JP2021188982A - Gas concentration flow rate measuring device and oxygen concentrator - Google Patents

Gas concentration flow rate measuring device and oxygen concentrator Download PDF

Info

Publication number
JP2021188982A
JP2021188982A JP2020093012A JP2020093012A JP2021188982A JP 2021188982 A JP2021188982 A JP 2021188982A JP 2020093012 A JP2020093012 A JP 2020093012A JP 2020093012 A JP2020093012 A JP 2020093012A JP 2021188982 A JP2021188982 A JP 2021188982A
Authority
JP
Japan
Prior art keywords
flow path
gas
solenoid valve
flow rate
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020093012A
Other languages
Japanese (ja)
Other versions
JP7481907B2 (en
Inventor
茂 本多
Shigeru Honda
巌 溝田
Iwao Mizota
喜弘 上山
Yoshihiro Kamiyama
雅彦 竹内
Masahiko Takeuchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BREATH TECHNOLOGY CO Ltd
Original Assignee
BREATH TECHNOLOGY CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BREATH TECHNOLOGY CO Ltd filed Critical BREATH TECHNOLOGY CO Ltd
Priority to JP2020093012A priority Critical patent/JP7481907B2/en
Publication of JP2021188982A publication Critical patent/JP2021188982A/en
Application granted granted Critical
Publication of JP7481907B2 publication Critical patent/JP7481907B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

To provide a gas concentration flow rate measuring device, etc., with which it is possible to compacting the size while securing measurement accuracy.SOLUTION: The gas concentration flow rate measuring device comprises: a measurement unit 20 for forming a measurement path in which a gas circulates; a pair of ultrasonic sensors 60 arranged upstream and downstream of the measurement path, respectively; a proportional valve 80 for adjusting the flow rate of a gas circulating in the measurement path; a temperature sensor 30 for measuring the temperature of the gas circulating in the measurement path; a computation control device for calculating the flow rate of a gas and the concentration of a specific component in the gas; and a device board 50 having a device board pattern for at least electrically connecting the proportional valve 80 and the ultrasonic sensor 60 and supporting the proportional valve 80 and the measurement unit 20. The proportional valve 80 is mounted on the device board 50, and open holes 54 penetrating the device board 50 in the thickness direction are formed around the proportional valve 80.SELECTED DRAWING: Figure 6

Description

本発明は、ガスの濃度および流量を測定するガス濃度流量測定装置、およびガス濃度流量測定装置を組み込んだ酸素濃縮装置に関する。 The present invention relates to a gas concentration flow rate measuring device for measuring a gas concentration and a flow rate, and an oxygen concentrating device incorporating a gas concentration flow rate measuring device.

従来、特許文献1に記載されているようにガスの流通する測定管に超音波送受信器を対向して配置して、ガスの流量および濃度を計測する超音波式のガス濃度流量測定装置が知られている。 Conventionally, as described in Patent Document 1, an ultrasonic type gas concentration flow rate measuring device for measuring the flow rate and concentration of gas by arranging an ultrasonic transmitter / receiver facing each other in a measuring tube through which gas flows has been known. Has been done.

このようなガス濃度流量測定装置は酸素濃縮装置にも使用されている。特許文献2に示すように酸素濃縮装置は、例えば空気を圧縮した後に空気中の窒素を取り除き、高濃度の酸素を生成する装置である。なお酸素濃縮装置は、例えば呼吸不全等の理由により在宅で酸素を補給しなければならない患者に対して酸素を供給するために用いられる装置である。 Such a gas concentration flow rate measuring device is also used in an oxygen concentrator. As shown in Patent Document 2, the oxygen concentrator is, for example, a device that removes nitrogen in the air after compressing the air to generate a high concentration of oxygen. The oxygen concentrator is a device used to supply oxygen to a patient who must be supplemented with oxygen at home due to, for example, respiratory failure.

特許6305209号公報Japanese Patent No. 6305209 特許5499265号公報Japanese Patent No. 5499265

ところで、特許文献2に記載の酸素濃縮装置には酸素の流量を調整するバルブが設けられている。例えばこのバルブが電磁弁である場合には、バルブからは熱が発生する。現状ではガス濃度流量測定装置のコンパクト化を図りたいとの要望があるが、装置のコンパクト化を図ることによりバルブと測定管との距離が近接してしまい、バルブからの発熱によって測定管内のガスの温度が変化し、ガスの流量および濃度の計測結果に影響を及ぼしてしまう可能性がある。 By the way, the oxygen concentrator described in Patent Document 2 is provided with a valve for adjusting the flow rate of oxygen. For example, if this valve is a solenoid valve, heat is generated from the valve. At present, there is a request to make the gas concentration flow rate measuring device compact, but by making the device compact, the distance between the valve and the measuring tube becomes close, and the gas in the measuring tube due to the heat generated from the valve. The temperature of the gas may change, which may affect the measurement results of gas flow rate and concentration.

そこで本発明は、測定精度を確保しつつ、コンパクト化が可能なガス濃度流量測定装置等を提供する。 Therefore, the present invention provides a gas concentration flow rate measuring device or the like that can be made compact while ensuring measurement accuracy.

本発明の一態様に係るガス濃度流量測定装置は、ガスが流通する測定流路を形成する測定部と、前記測定流路における上流側および下流側にそれぞれ配置された一対の超音波センサと、前記測定流路を流通する前記ガスの流量を調整する電磁弁装置と、前記測定流路を流通する前記ガスの温度を測定する温度センサと、一方の前記超音波センサから発信された超音波の伝搬速度と、他方の前記超音波センサから発信された超音波の伝搬速度との差分に基づいて前記ガスの流量を算出するとともに、前記ガスの流量および前記超音波の伝搬速度から前記超音波の音速を算出し、前記音速と前記ガスの温度と前記ガスの成分とに基づいて前記ガス中の特定の成分の濃度を算出する演算制御装置と、少なくとも前記電磁弁装置および前記超音波センサを電気的に接続する装置基板パターンを有するとともに、前記電磁弁装置および前記測定部を支持する装置基板と、を備え、前記電磁弁装置は前記装置基板上に載置され、前記電磁弁装置の周囲には、前記装置基板を厚さ方向に貫通する貫通孔が形成されている。 The gas concentration flow rate measuring device according to one aspect of the present invention includes a measuring unit that forms a measuring flow path through which gas flows, a pair of ultrasonic sensors arranged on the upstream side and the downstream side of the measuring flow path, respectively. An electromagnetic valve device that adjusts the flow rate of the gas flowing through the measurement flow path, a temperature sensor that measures the temperature of the gas flowing through the measurement flow path, and an ultrasonic wave transmitted from one of the ultrasonic sensors. The flow rate of the gas is calculated based on the difference between the propagation velocity and the propagation velocity of the ultrasonic wave transmitted from the other ultrasonic sensor, and the flow rate of the gas and the propagation velocity of the ultrasonic wave are used to determine the flow rate of the ultrasonic wave. An arithmetic control device that calculates the speed of sound and calculates the concentration of a specific component in the gas based on the speed of sound, the temperature of the gas, and the component of the gas, and at least the electromagnetic valve device and the ultrasonic sensor are electrically operated. The electromagnetic valve device is provided with a device board pattern for connecting the electromagnetic valve device and a device board for supporting the measuring unit, and the electromagnetic valve device is mounted on the device board and around the electromagnetic valve device. Is formed with a through hole penetrating the device substrate in the thickness direction.

また上記ガス濃度流量測定装置では、前記貫通孔はスリット状をなしていてもよい。 Further, in the gas concentration flow rate measuring device, the through hole may have a slit shape.

また上記ガス濃度流量測定装置では、前記測定部は、前記測定流路を形成して前記装置基板の表面に沿う面縦方向に延びる流路形成部を有し、前記電磁弁装置と前記流路形成部とは、前記装置基板の表面に沿って前記面縦方向に直交する面横方向に離れた位置で、前記装置基板の表面上に設けられ、前記装置基板には前記貫通孔として、前記面横方向に前記流路形成部と前記電磁弁装置との間に配置されて前記面縦方向に延びる縦スリットが形成されていてもよい。 Further, in the gas concentration flow rate measuring device, the measuring section has a flow path forming section that forms the measuring flow path and extends in the vertical direction of the surface along the surface of the device substrate, and the solenoid valve device and the flow path. The forming portion is provided on the surface of the device board at a position separated from the surface of the device board in the lateral direction perpendicular to the surface direction, and is provided as a through hole in the device board. A vertical slit that is arranged between the flow path forming portion and the solenoid valve device in the lateral direction of the surface and extends in the vertical direction of the surface may be formed.

また上記ガス濃度流量測定装置では、前記測定部は、前記測定流路を形成して前記装置基板の表面に沿う面縦方向に延びる流路形成部を有し、前記電磁弁装置と前記流路形成部とは、前記装置基板の表面に沿って前記面縦方向に直交する面横方向に離れた位置で、前記装置基板の表面上に設けられ、前記装置基板には前記貫通孔として、前記面横方向に延びるとともに前記面縦方向に間隔をあけて配置された複数の横スリットが形成され、前記横スリットは前記電磁弁装置の前記面縦方向の両外側に配置されていてもよい。 Further, in the gas concentration flow rate measuring device, the measuring section has a flow path forming section that forms the measuring flow path and extends in the vertical direction of the surface along the surface of the device substrate, and the solenoid valve device and the flow path. The forming portion is provided on the surface of the device board at a position separated from the surface of the device board in the lateral direction perpendicular to the surface direction, and is provided as a through hole in the device board. A plurality of horizontal slits extending in the horizontal direction of the surface and arranged at intervals in the vertical direction of the surface may be formed, and the horizontal slits may be arranged on both outer sides of the solenoid valve device in the vertical direction of the surface.

また上記ガス濃度流量測定装置では、前記測定部は、前記測定流路を形成して前記装置基板の表面に沿う面縦方向に延びる流路形成部を有し、前記電磁弁装置と前記流路形成部とは、前記装置基板の表面に沿って前記面縦方向に直交する面横方向に離れた位置で、前記装置基板の表面上に設けられ、前記装置基板には、前記面横方向に前記流路形成部と前記電磁弁装置との間に配置されて前記面縦方向に延びる縦スリット、および、前記面横方向に延びるとともに前記面縦方向に間隔をあけて配置された複数の横スリットが前記貫通孔として形成され、前記横スリットは前記電磁弁装置の前記面縦方向の両外側に配置され、前記縦スリットは前記装置基板の端縁に対して前記面横方向に離れた位置に設けられ、前記縦スリット、前記横スリット、および前記縁部は前記電磁弁装置を囲むように配置されていてもよい。 Further, in the gas concentration flow rate measuring device, the measuring section has a flow path forming section that forms the measuring flow path and extends in the vertical direction of the surface along the surface of the device substrate, and is the solenoid valve device and the flow path. The forming portion is provided on the surface of the device board at a position separated in the horizontal direction of the surface orthogonal to the vertical direction of the surface along the surface of the device board, and is provided on the surface of the device board in the horizontal direction of the surface. A vertical slit arranged between the flow path forming portion and the solenoid valve device and extending in the vertical direction of the surface, and a plurality of horizontal slits extending in the horizontal direction of the surface and arranged at intervals in the vertical direction of the surface. The slits are formed as the through holes, the horizontal slits are arranged on both outer sides of the solenoid valve device in the vertical direction of the surface, and the vertical slits are located at positions separated from the edge of the device substrate in the horizontal direction of the surface. The vertical slit, the horizontal slit, and the edge portion may be arranged so as to surround the solenoid valve device.

また上記ガス濃度流量測定装置では、前記流路形成部における前記面横方向の幅寸法に対して、前記流路形成部と前記電磁弁装置との前記面横方向の距離が2.0倍以上になっていてもよい。 Further, in the gas concentration flow rate measuring device, the distance between the flow path forming portion and the solenoid valve device in the lateral direction of the surface is 2.0 times or more the width dimension of the flow path forming portion in the lateral direction of the surface. It may be.

また上記ガス濃度流量測定装置では、前記流路形成部における前記面横方向の幅寸法に対して、前記流路形成部と前記電磁弁装置との前記面横方向の距離が3.0倍以下になっていてもよい。 Further, in the gas concentration flow rate measuring device, the distance between the flow path forming portion and the solenoid valve device in the lateral direction of the surface is 3.0 times or less with respect to the width dimension in the lateral direction of the surface of the flow path forming portion. It may be.

また上記ガス濃度流量測定装置は、前記電磁弁装置と前記測定部とを接続し、前記電磁弁装置と前記測定流路との間で前記ガスを流通させる接続流路が形成された接続部をさらに備え、前記測定部は前記測定流路を形成して前記装置基板の表面に沿う面縦方向に延びる流路形成部を有し、前記電磁弁装置と前記流路形成部とは、前記装置基板の表面に沿って前記面縦方向に直交する面横方向に離れた位置で、前記装置基板の表面上に設けられ、
前記接続部には前記接続流路として、前記電磁弁装置から前記面縦方向に延びる縦流路、前記縦流路に連通して湾曲する曲がり流路、および前記曲がり流路に連通して前記面横方向に延びて前記測定流路に連通している横流路が形成されていてもよい。
Further, the gas concentration flow rate measuring device connects the solenoid valve device and the measuring section, and has a connecting section in which a connecting flow path for flowing the gas is formed between the solenoid valve device and the measuring flow path. Further provided, the measuring unit has a flow path forming portion that forms the measuring flow path and extends in the vertical direction along the surface of the device substrate, and the solenoid valve device and the flow path forming section are the device. It is provided on the surface of the apparatus substrate at a position separated in the horizontal direction of the plane orthogonal to the vertical direction of the plane along the surface of the substrate.
As the connection flow path, the connection portion is connected to a vertical flow path extending in the vertical direction of the surface from the solenoid valve device, a curved flow path communicating with the vertical flow path, and communicating with the curved flow path. A lateral flow path extending in the lateral direction of the surface and communicating with the measurement flow path may be formed.

また上記ガス濃度流量測定装置では、前記接続部は可撓性を有するチューブによって形成されていてもよい。 Further, in the gas concentration flow rate measuring device, the connection portion may be formed of a flexible tube.

また上記ガス濃度流量測定装置では、前記電磁弁装置には、前記ガスが流入する入口部、および前記ガスが流出する出口部が設けられ、前記出口部は、前記入口部に対して前記面横方向に前記電磁弁装置および前記流路形成部から離れる側に設けられ、前記接続部は前記出口部に接続されるとともに、前記測定流路における上流側で前記測定部に接続され、前記ガスを前記電磁弁装置から前記測定流路に流入可能としてもよい。 Further, in the gas concentration flow rate measuring device, the solenoid valve device is provided with an inlet portion into which the gas flows in and an outlet portion in which the gas flows out, and the outlet portion is lateral to the inlet portion. It is provided on the side away from the solenoid valve device and the flow path forming portion in the direction, and the connecting portion is connected to the outlet portion and is connected to the measuring portion on the upstream side of the measuring flow path to supply the gas. It may be possible to flow from the solenoid valve device into the measurement flow path.

また上記ガス濃度流量測定装置では、前記電磁弁装置には、前記ガスが流入する入口部、および前記ガスが流出する出口部が設けられ、前記入口部は、前記出口部に対して前記面横方向に前記電磁弁装置および前記流路形成部から離れる側に設けられ、前記接続部は前記入口部に接続されるとともに、前記測定流路における下流側で前記測定部に接続され、前記ガスを前記測定流路から前記電磁弁装置に流入可能としていてもよい。 Further, in the gas concentration flow rate measuring device, the solenoid valve device is provided with an inlet portion into which the gas flows in and an outlet portion in which the gas flows out, and the inlet portion is lateral to the outlet portion. It is provided on the side away from the solenoid valve device and the flow path forming portion in the direction, the connection portion is connected to the inlet portion, and is connected to the measurement portion on the downstream side of the measurement flow path to supply the gas. It may be possible to flow into the solenoid valve device from the measurement flow path.

また上記ガス濃度流量測定装置では、前記接続部は、前記縦流路が内側に形成されて前記面縦方向に延びる縦筒部を有し、前記流路形成部と前記電磁弁装置との前記面横方向の距離に対して、前記流路形成部と前記縦筒部との前記面横方向の距離が1.5倍以上となっていてもよい。 Further, in the gas concentration flow rate measuring device, the connection portion has a vertical cylinder portion in which the vertical flow path is formed inside and extends in the vertical direction of the surface, and the flow path forming portion and the solenoid valve device are described. The distance between the flow path forming portion and the vertical cylinder portion in the lateral direction of the surface may be 1.5 times or more the distance in the lateral direction of the surface.

また本発明の一態様に係る酸素濃縮装置は、前記ガスとしての酸素含有ガス中の酸素濃度、および前記酸素含有ガスの流量を測定する上記のガス濃度流量測定装置と、前記ガス濃度流量測定装置を組み込んだ濃縮装置本体と、を備えている。 Further, the oxygen concentrator according to one aspect of the present invention includes the gas concentration flow rate measuring device for measuring the oxygen concentration in the oxygen-containing gas as the gas and the flow rate of the oxygen-containing gas, and the gas concentration flow rate measuring device. It is equipped with a concentrator body that incorporates.

上記のガス濃度流量測定装置等によれば、測定精度を確保しつつ、コンパクト化が可能である。 According to the above-mentioned gas concentration flow rate measuring device or the like, it is possible to make it compact while ensuring measurement accuracy.

本発明の実施形態に係る酸素濃縮装置の全体図である。It is an overall view of the oxygen concentrator which concerns on embodiment of this invention. 上記酸素濃縮装置の構成を示すブロック図である。It is a block diagram which shows the structure of the said oxygen concentrator. 上記酸素濃縮装置におけるガス濃度流量測定装置のブロック図である。It is a block diagram of the gas concentration flow rate measuring apparatus in the said oxygen concentrator. 上記酸素濃縮装置におけるガス濃度流量測定装置の全体斜視図である。It is an overall perspective view of the gas concentration flow rate measuring apparatus in the said oxygen concentrator. 上記酸素濃縮装置におけるガス濃度流量測定装置の全体斜視図であって、構成部品に分解して示す図である。It is an overall perspective view of the gas concentration flow rate measuring device in the said oxygen concentrator, and is the figure which shows by disassembling into the component parts. 上記ガス濃度流量測定装置における装置基板を表面から見た上面図である。It is a top view which looked at the apparatus substrate in the said gas concentration flow rate measuring apparatus from the surface. 上記ガス濃度流量測定装置における接続部を拡大して示す斜視図である。It is a perspective view which shows the connection part in the said gas concentration flow rate measuring apparatus in an enlarged manner.

以下、本発明の実施形態について図面を参照しながら詳細に説明する。
(全体構成)
図1および図2に示すように、本実施形態の酸素濃縮装置1は、患者に酸素を供給する装置であり、外部から取り込んだ空気Aを濃縮し、高濃度(例えば、90%程度)の酸素含有ガスGを生成する。具体的には酸素濃縮装置1は、吸気フィルタ11、圧縮機12、窒素吸着機構13、タンク14、および筐体120(図1参照)を有する濃縮装置本体100と、濃縮装置本体100に組み込まれたガス濃度流量測定装置15とを備えている。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
(overall structure)
As shown in FIGS. 1 and 2, the oxygen concentrator 1 of the present embodiment is a device that supplies oxygen to a patient, concentrates air A taken in from the outside, and has a high concentration (for example, about 90%). Generates oxygen-containing gas G. Specifically, the oxygen concentrator 1 is incorporated into a concentrator main body 100 having an intake filter 11, a compressor 12, a nitrogen adsorption mechanism 13, a tank 14, and a housing 120 (see FIG. 1), and a concentrator main body 100. It is equipped with a gas concentration flow rate measuring device 15.

酸素濃縮装置1では、筐体120の背面に設けられた吸気フィルタ11を介して外部から取り込まれた空気Aを圧縮機12で圧縮し、圧縮された空気Aに含まれる窒素を窒素吸着機構13で触媒(図示省略)に吸着させて高濃度の酸素を含有する酸素含有ガス(酸素および窒素を含有するガス)Gを生成し、患者へ供給可能とする。以下、酸素含有ガスGを単に「ガスG」とする。 In the oxygen concentrator 1, the air A taken in from the outside is compressed by the compressor 12 through the intake filter 11 provided on the back surface of the housing 120, and the nitrogen contained in the compressed air A is compressed by the nitrogen adsorption mechanism 13. To generate an oxygen-containing gas (gas containing oxygen and nitrogen) G containing a high concentration of oxygen by adsorbing it to a catalyst (not shown), the gas can be supplied to the patient. Hereinafter, the oxygen-containing gas G is simply referred to as “gas G”.

ここで図2に示すように窒素吸着機構13は一対の吸着塔13a、13bを備えている。一対の吸着塔13a、13bの中にはゼオライト等の触媒が充填されている。吸着塔13aおよび13bのうちの一方を加圧して触媒に窒素を吸着させ、他方を減圧して触媒に吸着されている窒素を放出し、次の加圧に備える。このように窒素吸着機構13では、一対の吸着塔13a、13bを交互に加圧および減圧させて高濃度の酸素が生成される。窒素吸着機構13で生成された高濃度の酸素はタンク14に蓄えられる。タンク14に蓄えられた酸素は、ガスGとしてガス濃度流量測定装置15を通った後に患者に供給される。すなわち、本実施形態の酸素濃縮装置1はPSA(Pressure Swing Adsorption)方式を採用している。 Here, as shown in FIG. 2, the nitrogen adsorption mechanism 13 includes a pair of adsorption towers 13a and 13b. The pair of adsorption towers 13a and 13b are filled with a catalyst such as zeolite. One of the adsorption towers 13a and 13b is pressurized to adsorb nitrogen to the catalyst, and the other is depressurized to release the nitrogen adsorbed by the catalyst to prepare for the next pressurization. As described above, in the nitrogen adsorption mechanism 13, the pair of adsorption towers 13a and 13b are alternately pressurized and depressurized to generate high-concentration oxygen. The high-concentration oxygen generated by the nitrogen adsorption mechanism 13 is stored in the tank 14. The oxygen stored in the tank 14 is supplied to the patient as gas G after passing through the gas concentration flow rate measuring device 15. That is, the oxygen concentrator 1 of the present embodiment employs a PSA (Pressure Swing Attachment) method.

ここで酸素濃縮装置1の各構成部品は、不図示の制御ユニットによって統括的に制御される。制御ユニットは、CPU、RAM及びROMなどから構成され、各種制御を実行する。CPUは、いわゆる中央演算処理装置であり、各種プログラムが実行されて各種機能を実現する。RAMは、CPUの作業領域として使用される。ROMは、CPUで実行されるプログラムを記憶する。 Here, each component of the oxygen concentrator 1 is collectively controlled by a control unit (not shown). The control unit is composed of a CPU, RAM, ROM, and the like, and executes various controls. The CPU is a so-called central processing unit, and various programs are executed to realize various functions. The RAM is used as a work area for the CPU. The ROM stores a program executed by the CPU.

図1に示すように筐体120は略直方体形状をなしている。筐体120には操作ボタン121、ディスプレイ122、および、ガス濃度流量測定装置15に接続されてガスGを吐出する吐出チューブ(ゴムチューブ等)123が設けられている。 As shown in FIG. 1, the housing 120 has a substantially rectangular parallelepiped shape. The housing 120 is provided with an operation button 121, a display 122, and a discharge tube (rubber tube or the like) 123 connected to the gas concentration flow rate measuring device 15 to discharge the gas G.

(ガス濃度流量測定装置)
次にガス濃度流量測定装置15の詳細について説明する。
ガス濃度流量測定装置15は筐体120に組み込まれている。図2に示すように、ガス濃度流量測定装置15は、タンク14の下流側に設けられて、ガスG中の酸素の濃度および流量を計測可能となっている。より具体的には図3に示すように、ガス濃度流量測定装置15は超音波式の測定装置であって、測定部20と、温度センサ30と、演算制御装置40と、装置基板50と、超音波センサ60と、圧力センサ70と、比例弁(電磁弁装置)80と、接続部84と、を備えている。
(Gas concentration flow rate measuring device)
Next, the details of the gas concentration flow rate measuring device 15 will be described.
The gas concentration flow rate measuring device 15 is incorporated in the housing 120. As shown in FIG. 2, the gas concentration flow rate measuring device 15 is provided on the downstream side of the tank 14 and can measure the concentration and flow rate of oxygen in the gas G. More specifically, as shown in FIG. 3, the gas concentration flow rate measuring device 15 is an ultrasonic measuring device, and includes a measuring unit 20, a temperature sensor 30, an arithmetic control device 40, a device board 50, and the like. It includes an ultrasonic sensor 60, a pressure sensor 70, a proportional valve (electromagnetic valve device) 80, and a connection portion 84.

(装置基板)
図4および図5に示すように装置基板50は、一対の端縁50a、および端縁50aに直交する一対の端縁50bを有する矩形のプリント基板であって、基材51、基材51に設けられて伝導体によって形成された装置基板パターン52、および、基材51を貫通する装置基板ホール51a周りに設けられて装置基板パターン52に電気的に接続される複数の装置基板ランド53を有している。なお装置基板ホール51aは、後述する各電子部品を挿入実装するための孔であるが、装置基板ホール51aの無い装置基板ランド53も設けられて、後述する各電子部品が装置基板50に面実装されてもよい。
一部の装置基板ランド53には後述する素子基板62が電気的に接続される。
(Device board)
As shown in FIGS. 4 and 5, the apparatus substrate 50 is a rectangular printed circuit board having a pair of edge edges 50a and a pair of edge edges 50b orthogonal to the edge edges 50a, and is formed on the substrate 51 and the substrate 51. It has a device board pattern 52 provided and formed by a conductor, and a plurality of device board lands 53 provided around the device board hole 51a penetrating the base material 51 and electrically connected to the device board pattern 52. is doing. The device board hole 51a is a hole for inserting and mounting each electronic component described later, but a device board land 53 without the device board hole 51a is also provided, and each electronic component described later is surface-mounted on the device board 50. May be done.
An element board 62, which will be described later, is electrically connected to some device board lands 53.

さらに、図6に示すように装置基板50には厚さ方向に貫通する貫通孔54が形成されている。貫通孔54は後述する比例弁80の周囲に形成されている。本実施形態では貫通孔54はスリット状をなしている。また装置基板50には貫通孔54として、装置基板50の表面に沿う面縦方向に延びる縦スリット55と、装置基板50の表面に沿うとともに面縦方向に直交する面横方向に延びる横スリット56とが形成されている。なお本実施形態では装置基板50は矩形状をなしている。そして縦スリット55は装置基板50の端縁50aに平行に形成されている。また横スリット56は装置基板50の端縁50bに平行に形成されている。 Further, as shown in FIG. 6, the apparatus substrate 50 is formed with a through hole 54 penetrating in the thickness direction. The through hole 54 is formed around the proportional valve 80 described later. In the present embodiment, the through hole 54 has a slit shape. Further, as through holes 54 in the device board 50, a vertical slit 55 extending in the vertical direction of the surface along the surface of the device board 50 and a horizontal slit 56 extending in the horizontal direction of the surface along the surface of the device board 50 and orthogonal to the vertical direction of the surface are provided. And are formed. In this embodiment, the device substrate 50 has a rectangular shape. The vertical slit 55 is formed parallel to the edge 50a of the device substrate 50. Further, the horizontal slit 56 is formed parallel to the edge 50b of the device substrate 50.

縦スリット55は面縦方向に間隔を空けて面横方向に同じ位置で並んで複数設けられている。縦スリット55は装置基板50における端縁50aに対して面横方向に離れた位置に配置されている。また横スリット56は面縦方向に間隔を空けて対をなして複数設けられている。縦スリット55は面縦方向に対をなす横スリット56同士の間に配置されている。そして横スリット56が縦スリット55と端縁50aとの間に形成されていることで、縦スリット55、横スリット56、および端縁50aによって囲まれる領域である弁配置領域Sが装置基板50の表面上に形成されている。この弁配置領域Sに後述する比例弁80が配置されている。 A plurality of vertical slits 55 are provided side by side at the same position in the horizontal direction of the surface at intervals in the vertical direction of the surface. The vertical slit 55 is arranged at a position separated from the edge 50a of the apparatus substrate 50 in the lateral direction of the surface. Further, a plurality of horizontal slits 56 are provided in pairs at intervals in the vertical direction of the surface. The vertical slits 55 are arranged between the horizontal slits 56 that form a pair in the vertical direction of the surface. Since the horizontal slit 56 is formed between the vertical slit 55 and the edge 50a, the valve arrangement region S, which is a region surrounded by the vertical slit 55, the horizontal slit 56, and the edge 50a, is the device substrate 50. It is formed on the surface. A proportional valve 80, which will be described later, is arranged in the valve arrangement region S.

(温度センサ)
図5に示すように温度センサ30は、装置基板50の表面上に設けられている。温度センサ30は、後述する測定流路Fを流通するガスの温度Tを測定流路Fの下流側で測定可能となっている。温度センサ30は装置基板ランド53にはんだ付けによって固定されて装置基板パターン52(図4参照)に電気的に接続されている。
(Temperature sensor)
As shown in FIG. 5, the temperature sensor 30 is provided on the surface of the device substrate 50. The temperature sensor 30 can measure the temperature T of the gas flowing through the measurement flow path F, which will be described later, on the downstream side of the measurement flow path F. The temperature sensor 30 is fixed to the device board land 53 by soldering and is electrically connected to the device board pattern 52 (see FIG. 4).

(圧力センサ)
圧力センサ70は、温度センサ30と同じように装置基板50の表面上に設けられている。圧力センサ70は後述する測定流路Fを流通するガスGの圧力を測定流路Fの上流側で測定可能となっている。圧力センサ70は装置基板ランド53にはんだ付けによって固定されて装置基板パターン52(図4参照)に電気的に接続されている。圧力センサ70で測定されたガスGの圧力は、例えば後述する演算制御装置40(図3参照)における演算において、圧力によって変動し得る定数を確定する際に用いられる。
(Pressure sensor)
The pressure sensor 70 is provided on the surface of the device substrate 50 in the same manner as the temperature sensor 30. The pressure sensor 70 can measure the pressure of the gas G flowing through the measurement flow path F, which will be described later, on the upstream side of the measurement flow path F. The pressure sensor 70 is fixed to the device board land 53 by soldering and is electrically connected to the device board pattern 52 (see FIG. 4). The pressure of the gas G measured by the pressure sensor 70 is used, for example, in the calculation in the calculation control device 40 (see FIG. 3) described later, when determining a constant that can fluctuate depending on the pressure.

(測定部)
図4および図5に示すように測定部20は、装置基板50の表面上に固定されて設けられている。以下、装置基板50を基準として表面から離れる方向を基板上方とし、装置基板50の表面と反対側の裏面から離れる方向を基板下方とする。測定部20は筒状をなしている。より具体的には測定部20は、測定管(流路形成部)21と、測定管21の両端部に設けられた超音波センサ取付部22、温度センサ取付部23、吐出口部24、吸込口部25、および圧力センサ取付部26とを有している。
(Measurement unit)
As shown in FIGS. 4 and 5, the measuring unit 20 is fixedly provided on the surface of the device substrate 50. Hereinafter, the direction away from the front surface with respect to the device substrate 50 is defined as the upper side of the substrate, and the direction away from the back surface opposite to the front surface of the device substrate 50 is defined as the lower side of the substrate. The measuring unit 20 has a cylindrical shape. More specifically, the measuring section 20 includes a measuring tube (flow path forming section) 21, an ultrasonic sensor mounting section 22 provided at both ends of the measuring tube 21, a temperature sensor mounting section 23, a discharge port section 24, and a suction port. It has a mouth portion 25 and a pressure sensor mounting portion 26.

(測定管)
測定管21は、タンク14(図3参照)からのガスGが流通する測定流路Fを内側に形成する円筒状をなしている。測定管21は例えばABS樹脂等の樹脂材料によって形成されている。
(Measuring tube)
The measuring tube 21 has a cylindrical shape that forms a measuring flow path F through which the gas G from the tank 14 (see FIG. 3) flows. The measuring tube 21 is made of a resin material such as ABS resin.

以下、測定管21の延びる方向を測定部長手方向とする。測定部長手方向は上述の面縦方向に一致する。また測定部長手方向に直交する測定管21の径方向を測定部径方向とする。測定部径方向のうち、装置基板50の表面に沿う方向が上述の面横方向に一致する。 Hereinafter, the extending direction of the measuring tube 21 is referred to as the longitudinal direction of the measuring portion. The longitudinal direction of the measuring portion coincides with the above-mentioned vertical direction of the plane. Further, the radial direction of the measuring tube 21 orthogonal to the longitudinal direction of the measuring portion is defined as the radial direction of the measuring portion. Of the radial directions of the measuring portions, the direction along the surface of the device substrate 50 coincides with the above-mentioned lateral direction of the surface.

(超音波センサ取付部)
超音波センサ取付部22は、測定管21における測定部長手方向の両端部、すなわち測定流路Fの上流側および下流側の端部に一つずつ設けられている。本実施形態では超音波センサ取付部22は測定管21と同じ樹脂によって測定管21と一体成型されている。超音波センサ取付部22は測定管21よりも外径が大径の筒状をなしている。図5に示すように各々の超音波センサ取付部22には、測定部長手方向に貫通して測定流路Fにつながる断面円形状の孔である開口22aが形成されている。
(Ultrasonic sensor mounting part)
The ultrasonic sensor mounting portions 22 are provided at both ends of the measuring tube 21 in the longitudinal direction of the measuring portion, that is, one at each end on the upstream side and the downstream side of the measuring flow path F. In this embodiment, the ultrasonic sensor mounting portion 22 is integrally molded with the measuring tube 21 with the same resin as the measuring tube 21. The ultrasonic sensor mounting portion 22 has a cylindrical shape having a larger outer diameter than the measuring tube 21. As shown in FIG. 5, each ultrasonic sensor mounting portion 22 is formed with an opening 22a which is a hole having a circular cross section that penetrates in the longitudinal direction of the measuring portion and connects to the measuring flow path F.

(温度センサ取付部)
図4および図5に示すように温度センサ取付部23は、測定流路Fの下流側の超音波センサ取付部22Xに近接する位置で、測定管21の外周面から基板下方に突出して設けられている。本実施形態では温度センサ取付部23は測定管21と同じ樹脂によって測定管21と一体成型されている。温度センサ取付部23の内側には、測定流路Fにつながる空間(不図示)が形成されている。この空間は基板下方に向かって開口し、装置基板50に設けられた温度センサ30を基板上方から覆うようにして装置基板50の表面に接して温度センサ取付部23が設けられている。温度センサ取付部23は例えばボルト35によって装置基板50に取り付けられている。
(Temperature sensor mounting part)
As shown in FIGS. 4 and 5, the temperature sensor mounting portion 23 is provided so as to project downward from the outer peripheral surface of the measuring tube 21 at a position close to the ultrasonic sensor mounting portion 22X on the downstream side of the measurement flow path F. ing. In the present embodiment, the temperature sensor mounting portion 23 is integrally molded with the measuring tube 21 with the same resin as the measuring tube 21. A space (not shown) connected to the measurement flow path F is formed inside the temperature sensor mounting portion 23. This space opens toward the lower side of the substrate, and the temperature sensor mounting portion 23 is provided in contact with the surface of the apparatus substrate 50 so as to cover the temperature sensor 30 provided on the apparatus substrate 50 from above the substrate. The temperature sensor mounting portion 23 is mounted on the device board 50 by, for example, a bolt 35.

(吐出口部)
吐出口部24は、測定流路Fの下流側の超音波センサ取付部22Xに近接する位置で温度センサ取付部23に設けられている。本実施形態では吐出口部24は温度センサ取付部23と同じ樹脂によって温度センサ取付部23と一体成型されている。そして図4および図5に示すように吐出口部24は温度センサ取付部23から装置基板50の表面に沿って測定部径方向の外側へ突出するとともに温度センサ取付部23における上記空間を介して測定流路Fに連通している。したがって測定流路Fを流通したガスGは、温度センサ取付部23を介して吐出口部24から吐出される。
(Discharge port)
The discharge port portion 24 is provided in the temperature sensor mounting portion 23 at a position close to the ultrasonic sensor mounting portion 22X on the downstream side of the measurement flow path F. In the present embodiment, the discharge port portion 24 is integrally molded with the temperature sensor mounting portion 23 with the same resin as the temperature sensor mounting portion 23. Then, as shown in FIGS. 4 and 5, the discharge port portion 24 protrudes outward from the temperature sensor mounting portion 23 along the surface of the device substrate 50 in the radial direction of the measuring portion and passes through the space in the temperature sensor mounting portion 23. It communicates with the measurement flow path F. Therefore, the gas G flowing through the measurement flow path F is discharged from the discharge port portion 24 via the temperature sensor mounting portion 23.

(吸込口部)
吸込口部25は、測定流路Fの上流側の超音波センサ取付部22Yに近接する位置で測定管21の外周面から装置基板50の表面に沿って測定部径方向の外側へ突出して吐出口部24と平行に延びている。本実施形態では吸込口部25は測定管21と同じ樹脂によって測定管21と一体成型されている。吸込口部25は円筒状をなして測定流路Fに連通している。吸込口部25は後述の比例弁80を介してタンク14に接続されている(図2参照)。したがってタンク14からは吸込口部25を介して測定流路FにガスGが流入するようになっている。
(Suction port)
The suction port portion 25 projects from the outer peripheral surface of the measuring tube 21 to the outside in the radial direction of the measuring portion along the surface of the device substrate 50 at a position close to the ultrasonic sensor mounting portion 22Y on the upstream side of the measuring flow path F. It extends parallel to the outlet portion 24. In the present embodiment, the suction port portion 25 is integrally molded with the measuring tube 21 with the same resin as the measuring tube 21. The suction port portion 25 has a cylindrical shape and communicates with the measurement flow path F. The suction port portion 25 is connected to the tank 14 via a proportional valve 80 described later (see FIG. 2). Therefore, the gas G flows from the tank 14 into the measurement flow path F through the suction port portion 25.

(圧力センサ取付部)
圧力センサ取付部26は、吸込口部25に設けられている。本実施形態では圧力センサ取付部26は吸込口部25と同じ樹脂によって圧力センサ取付部26と一体成型されている。圧力センサ取付部26は円筒状をなし、吸込口部25から基板下方に突出している。圧力センサ取付部26の内側には吸込口部25の内側につながる空間(不図示)が形成されている。この空間は基板下方に向かって開口し、装置基板50に設けられた圧力センサ70を基板上方から覆うようにして装置基板50の表面に接して圧力センサ取付部26が設けられている。圧力センサ取付部26は例えば爪75によって装置基板50に取り付けられている。
(Pressure sensor mounting part)
The pressure sensor mounting portion 26 is provided in the suction port portion 25. In the present embodiment, the pressure sensor mounting portion 26 is integrally molded with the pressure sensor mounting portion 26 with the same resin as the suction port portion 25. The pressure sensor mounting portion 26 has a cylindrical shape and projects downward from the suction port portion 25 to the lower side of the substrate. A space (not shown) connected to the inside of the suction port 25 is formed inside the pressure sensor mounting portion 26. This space opens toward the lower side of the substrate, and the pressure sensor mounting portion 26 is provided in contact with the surface of the apparatus substrate 50 so as to cover the pressure sensor 70 provided on the apparatus substrate 50 from above the substrate. The pressure sensor mounting portion 26 is mounted on the device board 50 by, for example, a claw 75.

(比例弁)
比例弁80は装置基板50の表面上に固定されて設けられている。比例弁80は測定管21に対して吸込口部25および吐出口部24が設けられた側で、装置基板50において面縦方向に延びる端縁50aに沿って、測定部長手方向に吸込口部25と吐出口部24との間に配置されている。また比例弁80は、測定管21に対して面横方向(測定部径方向)に離れた位置に配置されている。さらに比例弁80は縦スリット55、横スリット56、および端縁50aによって囲まれた弁配置領域S内で装置基板50上に載置されている。これにより比例弁80に対して横スリット56が、面縦方向の両外側に配置されている。比例弁80は、濃縮装置本体100の操作ボタン121で指定された数値に基づき、測定流路Fを流通するガスGの流量を制御する。
(Proportional valve)
The proportional valve 80 is fixedly provided on the surface of the device substrate 50. The proportional valve 80 is on the side where the suction port portion 25 and the discharge port portion 24 are provided with respect to the measuring tube 21, and the suction port portion is provided in the longitudinal direction of the measuring portion along the edge 50a extending in the vertical direction of the surface of the device substrate 50. It is arranged between the 25 and the discharge port portion 24. Further, the proportional valve 80 is arranged at a position separated from the measuring tube 21 in the lateral direction (measurement portion radial direction). Further, the proportional valve 80 is placed on the device substrate 50 in the valve arrangement region S surrounded by the vertical slit 55, the horizontal slit 56, and the end edge 50a. As a result, the horizontal slits 56 are arranged on both outer sides in the vertical direction of the surface with respect to the proportional valve 80. The proportional valve 80 controls the flow rate of the gas G flowing through the measurement flow path F based on the numerical value specified by the operation button 121 of the concentrator main body 100.

比例弁80には、比例弁80から装置基板50の端縁50aから面横方向(測定部径方向)に一部が突出して装置基板50と比例弁80との間に介在された比例弁ブラケット81が設けられている。比例弁ブラケット81は例えばボルト85によって比例弁80に取り付けられている。また比例弁ブラケット81は、比例弁80を基板下方から支持している。比例弁ブラケット81には基板下方に突出する爪81aが設けられている。爪81aが装置基板50を厚さ方向に貫通する受け孔51bに挿通されて係止されることにより、比例弁ブラケット81が装置基板50に取り付けられている。比例弁ブラケット81は比例弁80とともに装置基板50の表面上において弁配置領域Sに載置されている。また比例弁ブラケット81にはタンク14に接続される入口部82と、吸込口部25に接続される出口部83とが設けられている。 In the proportional valve 80, a part of the proportional valve 80 protrudes from the end edge 50a of the device board 50 in the lateral direction (measurement portion radial direction) and is interposed between the device board 50 and the proportional valve 80. 81 is provided. The proportional valve bracket 81 is attached to the proportional valve 80 by, for example, a bolt 85. Further, the proportional valve bracket 81 supports the proportional valve 80 from below the substrate. The proportional valve bracket 81 is provided with a claw 81a projecting downward from the substrate. The proportional valve bracket 81 is attached to the device board 50 by inserting the claw 81a into the receiving hole 51b penetrating the device board 50 in the thickness direction and locking the claw 81a. The proportional valve bracket 81 is placed in the valve arrangement region S on the surface of the device substrate 50 together with the proportional valve 80. Further, the proportional valve bracket 81 is provided with an inlet portion 82 connected to the tank 14 and an outlet portion 83 connected to the suction port portion 25.

入口部82は装置基板50の端縁50aに沿って、測定部長手方向に吸込口部25の側に向かって延びる円筒状をなしている。
出口部83は入口部82に併設され、入口部82を挟んで比例弁80とは装置基板50の表面に沿う面横方向(測定部径方向)に反対側に配置されている。換言すると、出口部83は入口部82に対して面横方向に比例弁80および測定管21から離れる側に設けられている。出口部83は入口部82と同様に装置基板50の端縁50aに沿って測定部長手方向に吸込口部25の側に向かって延びる円筒状をなしている。入口部82と出口部83とは比例弁80を介して連通している。入口部82および出口部83と比例弁80との間にはパッキン86が介在されている。
The inlet portion 82 has a cylindrical shape extending toward the suction port portion 25 in the longitudinal direction of the measuring portion along the edge 50a of the device substrate 50.
The outlet portion 83 is attached to the inlet portion 82, and is arranged on the side opposite to the proportional valve 80 in the lateral direction (measurement portion radial direction) along the surface of the device substrate 50 with the inlet portion 82 interposed therebetween. In other words, the outlet portion 83 is provided on the side away from the proportional valve 80 and the measuring tube 21 in the lateral direction with respect to the inlet portion 82. Like the inlet portion 82, the outlet portion 83 has a cylindrical shape extending toward the suction port portion 25 in the longitudinal direction of the measurement portion along the edge 50a of the device substrate 50. The inlet portion 82 and the outlet portion 83 communicate with each other via a proportional valve 80. A packing 86 is interposed between the inlet portion 82 and the outlet portion 83 and the proportional valve 80.

ここで図6に示すように、測定管21における面横方向の幅寸法Wに対して、測定管21と比例弁80との面横方向の距離L1が2.0倍以上3.0倍以下になっているとよく、2.5倍以上2.6倍以下となっているとさらによい。 Here, as shown in FIG. 6, the distance L1 in the lateral direction between the measuring tube 21 and the proportional valve 80 is 2.0 times or more and 3.0 times or less with respect to the width dimension W in the lateral direction of the measuring tube 21. It is better if it is 2.5 times or more and 2.6 times or less.

(接続部)
接続部84は比例弁80と測定部20とを接続している。より具体的には接続部84は、比例弁ブラケット81の出口部83と、測定部20の吸込口部25とを接続している。本実施形態では接続部84は可撓性を有するチューブによって形成されている。
(Connection part)
The connecting unit 84 connects the proportional valve 80 and the measuring unit 20. More specifically, the connecting portion 84 connects the outlet portion 83 of the proportional valve bracket 81 and the suction port portion 25 of the measuring unit 20. In this embodiment, the connecting portion 84 is formed of a flexible tube.

図7に示すように、接続部84には接続流路Cが形成されている。本実施形態の接続部84には、接続流路Cとして縦流路C1、曲がり流路C2、および横流路C3が形成されている。縦流路C1は出口部83から面縦方向(測定部長手方向)に延びている。曲がり流路C2は、縦流路C1に連通して湾曲している。曲がり流路C2によって接続流路Cの延在方向が面縦方向から面横方向に変化させられる。ここで接続部84における縦流路C1が形成された部分を縦筒部84Aとし、曲がり流路C2が形成された部分を曲筒部84Bとする。本実施形態では曲筒部84Bの位置で接続流路Cおよび接続部84は円弧状に約90度湾曲している。また横流路C3は曲がり流路C2に連通して面横方向(測定部径方向)に延び、吸込口部25を介して測定流路Fに連通している(図4および図5参照)。横流路C3が形成された部分を横筒部84Cとする。 As shown in FIG. 7, a connection flow path C is formed in the connection portion 84. A vertical flow path C1, a curved flow path C2, and a horizontal flow path C3 are formed as a connection flow path C in the connection portion 84 of the present embodiment. The vertical flow path C1 extends from the outlet portion 83 in the vertical direction of the surface (longitudinal direction of the measuring portion). The curved flow path C2 communicates with the vertical flow path C1 and is curved. The extending direction of the connecting flow path C is changed from the surface vertical direction to the surface horizontal direction by the curved flow path C2. Here, the portion of the connecting portion 84 in which the vertical flow path C1 is formed is referred to as the vertical cylinder portion 84A, and the portion in which the curved flow path C2 is formed is referred to as the curved cylinder portion 84B. In the present embodiment, the connection flow path C and the connection portion 84 are curved by about 90 degrees in an arc shape at the position of the curved cylinder portion 84B. Further, the lateral flow path C3 communicates with the curved flow path C2, extends in the lateral direction (measurement portion radial direction), and communicates with the measurement flow path F via the suction port portion 25 (see FIGS. 4 and 5). The portion where the transverse flow path C3 is formed is referred to as the transverse cylinder portion 84C.

図6に戻って、本実施形態では測定管21と比例弁80との面横方向の距離L1に対して、測定管21と縦筒部84Aとの面横方向の距離L2が1.5倍以上となっているとよく、2.0倍以上となっているとさらによい。 Returning to FIG. 6, in the present embodiment, the lateral distance L2 between the measuring tube 21 and the vertical cylinder portion 84A is 1.5 times the lateral distance L1 between the measuring tube 21 and the proportional valve 80. It is better if it is more than 2.0 times, and even better if it is 2.0 times or more.

そしてタンク14内のガスGが比例弁ブラケット81の入口部82に流入し、比例弁80を経由して出口部83に流入し、接続部84の接続流路Cを介して吸込口部25から測定流路Fに流入する。ここで後述する演算制御装置40(図2参照)によって算出されるガスGの流量が操作ボタン121で指定された流量となるように、比例弁80が演算制御装置40によってフィードバック制御されるようになっている。 Then, the gas G in the tank 14 flows into the inlet portion 82 of the proportional valve bracket 81, flows into the outlet portion 83 via the proportional valve 80, and flows from the suction port portion 25 via the connection flow path C of the connection portion 84. It flows into the measurement flow path F. The proportional valve 80 is feedback-controlled by the arithmetic control device 40 so that the flow rate of the gas G calculated by the arithmetic control device 40 (see FIG. 2) described later becomes the flow rate specified by the operation button 121. It has become.

(超音波センサ)
図5に戻って各々の超音波センサ60は、測定部20における超音波センサ取付部22に一つずつ設けられている。よって超音波センサ60は測定流路Fの上流側および下流側に対向して配置されている。各々の超音波センサ60は、超音波素子61と、超音波素子61を支持する素子基板62と、素子基板62に設けられた基板端子63とを有している。
(Ultrasonic sensor)
Returning to FIG. 5, each ultrasonic sensor 60 is provided one by one in the ultrasonic sensor mounting portion 22 in the measuring unit 20. Therefore, the ultrasonic sensor 60 is arranged so as to face the upstream side and the downstream side of the measurement flow path F. Each ultrasonic sensor 60 has an ultrasonic element 61, an element substrate 62 that supports the ultrasonic element 61, and a substrate terminal 63 provided on the element substrate 62.

(超音波素子)
超音波素子61は、超音波を発信および受信可能な送受信器である。超音波素子61は、測定部20における超音波センサ取付部22の開口22a内に配置されている。測定流路Fの上流側の超音波素子61Aから発信された超音波は、測定流路Fの下流側の超音波素子61Bによって受信可能となっている。一方で、測定流路Fの下流側の超音波素子61Bから発信された超音波は、測定流路Fの上流側の超音波素子61Aによって受信可能となっている。超音波素子61は円柱状をなしており、開口22a内に設置された状態で測定部長手方向に延びている。
(Ultrasonic element)
The ultrasonic element 61 is a transmitter / receiver capable of transmitting and receiving ultrasonic waves. The ultrasonic element 61 is arranged in the opening 22a of the ultrasonic sensor mounting portion 22 in the measuring unit 20. The ultrasonic waves transmitted from the ultrasonic element 61A on the upstream side of the measurement flow path F can be received by the ultrasonic element 61B on the downstream side of the measurement flow path F. On the other hand, the ultrasonic waves transmitted from the ultrasonic element 61B on the downstream side of the measurement flow path F can be received by the ultrasonic element 61A on the upstream side of the measurement flow path F. The ultrasonic element 61 has a columnar shape and extends in the longitudinal direction of the measuring portion while being installed in the opening 22a.

(素子基板)
素子基板62は矩形のプリント基板であって、超音波素子61が電気的に接続されている。素子基板62は、測定部20に対して測定部長手方向に対向して配置された状態で、ボルト90によって測定部20の超音波センサ取付部22に固定される。
(Element board)
The element substrate 62 is a rectangular printed circuit board, and the ultrasonic element 61 is electrically connected to the element substrate 62. The element substrate 62 is fixed to the ultrasonic sensor mounting portion 22 of the measuring unit 20 by a bolt 90 in a state of being arranged so as to face the measuring unit 20 in the longitudinal direction of the measuring unit.

ここで素子基板62において、測定部長手方向に測定部20の側を向く表面にシールリング69が接触して設けられている。シールリング69は樹脂製のパッキンである。シールリング69は超音波素子61および開口22aの外周側に設けられている。ボルト90によって素子基板62が測定部20へ固定された状態、すなわち素子基板62が測定部20に押し付けられた状態でシールリング69が押しつぶされて弾性変形し、素子基板62と超音波センサ取付部22との間の隙間がシールされている。 Here, in the element substrate 62, the seal ring 69 is provided in contact with the surface facing the measurement unit 20 in the longitudinal direction of the measurement unit. The seal ring 69 is a packing made of resin. The seal ring 69 is provided on the outer peripheral side of the ultrasonic element 61 and the opening 22a. The seal ring 69 is crushed and elastically deformed in a state where the element substrate 62 is fixed to the measurement unit 20 by the bolt 90, that is, the element substrate 62 is pressed against the measurement unit 20, and the element substrate 62 and the ultrasonic sensor mounting portion are attached. The gap between the 22 and the 22 is sealed.

(基板端子)
基板端子63は素子基板62に支持されて、測定部長手方向に超音波素子61と同じ側に設けられている。基板端子63の他端は、素子基板62から基板下方に向かって突出し、装置基板50に電気的に接続されている。
(Board terminal)
The substrate terminal 63 is supported by the element substrate 62 and is provided on the same side as the ultrasonic element 61 in the longitudinal direction of the measuring portion. The other end of the board terminal 63 projects downward from the element board 62 and is electrically connected to the device board 50.

そして本実施形態では素子基板62の表面が、装置基板50の表面に対して交差する(直交する)ように、素子基板62が基板上方に向かって装置基板50に立設されており、素子基板62が装置基板50の表面上に露出している。 In the present embodiment, the element substrate 62 is erected on the apparatus substrate 50 toward the upper side of the substrate so that the surface of the element substrate 62 intersects (orthogonally) with the surface of the apparatus substrate 50. 62 is exposed on the surface of the device substrate 50.

(演算制御装置)
図2に戻って演算制御装置40は、CPU、RAM及びROMなどから構成されている。CPUは、いわゆる中央演算処理装置であり、各種プログラムが実行されて各種機能を実現する。RAMは、CPUの作業領域として使用される。ROMは、CPUで実行されるプログラムを記憶する。本実施形態では演算制御装置40は装置基板50の裏面に設けられている(図5参照)。
(Calculation control device)
Returning to FIG. 2, the arithmetic control device 40 is composed of a CPU, RAM, ROM, and the like. The CPU is a so-called central processing unit, and various programs are executed to realize various functions. The RAM is used as a work area for the CPU. The ROM stores a program executed by the CPU. In the present embodiment, the arithmetic control device 40 is provided on the back surface of the device board 50 (see FIG. 5).

演算制御装置40は、上流側の超音波素子61Aから発信されて下流側の超音波素子61Bで受信されるまでの超音波の伝搬速度vFWD〔m/s〕と、下流側の超音波素子61Bから発信されて上流側の超音波素子61Aで受信されるまでの超音波の伝搬速度vREV〔m/s〕とを算出し、これらの伝搬速度vFWD、vREVの差分に基づいて測定流路Fを流通するガスGの流量Q〔m/s〕を算出する。 The arithmetic control device 40 includes an ultrasonic wave propagation velocity v FWD [m / s] from being transmitted from the upstream ultrasonic wave element 61A to being received by the downstream ultrasonic wave element 61B, and the downstream ultrasonic wave element. The propagation speed v REV [m / s] of the ultrasonic wave transmitted from 61B and received by the ultrasonic element 61A on the upstream side is calculated, and the measurement is performed based on the difference between these propagation speeds v FWD and v REV. The flow rate Q [m 3 / s] of the gas G flowing through the flow path F is calculated.

上記の伝搬速度vFWD、vREVは、以下の式(1)、(2)によって算出される。なお、測定流路Fの長さ(超音波素子61A、61B間の距離)をL〔m〕とする。また、上流側の超音波素子61Aから発信されて下流側の超音波素子61Bで受信されるまでの超音波の伝搬時間をtFWD〔s〕とし、下流側の超音波素子61Bから発信されて上流側の超音波素子61Aで受信されるまでの超音波の伝搬時間をtREV〔s〕とする。 The above propagation velocities v FWD and v REV are calculated by the following equations (1) and (2). The length of the measurement flow path F (distance between the ultrasonic elements 61A and 61B) is L [m]. Further, the propagation time of the ultrasonic wave from the ultrasonic element 61A on the upstream side to the reception by the ultrasonic element 61B on the downstream side is set to t FWD [s], and is transmitted from the ultrasonic element 61B on the downstream side. Let t REV [s] be the propagation time of the ultrasonic wave until it is received by the ultrasonic element 61A on the upstream side.

Figure 2021188982
Figure 2021188982
Figure 2021188982
Figure 2021188982

ここで演算制御装置40は、上記式(1)、(2)、および以下の式(3)、(4)から導かれる以下の式(5)によって測定流路Fを流通するガスGの流速v〔m/s〕を算出する。なお測定流路F内での超音波の音速をc〔m/s〕とする。 Here, the arithmetic control device 40 uses the above equations (1) and (2), and the following equations (5) derived from the following equations (3) and (4) to flow through the gas G flowing through the measurement flow path F. Calculate v [m / s]. The speed of sound of the ultrasonic wave in the measurement flow path F is c [m / s].

Figure 2021188982
Figure 2021188982
Figure 2021188982
Figure 2021188982

Figure 2021188982
Figure 2021188982

そして演算制御装置40は以下の式(6)によって、測定流路Fを流通する酸素の流量Q〔m/s〕を算出する。なお測定流路Fの流路断面積をA〔m〕とする。演算制御装置40は算出された流量Qが予め設定された流量となるように、比例弁80の開度を制御する。 Then, the arithmetic control device 40 calculates the flow rate Q [m 3 / s] of oxygen flowing through the measurement flow path F by the following equation (6). The cross-sectional area of the measurement flow path F is A [m 2 ]. The arithmetic control device 40 controls the opening degree of the proportional valve 80 so that the calculated flow rate Q becomes a preset flow rate.

Figure 2021188982
Figure 2021188982

次に、演算制御装置40は上記の式(1)から(5)から導かれる以下の式(7)によって測定流路F内での超音波の音速c〔m/s〕を算出する。 Next, the arithmetic control device 40 calculates the sound wave c [m / s] of the ultrasonic wave in the measurement flow path F by the following equation (7) derived from the above equations (1) to (5).

Figure 2021188982
Figure 2021188982

ここで、ガス中を伝搬する超音波の音速c〔m/s〕は、ガスの平均分子量M〔g/mol〕と、ガスの温度T〔K〕との関数で表現できる。すなわち音速c〔m/s〕は以下の式(8)によって算出される。なお、kは比熱比、Rは気体定数である。ガスGの温度T〔K〕は温度センサ30で測定した値であり、本実施形態では測定流路Fを流通するガスGが酸素と窒素の2分子からなる混合ガスであるとしてk=1.4とする。 Here, the speed of sound c [m / s] of the ultrasonic wave propagating in the gas can be expressed by a function of the average molecular weight M [g / mol] of the gas and the temperature T [K] of the gas. That is, the speed of sound c [m / s] is calculated by the following equation (8). In addition, k is a specific heat ratio and R is a gas constant. The temperature T [K] of the gas G is a value measured by the temperature sensor 30, and in the present embodiment, it is assumed that the gas G flowing through the measurement flow path F is a mixed gas composed of two molecules of oxygen and nitrogen, and k = 1. Let it be 4.

Figure 2021188982
Figure 2021188982

演算制御装置40は、上記式(7)、(8)から、測定流路F中のガスGの平均分子量M〔g/mol〕を算出する。そして算出された平均分子量M〔g/mol〕を基に、以下の式(9)によってガスG中の酸素濃度PO2〔%〕を算出する。なお、MO2〔g/mol〕は酸素の分子量であり、MN2〔g/mol〕は窒素の分子量である。MO2=32、MN2=28である。なお演算制御装置40は、酸素濃度が予め設定された値となるように上記の制御ユニット(不図示)へ信号を送信し、この制御ユニットで窒素吸着機構13の制御が行われる。 The arithmetic control device 40 calculates the average molecular weight M [g / mol] of the gas G in the measurement flow path F from the above equations (7) and (8). Then, based on the calculated average molecular weight M [g / mol], the oxygen concentration PO2 [%] in the gas G is calculated by the following formula (9). MO2 [g / mol] is the molecular weight of oxygen, and MN2 [g / mol] is the molecular weight of nitrogen. MO2 = 32 and MN2 = 28. The arithmetic control device 40 transmits a signal to the above control unit (not shown) so that the oxygen concentration becomes a preset value, and the nitrogen adsorption mechanism 13 is controlled by this control unit.

Figure 2021188982
Figure 2021188982

以上説明した本実施形態の酸素濃縮装置1では、ガス濃度流量測定装置15において比例弁80および測定部20が装置基板50の表面側に設けられ、かつ、比例弁80が比例弁ブラケット81とともに装置基板50の表面上に載置されている。したがって比例弁80が発熱した際、熱が比例弁80から測定部20に装置基板50を介して伝わることになる。この場合、測定部20の測定流路F内のガスGが加熱されてしまい、ガス濃度流量測定装置15による測定精度が低下してしまう可能性がある。 In the oxygen concentrator 1 of the present embodiment described above, in the gas concentration flow rate measuring device 15, the proportional valve 80 and the measuring unit 20 are provided on the surface side of the device substrate 50, and the proportional valve 80 is a device together with the proportional valve bracket 81. It is placed on the surface of the substrate 50. Therefore, when the proportional valve 80 generates heat, the heat is transferred from the proportional valve 80 to the measuring unit 20 via the device substrate 50. In this case, the gas G in the measurement flow path F of the measuring unit 20 may be heated, and the measurement accuracy by the gas concentration flow rate measuring device 15 may decrease.

ここで本実施形態では、装置基板50において比例弁80の周囲には貫通孔54が形成されている。したがって貫通孔54によって比例弁80と測定部20との間に装置基板50上に空間が形成されることになり、比例弁80から測定部20へ熱が伝わりにくくなる。よって装置基板50上で測定部20と比例弁80とを近接して配置したとしても、測定流路F内のガスが比例弁80の熱によって加熱されてしまう可能性を低減できる。この結果、測定精度を確保しつつ、ガス濃度流量測定装置15のコンパクト化が可能となる。
特に測定管21における面横方向の幅寸法Wに対して、測定管21と比例弁80との面横方向の距離L1が2.0倍以上3.0倍以下で、より好ましくは2.5倍以上2.6倍以下となっていることで、貫通孔54による遮熱効果を得つつも、測定管21と比例弁80との距離を近づけて装置全体のコンパクト化を図ることができる。
Here, in the present embodiment, a through hole 54 is formed around the proportional valve 80 in the apparatus substrate 50. Therefore, a space is formed on the device substrate 50 between the proportional valve 80 and the measuring unit 20 by the through hole 54, and it becomes difficult for heat to be transferred from the proportional valve 80 to the measuring unit 20. Therefore, even if the measuring unit 20 and the proportional valve 80 are arranged close to each other on the device substrate 50, the possibility that the gas in the measuring flow path F is heated by the heat of the proportional valve 80 can be reduced. As a result, the gas concentration flow rate measuring device 15 can be made compact while ensuring the measurement accuracy.
In particular, the distance L1 in the lateral direction between the measuring tube 21 and the proportional valve 80 is 2.0 times or more and 3.0 times or less, more preferably 2.5, with respect to the width dimension W in the lateral direction of the measuring tube 21. Since it is doubled or more and 2.6 times or less, the distance between the measuring tube 21 and the proportional valve 80 can be shortened and the entire device can be made compact while obtaining the heat shielding effect by the through hole 54.

また貫通孔54はスリット状をなしているため、貫通孔54が円形状の孔である場合に比べて比例弁80と測定部20との間の空間の容積を大きくすることができ、遮熱効果を高めることができる。そして縦スリット55は測定管21と比例弁80との間を仕切るように設けられている。したがって比例弁80の熱が最短経路で測定部20に到達することを回避できるため、縦スリット55によって遮熱効果をより高めることができる。 Further, since the through hole 54 has a slit shape, the volume of the space between the proportional valve 80 and the measuring unit 20 can be increased as compared with the case where the through hole 54 is a circular hole, and the heat shield can be increased. The effect can be enhanced. The vertical slit 55 is provided so as to partition between the measuring tube 21 and the proportional valve 80. Therefore, since it is possible to prevent the heat of the proportional valve 80 from reaching the measuring unit 20 in the shortest path, the heat shielding effect can be further enhanced by the vertical slit 55.

そして比例弁80は縦スリット55と横スリット56と装置基板50の端縁50aとによって囲まれた弁配置領域Sに設けられている。このため縦スリット55のみを設けた場合に比べて、横スリット56によって比例弁80から面縦方向に伝達する熱の遮断も可能となるため、遮熱効果のさらなる向上が可能となる。 The proportional valve 80 is provided in the valve arrangement region S surrounded by the vertical slit 55, the horizontal slit 56, and the edge 50a of the device substrate 50. Therefore, as compared with the case where only the vertical slit 55 is provided, the heat transferred from the proportional valve 80 in the vertical direction of the surface can be cut off by the horizontal slit 56, so that the heat shielding effect can be further improved.

また比例弁80と測定管21とを面横方向(測定部径方向)に離れた位置に配置されていることで、比例弁ブラケット81における出口部83と、測定部20における吸込口部25との間の距離を確保することができる。例えば出口部83と吸込口部25とが近接している場合には、急角度で屈曲するような接続流路を有する接続部によって出口部83と吸込口部25とを接続しなければならないが、本実施形態では、出口部83と吸込口部25とが離れており、さらに、好ましくは測定管21と比例弁80との面横方向の距離L1に対して、測定管21と縦筒部84Aとの面横方向の距離L2が1.5倍以上、より好ましくは2.0倍以上となっていることで、出口部83と吸込口部25との間を曲がり流路C2が形成された接続部84によって接続することができる。このため比例弁80から測定部20へ流入するガスGの流れを円滑にすることができ、接続流路Cでの乱流の発生を抑制し、測定精度を向上することができる。 Further, by arranging the proportional valve 80 and the measuring tube 21 at positions separated from each other in the lateral direction (measurement portion radial direction), the outlet portion 83 in the proportional valve bracket 81 and the suction port portion 25 in the measuring portion 20 The distance between can be secured. For example, when the outlet portion 83 and the suction port portion 25 are close to each other, the outlet portion 83 and the suction port portion 25 must be connected by a connection portion having a connection flow path that bends at a steep angle. In the present embodiment, the outlet portion 83 and the suction port portion 25 are separated from each other, and more preferably, the measuring tube 21 and the vertical cylinder portion are separated from each other with respect to the lateral distance L1 between the measuring tube 21 and the proportional valve 80. When the distance L2 in the lateral direction with the 84A is 1.5 times or more, more preferably 2.0 times or more, a curved flow path C2 is formed between the outlet portion 83 and the suction port portion 25. It can be connected by the connecting portion 84. Therefore, the flow of the gas G flowing from the proportional valve 80 to the measuring unit 20 can be smoothed, the generation of turbulent flow in the connecting flow path C can be suppressed, and the measurement accuracy can be improved.

さらに出口部83は、入口部82に対して面横方向(測定部径方向)に比例弁80および測定部20から離れる側に設けられている。このため、出口部83と吸込口部25との間の距離を稼ぐことができ、接続流路Cを急角度で屈曲させることなく、出口部83と吸込口部25とを接続することができる。よってガスGの流れをさらに円滑にすることができる。 Further, the outlet portion 83 is provided on the side away from the proportional valve 80 and the measuring portion 20 in the lateral direction (diameter direction of the measuring portion) with respect to the inlet portion 82. Therefore, the distance between the outlet portion 83 and the suction port portion 25 can be increased, and the outlet portion 83 and the suction port portion 25 can be connected without bending the connection flow path C at a steep angle. .. Therefore, the flow of gas G can be further smoothed.

本発明は、上記した実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。
例えば、接続部84は可撓性を有するチューブである必要はなく、測定部20と同じ樹脂によって形成されていてもよい。
The present invention is not limited to the above-described embodiment, and it goes without saying that various modifications can be made without departing from the gist of the present invention.
For example, the connecting portion 84 does not have to be a flexible tube and may be formed of the same resin as the measuring portion 20.

また比例弁80は、測定部20の吐出口部24に接続部84を介して接続されていてもよい。この場合、出口部83よりも入口部82が面横方向(測定部径方向)に比例弁80および測定部20から離れる側に配置されていることが好ましい。このような構成によっても上記実施形態と同様に入口部82と吐出口部24との距離を稼ぐことができ、接続流路Cを急角度で屈曲させることなく入口部82と吐出口部24とを接続することができる。よってガスGの流れを円滑にすることができる。 Further, the proportional valve 80 may be connected to the discharge port portion 24 of the measuring portion 20 via the connecting portion 84. In this case, it is preferable that the inlet portion 82 is arranged on the side away from the proportional valve 80 and the measuring portion 20 in the lateral direction (measurement portion radial direction) of the outlet portion 83. Even with such a configuration, the distance between the inlet portion 82 and the discharge port portion 24 can be increased as in the above embodiment, and the inlet portion 82 and the discharge port portion 24 can be provided without bending the connection flow path C at a steep angle. Can be connected. Therefore, the flow of gas G can be smoothed.

また装置基板50の貫通孔54の数量や形状は上記の実施形態の場合には限定されない。例えば貫通孔54は断面円形状の孔であってもよい。この場合、パンチングメタルのように複数の貫通孔54を互いに近接して形成してもよい。 Further, the number and shape of the through holes 54 of the device substrate 50 are not limited in the case of the above embodiment. For example, the through hole 54 may be a hole having a circular cross section. In this case, a plurality of through holes 54 may be formed in close proximity to each other as in the case of punching metal.

また、横スリット56は必ずしも設けなくともよく縦スリット55のみを設けてもよい。また横スリット56のみを設けてもよい。さらに、上記実施形態では縦スリット55、横スリット56、および端縁50aによって弁配置領域Sを形成しているが、例えば縦スリット55を面横方向(測定部径方向)に間隔をあけて対をなして形成し、これら対をなす縦スリット55同士の間に、面縦方向(測定部長手方向)に間隔をあけて対をなす横スリット56を配置することで、四角形状の弁配置領域を形成してもよい。すなわち比例弁80を端縁50aから離れた位置で装置基板50上に載置し、比例弁80の全周囲を縦スリット55および横スリット56で囲むようにしてもよく、比例弁80の設置位置は上述の場合に限定されない。 Further, the horizontal slit 56 does not necessarily have to be provided, and only the vertical slit 55 may be provided. Further, only the horizontal slit 56 may be provided. Further, in the above embodiment, the valve arrangement region S is formed by the vertical slit 55, the horizontal slit 56, and the end edge 50a. By arranging the horizontal slits 56 forming a pair at intervals in the vertical direction of the surface (longitudinal direction of the measuring portion) between the vertical slits 55 forming the pair, a quadrangular valve arrangement area is formed. May be formed. That is, the proportional valve 80 may be placed on the device substrate 50 at a position away from the end edge 50a, and the entire circumference of the proportional valve 80 may be surrounded by the vertical slit 55 and the horizontal slit 56, and the installation position of the proportional valve 80 is described above. Not limited to the case of.

例えば演算制御装置40は装置基板50とは別の場所に設置されてもよい。また、測定部20の装置基板50への固定方法も上述の場合に限定されない。温度センサ30および圧力センサ70の設置位置も上述の場合に限定されない。 For example, the arithmetic control device 40 may be installed in a place different from the device board 50. Further, the method of fixing the measuring unit 20 to the device substrate 50 is not limited to the above case. The installation positions of the temperature sensor 30 and the pressure sensor 70 are not limited to the above cases.

また、上記のガス濃度流量測定装置15は、酸素濃縮装置1以外の装置にも使用可能である。また酸素濃縮装置1はPSA方式の装置に限定されることなく、膜分離方式などの他の方式を用いた装置であってもよい。 Further, the gas concentration flow rate measuring device 15 can be used for devices other than the oxygen concentrator 1. Further, the oxygen concentrator 1 is not limited to the PSA type device, and may be a device using another method such as a membrane separation method.

本発明のガス濃度流量測定装置等によれば、測定精度を確保しつつ、コンパクト化が可能である。 According to the gas concentration flow rate measuring device or the like of the present invention, it is possible to make the measurement compact while ensuring the measurement accuracy.

1 酸素濃縮装置
15 ガス濃度流量測定装置
20 測定部
21 測定管(流路形成部)
22a 開口
30 温度センサ
40 演算制御装置
50 装置基板
52 装置基板パターン
53 装置基板ランド
54 貫通孔
55 縦スリット
56 横スリット
60 超音波センサ
61(61A、61B) 超音波素子
62 素子基板
63 基板端子
69 シールリング
80 比例弁(電磁弁装置)
84 接続部
84A 縦筒部
90 ボルト
100 濃縮装置本体
F 測定流路
A 空気
G 酸素含有ガス
C 接続流路
C1 縦流路
C2 曲がり流路
C3 横流路
1 Oxygen concentrator 15 Gas concentration flow rate measuring device 20 Measuring unit 21 Measuring tube (flow path forming unit)
22a Opening 30 Temperature sensor 40 Calculation control device 50 Device board 52 Device board pattern 53 Device board Land 54 Through hole 55 Vertical slit 56 Horizontal slit 60 Ultrasonic sensor 61 (61A, 61B) Ultrasonic element 62 Element board 63 Board terminal 69 Seal Ring 80 Proportional valve (electromagnetic valve device)
84 Connection part 84A Vertical cylinder part 90 Volt 100 Concentrator body F Measurement flow path A Air G Oxygen-containing gas C Connection flow path C1 Vertical flow path C2 Curved flow path C3 Horizontal flow path

Claims (13)

ガスが流通する測定流路を形成する測定部と、
前記測定流路における上流側および下流側にそれぞれ配置された一対の超音波センサと、
前記測定流路を流通する前記ガスの流量を調整する電磁弁装置と、
前記測定流路を流通する前記ガスの温度を測定する温度センサと、
一方の前記超音波センサから発信された超音波の伝搬速度と、他方の前記超音波センサから発信された超音波の伝搬速度との差分に基づいて前記ガスの流量を算出するとともに、前記ガスの流量および前記超音波の伝搬速度から前記超音波の音速を算出し、前記音速と前記ガスの温度と前記ガスの成分とに基づいて前記ガス中の特定の成分の濃度を算出する演算制御装置と、
少なくとも前記電磁弁装置および前記超音波センサを電気的に接続する装置基板パターンを有するとともに、前記電磁弁装置および前記測定部を支持する装置基板と、
を備え、
前記電磁弁装置は前記装置基板上に載置され、
前記電磁弁装置の周囲には、前記装置基板を厚さ方向に貫通する貫通孔が形成されているガス濃度流量測定装置。
A measuring unit that forms a measuring flow path through which gas flows,
A pair of ultrasonic sensors arranged on the upstream side and the downstream side of the measurement flow path, respectively,
A solenoid valve device that adjusts the flow rate of the gas flowing through the measurement flow path, and
A temperature sensor that measures the temperature of the gas flowing through the measurement flow path,
The flow rate of the gas is calculated based on the difference between the propagation speed of the ultrasonic wave transmitted from one of the ultrasonic sensors and the propagation speed of the ultrasonic wave transmitted from the other ultrasonic sensor, and the flow rate of the gas is calculated. An arithmetic control device that calculates the speed of sound of the ultrasonic wave from the flow rate and the propagation speed of the ultrasonic wave, and calculates the concentration of a specific component in the gas based on the speed of sound, the temperature of the gas, and the component of the gas. ,
A device board that has at least a device board pattern that electrically connects the solenoid valve device and the ultrasonic sensor, and supports the solenoid valve device and the measurement unit, and a device board that supports the solenoid valve device and the measurement unit.
Equipped with
The solenoid valve device is mounted on the device board and is mounted on the device board.
A gas concentration flow rate measuring device in which a through hole penetrating the device substrate in the thickness direction is formed around the solenoid valve device.
前記貫通孔はスリット状をなしている請求項1に記載のガス濃度流量測定装置。 The gas concentration flow rate measuring device according to claim 1, wherein the through hole has a slit shape. 前記測定部は、前記測定流路を形成して前記装置基板の表面に沿う面縦方向に延びる流路形成部を有し、
前記電磁弁装置と前記流路形成部とは、前記装置基板の表面に沿って前記面縦方向に直交する面横方向に離れた位置で、前記装置基板の表面上に設けられ、
前記装置基板には前記貫通孔として、前記面横方向に前記流路形成部と前記電磁弁装置との間に配置されて前記面縦方向に延びる縦スリットが形成されている請求項2に記載のガス濃度流量測定装置。
The measuring unit has a flow path forming unit that forms the measuring flow path and extends in the vertical direction along the surface of the apparatus substrate.
The solenoid valve device and the flow path forming portion are provided on the surface of the device board at positions separated from each other in the horizontal direction of the plane orthogonal to the vertical direction of the surface along the surface of the device board.
The second aspect of the present invention, wherein a vertical slit is formed in the device substrate as the through hole, which is arranged between the flow path forming portion and the solenoid valve device in the lateral direction of the surface and extends in the vertical direction of the surface. Gas concentration flow measuring device.
前記測定部は、前記測定流路を形成して前記装置基板の表面に沿う面縦方向に延びる流路形成部を有し、
前記電磁弁装置と前記流路形成部とは、前記装置基板の表面に沿って前記面縦方向に直交する面横方向に離れた位置で、前記装置基板の表面上に設けられ、
前記装置基板には前記貫通孔として、前記面横方向に延びるとともに前記面縦方向に間隔をあけて配置された複数の横スリットが形成され、
前記横スリットは前記電磁弁装置の前記面縦方向の両外側に配置されている請求項2または3に記載のガス濃度流量測定装置。
The measuring unit has a flow path forming unit that forms the measuring flow path and extends in the vertical direction along the surface of the apparatus substrate.
The solenoid valve device and the flow path forming portion are provided on the surface of the device board at positions separated from each other in the horizontal direction of the plane orthogonal to the vertical direction of the surface along the surface of the device board.
A plurality of horizontal slits extending in the lateral direction of the surface and arranged at intervals in the vertical direction of the surface are formed in the device substrate as the through holes.
The gas concentration flow rate measuring device according to claim 2 or 3, wherein the horizontal slits are arranged on both outer sides of the solenoid valve device in the vertical direction of the surface.
前記測定部は、前記測定流路を形成して前記装置基板の表面に沿う面縦方向に延びる流路形成部を有し、
前記電磁弁装置と前記流路形成部とは、前記装置基板の表面に沿って前記面縦方向に直交する面横方向に離れた位置で、前記装置基板の表面上に設けられ、
前記装置基板には、前記面横方向に前記流路形成部と前記電磁弁装置との間に配置されて前記面縦方向に延びる縦スリット、および、前記面横方向に延びるとともに前記面縦方向に間隔をあけて配置された複数の横スリットが前記貫通孔として形成され、
前記横スリットは前記電磁弁装置の前記面縦方向の両外側に配置され、
前記縦スリットは前記装置基板の端縁に対して前記面横方向に離れた位置に設けられ、
前記縦スリット、前記横スリット、および前記縁部は前記電磁弁装置を囲むように配置されている請求項2に記載のガス濃度流量測定装置。
The measuring unit has a flow path forming unit that forms the measuring flow path and extends in the vertical direction along the surface of the apparatus substrate.
The solenoid valve device and the flow path forming portion are provided on the surface of the device board at positions separated from each other in the horizontal direction of the plane orthogonal to the vertical direction of the surface along the surface of the device board.
The device substrate has a vertical slit arranged between the flow path forming portion and the solenoid valve device in the horizontal direction of the surface and extending in the vertical direction of the surface, and extending in the horizontal direction of the surface and in the vertical direction of the surface. A plurality of lateral slits arranged at intervals are formed as the through holes.
The horizontal slits are arranged on both outer sides of the solenoid valve device in the vertical direction of the surface.
The vertical slit is provided at a position separated from the edge of the device substrate in the lateral direction of the surface.
The gas concentration flow rate measuring device according to claim 2, wherein the vertical slit, the horizontal slit, and the edge portion are arranged so as to surround the solenoid valve device.
前記流路形成部における前記面横方向の幅寸法に対して、前記流路形成部と前記電磁弁装置との前記面横方向の距離が2.0倍以上になっている請求項3から5のいずれか一項に記載のガス濃度流量測定装置。 Claims 3 to 5 in which the distance between the flow path forming portion and the solenoid valve device in the lateral direction of the surface is 2.0 times or more the width dimension in the lateral direction of the surface of the flow path forming portion. The gas concentration flow rate measuring device according to any one of the above items. 前記流路形成部における前記面横方向の幅寸法に対して、前記流路形成部と前記電磁弁装置との前記面横方向の距離が3.0倍以下になっている請求項6に記載のガス濃度流量測定装置。 The sixth aspect of claim 6 in which the distance between the flow path forming portion and the solenoid valve device in the lateral direction of the surface is 3.0 times or less with respect to the width dimension in the lateral direction of the surface of the flow path forming portion. Gas concentration flow measuring device. 前記電磁弁装置と前記測定部とを接続し、前記電磁弁装置と前記測定流路との間で前記ガスを流通させる接続流路が形成された接続部をさらに備え、
前記測定部は前記測定流路を形成して前記装置基板の表面に沿う面縦方向に延びる流路形成部を有し、
前記電磁弁装置と前記流路形成部とは、前記装置基板の表面に沿って前記面縦方向に直交する面横方向に離れた位置で、前記装置基板の表面上に設けられ、
前記接続部には前記接続流路として、
前記電磁弁装置から前記面縦方向に延びる縦流路、前記縦流路に連通して湾曲する曲がり流路、および前記曲がり流路に連通して前記面横方向に延びて前記測定流路に連通している横流路が形成されている請求項1から7のいずれか一項に記載のガス濃度流量測定装置。
The solenoid valve device and the measuring section are connected to each other, and a connecting section is further provided in which a connecting flow path for circulating the gas is formed between the solenoid valve device and the measuring flow path.
The measuring unit has a flow path forming unit that forms the measuring flow path and extends in the vertical direction along the surface of the apparatus substrate.
The solenoid valve device and the flow path forming portion are provided on the surface of the device board at positions separated from each other in the horizontal direction of the plane orthogonal to the vertical direction of the surface along the surface of the device board.
In the connection portion, as the connection flow path,
A vertical flow path that extends in the vertical direction of the surface from the solenoid valve device, a curved flow path that communicates with the vertical flow path and curves, and a curved flow path that communicates with the curved flow path and extends in the lateral direction of the surface to the measurement flow path. The gas concentration flow rate measuring device according to any one of claims 1 to 7, wherein a communicating lateral flow path is formed.
前記接続部は可撓性を有するチューブによって形成されている請求項8に記載のガス濃度流量測定装置。 The gas concentration flow rate measuring device according to claim 8, wherein the connection portion is formed of a flexible tube. 前記電磁弁装置には、前記ガスが流入する入口部、および前記ガスが流出する出口部が設けられ、
前記出口部は、前記入口部に対して前記面横方向に前記電磁弁装置および前記流路形成部から離れる側に設けられ、
前記接続部は前記出口部に接続されるとともに、前記測定流路における上流側で前記測定部に接続され、前記ガスを前記電磁弁装置から前記測定流路に流入可能としている請求項8または9に記載のガス濃度流量測定装置。
The solenoid valve device is provided with an inlet portion into which the gas flows in and an outlet portion through which the gas flows out.
The outlet portion is provided on the side away from the solenoid valve device and the flow path forming portion in the lateral direction of the surface with respect to the inlet portion.
8. The gas concentration flow rate measuring device according to.
前記電磁弁装置には、前記ガスが流入する入口部、および前記ガスが流出する出口部が設けられ、
前記入口部は、前記出口部に対して前記面横方向に前記電磁弁装置および前記流路形成部から離れる側に設けられ、
前記接続部は前記入口部に接続されるとともに、前記測定流路における下流側で前記測定部に接続され、前記ガスを前記測定流路から前記電磁弁装置に流入可能としている請求項8または9に記載のガス濃度流量測定装置。
The solenoid valve device is provided with an inlet portion into which the gas flows in and an outlet portion through which the gas flows out.
The inlet portion is provided on the side away from the solenoid valve device and the flow path forming portion in the lateral direction of the surface with respect to the outlet portion.
8. The gas concentration flow rate measuring device according to.
前記接続部は、前記縦流路が内側に形成されて前記面縦方向に延びる縦筒部を有し、
前記流路形成部と前記電磁弁装置との前記面横方向の距離に対して、前記流路形成部と前記縦筒部との前記面横方向の距離が1.5倍以上となっている請求項8から11のいずれか一項に記載のガス濃度流量測定装置。
The connection portion has a vertical cylinder portion in which the vertical flow path is formed inward and extends in the vertical direction of the surface.
The distance between the flow path forming portion and the vertical cylinder portion in the lateral direction of the surface is 1.5 times or more the distance between the flow path forming portion and the solenoid valve device in the lateral direction of the surface. The gas concentration flow rate measuring device according to any one of claims 8 to 11.
前記ガスとしての酸素含有ガス中の酸素濃度、および前記酸素含有ガスの流量を測定する請求項1から12のいずれか一項に記載のガス濃度流量測定装置と、
前記ガス濃度流量測定装置を組み込んだ濃縮装置本体と、
を備える酸素濃縮装置。
The gas concentration flow rate measuring device according to any one of claims 1 to 12, which measures the oxygen concentration in the oxygen-containing gas as the gas and the flow rate of the oxygen-containing gas.
The main body of the concentrator incorporating the gas concentration flow rate measuring device and
An oxygen concentrator equipped with.
JP2020093012A 2020-05-28 2020-05-28 Gas concentration flow rate measuring device and oxygen concentrator Active JP7481907B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020093012A JP7481907B2 (en) 2020-05-28 2020-05-28 Gas concentration flow rate measuring device and oxygen concentrator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020093012A JP7481907B2 (en) 2020-05-28 2020-05-28 Gas concentration flow rate measuring device and oxygen concentrator

Publications (2)

Publication Number Publication Date
JP2021188982A true JP2021188982A (en) 2021-12-13
JP7481907B2 JP7481907B2 (en) 2024-05-13

Family

ID=78848360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020093012A Active JP7481907B2 (en) 2020-05-28 2020-05-28 Gas concentration flow rate measuring device and oxygen concentrator

Country Status (1)

Country Link
JP (1) JP7481907B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4473535B2 (en) 2003-07-08 2010-06-02 帝人株式会社 Oxygen concentrator
CN208621560U (en) 2018-08-06 2019-03-19 佛山市欧斯德医疗器械科技有限公司 A kind of ultrasonic sensor
CN210572119U (en) 2019-05-22 2020-05-19 深圳市慧传科技有限公司 Special oxygen concentration detection device for plateau

Also Published As

Publication number Publication date
JP7481907B2 (en) 2024-05-13

Similar Documents

Publication Publication Date Title
CN108472470B (en) Flow path sensing for flow therapy devices
EP2639560B1 (en) Ultrasonic flow rate measurement device
US7698938B2 (en) Flowmeter having a bent inlet passage for constant flow-velocity distribution
US8289179B2 (en) Vibratory flow meter and method for correcting for entrained gas in a flow material
US9453751B2 (en) Fuel consumption measuring instrument
JP2011511941A (en) System, method and computer program product for detecting process disturbances occurring in an oscillating flow device
WO2002031446A1 (en) Flow measuring device
JP2015145827A (en) Measurement flow passage unit
JP2021188982A (en) Gas concentration flow rate measuring device and oxygen concentrator
CN106030254A (en) Gas flowmeter
EP2485017A1 (en) Ultrasonic flowmeter
CN111492211B (en) Vibration-type measuring transducer and vibration measuring system formed by same
US20130098168A1 (en) Construction for mounting ultrasonic transducer and ultrasonic flow meter using same
US20180066968A1 (en) Fluidic oscillation flowmeter with symmetrical measurement orifices for a device for monitoring oxygen therapy
JP7051578B2 (en) Gas production equipment
JP2021188981A (en) Gas concentration flow rate measuring device, oxygen concentrator, and method for assembling device for measuring gas concentration and flow rate
JP4612218B2 (en) Oxygen concentrator
EP3951328B1 (en) Ultrasonic flowmeter
JP2021188980A (en) Gas concentration flow rate measuring device, oxygen concentrator, and method for assembling device for measuring gas concentration and flow rate
JP2021188979A (en) Gas concentration and flow rate measuring device, oxygen concentrator, and method for assembling gas concentration and flow rate measuring device
US20200029859A1 (en) Breath measurement device
JP2015145826A (en) gas meter
CN211697651U (en) Ultrasonic gas sensor
EP2390632A1 (en) Flowmeter
US8438933B2 (en) Flowmeter and manifold therefor

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20220328

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230519

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240426

R150 Certificate of patent or registration of utility model

Ref document number: 7481907

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150