができる。
(1st prism sheet 73 and 2nd prism sheet 74)
The first prism sheet 73 and the second prism sheet 74 have a shape in which a plurality of prisms extending in a predetermined direction are arranged on the surface thereof. For example, the first prism sheet 73 has a plurality of prisms extending in the Y direction when the plane of the sheet is viewed two-dimensionally in the X direction and the Y direction perpendicular to the X direction, and the second prism sheet 74 has X. It can have a plurality of prisms extending in a direction. The first prism sheet 73 and the second prism sheet 74 can refract light incident from various directions toward the display panel facing the planar light source 10. As a result, the light emitted from the light emitting surface of the planar light source 10 can be emitted mainly in the direction perpendicular to the upper surface, and the brightness when the planar light source 10 is viewed from the front can be increased.

(偏光シート75)
偏光シート75は、例えば、液晶表示パネル等の表示パネルのバックライト側に配置された偏光板の偏光方向に一致する偏光方向の光を選択的に透過させ、その偏光方向に垂直な方向の偏光を第1プリズムシート73及び第2プリズムシート74側へ反射させることができる。偏光シート75から戻る偏光の一部は、第1プリズムシート73、第2プリズムシート74、波長変換シート72、及び光拡散板14で再度反射される。このとき、偏光方向が変化し、例えば、液晶表示パネルの偏光板の偏光方向を有する偏光に変換され、再び偏光シート75に入射し、表示パネルへ出射する。これにより、面状光源10から出射する光の偏光方向を揃え、表示パネルの輝度向上に有効な偏光方向の光を高効率で出射させることができる。偏光シート75、第1プリズムシート73、第2プリズムシート74等は、バックライト用の光学部材として市販されているものを用いることができる。
(Polarizing sheet 75)
The polarizing sheet 75 selectively transmits light in a polarization direction that matches the polarization direction of a polarizing plate arranged on the backlight side of a display panel such as a liquid crystal display panel, and polarizes in a direction perpendicular to the polarization direction. Can be reflected toward the first prism sheet 73 and the second prism sheet 74. A part of the polarized light returned from the polarizing sheet 75 is reflected again by the first prism sheet 73, the second prism sheet 74, the wavelength conversion sheet 72, and the light diffusing plate 14. At this time, the polarization direction changes, and for example, it is converted into polarized light having the polarization direction of the polarizing plate of the liquid crystal display panel, is incident on the polarizing sheet 75 again, and is emitted to the display panel. As a result, the polarization directions of the light emitted from the planar light source 10 can be aligned, and the light in the polarization direction effective for improving the brightness of the display panel can be emitted with high efficiency. As the polarizing sheet 75, the first prism sheet 73, the second prism sheet 74, and the like, commercially available optical members for the backlight can be used.

なお、面状光源10において、波長変換シート72を設ける代わりに、封止部材12bに発光素子12aからの光を吸収して発光素子12aからの出力光とは異なる波長の光を発する蛍光体等の波長変換材料を含有させてもよい。これにより、例えば、光源12からの青色光の一部を封止部材12bで吸収して黄色光、緑色光及び/又は赤色光を発し、白色光を出射する面状光源10を実現できる。 In the planar light source 10, instead of providing the wavelength conversion sheet 72, a phosphor or the like that absorbs the light from the light emitting element 12a into the sealing member 12b and emits light having a wavelength different from the output light from the light emitting element 12a. May contain the wavelength conversion material of. Thereby, for example, a planar light source 10 can be realized in which a part of blue light from the light source 12 is absorbed by the sealing member 12b to emit yellow light, green light and / or red light, and white light is emitted.

封止部材12bは、波長変換材料の他に、発光素子12aからの光を拡散させるための拡散剤、発光素子12aの発光色に対応した着色剤等を含んでもよい。拡散剤及び着色剤等は、当該分野で公知のものを使用できる。更には、封止部材12bに蛍光体等の波長変換材料を含有せず、例えば窒化物系半導体が蛍光体等の波長変換材料で覆われた発光素子12a、つまり発光素子12a自体が白色光を出射するものを使用することもできる。 In addition to the wavelength conversion material, the sealing member 12b may contain a diffusing agent for diffusing the light from the light emitting element 12a, a coloring agent corresponding to the light emitting color of the light emitting element 12a, and the like. As the diffusing agent, the coloring agent and the like, those known in the art can be used. Further, the sealing member 12b does not contain a wavelength conversion material such as a phosphor, and for example, the light emitting element 12a in which the nitride semiconductor is covered with the wavelength conversion material such as a phosphor, that is, the light emitting element 12a itself emits white light. It is also possible to use the one that emits light.

〈第1実施形態の変形例1〉
第1実施形態の変形例1では、光拡散板の薄板部の断面形状が第1実施形態とは異なる例を示す。なお、第1実施形態の変形例1において、既に説明した実施形態と同一構成部についての説明は省略する場合がある。
<Modification 1 of the first embodiment>
Modification 1 of the first embodiment shows an example in which the cross-sectional shape of the thin plate portion of the light diffusing plate is different from that of the first embodiment. In the first modification of the first embodiment, the description of the same component as that of the above-described embodiment may be omitted.

図12〜図14は、第1実施形態の変形例1に係る面状光源における光拡散板を例示する模式部分拡大断面図である。図15は、図14の光拡散板を例示する平面模式図である。 12 to 14 are schematic partially enlarged cross-sectional views illustrating a light diffusing plate in a planar light source according to a modification 1 of the first embodiment. FIG. 15 is a schematic plan view illustrating the light diffusing plate of FIG.

図12に示す光拡散板24では、基板11の上面11mから薄板部24bの下面24tまでの高さは、基板11の上面11mから厚板部24aの下面24nまでの高さと同じである。そして、薄板部24bは、厚板部24aとの境界24cから光拡散板24の外縁に近づくに従って厚さが徐々に薄くなっている。 In the light diffusing plate 24 shown in FIG. 12, the height from the upper surface 11m of the substrate 11 to the lower surface 24t of the thin plate portion 24b is the same as the height from the upper surface 11m of the substrate 11 to the lower surface 24n of the thick plate portion 24a. The thickness of the thin plate portion 24b gradually decreases as it approaches the outer edge of the light diffusing plate 24 from the boundary 24c with the thick plate portion 24a.

このように、厚板部と薄板部との境界は図3に示すように階段状である必要はなく、図12に示すように滑らかに厚さが変化する形状であってもよい。この場合も、薄板部24bでは光拡散よりも光取り出しを優先させ、光拡散の頻度を減らして薄板部24bを透過する光を増やすことができる。その結果、面状光源の周縁での輝度ムラの発生を抑制できる。 As described above, the boundary between the thick plate portion and the thin plate portion does not have to be stepped as shown in FIG. 3, and may have a shape in which the thickness changes smoothly as shown in FIG. In this case as well, the thin plate portion 24b can prioritize light extraction over light diffusion, reduce the frequency of light diffusion, and increase the amount of light transmitted through the thin plate portion 24b. As a result, it is possible to suppress the occurrence of luminance unevenness at the periphery of the planar light source.

又、図12に示す光拡散板24のように薄板部24bの全体が徐々に薄くなる形状ではなく、薄板部が厚板部との境界から光拡散板の外縁に近づくに従って厚さが徐々に薄くなる部分を有する形状であってもよい。例えば、図13に示す光拡散板34のように、薄板部34bは、厚板部34aとの境界34cから光拡散板34の外縁に近づくに従って厚さが徐々に薄くなる板厚漸減部分34b1を有し、更に、板厚漸減部分34b1よりも光拡散板34の外縁側に板厚一定部分34b2を有してもよい。板厚一定部分34b2の板厚は、例えば、板厚漸減部分34b1の最薄部と同じ板厚となる。 Further, unlike the light diffusing plate 24 shown in FIG. 12, the thin plate portion 24b does not have a shape in which the entire thin plate portion 24b gradually becomes thinner, but the thickness gradually increases as the thin plate portion approaches the outer edge of the light diffusing plate from the boundary with the thick plate portion. It may have a shape having a thinned portion. For example, as in the light diffusing plate 34 shown in FIG. 13, the thin plate portion 34b has a plate thickness gradually decreasing portion 34b1 whose thickness gradually decreases as it approaches the outer edge of the light diffusing plate 34 from the boundary 34c with the thick plate portion 34a. Further, the plate thickness constant portion 34b2 may be provided on the outer edge side of the light diffusing plate 34 with respect to the plate thickness gradually decreasing portion 34b1. The plate thickness of the plate thickness constant portion 34b2 is, for example, the same plate thickness as the thinnest portion of the plate thickness gradually decreasing portion 34b1.

又、図14及び図15に示す光拡散板44のように、薄板部44bは、厚板部44a側の第1薄板部44b1と、第1薄板部44b1よりも光拡散板44の外縁側に位置し、第1薄板部44b1よりも板厚が薄い第2薄板部44b2とを含んでもよい。このように、薄板部44bの板厚を二段階で変化させることで、面状光源の端部の輝度を高めることができる。すなわち、光源12から遠いほど暗部が目立つため、光拡散板14の板厚も光源12から遠いほど薄くすることで、面状光源の周縁での輝度ムラの発生を抑制できる。薄板部44bの板厚の変化は、二段階以上でもよい。また、薄板部44bの断面形状は、図12〜図14に図示した形状を適宜組み合わせた形状にすることもできる。 Further, as in the light diffusing plate 44 shown in FIGS. 14 and 15, the thin plate portion 44b is located on the outer edge side of the light diffusing plate 44 with respect to the first thin plate portion 44b1 on the thick plate portion 44a side and the first thin plate portion 44b1. It may include a second thin plate portion 44b2 which is located and has a thinner plate thickness than the first thin plate portion 44b1. In this way, by changing the plate thickness of the thin plate portion 44b in two steps, the brightness of the end portion of the planar light source can be increased. That is, since the dark portion becomes more conspicuous as the distance from the light source 12 increases, the thickness of the light diffusing plate 14 can be reduced as the distance from the light source 12 increases to suppress the occurrence of luminance unevenness on the periphery of the planar light source. The change in the plate thickness of the thin plate portion 44b may be made in two or more steps. Further, the cross-sectional shape of the thin plate portion 44b may be a shape in which the shapes shown in FIGS. 12 to 14 are appropriately combined.

第2薄板部44b2は、例えば、平面視で、区画部材13の貫通孔13dが配置された領域よりも光拡散板44の外縁側に配置される。第2薄板部44b2は、光源12が配置されない区画Cに配置されてもよい。第1薄板部44b1と第2薄板部44b2との境界44cが、平面視で区画部材13の頂部13aと重複する位置にあってもよい。 The second thin plate portion 44b2 is arranged, for example, in a plan view on the outer edge side of the light diffusion plate 44 with respect to the region where the through hole 13d of the partition member 13 is arranged. The second thin plate portion 44b2 may be arranged in the section C in which the light source 12 is not arranged. The boundary 44c between the first thin plate portion 44b1 and the second thin plate portion 44b2 may be located at a position overlapping the top portion 13a of the partition member 13 in a plan view.

なお、必ずしも光拡散板44の周縁の全域に第1薄板部44b1及び第2薄板部44b2を設ける必要はなく、輝度ムラが生じにくい領域には第1薄板部44b1のみを配置してもよい。例えば、図15において光源12が直線状に配置されている領域Rでは、輝度ムラが生じにくいため、第1薄板部44b1のみを配置してもよい。或いは、図15において光源12が直線状に配置されている領域Rで輝度ムラがほとんど生じない場合には、領域Rに薄板部44bを設けなくてもよい。 It is not always necessary to provide the first thin plate portion 44b1 and the second thin plate portion 44b2 over the entire peripheral edge of the light diffusion plate 44, and only the first thin plate portion 44b1 may be arranged in a region where uneven brightness is unlikely to occur. For example, in the region R in which the light source 12 is arranged linearly in FIG. 15, uneven brightness is unlikely to occur, so that only the first thin plate portion 44b1 may be arranged. Alternatively, when the luminance unevenness hardly occurs in the region R in which the light source 12 is linearly arranged in FIG. 15, the thin plate portion 44b may not be provided in the region R.

〈第1実施形態の変形例2〉
第1実施形態の変形例2では、区画部材が周縁に大きさの異なる区画を有する例を示す。なお、第1実施形態の変形例2において、既に説明した実施形態と同一構成部についての説明は省略する場合がある。
<Modification 2 of the first embodiment>
In the second modification of the first embodiment, an example is shown in which the partition member has a partition having a different size on the peripheral edge. In the second modification of the first embodiment, the description of the same component as that of the above-described embodiment may be omitted.

図16は、第1実施形態の変形例2に係る区画部材の模式部分拡大平面図である。図17は、図16のB−B線に沿う断面図である。図16及び図17に示す区画部材23では、最外周の区画Cを構成する頂部23a及び壁部23bが基板11の外縁近傍に配置されている。つまり、最外周の区画Cの少なくとも一部では、平面視で、壁部23bで取り囲んだ領域の面積が、内周側の区画Cの場合よりも大きい。なお、図16及び図17の例では、最外周の区画Cの壁部23bで取り囲んだ領域の面積をX方向に拡大しているが、Y方向に拡大してもよい。或いは、最外周の区画Cの壁部23bで取り囲んだ領域の面積をX方向に拡大している部分と、Y方向に拡大している部分が混在してもよい。 FIG. 16 is a schematic partially enlarged plan view of the partition member according to the second modification of the first embodiment. FIG. 17 is a cross-sectional view taken along the line BB of FIG. In the partition member 23 shown in FIGS. 16 and 17, the top portion 23a and the wall portion 23b constituting the outermost section C are arranged in the vicinity of the outer edge of the substrate 11. That is, in at least a part of the outermost section C, the area of the region surrounded by the wall portion 23b is larger than that of the inner peripheral section C in a plan view. In the examples of FIGS. 16 and 17, the area of the area surrounded by the wall portion 23b of the outermost section C is expanded in the X direction, but it may be expanded in the Y direction. Alternatively, a portion in which the area of the area surrounded by the wall portion 23b of the outermost section C is expanded in the X direction and a portion in which the area is expanded in the Y direction may coexist.

このように、図2及び図3の例では、平面視で、区画C内に露出する底部23cの面積は全ての区画Cにおいて均等であったが、これには限定されない。図16及び図17の例のように、平面視において、区画部材23の最外周に位置する壁部23bで取り囲んだ領域の少なくとも1つは、最外周よりも内周側に位置する壁部23bで取り囲んだ領域よりも面積が大きくてもよい。 Thus, in the examples of FIGS. 2 and 3, in plan view, the area of the bottom portion 23c exposed in the compartment C was equal in all compartments C, but is not limited to this. As in the examples of FIGS. 16 and 17, in a plan view, at least one of the areas surrounded by the wall portion 23b located on the outermost circumference of the partition member 23 is the wall portion 23b located on the inner peripheral side of the outermost circumference. The area may be larger than the area surrounded by.

図16及び図17に示す区画部材23の構造では、最外周の区画Cを構成する壁部23bが基板11の外縁近傍に位置することで、出射面側への光取り出しが向上する。すなわち、図16及び図17に示す区画部材23の構造では、壁部23bが基板11の周縁にも位置するので、光拡散板14の薄板部14bにより多くの光を送ることができる。その結果、面状光源10の周縁での輝度ムラの発生を一層抑制できる。但し、区画部材23における最外周の少なくとも一部には、壁部23bが設けられていなくてもよい。なお、図16及び図17では、光拡散板14の厚板部14aと薄板部14bの境界の位置に、区画部材の壁部23bが配置されないが、この位置に壁部23bを設けることもできる。 In the structure of the partition member 23 shown in FIGS. 16 and 17, the wall portion 23b constituting the outermost partition C is located near the outer edge of the substrate 11, so that light extraction to the exit surface side is improved. That is, in the structure of the partition member 23 shown in FIGS. 16 and 17, since the wall portion 23b is also located on the peripheral edge of the substrate 11, more light can be sent to the thin plate portion 14b of the light diffusion plate 14. As a result, it is possible to further suppress the occurrence of luminance unevenness at the periphery of the planar light source 10. However, the wall portion 23b may not be provided on at least a part of the outermost circumference of the partition member 23. In addition, in FIGS. 16 and 17, the wall portion 23b of the partition member is not arranged at the position of the boundary between the thick plate portion 14a and the thin plate portion 14b of the light diffusion plate 14, but the wall portion 23b may be provided at this position. ..

〈第1実施形態の変形例3〉
第1実施形態の変形例3では、光拡散板及び区画部材以外の部材の変形例を示す。なお、第1実施形態の変形例3において、既に説明した実施形態と同一構成部についての説明は省略する場合がある。
<Modification 3 of the first embodiment>
Modification 3 of the first embodiment shows a modification of a member other than the light diffusing plate and the partition member. In the third modification of the first embodiment, the description of the same component as that of the above-described embodiment may be omitted.

図18Aは、面状光源の外縁近傍の模式部分拡大断面図である。図18Aに示すように、面状光源は、基板11及び光拡散板14を囲う枠体26を有してもよい。枠体26は、異形形状であり、例えば、基板11と相似した形状であって、平面視において、基板11よりも一回り大きい底部26aを有している。 FIG. 18A is a schematic partial enlarged cross-sectional view near the outer edge of the planar light source. As shown in FIG. 18A, the planar light source may have a frame body 26 that surrounds the substrate 11 and the light diffusing plate 14. The frame body 26 has a deformed shape, for example, has a shape similar to that of the substrate 11, and has a bottom portion 26a that is one size larger than the substrate 11 in a plan view.

底部26aの周縁は基板11の外側に環状に露出し、露出した部分には側壁26bが基板11を囲むように設けられている。側壁26bの底部26aとは反対側に、基板11及び光拡散板14の外縁を囲う蓋体27を有してもよい。蓋体27は、各光源12からの出射光を妨げない位置に配置される。枠体26や蓋体27は、例えば、反射材を含む樹脂、金属、セラミックス等、種々の材料から形成される。 The peripheral edge of the bottom portion 26a is annularly exposed to the outside of the substrate 11, and a side wall 26b is provided in the exposed portion so as to surround the substrate 11. A lid 27 surrounding the outer edges of the substrate 11 and the light diffusing plate 14 may be provided on the side opposite to the bottom portion 26a of the side wall 26b. The lid 27 is arranged at a position that does not interfere with the light emitted from each light source 12. The frame body 26 and the lid body 27 are formed of various materials such as a resin including a reflective material, a metal, and ceramics.

なお、図18Bに示すように、側壁26bの内側面における基板11と光拡散板14との間の領域に、蛍光体を含む波長変換部材28を配置することができる。これにより、光源12からの光の一部が側壁26bの内側面に配置された波長変換部材28によって波長変換され、波長変換された光が取り出されるため、面状光源10の端部が発光素子の発光色に見えてしまう現象を抑制できる。側壁26bの内側面に波長変換部材28を配置する場合、面状光源の断面視において、光源12と側壁26bとの間に区画部材13の壁部13bを配置してもよいし、配置されなくてもよい。波長変換部材28は、側壁26bの内側面全体に配置されてもよいし、側壁26bの内側面において光拡散板14の下面より下側の領域に配置されてもよい。波長変換部材28が光拡散板14の下面より下側の領域に配置される場合、波長変換部材28の上方を光拡散板14の薄板部14bが覆ってもよいし、覆わなくてもよい。波長変換部材28として、黄色光を発する材料(例えば、YAG)を用いることができる。側壁26bの内側面に配置された波長変換部材28は、単数でもよいし、複数でもよい。 As shown in FIG. 18B, the wavelength conversion member 28 containing the phosphor can be arranged in the region between the substrate 11 and the light diffusing plate 14 on the inner side surface of the side wall 26b. As a result, a part of the light from the light source 12 is wavelength-converted by the wavelength conversion member 28 arranged on the inner side surface of the side wall 26b, and the wavelength-converted light is taken out. Therefore, the end portion of the planar light source 10 is a light emitting element. It is possible to suppress the phenomenon of appearing as the emission color of. When the wavelength conversion member 28 is arranged on the inner side surface of the side wall 26b, the wall portion 13b of the partition member 13 may or may not be arranged between the light source 12 and the side wall 26b in the cross-sectional view of the planar light source. You may. The wavelength conversion member 28 may be arranged on the entire inner side surface of the side wall 26b, or may be arranged on the inner side surface of the side wall 26b in a region below the lower surface of the light diffusing plate 14. When the wavelength conversion member 28 is arranged in a region below the lower surface of the light diffusing plate 14, the thin plate portion 14b of the light diffusing plate 14 may or may not cover the upper part of the wavelength conversion member 28. As the wavelength conversion member 28, a material that emits yellow light (for example, YAG) can be used. The wavelength conversion member 28 arranged on the inner surface of the side wall 26b may be singular or plural.

このように、面状光源に枠体26や蓋体27を設けることで、基板11や光拡散板14を外部からの衝撃等から保護できる。なお、光拡散板14、基板11、及び枠体26は、相似形の異形形状であってもよい。 By providing the frame body 26 and the lid body 27 in the planar light source in this way, the substrate 11 and the light diffusing plate 14 can be protected from external impacts and the like. The light diffusing plate 14, the substrate 11, and the frame body 26 may have similar deformed shapes.

図19は、第1実施形態の変形例3に係る面状光源における基板の外形について説明する平面模式図であり、基板、光源、及び区画部材のみを図示している。光拡散板の形状は、例えば、図5と同様としてよい。図19に示す面状光源20の基板21は、異形形状であり、図1に示す基板11と比べると、光源12が配置されていない領域が切り落とされた形状である。すなわち、基板21の最外形は、区画部材13の最外形に対応する形状である。図19の例では、基板21は、平面視で区画部材13と重複する位置(区画部材13の下側)にある。 FIG. 19 is a schematic plan view illustrating the outer shape of the substrate in the planar light source according to the first embodiment, and shows only the substrate, the light source, and the partition member. The shape of the light diffusing plate may be, for example, the same as in FIG. The substrate 21 of the planar light source 20 shown in FIG. 19 has an irregular shape, and has a shape in which a region where the light source 12 is not arranged is cut off as compared with the substrate 11 shown in FIG. That is, the outermost shape of the substrate 21 has a shape corresponding to the outermost shape of the partition member 13. In the example of FIG. 19, the substrate 21 is located at a position (lower side of the partition member 13) overlapping with the partition member 13 in a plan view.

このように、面状光源に用いる基板21は、光源12が配置されていない領域が切り落とされた形状であってもよい。この場合にも、図5と同様の形状の光拡散板14を用いることで、光拡散板14の周縁での光拡散の頻度を減らして光拡散板14を透過する光を増やすことができる。その結果、面状光源の周縁での輝度ムラの発生を抑制できる。 As described above, the substrate 21 used for the planar light source may have a shape in which the region where the light source 12 is not arranged is cut off. Also in this case, by using the light diffusing plate 14 having the same shape as that of FIG. 5, the frequency of light diffusion at the peripheral edge of the light diffusing plate 14 can be reduced and the light transmitted through the light diffusing plate 14 can be increased. As a result, it is possible to suppress the occurrence of luminance unevenness at the periphery of the planar light source.

面状光源10の断面形状は、図11等に示すようにXY平面に平行な直線形状でもよいし、XY平面に対して湾曲した形状でもよい。例えば、X方向において、出射面側が窪むような湾曲形状でもよい。 The cross-sectional shape of the planar light source 10 may be a linear shape parallel to the XY plane as shown in FIG. 11 or the like, or may be a curved shape with respect to the XY plane. For example, it may have a curved shape such that the exit surface side is recessed in the X direction.

〈第2実施形態〉
第2実施形態では、第1実施形態に係る面状光源をバックライト光源に用いた液晶表示装置の例を示す。なお、第2実施形態において、既に説明した実施形態と同一構成部についての説明は省略する場合がある。
<Second Embodiment>
The second embodiment shows an example of a liquid crystal display device using the planar light source according to the first embodiment as a backlight light source. In the second embodiment, the description of the same component as that of the above-described embodiment may be omitted.

図20は、第2実施形態に係る液晶表示装置を例示する構成図である。図20に示すように、液晶表示装置1000は、上側から順に、液晶パネル120と、光学シート110と、第1実施形態に係る面状光源10とを備える。なお、面状光源10において、符号70は、光拡散板や波長変換シート等の光学部材を示している。ここで光学シート110は、光学部材に加えるか一部を変えて、DBEF(反射型偏光シート)やBEF(輝度上昇シート)、カラーフィルタ等を備えることができる。 FIG. 20 is a configuration diagram illustrating the liquid crystal display device according to the second embodiment. As shown in FIG. 20, the liquid crystal display device 1000 includes a liquid crystal panel 120, an optical sheet 110, and a planar light source 10 according to the first embodiment in this order from the upper side. In the planar light source 10, reference numeral 70 indicates an optical member such as a light diffusing plate or a wavelength conversion sheet. Here, the optical sheet 110 can be provided with a DBEF (reflection type polarizing sheet), a BEF (luminance increasing sheet), a color filter, or the like by adding or partially changing the optical member.

液晶表示装置1000は、液晶パネル120の下方に面状光源10を積層する、いわゆる直下型の液晶表示装置である。液晶表示装置1000は、面状光源10から照射される光を、液晶パネル120に照射する。なお、上述の構成部材以外に、更にカラーフィルタ等の部材を備えてもよい。 The liquid crystal display device 1000 is a so-called direct type liquid crystal display device in which a planar light source 10 is laminated below the liquid crystal panel 120. The liquid crystal display device 1000 irradiates the liquid crystal panel 120 with the light emitted from the planar light source 10. In addition to the above-mentioned constituent members, a member such as a color filter may be further provided.

一般的に、直下型の液晶表示装置では、液晶パネルと面状光源との距離が近いため、面状光源の色ムラや輝度ムラが液晶表示装置の色ムラや輝度ムラに影響を及ぼすおそれがある。そのため、直下型の液晶表示装置の面状光源として、色ムラや輝度ムラの少ない面状光源が望まれている。液晶表示装置1000に面状光源10を用いることで、面状光源10の厚みを5mm以下、3mm以下、1mm以下等と薄くしながら、周縁に発生する輝度ムラを抑制しつつ全体の輝度ムラや色ムラを少なくできる。 Generally, in a direct-type liquid crystal display device, the distance between the liquid crystal panel and the planar light source is short, so that the color unevenness and the luminance unevenness of the planar light source may affect the color unevenness and the luminance unevenness of the liquid crystal display device. be. Therefore, as a planar light source for a direct-type liquid crystal display device, a planar light source with less color unevenness and luminance unevenness is desired. By using the planar light source 10 for the liquid crystal display device 1000, the thickness of the planar light source 10 can be reduced to 5 mm or less, 3 mm or less, 1 mm or less, etc., while suppressing the brightness unevenness generated on the peripheral edge and increasing the overall brightness unevenness. Color unevenness can be reduced.

なお、1つの面状光源10が1つの液晶表示装置1000のバックライトとして用いられる場合には限定されず、複数の面状光源10が並べられて1つの液晶表示装置1000のバックライトとして用いられてもよい。例えば、小さい面状光源10を複数作製し、それぞれ検査等を行うことで、実装される光源12の数が多い大きな1つの面状光源10を作製する場合と比べて、歩留まりを向上させることができる。 The case where one planar light source 10 is used as a backlight of one liquid crystal display device 1000 is not limited, and a plurality of planar light sources 10 are arranged side by side and used as a backlight of one liquid crystal display device 1000. You may. For example, by manufacturing a plurality of small planar light sources 10 and inspecting each of them, the yield can be improved as compared with the case of manufacturing one large planar light source 10 having a large number of mounted light sources 12. can.

このように、面状光源10は、光学部材70から均一な光が放射されるため、液晶表示装置1000のバックライトとして用いると好適である。 As described above, since the planar light source 10 emits uniform light from the optical member 70, it is suitable to be used as a backlight of the liquid crystal display device 1000.

但し、これには限定されず、面状光源10は、テレビやタブレット、スマートフォン、スマートウォッチ、ヘッドアップディスプレイ、デジタルサイネージ、掲示板等のバックライトとしても好適に利用できる。又、面状光源10は、照明用の光源としても利用でき、非常灯やライン照明、或いは、各種のイルミネーションや車載用のインストール等にも利用できる。なお、面状光源10に第1実施形態の変形例1〜3に示した1つ以上の変形を適宜施してよい。 However, the present invention is not limited to this, and the planar light source 10 can be suitably used as a backlight for televisions, tablets, smartphones, smart watches, head-up displays, digital signage, bulletin boards, and the like. The planar light source 10 can also be used as a light source for lighting, and can also be used for emergency lights, line lighting, various illuminations, installation for automobiles, and the like. It should be noted that the planar light source 10 may be appropriately subjected to one or more modifications shown in Modifications 1 to 3 of the first embodiment.

以上、好ましい実施形態等について詳説したが、上述した実施形態等に制限されることはなく、特許請求の範囲に記載された範囲を逸脱することなく、上述した実施形態等に種々の変形及び置換を加えることができる。 Although the preferred embodiments and the like have been described in detail above, they are not limited to the above-described embodiments and the like, and various modifications and substitutions are made to the above-mentioned embodiments and the like without departing from the scope described in the claims. Can be added.

例えば、上記の実施形態では、光拡散板の厚板部の下面(光源側の面)と薄板部の下面(光源側の面)が同一平面上にある例を示したが、光拡散板の厚板部の上面(光源とは反対側の面)と薄板部の上面(光源とは反対側の面)が同一平面上にあってもよい。すなわち、光拡散板の下面側を薄くして薄板部を設けてもよい。例えば、図6に示す光拡散板14、図12に示す光拡散板24、図13に示す光拡散板34、図14に示す光拡散板44を上下反転させた形状等が考えられる。これらの場合、厚板部の側面から光拡散板の上面側に向かう光が増えることは期待できないが、薄板部における光拡散の頻度が減って薄板部を透過する光が増えるため、光拡散板の周縁における発光面の輝度ムラを抑制する一定の効果は得られる。 For example, in the above embodiment, the lower surface of the thick plate portion (the surface on the light source side) of the light diffusing plate and the lower surface of the thin plate portion (the surface on the light source side) are on the same plane. The upper surface of the thick plate portion (the surface opposite to the light source) and the upper surface of the thin plate portion (the surface opposite to the light source) may be on the same plane. That is, the lower surface side of the light diffusing plate may be thinned to provide a thin plate portion. For example, the light diffusing plate 14 shown in FIG. 6, the light diffusing plate 24 shown in FIG. 12, the light diffusing plate 34 shown in FIG. 13, and the light diffusing plate 44 shown in FIG. 14 may be inverted upside down. In these cases, it cannot be expected that the light from the side surface of the thick plate portion toward the upper surface side of the light diffusing plate will increase, but since the frequency of light diffusion in the thin plate portion decreases and the light transmitted through the thin plate portion increases, the light diffusing plate A certain effect of suppressing uneven brightness of the light emitting surface at the periphery of the light emitting surface can be obtained.

又、光拡散板に酸化チタン粒子や蛍光体粒子等の散乱粒子を含有させ、薄板部に含有させる散乱粒子の濃度を、厚板部に含有させる散乱粒子の濃度よりも薄くしてもよい。これにより、薄板部における光拡散の頻度を更に減らして薄板部を透過する光を更に増やせるため、光拡散板の周縁における発光面の輝度ムラを抑制する効果を向上できる。或いは、光拡散板の上面及び/又は下面に散乱粒子を含有する散乱粒子層を形成し、薄板部に形成される散乱粒子層における散乱粒子の濃度を、厚板部に形成される散乱粒子層における散乱粒子の濃度より薄くしても同様の効果が得られる。 Further, the light diffusing plate may contain scattered particles such as titanium oxide particles and phosphor particles, and the concentration of the scattered particles contained in the thin plate portion may be lower than the concentration of the scattered particles contained in the thick plate portion. As a result, the frequency of light diffusion in the thin plate portion can be further reduced and the light transmitted through the thin plate portion can be further increased, so that the effect of suppressing the uneven brightness of the light emitting surface on the peripheral edge of the light diffusion plate can be improved. Alternatively, a scattered particle layer containing scattered particles is formed on the upper surface and / or the lower surface of the light diffusing plate, and the concentration of the scattered particles in the scattered particle layer formed in the thin plate portion is adjusted to the scattered particle layer formed in the thick plate portion. The same effect can be obtained even if the concentration is lower than the concentration of the scattered particles in.

10、20 面状光源
11、21 基板
11m、14m、14s 上面
12 光源
12a 発光素子
12b 封止部材
12c 光反射膜
12d アンダーフィル
13、23 区画部材
13a、23a 頂部
13b、23b 壁部
13c、23c、26a 底部
13d 貫通孔
14、24、34、44 光拡散板
14a、24a、34a、44a 厚板部
14b、24b、34b、44b 薄板部
14c、24c、34c、44c 境界
14n、14t、24n、24t 下面
15 被覆部材
18A、18B 導体配線
19 接合部材
26 枠体
26b 側壁
27 蓋体
28 波長変換部材
34b1 板厚漸減部分
34b2 板厚一定部分
44b1 第1薄板部
44b2 第2薄板部
70 光学部材
72 波長変換シート
73 第1プリズムシート
74 第2プリズムシート
75 偏光シート
110 光学シート
120 液晶パネル
1000 液晶表示装置
10, 20 planar light source 11, 21 substrate 11m, 14m, 14s top surface 12 light source 12a light emitting element 12b sealing member 12c light reflecting film 12d underfill 13, 23 partition member 13a, 23a top 13b, 23b wall 13c, 23c, 26a Bottom 13d Through hole 14, 24, 34, 44 Light diffuser 14a, 24a, 34a, 44a Thick plate 14b, 24b, 34b, 44b Thin plate 14c, 24c, 34c, 44c Boundary 14n, 14t, 24n, 24t Bottom surface 15 Covering member 18A, 18B Conductor wiring 19 Joining member 26 Frame body 26b Side wall 27 Cover body 28 Wavelength conversion member 34b1 Plate thickness tapering part 34b2 Plate thickness constant part 44b1 First thin plate part 44b2 Second thin plate part 70 Optical member 72 Wavelength conversion sheet 73 1st prism sheet 74 2nd prism sheet 75 Polarizing sheet 110 Optical sheet 120 Liquid crystal panel 1000 Liquid crystal display device

Claims (18)

異形形状の実装基板と、
平面視で、前記実装基板上の第1方向及び前記第1方向に垂直な第2方向に2次元に配列された複数の光源と、
前記複数の光源の上方に設けられた光拡散板と、を有し、
前記光拡散板は、厚板部と、前記厚板部よりも板厚が薄い薄板部と、を備え、
前記薄板部は、平面視で、最外周に配置された各々の前記光源よりも外側に位置する前記光拡散板の少なくとも一部に設けられ、
前記複数の光源のうち前記第1方向の端部に位置する一の光源と他の光源において、前記一の光源の光軸から前記第1方向の前記光拡散板の外縁までの距離が、前記他の光源の光軸から前記第1方向の前記光拡散板の外縁までの距離より長く、
平面視で、前記薄板部の前記第1方向の幅は、前記一の光源の光軸から前記光拡散板の外縁に向かう前記第1方向の幅が、前記他の光源の光軸から前記光拡散板の外縁に向かう前記第1方向の幅より広い面状光源。
An irregularly shaped mounting board and
A plurality of light sources arranged two-dimensionally in a first direction on the mounting board and a second direction perpendicular to the first direction in a plan view.
It has a light diffusing plate provided above the plurality of light sources, and has.
The light diffusing plate includes a thick plate portion and a thin plate portion having a thinner plate thickness than the thick plate portion.
The thin plate portion is provided on at least a part of the light diffusing plate located outside each of the light sources arranged on the outermost periphery in a plan view.
In one light source and another light source located at the end of the first direction among the plurality of light sources, the distance from the optical axis of the one light source to the outer edge of the light diffuser in the first direction is the above. Longer than the distance from the optical axis of the other light source to the outer edge of the light diffuser in the first direction,
In a plan view, the width of the thin plate portion in the first direction is the width of the first direction from the optical axis of the one light source toward the outer edge of the light diffusing plate, and the width of the first direction is the light from the optical axis of the other light source. A planar light source wider than the width of the first direction toward the outer edge of the diffuser.
前記複数の光源のうち前記第2方向の端部に位置する一の光源と他の光源において、前記一の光源の光軸から前記第2方向の前記光拡散板の外縁までの距離が、前記他の光源の光軸から前記第2方向の前記光拡散板の外縁までの距離より長く、
平面視で、前記薄板部の前記第2方向の幅は、前記一の光源の光軸から前記光拡散板の外縁に向かう前記第2方向の幅が、前記他の光源の光軸から前記光拡散板の外縁に向かう前記第2方向の幅より広い請求項1に記載の面状光源。
In one light source and another light source located at the end of the second direction among the plurality of light sources, the distance from the optical axis of the one light source to the outer edge of the light diffuser in the second direction is the said. Longer than the distance from the optical axis of the other light source to the outer edge of the light diffuser in the second direction,
In a plan view, the width of the thin plate portion in the second direction is the width of the second direction from the optical axis of the one light source toward the outer edge of the light diffusing plate, and the width of the second direction is the light from the optical axis of the other light source. The planar light source according to claim 1, which is wider than the width in the second direction toward the outer edge of the diffuser plate.
前記実装基板の上面から前記薄板部の前記光源側の面までの高さは、前記実装基板の上面から前記厚板部の前記光源側の面までの高さと同じであり、
前記実装基板の上面から前記薄板部の前記光源とは反対側の面までの高さは、前記実装基板の上面から前記厚板部の前記光源とは反対側の面までの高さより低い請求項1又は2に記載の面状光源。
The height from the upper surface of the mounting board to the surface of the thin plate portion on the light source side is the same as the height from the upper surface of the mounting board to the surface of the thick plate portion on the light source side.
The height from the upper surface of the mounting board to the surface of the thin plate portion opposite to the light source is lower than the height from the upper surface of the mounting board to the surface of the thick plate portion opposite to the light source. The planar light source according to 1 or 2.
前記実装基板の上面から前記薄板部の前記光源側の面までの高さは、前記実装基板の上面から前記厚板部の前記光源側の面までの高さと同じであり、
前記薄板部は、前記厚板部との境界から前記光拡散板の外縁に近づくに従って厚さが徐々に薄くなる部分を有する請求項1又は2に記載の面状光源。
The height from the upper surface of the mounting board to the surface of the thin plate portion on the light source side is the same as the height from the upper surface of the mounting board to the surface of the thick plate portion on the light source side.
The planar light source according to claim 1 or 2, wherein the thin plate portion has a portion whose thickness gradually decreases as it approaches the outer edge of the light diffusing plate from the boundary with the thick plate portion.
前記薄板部は、前記光拡散板の周縁の全域に設けられる請求項1乃至4の何れか一項に記載の面状光源。 The planar light source according to any one of claims 1 to 4, wherein the thin plate portion is provided over the entire peripheral edge of the light diffusing plate. 平面視において前記光源のそれぞれを取り囲む壁部を含み、前記壁部で取り囲んだ領域を複数有する区画部材を備える請求項1乃至5の何れか一項に記載の面状光源。 The planar light source according to any one of claims 1 to 5, further comprising a partition member including a wall portion surrounding each of the light sources in a plan view and having a plurality of regions surrounded by the wall portions. 前記薄板部と前記厚板部との境界は、前記区画部材の最外周の壁部と対向する位置にある請求項6に記載の面状光源。 The planar light source according to claim 6, wherein the boundary between the thin plate portion and the thick plate portion is located at a position facing the outermost peripheral wall portion of the partition member. 前記区画部材は、前記壁部の下端と繋がる底部を有し、
前記底部は、前記光源が配置される貫通孔を有する請求項6又は7に記載の面状光源。
The partition member has a bottom portion connected to the lower end of the wall portion.
The planar light source according to claim 6 or 7, wherein the bottom portion has a through hole in which the light source is arranged.
前記底部は、平面視において、前記実装基板の周縁まで延在する請求項8に記載の面状光源。 The planar light source according to claim 8, wherein the bottom portion extends to the peripheral edge of the mounting substrate in a plan view. 前記薄板部は、前記厚板部側の第1薄板部と、前記第1薄板部よりも前記光拡散板の外縁側に位置し、前記第1薄板部よりも板厚が薄い第2薄板部と、を含む請求項1乃至9の何れか一項に記載の面状光源。 The thin plate portion is located on the first thin plate portion on the thick plate portion side and the outer edge side of the light diffusion plate with respect to the first thin plate portion, and the second thin plate portion having a thinner plate thickness than the first thin plate portion. The planar light source according to any one of claims 1 to 9, further comprising. 前記区画部材における最外周の少なくとも一部には、前記壁部が設けられていない請求項6乃至9の何れか一項に記載の面状光源。 The planar light source according to any one of claims 6 to 9, wherein the wall portion is not provided on at least a part of the outermost periphery of the partition member. 前記実装基板及び前記光拡散板を囲う枠体を有する請求項1乃至11の何れか一項に記載の面状光源。 The planar light source according to any one of claims 1 to 11, further comprising a frame body surrounding the mounting substrate and the light diffusing plate. 前記枠体は、異形形状であり、前記実装基板と相似した形状である請求項12に記載の面状光源。 The planar light source according to claim 12, wherein the frame has an irregular shape and a shape similar to that of the mounting substrate. 前記光拡散板は、異形形状である請求項12又は13に記載の面状光源。 The planar light source according to claim 12 or 13, wherein the light diffusing plate has a deformed shape. 前記光拡散板、前記実装基板及び前記枠体は、相似形の異形形状である請求項12乃至14の何れか一項に記載の面状光源。 The planar light source according to any one of claims 12 to 14, wherein the light diffusing plate, the mounting substrate, and the frame have similar shapes. 平面視において、前記区画部材の最外周に位置する前記領域の少なくとも1つは、前記最外周よりも内周側に位置する前記領域よりも面積が大きい請求項6乃至9の何れか一項に記載の面状光源。 In any one of claims 6 to 9, at least one of the regions located on the outermost circumference of the partition member has a larger area than the region located on the inner peripheral side of the outermost circumference in a plan view. The planar light source described. 前記光拡散板の上方に、前記光源からの光を異なる波長の光に変換する波長変換層を更に備える請求項1乃至16の何れか一項に記載の面状光源。 The planar light source according to any one of claims 1 to 16, further comprising a wavelength conversion layer that converts light from the light source into light having a different wavelength above the light diffusing plate. 請求項1乃至17の何れか一項に記載の面状光源をバックライト光源に用いた液晶表示装置。 A liquid crystal display device using the planar light source according to any one of claims 1 to 17 as a backlight light source.
JP2020207548A 2020-05-29 2020-12-15 Planar light source, liquid crystal display device Active JP7560730B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/331,479 US11428984B2 (en) 2020-05-29 2021-05-26 Planar light source and liquid crystal display device
CN202110585165.XA CN113741090A (en) 2020-05-29 2021-05-27 Planar light source and liquid crystal display device
US17/869,682 US11650455B2 (en) 2020-05-29 2022-07-20 Planar light source

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020095002 2020-05-29
JP2020095002 2020-05-29

Publications (2)

Publication Number Publication Date
JP2021190417A true JP2021190417A (en) 2021-12-13
JP7560730B2 JP7560730B2 (en) 2024-10-03

Family

ID=78847331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020207548A Active JP7560730B2 (en) 2020-05-29 2020-12-15 Planar light source, liquid crystal display device

Country Status (1)

Country Link
JP (1) JP7560730B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7546185B1 (en) 2022-08-09 2024-09-05 ミネベアミツミ株式会社 Planar lighting device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003241191A (en) 2002-02-15 2003-08-27 Yazaki Corp Lcd illumination structure and diffusion plate
JP5467280B2 (en) 2009-05-25 2014-04-09 株式会社オプトデザイン Lighting device
JP6436193B2 (en) 2016-07-20 2018-12-12 日亜化学工業株式会社 Light emitting device
JP2018125164A (en) 2017-02-01 2018-08-09 パナソニックIpマネジメント株式会社 Light source device
CN107422405B (en) 2017-09-25 2023-09-19 马瑞利汽车电子(广州)有限公司 Diffusion plate structure and display screen backlight structure
KR102428534B1 (en) 2017-12-20 2022-08-02 엘지디스플레이 주식회사 Backlight unit and liquid crystal display device including the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7546185B1 (en) 2022-08-09 2024-09-05 ミネベアミツミ株式会社 Planar lighting device

Also Published As

Publication number Publication date
JP7560730B2 (en) 2024-10-03

Similar Documents

Publication Publication Date Title
JP6436193B2 (en) Light emitting device
TWI784376B (en) Light-emitting device and liquid crystal display device
CN111668202A (en) Light source device
US11205744B2 (en) Light emitting device
CN110970408B (en) Light emitting device
JP7231845B2 (en) Light source device
CN112885943A (en) Light emitting device and LED package
US11650455B2 (en) Planar light source
JP7560730B2 (en) Planar light source, liquid crystal display device
EP4063945A1 (en) Light-reflecting member and light source device
US11855242B2 (en) Light emitting device and method of manufacturing the same
JP2022151640A (en) Reflection member and light source device
JP2020057595A (en) Light-emitting device
CN114911093A (en) Light emitting diode device, backlight module and liquid crystal display device
TWI821457B (en) Light emitting device
CN118915352A (en) Light emitting device and liquid crystal display device
JP2023081081A (en) Manufacturing method of planer light source and planer light source

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240416

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240820

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240902

R150 Certificate of patent or registration of utility model

Ref document number: 7560730

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150