JP2021190390A - All-solid battery - Google Patents

All-solid battery Download PDF

Info

Publication number
JP2021190390A
JP2021190390A JP2020097428A JP2020097428A JP2021190390A JP 2021190390 A JP2021190390 A JP 2021190390A JP 2020097428 A JP2020097428 A JP 2020097428A JP 2020097428 A JP2020097428 A JP 2020097428A JP 2021190390 A JP2021190390 A JP 2021190390A
Authority
JP
Japan
Prior art keywords
negative electrode
current collector
active material
laminated
solid electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020097428A
Other languages
Japanese (ja)
Other versions
JP7324406B2 (en
Inventor
拓哉 杉本
Takuya Sugimoto
正人 神谷
Masato Kamiya
隆行 北條
Takayuki Hojo
邦子 平美
Kuniko Hirami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2020097428A priority Critical patent/JP7324406B2/en
Publication of JP2021190390A publication Critical patent/JP2021190390A/en
Application granted granted Critical
Publication of JP7324406B2 publication Critical patent/JP7324406B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)

Abstract

To provide a high-reliability electrode body equipped sulfide-based all-solid battery at low cost and efficiently even if burrs exist in a collector.SOLUTION: An all-solid battery comprises a sulfide-based solid electrolyte as a solid electrolyte. The all-solid battery comprises an electrode body including: a main laminate part 80 in which a positive electrode active material layer 24 and a negative electrode active material layer 44 are laminated via a solid electrolyte layer 30; a negative electrode collector extension part 60 extending from the main laminate part; and a terminal laminate part 50 which is a laminate part formed in a terminal of the negative electrode collector extension part and formed by providing a negative electrode collector exposed portion 62 in which the negative electrode collector extension part is exposed, between the terminal laminate part and the main laminate part 80. The terminal laminate part 50 is formed by successively laminating the negative electrode active material layer 44 and the solid electrolyte layer 30 and does not include the positive electrode active material layer 24 and a positive electrode collector 22.SELECTED DRAWING: Figure 2

Description

本発明は、硫化物系固体電解質を備えた全固体電池(以下、「硫化物系全固体電池」ともいう。)に関する。詳しくは、正極と負極とが、固体電解質層を介して積層された電極体を備えた硫化物系全固体電池に関する。 The present invention relates to an all-solid-state battery provided with a sulfide-based solid electrolyte (hereinafter, also referred to as “sulfide-based all-solid-state battery”). More specifically, the present invention relates to a sulfide-based all-solid-state battery having an electrode body in which a positive electrode and a negative electrode are laminated via a solid electrolyte layer.

近年、電気自動車(EV)、ハイブリッド自動車(HV)、プラグインハイブリッド自動車(PHV)等の車両駆動用電源等として、リチウムイオン二次電池等の二次電池が用いられている。リチウムイオン二次電池では、電解質イオンであるリチウムイオンが正負極間を行き来することで充放電が行われ、負極活物質からリチウムイオンが放出されて正極活物質に吸蔵されたときの電気化学反応に基づき外部回路に電流を取り出すことができる。そして、電解質として、従来では主に液体状の非水電解液が用いられていたが、非水電解液は、活物質が濡れることによって良好な反応界面を形成し得る半面、可燃性であることから取り扱いに慎重を要する。そのため、かかる可燃性の非水電解液を要しない固体状の固体電解質を用いたいわゆる全固体電池の実用化が精力的に進められている。 In recent years, secondary batteries such as lithium ion secondary batteries have been used as vehicle drive power sources for electric vehicles (EVs), hybrid vehicles (HVs), plug-in hybrid vehicles (PHVs) and the like. In a lithium ion secondary battery, lithium ions, which are electrolyte ions, move back and forth between the positive and negative electrodes to charge and discharge, and when lithium ions are released from the negative electrode active material and stored in the positive electrode active material, an electrochemical reaction occurs. The current can be taken out to the external circuit based on. Conventionally, a liquid non-aqueous electrolyte solution has been mainly used as the electrolyte, but the non-aqueous electrolyte solution is flammable while it can form a good reaction interface when the active material gets wet. It requires careful handling. Therefore, a so-called all-solid-state battery using a solid solid electrolyte that does not require such a flammable non-aqueous electrolyte solution is being energetically put into practical use.

この種の全固体電池は、典型的には、正極集電体と該正極集電体上に形成された正極活物質層とを備えた正極と、負極集電体と該負極集電体上に形成された負極活物質層とを備えた負極とが、固体電解質層を介在させつつ、所定の数だけ積層されて構成された積層電極体を備えている。
また、上記固体電解質層や上記正負極活物質層は、例えば硫化物系固体電解質等の固体電解質を含んでいる。硫化物系固体電解質は、イオン伝導性が高く、電池の高出力化を図る上で注目されている材料である。例えば、下記特許文献1には、硫化物系固体電解質を用いた技術について記載されている。
This type of all-solid-state battery typically comprises a positive electrode with a positive electrode collector and a positive electrode active material layer formed on the positive electrode collector, a negative electrode collector and the negative electrode collector. The negative electrode provided with the negative electrode active material layer formed in the above is provided with a laminated electrode body configured by being laminated in a predetermined number with a solid electrolyte layer interposed therebetween.
Further, the solid electrolyte layer and the positive / negative active material layer contain a solid electrolyte such as a sulfide-based solid electrolyte. Sulfide-based solid electrolytes have high ionic conductivity and are attracting attention for increasing the output of batteries. For example, Patent Document 1 below describes a technique using a sulfide-based solid electrolyte.

特開2017−004914号公報Japanese Unexamined Patent Publication No. 2017-004914

ところで、このような全固体電池に用いられる集電体としては、正極集電体として所定の形状にカットされたAl箔、SUS箔等が用いられ、他方、負極集電体として所定の形状にカットされたCu箔等が用いられる。
上述したようにカッティング等の加工を施して集電体を作製した場合、該集電体のエッジ部に予期せぬバリ(すなわち、材料を加工する際に発生する突起や反り等の付加部分)が発生することがある。そして、かかるバリを有する集電体をそのまま硫化物系固体電解質と併用した場合に、次のような問題があった。例えば集電体としてバリを有するCu箔を用いた場合、充放電等により電極体の温度が上昇した際に、固体電解質層に含まれる硫化物系固体電解質の硫黄(S)成分と、該集電体のCuとが反応し、電子伝導性を有する硫化銅(II)(CuS)が生成し得る。かかるCuSは、集電体のバリの頂点を起点として拡散し、該バリの頂点から対極側の集電体に到達し得るため、短絡が生じるおそれがある。
By the way, as the current collector used in such an all-solid-state battery, an Al foil, a SUS foil or the like cut into a predetermined shape is used as a positive electrode current collector, and on the other hand, a predetermined shape is used as a negative electrode current collector. Cut Cu foil or the like is used.
When the current collector is manufactured by processing such as cutting as described above, unexpected burrs (that is, additional parts such as protrusions and warpage generated when the material is processed) are formed on the edge portion of the current collector. May occur. When the current collector having such burrs is used as it is with the sulfide-based solid electrolyte, there are the following problems. For example, when a Cu foil having burrs is used as a current collector, when the temperature of the electrode body rises due to charging / discharging or the like, the sulfur (S) component of the sulfide-based solid electrolyte contained in the solid electrolyte layer and the collecting thereof. Copper (II) sulfide (CuS) having electron conductivity can be produced by reacting with Cu of an electric body. Such CuS diffuses starting from the apex of the burr of the current collector and can reach the current collector on the opposite electrode side from the apex of the burr, so that a short circuit may occur.

したがって、Cu箔等の集電体にバリが存在する場合、それを取り除いてから電極体を製造する必要があり、バリの検査、バリの除去に多大な労力やコストがかかっていた。
そこで、本発明は、集電体にバリが存在しても、信頼性の高い電極体を備えた硫化物系全固体電池を、低コストでかつ効率よく提供することを主な目的とする。
Therefore, when burrs are present in a current collector such as Cu foil, it is necessary to remove the burrs before manufacturing the electrode body, and it takes a lot of labor and cost to inspect the burrs and remove the burrs.
Therefore, it is a main object of the present invention to provide a sulfide-based all-solid-state battery provided with a highly reliable electrode body at low cost and efficiently even if burrs are present in the current collector.

上述した目的を実現するべく、以下の全固体電池が提供される。
ここで開示される全固体電池は、正極集電体と、該正極集電体上に形成された正極活物質層とを含む正極と、負極集電体と、該負極集電体上に形成された負極活物質層とを含む負極とが、固体電解質層を介して積層された積層電極体を備えている。また、固体電解質として硫化物系固体電解質を含む。上記積層電極体は、上記正極活物質層と上記負極活物質層とが、上記固体電解質層を介して積層された主要積層部と、該主要積層部から延伸する正負極いずれかの集電体延伸部と、該集電体延伸部の末端に形成された積層部であって、上記主要積層部との間に、当該集電体延伸部が露出した集電体露出部分を設けて形成された末端積層部とを備えている。そして、上記末端積層部は、上記集電体延伸部と同極の活物質層と、固体電解質層とがこの順に積層されて形成されており、対極側の活物質層および対極側の集電体を含まないことを特徴とする。
The following all-solid-state batteries are provided to achieve the above-mentioned objectives.
The all-solid-state battery disclosed here is formed on a positive electrode including a positive electrode current collector, a positive electrode active material layer formed on the positive electrode current collector, a negative electrode current collector, and a negative electrode current collector. The negative electrode including the negative electrode active material layer is provided with a laminated electrode body laminated via a solid electrolyte layer. Further, the solid electrolyte includes a sulfide-based solid electrolyte. The laminated electrode body is a current collector of either a main laminated portion in which the positive electrode active material layer and the negative electrode active material layer are laminated via the solid electrolyte layer, or a positive or negative electrode extending from the main laminated portion. It is a laminated portion formed at the end of the stretched portion and the current collector stretched portion, and is formed by providing a current collector exposed portion where the current collector stretched portion is exposed between the main laminated portion. It is provided with a terminal laminated portion. The terminal laminated portion is formed by laminating an active material layer having the same electrode as the current collector stretched portion and a solid electrolyte layer in this order, and the active material layer on the counter electrode side and the current collector on the counter electrode side. It is characterized by not including the body.

かかる構成の電極体を備えた全固体電池によると、集電体の延伸部に末端積層部を有する。これにより、例え集電体にバリが存在し、該バリの頂点を起点として電子伝導性を有するCuS等が拡散しても、対極側の集電体との導通を持たないため、短絡を防止し得る。したがって、集電体にバリが存在しても、信頼性の高い電極体を備えた硫化物系全固体電池を、低コストでかつ効率よく提供することが可能になる。 According to the all-solid-state battery provided with the electrode body having such a configuration, the stretched portion of the current collector has a terminal laminated portion. As a result, even if a burr exists in the current collector and CuS or the like having electron conductivity spreads from the apex of the burr, it does not have conduction with the current collector on the opposite electrode side, so that a short circuit is prevented. Can be. Therefore, even if burrs are present in the current collector, it is possible to efficiently provide a sulfide-based all-solid-state battery provided with a highly reliable electrode body at low cost.

積層電極体を備える全固体電池の構成を模式的に説明する図である。It is a figure which schematically explains the structure of the all-solid-state battery provided with the laminated electrode body. 一実施形態に係る全固体電池が備える積層電極体の一部を模式的に示す説明図である。It is explanatory drawing which shows typically a part of the laminated electrode body included in the all-solid-state battery which concerns on one Embodiment. 一実施形態に係る全固体電池が備える積層電極体の一部を模式的に示す説明図である。It is explanatory drawing which shows typically a part of the laminated electrode body included in the all-solid-state battery which concerns on one Embodiment. 従来の全固体電池が備える積層電極体の一部を模式的に示す説明図である模式的に示す説明図である。It is explanatory drawing which shows typically the part of the laminated electrode body provided with the conventional all-solid-state battery. サンプル14の全固体電池が備える積層電極体の一部を模式的に示す説明図である。It is explanatory drawing which shows a part of the laminated electrode body included in the all-solid-state battery of sample 14 schematically.

以下、ここで開示される全固体電池に関する好適な実施形態を、適宜図面を参照しつつ詳細に説明する。なお、本明細書において特に言及している事項以外の事柄であってここで開示される技術の実施に必要な事柄は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。本発明は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。
以下の実施形態は、ここで開示される技術を限定することを意図したものではない。また、本明細書にて示す図面では、同じ作用を奏する部材・部位に同じ符号を付して説明している。そして、各図における寸法関係(長さ、幅、厚さ等)は実際の寸法関係を反映するものではない。
Hereinafter, preferred embodiments of the all-solid-state battery disclosed herein will be described in detail with reference to the drawings as appropriate. Matters other than those specifically mentioned in the present specification and necessary for the implementation of the technique disclosed herein can be grasped as design matters of a person skilled in the art based on the prior art in the art. The present invention can be carried out based on the contents disclosed in the present specification and the common general technical knowledge in the art.
The following embodiments are not intended to limit the techniques disclosed herein. Further, in the drawings shown in the present specification, the same reference numerals are given to the members / parts having the same action. The dimensional relations (length, width, thickness, etc.) in each drawing do not reflect the actual dimensional relations.

(1)全固体電池の構造
図1は、典型的な積層構造を有する積層電極体10を備えた全固体電池1を模式的に示している。本実施形態に係る全固体電池1は、大まかにいって、正極20と負極40とが、固体電解質層30を介在させつつ、所定の数だけ積層されて構成された積層電極体10が、図示しない所定の筐体(電池ケース)に収容されて構成される電池である。
(1) Structure of an all-solid-state battery FIG. 1 schematically shows an all-solid-state battery 1 provided with a laminated electrode body 10 having a typical laminated structure. Roughly speaking, the all-solid-state battery 1 according to the present embodiment has a laminated electrode body 10 in which a positive electrode 20 and a negative electrode 40 are laminated in a predetermined number while interposing a solid electrolyte layer 30. It is a battery configured to be housed in a predetermined housing (battery case).

(2)積層電極体
図2は、積層電極体10の一部を模式的に示す説明図である。なお、図2以降の図(図2〜5)は、全て積層電極体10を構成する一部分を示すものとし、負極集電体、負極活物質層、固体電解質層、正極活物質層、正極集電体がこの順に積層された構造を有する。
図2に示すように、積層電極体10は、正極活物質層24と負極活物質層44とが、固体電解質層30を介して積層されて形成された主要積層部80と、該主要積層部から延伸した負極集電体延伸部60と、該負極集電体延伸部の末端に形成された末端積層部50とを有する。末端積層部50は、負極活物質層44と固体電解質層30とがこの順に積層されて形成されており、正極活物質層22および正極集電体24を含まないことを特徴とする。また、末端積層部50は、負極集電体延伸部60の末端に存在するバリ70を覆うようにして形成されている。そして、末端積層部50と主要積層部80との間には、負極集電体延伸部60が露出した負極集電体露出部分62が形成されている。
(2) Laminated electrode body FIG. 2 is an explanatory diagram schematically showing a part of the laminated electrode body 10. It should be noted that the figures (FIGS. 2 to 5) after FIG. 2 all show a part constituting the laminated electrode body 10, and are a negative electrode current collector, a negative electrode active material layer, a solid electrolyte layer, a positive electrode active material layer, and a positive electrode collection. It has a structure in which electric bodies are stacked in this order.
As shown in FIG. 2, the laminated electrode body 10 has a main laminated portion 80 formed by laminating a positive electrode active material layer 24 and a negative electrode active material layer 44 via a solid electrolyte layer 30, and the main laminated portion. It has a negative electrode current collector stretched portion 60 stretched from the above and a terminal laminated portion 50 formed at the end of the negative electrode current collector stretched portion. The terminal laminated portion 50 is formed by laminating the negative electrode active material layer 44 and the solid electrolyte layer 30 in this order, and is characterized by not including the positive electrode active material layer 22 and the positive electrode current collector 24. Further, the terminal laminated portion 50 is formed so as to cover the burr 70 existing at the end of the negative electrode current collector extending portion 60. A negative electrode current collector exposed portion 62 in which the negative electrode current collector extending portion 60 is exposed is formed between the terminal laminated portion 50 and the main laminated portion 80.

かかる構成の積層電極体10を備えた全固体電池1によると、負極集電体延伸部60の末端に存在するバリ70を起点として電子伝導性物質(例えば、CuS,NiS等)が拡散しても、正極集電体22との導通を持たないため、短絡を防止し得る。
特に限定されないが、積層電極体10を作成する方法としては、例えば、負極集電体42の表面に主要積層部80および末端積層部50を別々に形成したものを所定の数だけ作製し、負極集電体42どうし(または、正極集電体22どうし)を重ね合わせて作製する方法や、負極集電体42全体(負極集電体延伸部60も包含する)に負極活物質層44および固体電解質30層を形成し、物理的手法(レーザートリミング)により負極集電体露出部分62の部分のみを除去した後、主要積層部80を形成したものを、所定の数だけ作製し、負極集電体42どうし(または、正極集電体22どうし)を重ね合わせて作製する方法等が挙げられる。
According to the all-solid-state battery 1 provided with the laminated electrode body 10 having such a configuration, the electron conductive substance (for example, CuS, NiS, etc.) is diffused starting from the burr 70 existing at the end of the negative electrode current collector extending portion 60. However, since it does not have continuity with the positive electrode current collector 22, a short circuit can be prevented.
Although not particularly limited, as a method for producing the laminated electrode body 10, for example, a predetermined number of main laminated portions 80 and terminal laminated portions 50 separately formed on the surface of the negative electrode current collector 42 are manufactured, and the negative electrode is used. A method of superimposing the current collectors 42 on each other (or the positive electrode current collectors 22), or the negative electrode active material layer 44 and the solid on the entire negative electrode current collector 42 (including the negative electrode current collector extension portion 60). After forming 30 layers of electrolyte and removing only the exposed portion 62 of the negative electrode current collector by a physical method (laser trimming), a predetermined number of the main laminated portions 80 are formed, and the negative electrode current is collected. Examples thereof include a method of superimposing the bodies 42 (or the positive electrode current collectors 22) on each other.

(3)固体電解質層
固体電解質層30は、硫化物系固体電解質を含む。硫化物系固体電解質としては、例えば、リチウムイオン伝導性を有するが、電子伝導性は示さない各種の化合物を好適に用いることができる。かかる硫化物系固体電解質としては、例えば、LiS−SiS、LiI−LiS−SiS、LiI−LiS−P、LiI−LiS−B、LiPO−LiS−SiS、LiPO−LiS−SiS、LiPO−LiS−SiS、LiI−LiS−P、LiI−LiPO−P、LiI−LiPS−LiBr、LiS−P、LiS−P−LiI−LiBrおよびLiS−P−GeS等の非晶質硫化物、Li10GeP12等の結晶質硫化物等が挙げられる。なかでも優れたリチウムイオン伝導性を有する点で、特に非晶質硫化物からなる硫化物系固体電解質を好ましく用いることができる。
(3) Solid electrolyte layer The solid electrolyte layer 30 contains a sulfide-based solid electrolyte. As the sulfide-based solid electrolyte, for example, various compounds having lithium ion conductivity but not electron conductivity can be preferably used. Such sulfide-based solid electrolyte, for example, Li 2 S-SiS 2, LiI-Li 2 S-SiS 2, LiI-Li 2 S-P 2 S 5, LiI-Li 2 S-B 2 S 3, Li 3 PO 4 -Li 2 S-Si 2 S, Li 3 PO 4 -Li 2 S-SiS 2, LiPO 4 -Li 2 S-SiS, LiI-Li 2 S-P 2 O 5, LiI-Li 3 PO 4 -P 2 S 5, LiI-Li 3 PS 4 -LiBr, Li 2 S-P 2 S 5, Li 2 S-P 2 S 5 -LiI-LiBr and Li 2 S-P 2 S 5 -GeS 2 etc. Amorphous sulfides, crystalline sulfides such as Li 10 GeP 2 S 12 and the like can be mentioned. Among them, a sulfide-based solid electrolyte made of amorphous sulfide can be particularly preferably used because it has excellent lithium ion conductivity.

また、固体電解質層30は、上記成分に加えて、必要に応じてそれ以外の成分、例えば、バインダ(結着剤)、各種添加剤等を含んでもよい。バインダとしては、例えば、ポリフッ化ビニリデン(PVdF)、ポリフッ化ビニリデンとヘキサフルオロプロピレンとのコポリマー(PVdF−HFP)等のハロゲン化ビニル樹脂や、ブタジエンゴム(SBR)、アクリレートブタジエンゴム(ABR)、スチレン−ブタジエンゴム(SBR)、アクリロニトリル−ブタジエンゴム(NBR)等のゴム類が例示される。なお、固体電解質層の形成方法等は、従来公知のものを採用することができ、ここで開示される技術を限定するものではないため、詳細な説明を省略する。 Further, in addition to the above components, the solid electrolyte layer 30 may contain other components, for example, a binder (binding agent), various additives, and the like, if necessary. Examples of the binder include polyvinylidene fluoride (PVdF), vinyl halide resins such as a copolymer of polyvinylidene fluoride and hexafluoropropylene (PVdF-HFP), butadiene rubber (SBR), acrylate-butadiene rubber (ABR), and styrene. Examples of rubbers include -butadiene rubber (SBR) and acrylonitrile-butadiene rubber (NBR). As the method for forming the solid electrolyte layer and the like, conventionally known methods can be adopted, and the techniques disclosed herein are not limited, so detailed description thereof will be omitted.

(4)正極
正極20は、正極集電体22と、正極集電体22の表面に形成された正極活物質層24とを備えている。正極集電体22としては、導電性の良好な金属製のシートを好適に用いることができ、例えばアルミニウム(Al)や、鉄合金(例えば各種SUS鋼等)等の金属箔が好適である。また、鉄合金(例えば各種SUS鋼等)等の金属箔は、硫化物系固体電解質の硫黄(S)成分と反応することで、電子伝導性物質を生成し得るため、ここに開示される技術を適応する対象として好適である。
(4) Positive electrode The positive electrode 20 includes a positive electrode current collector 22 and a positive electrode active material layer 24 formed on the surface of the positive electrode current collector 22. As the positive electrode current collector 22, a metal sheet having good conductivity can be preferably used, and for example, a metal foil such as aluminum (Al) or an iron alloy (for example, various SUS steels) is suitable. Further, since a metal foil such as an iron alloy (for example, various SUS steels) can generate an electron conductive substance by reacting with a sulfur (S) component of a sulfide-based solid electrolyte, the technique disclosed herein. Is suitable as an object to which.

正極活物質層20は、正極活物質を含み、さらに固体電解質を含んでいてもよい。正極活物質は、電荷担体を可逆的に吸蔵および放出可能な材料である。正極活物質としては、例えば、1種または2種以上の金属元素と酸素元素とを含有する金属酸化物が好適に用いられ得る。金属酸化物は、リチウム元素と、1種または2種以上の遷移金属元素と、酸素元素とを含有する化合物であってもよい。金属酸化物の一好適例として、リチウムニッケル含有複合酸化物、リチウムコバルト含有複合酸化物、リチウムニッケルコバルト含有複合酸化物、リチウムマンガン含有複合酸化物、リチウムニッケルコバルトマンガン含有複合酸化物等のリチウム遷移金属複合酸化物が挙げられる。また、固体電解質としては、例えば上述したような硫化物系固体電解質等を好適に用いることができる。なお、正極活物質層20は、上記成分に加えて、必要に応じてそれ以外の成分、例えば、バインダ、導電材、各種添加剤等を含んでもよい。バインダとしては、固体電解質層30に含有し得るものとして例示したものの中から適宜選択して用いることができる。また、導電材としては、例えば、アセチレンブラック、ケッチェンブラック、カーボンファイバー等を好適に用いることができる。なお、正極の作製方法等は、従来公知のものを採用することができ、ここで開示される技術を限定するものではないため、詳細な説明を省略する。 The positive electrode active material layer 20 contains a positive electrode active material and may further contain a solid electrolyte. The positive electrode active material is a material capable of reversibly occluding and releasing charge carriers. As the positive electrode active material, for example, a metal oxide containing one or more kinds of metal elements and an oxygen element can be preferably used. The metal oxide may be a compound containing a lithium element, one or more kinds of transition metal elements, and an oxygen element. As a preferred example of the metal oxide, lithium transition such as lithium nickel-containing composite oxide, lithium cobalt-containing composite oxide, lithium nickel cobalt-containing composite oxide, lithium manganese-containing composite oxide, and lithium nickel cobalt manganese-containing composite oxide. Examples include metal composite oxides. Further, as the solid electrolyte, for example, the sulfide-based solid electrolyte as described above can be preferably used. In addition to the above components, the positive electrode active material layer 20 may contain other components, such as a binder, a conductive material, and various additives, if necessary. As the binder, it can be appropriately selected and used from those exemplified as those that can be contained in the solid electrolyte layer 30. Further, as the conductive material, for example, acetylene black, ketjen black, carbon fiber and the like can be preferably used. As the method for producing the positive electrode, a conventionally known method can be adopted, and the technique disclosed here is not limited, so detailed description thereof will be omitted.

(5)負極
負極40は、負極集電体42と、負極集電体42の表面に形成された負極活物質層44とを備えている。負極集電体42としては、電子導電性の良好な金属製のシートを好適に用いることができ、例えば、銅(Cu)、ニッケル(Ni)、チタン(Ti)、鉄(Fe)、およびこれらと他の元素との合金(例えばSUS鋼)、アルミニウム(Al)、等の金属箔が好適である。また、銅(Cu)、ニッケル(Ni)、チタン(Ti)、鉄(Fe)、およびこれらと他の元素との合金(例えばSUS鋼)等の金属箔は、硫化物系固体電解質の硫黄(S)成分と反応することで、電子伝導性物質を生成し得るため、ここに開示される技術を適応する対象として好適である。
(5) Negative electrode The negative electrode 40 includes a negative electrode current collector 42 and a negative electrode active material layer 44 formed on the surface of the negative electrode current collector 42. As the negative electrode current collector 42, a metal sheet having good electron conductivity can be preferably used, for example, copper (Cu), nickel (Ni), titanium (Ti), iron (Fe), and these. Metal foils such as alloys of and other elements (eg, SUS steel), aluminum (Al), etc. are suitable. Further, metal foils such as copper (Cu), nickel (Ni), titanium (Ti), iron (Fe), and alloys of these with other elements (for example, SUS steel) are made of sulfur (sulfur), which is a sulfide-based solid electrolyte. S) Since an electron conductive substance can be produced by reacting with a component, it is suitable as an object to which the technique disclosed herein is applied.

負極活物質層44は、負極活物質を含み、さらに固体電解質を含んでいてもよい。負極活物質は、電荷担体を可逆的に吸蔵および放出可能な材料である。負極活物質としては、例えば、ハードカーボン、グラファイト、ホウ素添加炭素等の炭素材料や、Al、Si、Ti、In、Sn等の金属材料、上記金属元素を含む金属化合物、金属酸化物、Li金属化合物、Li金属酸化物等が好適に用いられ得る。また、固体電解質としては、例えば上述したような硫化物系固体電解質等を好適に用いることができる。なお、負極活物質層44は、上記成分に加えて、必要に応じてそれ以外の成分、例えば、バインダ、導電材、各種添加剤等を含んでもよい。バインダとしては、固体電解質層30に含有し得るものとして例示したものの中から適宜選択して用いることができる。また、導電材としては、正極20に含有し得るものとして例示したものの中から適宜選択して用いることができる。なお、負極の作製方法等は、従来公知のものを採用することができ、ここで開示される技術を限定するものではないため、詳細な説明を省略する。 The negative electrode active material layer 44 contains a negative electrode active material, and may further contain a solid electrolyte. The negative electrode active material is a material capable of reversibly occluding and releasing charge carriers. Examples of the negative electrode active material include carbon materials such as hard carbon, graphite, and boron-added carbon, metal materials such as Al, Si, Ti, In, and Sn, metal compounds containing the above metal elements, metal oxides, and Li metals. Compounds, Li metal oxides and the like can be preferably used. Further, as the solid electrolyte, for example, the sulfide-based solid electrolyte as described above can be preferably used. In addition to the above components, the negative electrode active material layer 44 may contain other components, such as a binder, a conductive material, and various additives, if necessary. As the binder, it can be appropriately selected and used from those exemplified as those that can be contained in the solid electrolyte layer 30. Further, as the conductive material, it can be appropriately selected and used from those exemplified as those which can be contained in the positive electrode 20. As the method for manufacturing the negative electrode, a conventionally known method can be adopted, and the technique disclosed here is not limited, so detailed description thereof will be omitted.

(6)電池ケース
以上のようにして構成される発電要素(すなわち、積層電極体10)は、図示しない電池ケースに収容されて密閉されることで、意図しない水分の含有や酸化等による固体電解質材料の分解・劣化等が抑制されている。電池ケースの形態は限定されず、角型(直方体型)、ラミネートパック型のいずれであってもよく、その材質も、金属製、強化プラスチック製、金属箔と樹脂シートのラミネートシート等であってよい。特に限定されないが、電池ケースには、例えば電池ケースの内部と外部とを連通する正極外部接続端子および負極外部接続端子を設けることができ、これら正負の外部接続端子は、それぞれ正極集電体22および負極集電体42に電気的に接続することができる。これにより、発電要素から外部負荷に電力を取り出すことができる。
(6) Battery case The power generation element (that is, the laminated electrode body 10) configured as described above is housed in a battery case (not shown) and sealed, so that a solid electrolyte due to unintended water content, oxidation, etc. Decomposition / deterioration of the material is suppressed. The form of the battery case is not limited, and may be either a square type (rectangular parallelepiped type) or a laminated pack type, and the material thereof is metal, reinforced plastic, a laminated sheet of metal foil and a resin sheet, or the like. good. Although not particularly limited, the battery case may be provided with, for example, a positive electrode external connection terminal and a negative electrode external connection terminal that communicate the inside and the outside of the battery case, and each of these positive and negative external connection terminals is a positive electrode current collector 22. And can be electrically connected to the negative electrode current collector 42. As a result, electric power can be taken out from the power generation element to the external load.

(他の実施形態)
以上、ここで開示される技術の一実施形態について説明した。なお、上述の実施形態は、ここで開示される技術が適用される一例を示したものであり、ここで開示される技術を限定するものではない。
(Other embodiments)
The embodiment of the technique disclosed here has been described above. It should be noted that the above-described embodiment shows an example to which the technique disclosed here is applied, and does not limit the technique disclosed here.

例えば、上述した実施形態では、負極集電体延伸部60に末端積層部50を形成しているが、特に限定されず、正極集電体22の延伸部に末端積層体を形成してもよい。 For example, in the above-described embodiment, the terminal laminated body 50 is formed in the negative electrode current collector stretched portion 60, but the terminal laminated body may be formed in the stretched portion of the positive electrode current collector 22 without particular limitation. ..

また、上述した実施形態では、主要積層部80において、正極活物質層24と、固体電解質層30と、負極活物質層44とが対向した態様をとるが(図2を参照)、図3に示すように、固体電解質層30および負極活物質層44が、正極活物質層24との対向部分の端部よりも外方に張り出した態様をとってもよい。 Further, in the above-described embodiment, the positive electrode active material layer 24, the solid electrolyte layer 30, and the negative electrode active material layer 44 face each other in the main laminated portion 80 (see FIG. 2). As shown, the solid electrolyte layer 30 and the negative electrode active material layer 44 may project outward from the end of the portion facing the positive electrode active material layer 24.

以下、ここで開示される技術に関する実施例を説明するが、ここで開示される技術をかかる実施例に示すものに限定することを意図したものではない。 Hereinafter, examples relating to the techniques disclosed herein will be described, but the techniques disclosed herein are not intended to be limited to those shown in such examples.

<試験用全固体電池の製造>
以下に説明するプロセスにより、サンプル1〜14の計14種類の試験用全固体電池を製造した。ここで、サンプル1,3,5,7,9,11,13の試験用全固体電池が備える積層電極体は図2に示す構造が複数積層されたものである。また、サンプル2,4,6,8,10,12の試験用全固体電池が備える積層電極体は図4に示す構造が複数積層されたものである。そして、サンプル14の試験用全固体電池が備える積層電極体は図5に示す構造が複数積層されたものである。以下、各サンプルの試験用全固体電池が備える積層電極体の作製について、図2,図4,図5を適宜用いて説明する。なお、図4中の122,124,130,142,144,170はそれぞれ、図2中の22,24,30,42,44,70に対応している。また、図5中の222,224,230,242,244,260,270はそれぞれ、図2中の22,24,30,42,44,60,70に対応している。
<Manufacturing of all-solid-state batteries for testing>
A total of 14 types of test all-solid-state batteries, Samples 1 to 14, were manufactured by the process described below. Here, the laminated electrode body included in the test all-solid-state battery of the samples 1, 3, 5, 7, 9, 11, and 13 is a laminated electrode body having a plurality of structures shown in FIG. Further, the laminated electrode body included in the test all-solid-state battery of Samples 2, 4, 6, 8, 10 and 12 has a plurality of structures shown in FIG. 4 laminated. The laminated electrode body included in the test all-solid-state battery of the sample 14 is a laminated electrode body having a plurality of structures shown in FIG. Hereinafter, the production of the laminated electrode body included in the test all-solid-state battery of each sample will be described with reference to FIGS. 2, 4, and 5. Note that 122, 124, 130, 142, 144, 170 in FIG. 4 correspond to 22, 24, 30, 42, 44, 70 in FIG. 2, respectively. Further, 222,224,230,242,244,260,270 in FIG. 5 correspond to 22,24,30,42,44,60,70 in FIG. 2, respectively.

[サンプル1]
(正極スラリーの作製)
正極活物質としてコバルト酸リチウム(LiCoO)と、硫化物系固体電解質としてLiS−P(質量比;LiS:P=70:30)とを、重量比率が正極活物質:硫化物系固体電解質=75:25となるように秤量した。そして、正極活物質100重量部に対してPVdF系バインダを4重量部、導電材(アセチレンブラック)を6重量部秤量した。これらを酪酸ブチルに固形分70重量%となるように調合し、攪拌機で混練することにより、正極活物質層形成用の組成物(正極スラリー)を得た。
[Sample 1]
(Preparation of positive electrode slurry)
Lithium cobalt oxide (LiCoO 2 ) as the positive electrode active material and Li 2 SP 2 S 5 (mass ratio; Li 2 S: P 2 S 5 = 70: 30) as the sulfide-based solid electrolyte have a weight ratio of 70:30. The positive electrode active material was weighed so that the sulfide-based solid electrolyte = 75:25. Then, 4 parts by weight of the PVdF-based binder and 6 parts by weight of the conductive material (acetylene black) were weighed with respect to 100 parts by weight of the positive electrode active material. These were mixed with butyl butyrate so as to have a solid content of 70% by weight, and kneaded with a stirrer to obtain a composition (positive electrode slurry) for forming a positive electrode active material layer.

(負極スラリーの作製)
負極活物質としてカーボンと、硫化物系固体電解質としてLiS−P(質量比;LiS:P=70:30)とを、重量比率が負極活物質:硫化物系固体電解質=55:45となるように秤量した。そして、負極活物質100重量部に対してPVdF系バインダを6重量部、導電材(アセチレンブラック)を6重量部秤量した。これらを酪酸ブチルに固形分70重量%となるように調合し、攪拌機で混練することにより、負極活物質層形成用の組成物(負極スラリー)を得た。
(Preparation of negative electrode slurry)
Carbon as the negative electrode active material and Li 2 SP 2 S 5 (mass ratio; Li 2 S: P 2 S 5 = 70: 30) as the sulfide-based solid electrolyte, and the weight ratio is the negative electrode active material: sulfide. Weighed so that the system solid electrolyte = 55:45. Then, 6 parts by weight of the PVdF-based binder and 6 parts by weight of the conductive material (acetylene black) were weighed with respect to 100 parts by weight of the negative electrode active material. These were mixed with butyl butyrate so as to have a solid content of 70% by weight, and kneaded with a stirrer to obtain a composition (negative electrode slurry) for forming a negative electrode active material layer.

(固体電解質スラリーの作製)
上記正負極スラリーに使用したものと同様の硫化物系固体電解質98重量部、SBR系バインダを2重量部秤量した。これらを、ヘプタン溶媒中に固形分70重量%となるように調合し、超音波分散装置を用いて2分間超音波分散処理することにより、固体電解質層形成用の組成物(固体電解質スラリー)を得た。
(Preparation of solid electrolyte slurry)
98 parts by weight of a sulfide-based solid electrolyte and 2 parts by weight of an SBR-based binder similar to those used for the positive and negative electrode slurry were weighed. These are blended in a heptane solvent so as to have a solid content of 70% by weight, and ultrasonically dispersed for 2 minutes using an ultrasonic disperser to obtain a composition (solid electrolyte slurry) for forming a solid electrolyte layer. Obtained.

(積層電極体の作製)
上記正極スラリーをAl箔(正極集電体22)の片面に塗工し、乾燥させることで、正極活物質層24を形成した。次に、電子顕微鏡にて末端にバリ70が存在することが確認されたCu箔(負極集電体42)の片面でかつ負極集電体延伸部60を除いた部分に、上記負極スラリーを塗工し、乾燥させることで、負極活物質層44を形成した。続いて、上記固体電解質スラリーを負極活物質層44に塗工し、乾燥させることで、固体電解質層30を形成した。そして、正極活物質層24と負極活物質層44との間に、固体電解質層30が配置されるように積層することで、主要積層部80を作製した。
次に、負極集電体延伸部60の末端に、負極集電体露出部分62を残しつつ、上記負極スラリーを塗工し、乾燥させることで、負極活物質層44を形成した。続いて、かかる負極活物質層上に、上記固体電解質スラリーを塗工し、乾燥させることで、固体電解質層30を形成した。このようにして、負極集電体延伸部60の末端に、末端積層部50を作製した。
そして、かかる積層体を60個作製し、負極集電体42どうし(または、正極集電体22どうし)を張り合わせて重ねることにより、積層電極体を得た。
(Manufacturing of laminated electrode body)
The positive electrode slurry was applied to one side of the Al foil (positive electrode current collector 22) and dried to form the positive electrode active material layer 24. Next, the negative electrode slurry is applied to one side of the Cu foil (negative electrode current collector 42) whose end is confirmed to have burrs 70 by an electron microscope and on a portion excluding the negative electrode current collector stretched portion 60. By working and drying, the negative electrode active material layer 44 was formed. Subsequently, the solid electrolyte slurry was applied to the negative electrode active material layer 44 and dried to form the solid electrolyte layer 30. Then, the main laminated portion 80 was produced by laminating the solid electrolyte layer 30 so as to be arranged between the positive electrode active material layer 24 and the negative electrode active material layer 44.
Next, the negative electrode current collector layer 44 was formed by applying and drying the negative electrode slurry while leaving the negative electrode current collector exposed portion 62 at the end of the negative electrode current collector extending portion 60. Subsequently, the solid electrolyte slurry was applied onto the negative electrode active material layer and dried to form the solid electrolyte layer 30. In this way, the terminal laminated portion 50 was produced at the end of the negative electrode current collector extending portion 60.
Then, 60 such laminated bodies were produced, and the negative electrode current collectors 42 (or the positive electrode current collectors 22) were laminated and stacked to obtain a laminated electrode body.

(試験用全固体電池の作製)
上記のとおり作製した積層電極体を、予め正負極端子が付設されたアルミニウム製のラミネートフィルムからなる筐体で密閉することで、サンプル1の試験用全固体電池を得た。
(Making a test all-solid-state battery)
The laminated electrode body produced as described above was sealed in a housing made of an aluminum laminated film to which positive and negative terminal terminals were previously attached to obtain a test all-solid-state battery of Sample 1.

[サンプル2]
負極集電体142に負極集電体露出部分を形成しなかった以外は、サンプル1と同様の材料および工程により、サンプル2の試験用全固体電池を作製した。
[Sample 2]
The test all-solid-state battery of sample 2 was produced by the same materials and processes as in sample 1 except that the negative electrode current collector 142 did not form an exposed portion of the negative electrode current collector.

[サンプル3,5,7,9,11,13]
負極集電体の種類を表1に示すように変更した以外は、サンプル1と同様の材料および工程により、サンプル3,5,7,9,11の試験用全固体電池を作製した。なお、サンプル13は、サンプル1と同様の材料および工程により作製されたものであり、後述する振動試験用に作成されたものである。
[Samples 3, 5, 7, 9, 11, 13]
The test all-solid-state batteries of Samples 3, 5, 7, 9, and 11 were prepared by the same materials and processes as those of Sample 1, except that the types of the negative electrode current collectors were changed as shown in Table 1. The sample 13 is made by the same material and process as the sample 1, and is made for a vibration test described later.

[サンプル4,6,8,10,12]
負極集電体の種類を表1に示すように変更した以外は、サンプル2と同様の材料および工程により、サンプル4,6,8,10,12の試験用全固体電池を作製した。
[Samples 4, 6, 8, 10, 12]
The test all-solid-state batteries of Samples 4, 6, 8, 10, and 12 were prepared by the same materials and processes as in Sample 2, except that the type of the negative electrode current collector was changed as shown in Table 1.

[サンプル14]
負極集電体延伸部260の末端に末端積層部を形成しなかった以外は、サンプル1と同様の材料および工程により、サンプル14の試験用全固体電池を作製した。
[Sample 14]
A test all-solid-state battery of sample 14 was produced by the same materials and steps as in sample 1 except that the terminal laminated portion was not formed at the end of the negative electrode current collector stretched portion 260.

<サンプル1〜12を用いた抵抗測定試験>
サンプル1〜12の全固体電池について初回充放電を行った後、抵抗測定を実施した。
具体的には、サンプル1〜12の全固体電池を5MPaで電極体の積層方向に定寸拘束した後、以下の条件で初回充放電を行った。かかる充電は、4.2V−CCCV充電、電流レート25A、2A電流カットとし、放電は、CC3.0Vカット、電流レート25Aとした。そして、初回で得られた放電容量の90%の容量を充電した後、デジタルマルチメータを用いて全固体電池の開回路での抵抗を測定した。
続いて、サンプル1〜12の全固体電池を、1Cの電流値でSOC90%になるまで充電した後、120℃で30日間保存した。そして、デジタルマルチメータを用いて30日間保存された全固体電池の開回路での抵抗を測定した。
保存前後の抵抗値を表1の該当欄に示した。また、表1の<判定>に記載の記号は、保存後抵抗値の値が、保存前抵抗値と比較して以下のとおりであったことを示すものとする。
×:保存後抵抗値が、保存前抵抗値の80%未満である。
〇:保存後抵抗値が、保存前抵抗値の80%以上である。
<Resistance measurement test using samples 1 to 12>
After the first charge and discharge of the all-solid-state batteries of Samples 1 to 12, resistance measurement was performed.
Specifically, the all-solid-state batteries of Samples 1 to 12 were constrained to a fixed size in the stacking direction of the electrode body at 5 MPa, and then charged and discharged for the first time under the following conditions. The charging was 4.2V-CCCV charging and current rate 25A and 2A current cut, and the discharge was CC3.0V cut and current rate 25A. Then, after charging 90% of the discharge capacity obtained at the first time, the resistance of the all-solid-state battery in the open circuit was measured using a digital multimeter.
Subsequently, the all-solid-state batteries of Samples 1 to 12 were charged at a current value of 1 C until the SOC reached 90%, and then stored at 120 ° C. for 30 days. Then, the resistance in the open circuit of the all-solid-state battery stored for 30 days was measured using a digital multimeter.
The resistance values before and after storage are shown in the corresponding columns of Table 1. Further, the symbols described in <Judgment> in Table 1 indicate that the value of the resistance value after storage was as follows as compared with the resistance value before storage.
X: The resistance value after storage is less than 80% of the resistance value before storage.
〇: The resistance value after storage is 80% or more of the resistance value before storage.

Figure 2021190390
Figure 2021190390

<サンプル13,14を用いた振動試験>
サンプル13,14の試験用全固体電池について上記初回充電と同様の条件で4.1Vまで充電し、振動試験機により7Hz、200Hz、7Hzで各々15分間、12回、3方向(上下・左右・前後)の振動を加えた後、電流値を測定した。かかる試験前後における電圧値を表2の該当欄に示した。また、表2の<判定>に記載の記号は、振動試験後の電圧値が以下のとおりであったことを示すものとする。
×:振動試験後の電圧値が、振動試験前の電圧値の90%未満である。
〇:振動試験後の電圧値が、振動試験前の電圧値の90%以上である。
<Vibration test using samples 13 and 14>
The test all-solid-state batteries of samples 13 and 14 are charged to 4.1 V under the same conditions as the above initial charge, and the vibration tester is used for 15 minutes at 7 Hz, 200 Hz, and 7 Hz, respectively, 12 times in 3 directions (up / down / left / right /). After applying vibration (before and after), the current value was measured. The voltage values before and after this test are shown in the corresponding columns of Table 2. Further, the symbols described in <Judgment> in Table 2 indicate that the voltage values after the vibration test were as follows.
X: The voltage value after the vibration test is less than 90% of the voltage value before the vibration test.
〇: The voltage value after the vibration test is 90% or more of the voltage value before the vibration test.

Figure 2021190390
Figure 2021190390

表1に示す結果から明らかなように、Al箔以外の負極集電体を有するサンプルのうち、図2に示すような構造を有する積層電極体を備えたサンプル3,5,7,9,11では、図4に示すような構造を有する積層電極体を備えたサンプル4,6,8,10,12と比較して、保存前後の抵抗値の変化が少ない(ここでは、保存後抵抗値が、保存前抵抗値の±20%の範囲内である)ことが分かった。特に限定解釈されるものではないが、Al以外の負極集電体(ここでは、Cu、Ni、Ti、Fe、SUS)と硫化物系固体電解質の硫黄(S)成分とが反応することで電子伝導性物質が生成し、該電子伝導性物質は負極集電体のバリの頂点を起点として拡散する。そして、サンプル3,5,7,9,11では、上記電子伝導性物質がバリから拡散しても正極集電体に至ることがないため短絡が抑制される。一方、サンプル4,6,8,10,12では、上記電子伝導性物質がバリから拡散して正極集電体に至るため、短絡が起こると考えられ得る。 As is clear from the results shown in Table 1, among the samples having a negative electrode current collector other than the Al foil, the samples 3, 5, 7, 9, 11 having the laminated electrode body having the structure as shown in FIG. 2 Then, the change in the resistance value before and after storage is small as compared with the samples 4, 6, 8, 10 and 12 provided with the laminated electrode body having the structure as shown in FIG. 4 (here, the resistance value after storage is small). , It is within the range of ± 20% of the resistance value before storage). Although not particularly limited, the reaction between the negative electrode current collector other than Al (here, Cu, Ni, Ti, Fe, SUS) and the sulfur (S) component of the sulfide-based solid electrolyte causes electrons. A conductive substance is generated, and the electron conductive substance diffuses from the apex of the burr of the negative electrode current collector. In Samples 3, 5, 7, 9, and 11, even if the electron conductive substance diffuses from the burr, it does not reach the positive electrode current collector, so that a short circuit is suppressed. On the other hand, in samples 4, 6, 8, 10, and 12, it can be considered that a short circuit occurs because the electron conductive substance diffuses from the burr and reaches the positive electrode current collector.

また、表2に示す結果から明らかなように、図2に示すような構造を有する積層電極体を備えたサンプル13は、図5に示すような構造を有する積層電極体を備えたサンプル14と比較して、振動試験前後の電圧低下が少ない(ここでは、振動試験後の電圧値が、振動試験前の電圧値の90%以上である)ことが確認された。特に限定解釈されるものではないが、サンプル14では、負極集電体が有するバリと正極集電体とが接触し易いため短絡が起こるが、サンプル13では、上記バリを覆うようにして末端積層部が形成されているため、このような短絡が起こりにくいと考えられ得る。 Further, as is clear from the results shown in Table 2, the sample 13 having the laminated electrode body having the structure as shown in FIG. 2 is the sample 14 having the laminated electrode body having the structure as shown in FIG. In comparison, it was confirmed that the voltage drop before and after the vibration test was small (here, the voltage value after the vibration test was 90% or more of the voltage value before the vibration test). Although not particularly limited, in sample 14, a short circuit occurs because the burr of the negative electrode current collector and the positive electrode current collector are likely to come into contact with each other, but in sample 13, the ends are laminated so as to cover the burr. Since the portion is formed, it can be considered that such a short circuit is unlikely to occur.

以上、本発明を詳細に説明したが、上述の説明は例示にすぎない。すなわち、ここで開示される技術には上述した具体例を様々に変形、変更したものが含まれる。 The present invention has been described in detail above, but the above description is merely an example. That is, the techniques disclosed herein include various modifications and changes of the above-mentioned specific examples.

1 全固体電池
10 積層電極体
20 正極
22 正極集電体
24 正極活物質層
30 固体電解質層
40 負極
42 負極集電体
44 負極活物質層
50 末端積層部
60 負極集電体延伸部
62 負極集電体露出部分
70 バリ
80 主要積層部
122 正極集電体
124 正極活物質層
130 固体電解質層
142 負極集電体
144 負極活物質層
170 バリ
222 正極集電体
224 正極活物質層
230 固体電解質層
242 負極集電体
244 負極活物質層
260 負極集電体露出部分
270 バリ

1 All-solid-state battery 10 Laminated electrode body 20 Positive electrode 22 Positive electrode current collector 24 Positive electrode active material layer 30 Solid electrolyte layer 40 Negative electrode 42 Negative electrode current collector 44 Negative electrode active material layer 50 End laminated part 60 Negative electrode current collector extension part 62 Negative electrode collection Electric body exposed part 70 Bali 80 Main laminated part 122 Positive electrode current collector 124 Positive electrode active material layer 130 Solid electrolyte layer 142 Negative electrode current collector 144 Negative electrode active material layer 170 Bali 222 Positive electrode current collector 224 Positive electrode active material layer 230 Solid electrolyte layer 242 Negative electrode current collector 244 Negative electrode active material layer 260 Negative electrode current collector Exposed part 270 Bali

Claims (1)

正極集電体と、該正極集電体上に形成された正極活物質層とを含む正極と、
負極集電体と、該負極集電体上に形成された負極活物質層とを含む負極とが、
固体電解質層を介して積層された積層電極体を備えた全固体電池であって、
固体電解質として硫化物系固体電解質を含み、
前記積層電極体は、
前記正極活物質層と前記負極活物質層とが、前記固体電解質層を介して積層された主要積層部と、
該主要積層部から延伸する正負極いずれかの集電体延伸部と、
該集電体延伸部の末端に形成された積層部であって、前記主要積層部との間に、当該集電体延伸部が露出した集電体露出部分を設けて形成された末端積層部と、
を備えており、
ここで、前記末端積層部は、前記集電体延伸部と同極の活物質層と、固体電解質層とがこの順に積層されて形成されており、対極側の活物質層および対極側の集電体を含まないことを特徴とする、全固体電池。

A positive electrode including a positive electrode current collector and a positive electrode active material layer formed on the positive electrode current collector,
The negative electrode including the negative electrode current collector and the negative electrode active material layer formed on the negative electrode current collector
An all-solid-state battery having a laminated electrode body laminated via a solid electrolyte layer.
Includes sulfide-based solid electrolyte as solid electrolyte,
The laminated electrode body is
A main laminated portion in which the positive electrode active material layer and the negative electrode active material layer are laminated via the solid electrolyte layer, and
A current collector stretched portion extending from either the positive or negative electrode extending from the main laminated portion,
A laminated portion formed at the end of the current collector stretched portion, the end laminated portion formed by providing an exposed current collector exposed portion between the main laminated portion and the current collector stretched portion. When,
Equipped with
Here, the terminal laminated portion is formed by laminating an active material layer having the same electrode as the current collector stretched portion and a solid electrolyte layer in this order, and the active material layer on the counter electrode side and the collection on the counter electrode side. An all-solid-state battery characterized by not containing an electric body.

JP2020097428A 2020-06-04 2020-06-04 All-solid battery Active JP7324406B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020097428A JP7324406B2 (en) 2020-06-04 2020-06-04 All-solid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020097428A JP7324406B2 (en) 2020-06-04 2020-06-04 All-solid battery

Publications (2)

Publication Number Publication Date
JP2021190390A true JP2021190390A (en) 2021-12-13
JP7324406B2 JP7324406B2 (en) 2023-08-10

Family

ID=78847322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020097428A Active JP7324406B2 (en) 2020-06-04 2020-06-04 All-solid battery

Country Status (1)

Country Link
JP (1) JP7324406B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018206727A (en) * 2017-06-09 2018-12-27 株式会社Soken All-solid battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018206727A (en) * 2017-06-09 2018-12-27 株式会社Soken All-solid battery

Also Published As

Publication number Publication date
JP7324406B2 (en) 2023-08-10

Similar Documents

Publication Publication Date Title
JP6123642B2 (en) All-solid battery charging system
JP5765349B2 (en) All-solid battery and method for manufacturing the same
KR101716995B1 (en) All-solid battery and method for manufacturing the same
US11430994B2 (en) Protective coatings for lithium metal electrodes
CN111799440B (en) Nonaqueous electrolyte secondary battery
CN110416598B (en) All-solid-state battery and method for manufacturing same
JP5806335B2 (en) Electrode body and manufacturing method thereof
CN110416630B (en) All-solid-state battery
CN106025169B (en) Electric storage element
JP2014086226A (en) All-solid-state battery system
JP2007165074A (en) Lithium secondary battery, electric vehicle using it, and power tool
JP5668608B2 (en) Manufacturing method of all solid state battery
JP2005317469A (en) Cathode for lithium-ion secondary battery, and lithium-ion secondary battery using cathode
JP7246196B2 (en) All-solid lithium secondary battery
JP2021072262A (en) All-solid battery
JP7324406B2 (en) All-solid battery
CN111799441B (en) Nonaqueous electrolyte secondary battery
JP2014102982A (en) All-solid-state battery and manufacturing method for the same
JP2021044106A (en) All-solid battery
JP2005019116A (en) Electrochemical cell
JP5481325B2 (en) Lithium ion secondary battery and method for evaluating physical properties thereof
US20220407120A1 (en) Battery
JP7505182B2 (en) Charging device and charging method
JP7279632B2 (en) All-solid battery
JP2021131966A (en) All-solid lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220809

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230413

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230607

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230629

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230712

R151 Written notification of patent or utility model registration

Ref document number: 7324406

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151