JP2021187731A - Fiber-reinforced concrete capable of recycling material, and recycling method thereof - Google Patents

Fiber-reinforced concrete capable of recycling material, and recycling method thereof Download PDF

Info

Publication number
JP2021187731A
JP2021187731A JP2021019707A JP2021019707A JP2021187731A JP 2021187731 A JP2021187731 A JP 2021187731A JP 2021019707 A JP2021019707 A JP 2021019707A JP 2021019707 A JP2021019707 A JP 2021019707A JP 2021187731 A JP2021187731 A JP 2021187731A
Authority
JP
Japan
Prior art keywords
reinforced concrete
fiber reinforced
fiber
recycling
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021019707A
Other languages
Japanese (ja)
Other versions
JP7300681B2 (en
Inventor
悟志 昇
Satoshi Nobori
正聡 近藤
Masatoshi Kondo
伸浩 千々和
Nobuhiro Chijiwa
ミンホ オ
minho O
拓海 矢部
Takumi Yabe
京香 井上
Kyoka Inoue
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Institute of Technology NUC
Fudo Tetra Corp
Original Assignee
Tokyo Institute of Technology NUC
Fudo Tetra Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Institute of Technology NUC, Fudo Tetra Corp filed Critical Tokyo Institute of Technology NUC
Publication of JP2021187731A publication Critical patent/JP2021187731A/en
Application granted granted Critical
Publication of JP7300681B2 publication Critical patent/JP7300681B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

To provide a fiber-reinforced concrete capable of recycling a material capable of exhibiting material properties required as a housing material in service and of being separated and regenerated after the service.SOLUTION: A fiber-reinforced concrete 1 capable of recycling a material is made by putting a metallic fiber-reinforced material 3 having a low melting point into a hardened body 2 of a compound, the compound being formed by adding some or all of materials, such as a fine aggregate, a coarse aggregate and an admixture, to a binder agent comprising some or all of cement, an admixture and water. Preferably a metal fiber comprising an alloy or an element metal is used as the metallic fiber-reinforced material 3 having low melting point, the alloy mainly comprising aluminum, bismuth, cesium, mercury, potassium, lithium, sodium, lead, rubidium, tin, zinc, indium, gallium, cadmium, and their oxide. Moreover the fiber-reinforced concrete after service can be separated into a metal fiber and a cement-hardened body and be regenerated through low-temperature heating process or the like, and can thereby be recycled.SELECTED DRAWING: Figure 1

Description

本発明は、材料のリサイクルが可能な繊維補強コンクリート及びそのリサイクル方法に関する。 The present invention relates to a fiber reinforced concrete capable of recycling materials and a method for recycling the same.

繊維補強材を混入した繊維補強コンクリートとして、特許文献1に開示されたものがある。この特許文献1に開示された繊維補強コンクリートは、セメント、ポゾラン質微粉末、骨材、水、及び減衰剤を含む配合物の硬化体に、更にステンレス鋼繊維及び/又はアモルファス金属繊維を混入したコンクリートである。 As a fiber reinforced concrete mixed with a fiber reinforcing material, there is one disclosed in Patent Document 1. In the fiber reinforced concrete disclosed in Patent Document 1, stainless steel fibers and / or amorphous metal fibers are further mixed in a cured product of a formulation containing cement, pozzolanic fine powder, aggregate, water, and attenuating agent. It is concrete.

このステンレス鋼繊維を混入した繊維補強コンクリートは、引張力に弱いというコンクリートの特性を鋼繊維の繊維架橋効果によって補完することで、コンクリートの構造性能を高めることができる材料である。 The fiber-reinforced concrete mixed with stainless steel fibers is a material that can enhance the structural performance of concrete by complementing the characteristic of concrete that it is weak in tensile force by the fiber cross-linking effect of steel fibers.

特開2001−253745号公報Japanese Unexamined Patent Publication No. 2001-253745

しかしながら、前記従来の繊維補強コンクリートでは、その優れた特性ゆえに、鋼繊維とセメント硬化体の分離が極めて難しく、供用済み後の繊維補強コンクリートは、最終処分場へ運搬し、埋立処分するしかないのが現状である。また、セメント(モルタル)の原料となる石灰石の資源には限りがあるため、繊維補強材を混入した繊維補強コンクリートのリサイクル技術の開発が所望されている。 However, in the conventional fiber reinforced concrete, it is extremely difficult to separate the steel fiber and the cement hardened body due to its excellent properties, and the fiber reinforced concrete after the service has to be transported to the final disposal site and disposed of by landfill. Is the current situation. Further, since the resources of limestone, which is a raw material of cement (mortar), are limited, it is desired to develop a recycling technique for fiber reinforced concrete mixed with fiber reinforced concrete.

そこで、本発明は、前記した課題を解決すべくなされたものであり、供用中は建材として必要な材料特性を発揮しつつ、供用済み後は分離再生ができる材料のリサイクルが可能な繊維補強コンクリート及びそのリサイクル方法を提供することを目的とする。 Therefore, the present invention has been made to solve the above-mentioned problems, and is a fiber reinforced concrete capable of recycling a material that can be separated and recycled after being in service while exhibiting material properties required as a building material during operation. And its recycling method.

本発明の材料のリサイクルが可能な繊維補強コンクリートは、セメント、混和材料、水の一部又はすべてからなる結合剤に、細骨材、粗骨材、混和材料といった材料の一部或いは全部を添加して構成した配合物の硬化体に、更に融点の低い金属製の繊維補強材を混入したことを特徴とする。 The recyclable fiber reinforced concrete of the present invention is prepared by adding a part or all of materials such as fine aggregate, coarse aggregate and admixture to a binder consisting of cement, admixture, part or all of water. It is characterized in that a metal fiber reinforcing material having a lower melting point is further mixed into the cured product of the composition.

また、本発明の材料のリサイクルが可能な繊維補強コンクリートのリサイクル方法は、融点の低い金属製の繊維補強材を混入した繊維補強コンクリートからなるコンクリート構造物の供用済み後のリサイクル方法であって、まず、前記供用済みコンクリート構造物の繊維補強コンクリートを解体し、次に、前記解体した繊維補強コンクリートを低温で加熱処理して前記融点の低い金属製の繊維補強材を溶融し、次に、前記低温で加熱処理した繊維補強コンクリートを破砕した後でセメント硬化体の原料となる再生用のコンクリート材と再生用の金属とにそれぞれ分離して回収し、次に、前記回収された再生用のコンクリート材からなる再生セメントに前記再生用の金属からなる再生繊維補強材を混入して繊維補強コンクリートを再度製造することを特徴とする。 Further, the method for recycling fiber-reinforced concrete in which the material of the present invention can be recycled is a method for recycling a concrete structure made of fiber-reinforced concrete mixed with a metal fiber-reinforced material having a low melting point after it has been put into service. First, the fiber-reinforced concrete of the used concrete structure is disassembled, then the disassembled fiber-reinforced concrete is heat-treated at a low temperature to melt the metal fiber-reinforced material having a low melting point, and then the above-mentioned After crushing the fiber reinforced concrete heat-treated at a low temperature, the concrete material for regeneration and the metal for regeneration, which are the raw materials of the hardened cement, are separated and recovered, and then the recovered concrete for recycling is recovered. It is characterized in that a fiber reinforced concrete is manufactured again by mixing a recycled fiber reinforcing material made of the metal for regeneration with a recycled cement made of the material.

本発明によれば、供用中は建材として必要な材料特性を発揮しつつ、供用済み後は分離再生ができる材料のリサイクルが可能な繊維補強コンクリート及びそのリサイクル方法を提供することができる。 According to the present invention, it is possible to provide a fiber reinforced concrete and a recycling method thereof, which can recycle a material that can be separated and recycled after the service has been completed, while exhibiting the material properties required as a building material during the service.

本発明の第1実施形態の材料のリサイクルが可能な繊維補強コンクリートを示す概略斜視図である。It is a schematic perspective view which shows the fiber reinforced concrete which can recycle the material of 1st Embodiment of this invention. 上記繊維補強コンクリートと鉄筋コンクリート及び無筋コンクリートの特性を比較したグラフである。It is a graph comparing the characteristics of the said fiber reinforced concrete, reinforced concrete and unreinforced concrete. 上記繊維補強コンクリート造りのコンクリート構造物の概略斜視図である。It is a schematic perspective view of the concrete structure made of the fiber reinforced concrete. (a)は鉄筋コンクリート造りのコンクリート構造物の部分拡大斜視図、(b)は上記繊維補強コンクリート造りのコンクリート構造物の部分拡大斜視図である。(A) is a partially enlarged perspective view of a concrete structure made of reinforced concrete, and (b) is a partially enlarged perspective view of the concrete structure made of fiber reinforced concrete. 上記繊維補強コンクリート造りのコンクリート構造物の供用済み後のリサイクル工程を示すフローチャートである。It is a flowchart which shows the recycling process after the use of the concrete structure made of the fiber reinforced concrete. 本発明の第2実施形態の材料のリサイクルが可能な繊維補強コンクリートを示す概略斜視図である。It is a schematic perspective view which shows the fiber reinforced concrete which can recycle the material of the 2nd Embodiment of this invention. 本発明の第3実施形態の材料のリサイクルが可能な繊維補強コンクリートを示す概略斜視図である。It is a schematic perspective view which shows the fiber reinforced concrete which can recycle the material of the 3rd Embodiment of this invention. 本発明の第1、2、3実施形態の材料のリサイクルが可能な複数種類の繊維補強コンクリートの引張特性を比較して示すグラフである。It is a graph which compares and shows the tensile property of a plurality of kinds of fiber reinforced concrete which can recycle the material of 1st, 2nd and 3rd Embodiment of this invention.

以下、本発明の実施形態を図面に基づいて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は本発明の第1実施形態の材料のリサイクルが可能な繊維補強コンクリートを示す概略斜視図、図2は繊維補強コンクリートと鉄筋コンクリート及び無筋コンクリートの特性を比較したグラフ、図3は繊維補強コンクリートで構築されたコンクリート構造物の概略斜視図、図4(a)は鉄筋コンクリート造りのコンクリート構造物の部分拡大斜視図、図4(b)は繊維補強コンクリート造りのコンクリート構造物の部分拡大斜視図、図5は繊維補強コンクリート造りのコンクリート構造物の供用済み後のリサイクル工程を示すフローチャートである。 FIG. 1 is a schematic perspective view showing fibrous reinforced concrete in which the material of the first embodiment of the present invention can be recycled, FIG. 2 is a graph comparing the characteristics of fibrous reinforced concrete with reinforced concrete and unreinforced concrete, and FIG. 3 is fibrous reinforcing. Schematic perspective view of a concrete structure constructed of concrete, FIG. 4 (a) is a partially enlarged perspective view of a concrete structure made of reinforced concrete, and FIG. 4 (b) is a partially enlarged perspective view of a concrete structure made of fiber reinforced concrete. FIG. 5 is a flowchart showing a recycling process of a concrete structure made of fiber-reinforced concrete after it has been put into service.

図1に示すように、材料のリサイクルが可能な繊維補強コンクリート1は、セメント、混和材料、水の一部又はすべてからなる結合剤に、砂(細骨材)、砂利(粗骨材)、混和材料といった材料の一部或いは全部を添加して構成した配合物の硬化体2に、融点の低い金属製の繊維補強材3を混入している。この融点の低い金属製の繊維補強材3としては、アルミニウム、ビスマス、セシウム、水銀、カリウム、リチウム、ナトリウム、鉛、ルビジウム、錫、亜鉛、インジウム、ガリウム、カドミウムや、これらの酸化物を主材料として含む合金或いは単体金属で作った金属繊維を用いている。 As shown in FIG. 1, the fiber reinforced concrete 1 whose material can be recycled is composed of cement, an admixture material, a binder consisting of a part or all of water, sand (fine aggregate), gravel (coarse aggregate), and the like. A metal fiber reinforced concrete 3 having a low melting point is mixed in a cured product 2 of a compound composed by adding a part or all of a material such as an admixture material. The main material of the metal fiber reinforcing material 3 having a low melting point is aluminum, bismuth, cesium, mercury, potassium, lithium, sodium, lead, rubidium, tin, zinc, indium, gallium, cadmium, and oxides thereof. Metallic fibers made of alloys or elemental metals are used.

図2に繊維補強コンクリート1と鉄筋コンクリート及び無筋コンクリートの各特性を示すように、繊維補強コンクリート1は、鉄筋コンクリートよりもピーク荷重が低いが、エネルギー吸収量(変形量)が高いことが判る。 As shown in FIG. 2 showing the characteristics of the fiber reinforced concrete 1, the reinforced concrete, and the unreinforced concrete, it can be seen that the fiber reinforced concrete 1 has a lower peak load than the reinforced concrete, but has a higher energy absorption amount (deformation amount).

以上第1実施形態の材料のリサイクルが可能な繊維補強コンクリート1によれば、コンクリート補強材としての繊維補強材3に鋼金属より融点の低いアルミニウム、ビスマス、セシウム、水銀、カリウム、リチウム、ナトリウム、鉛、ルビジウム、錫、亜鉛、インジウム、ガリウム、カドミウムやこれらの酸化物を主材料として含む合金或いは単体金属からなる金属繊維を用いることにより、常温環境下での供用時には、繊維架橋効果によって高い靭性を有するコンクリートとして機能させることができる。即ち、常温供用下では、有機繊維並みの繊維強化効果が得られる。 According to the fiber reinforced concrete 1 capable of recycling the material of the first embodiment, the fiber reinforced concrete 3 as a concrete reinforcing material includes aluminum, bismuth, cesium, mercury, potassium, lithium, sodium, which have a lower melting point than steel metal. By using metal fibers made of alloys containing lead, rubidium, tin, zinc, indium, gallium, cadmium and their oxides as main materials or single metals, high toughness is achieved due to the fiber cross-linking effect when used in a normal temperature environment. Can function as concrete with. That is, under normal temperature operation, a fiber strengthening effect equivalent to that of organic fibers can be obtained.

また、材料のリサイクルが可能な繊維補強コンクリート1は、一例として、図3に示す防潮堤(コンクリート構造物)10を構築する際に使用すると、従来の鉄筋コンクリート造りのものよりも好適である。 Further, the fiber reinforced concrete 1 capable of recycling the material is more suitable than the conventional reinforced concrete structure when used when constructing the tide embankment (concrete structure) 10 shown in FIG. 3 as an example.

詳述すると、沿岸部に設置される防潮堤には、塩害環境下で長期供用するための高い耐久性が求められると共に、想定外の波力を受けクリティカルな損傷を受けた後にも靭性を発揮し、原位置で海水を堰き止め続けるといった性能も求められる。このため、一般的には、図4(a)に示すように、コンクリート20中に鉄筋21を複数本配置すると共に、大きなかぶり厚(その厚さを図中符号Sで示す)をセットすることで、これらの要求を満足するように幅広(その幅を図中符号Hで示す)に設計されている。しかし、コンクリートには様々な要因でひび割れが生じるために、長期にわたって鉄筋21を腐食させず、それによって靭性を維持することは困難である。また、過大な厚さSのかぶり部は無筋コンクリートとしての挙動に近づくことから、部材厚Hに対して靭性が向上しないことも知られている。これらにより、通常の鉄筋コンクリート造りの防潮堤では、長期間安定なインフラとなり得ない可能性があり、鉄筋21を含めて全て新たな材料を用いて再構築する必要がある。 In detail, the tide embankment installed in the coastal area is required to have high durability for long-term operation in a salt-damaged environment, and also exhibits toughness even after being severely damaged by unexpected wave force. However, performance such as continuing to block seawater in its original position is also required. Therefore, in general, as shown in FIG. 4A, a plurality of reinforcing bars 21 are arranged in the concrete 20 and a large cover thickness (the thickness thereof is indicated by reference numeral S in the figure) is set. Therefore, it is designed to be wide (the width is indicated by reference numeral H in the figure) so as to satisfy these requirements. However, since the concrete is cracked due to various factors, it is difficult to maintain the toughness by not corroding the reinforcing bar 21 for a long period of time. It is also known that the toughness does not improve with respect to the member thickness H because the cover portion having an excessive thickness S approaches the behavior as unreinforced concrete. Due to these factors, a normal reinforced concrete tide embankment may not be a stable infrastructure for a long period of time, and it is necessary to reconstruct everything including the reinforcing bar 21 using new materials.

そこで、図3及び図4(b)に示すように、防潮堤10を材料のリサイクルが可能な繊維補強コンクリート1で構築すると、繊維補強コンクリート1が耐食性の高い金属製の繊維補強材3で補強されていて材料自体が高い靭性を持つため、耐久性と靭性を両立させることができる。これによって、想定外の波力を受けても、海水を原位置で堰止め続けることが可能である。 Therefore, as shown in FIGS. 3 and 4B, when the tide embankment 10 is constructed of a fiber reinforced concrete 1 capable of recycling the material, the fiber reinforced concrete 1 is reinforced with a metal fiber reinforced concrete 3 having high corrosion resistance. Since the material itself has high toughness, it is possible to achieve both durability and toughness. This makes it possible to continue to dam the seawater in place even if it receives unexpected wave power.

また、防潮堤10を材料のリサイクルが可能な繊維補強コンクリート1で構築した場合、鉄筋コンクリートのかぶり部が不要になるため、繊維補強コンクリート1の幅Hを薄くすることができ、その分構築の際に低コスト化を図ることができる。さらに、繊維補強コンクリート1と雖も長期間経つとひび割れ等の破損が発生し、ひび割れ等によって止水性が低下するため、交換が必要になる。この際、後述するように、繊維補強コンクリート1は、加熱処理によって、コンクリートと金属繊維を分離・回収し、再生材料とすることができるようになっており、この特性を利用して破損した防潮堤を、再生した繊維補強コンクリートで再度構築して交換使用することが可能である。 Further, when the tide embankment 10 is constructed of the fiber reinforced concrete 1 whose material can be recycled, the cover portion of the reinforced concrete becomes unnecessary, so that the width H of the fiber reinforced concrete 1 can be reduced, and the width H of the fiber reinforced concrete 1 can be reduced accordingly. It is possible to reduce the cost. Further, the fiber reinforced concrete 1 and the shavings also suffer damage such as cracks after a long period of time, and the water blocking property is lowered due to the cracks or the like, so that they need to be replaced. At this time, as will be described later, in the fiber reinforced concrete 1, the concrete and the metal fiber can be separated and recovered by heat treatment and used as a recycled material, and the damaged tide prevention can be made by utilizing this characteristic. It is possible to reconstruct the embankment with recycled fiber reinforced concrete and use it for replacement.

次に、材料のリサイクルが可能な繊維補強コンクリート1で構築された防潮堤10の供用済み後のリサイクル工程を図5に示すフローチャートに沿って説明する。 Next, the recycling process after the service of the tide embankment 10 constructed of the fiber reinforced concrete 1 capable of recycling the material will be described with reference to the flowchart shown in FIG.

まず、供用済みコンクリート構造物10の繊維補強コンクリート1を解体して、セメントリサイクル工場まで運搬する(ステップS1)。 First, the fiber-reinforced concrete 1 of the used concrete structure 10 is disassembled and transported to the cement recycling factory (step S1).

次に、セメントリサイクル工場にて、解体した繊維補強コンクリート1を低温(例えば、錫繊維を包含する場合は200°位、アルミニウム繊維を包含する場合は600°位)で加熱処理して繊維の架橋効果を消失させ、融点の低い金属製の繊維補強材3を溶融して液化させる(ステップS2)。 Next, at a cement recycling factory, the disassembled fiber reinforced concrete 1 is heat-treated at a low temperature (for example, about 200 ° when containing tin fibers and about 600 ° when containing aluminum fibers) to crosslink the fibers. The effect is lost, and the metal fiber reinforcing material 3 having a low melting point is melted and liquefied (step S2).

次に、低温で加熱処理した繊維補強コンクリート1を粒状或いは粉状に破砕する(ステップS3)。 Next, the fiber reinforced concrete 1 heat-treated at a low temperature is crushed into granules or powder (step S3).

そして、この粉砕物から遠心分離等によりセメント硬化体の原料となる再生用のコンクリートガラ(コンクリート材)と再生用の液状の金属にそれぞれ分離して回収する(ステップS4)。 Then, the crushed material is separated into a reclaimed concrete waste (concrete material) and a reclaimed liquid metal, which are raw materials for the hardened cement, and recovered by centrifugation or the like (step S4).

次に、回収された再生用のコンクリートガラらなる再生セメントに、再生用の金属からなる再生繊維補強材を混入して繊維補強コンクリート1を再度製造する(ステップS5)。 Next, the fiber-reinforced concrete 1 is manufactured again by mixing the recovered recycled cement, which is made of recycled concrete, with a recycled fiber reinforcing material made of a metal for recycling (step S5).

このように、コンクリート(モルタル)の原料には再生に適した骨材を用いているため、普通のコンクリートと同じように解体し、かつ遠心分離等によって、比較的少ないエネルギーの投入により再生用のコンクリートガラと再生用の金属にそれぞれ分離・回収することができ、また、この分離・回収したものをそのまま再生原料として利用することができる。 In this way, since aggregate suitable for regeneration is used as the raw material for concrete (mortar), it can be disassembled in the same way as ordinary concrete, and can be recycled by inputting relatively little energy by centrifugation or the like. It can be separated and recovered into concrete glass and metal for recycling, respectively, and the separated and recovered material can be used as it is as a raw material for recycling.

尚、前記第1実施形態によれば、解体した繊維補強コンクリートを金属の融点以上の温度で加熱処理するようにしたが、融点未満の温度で加熱処理して金属製の繊維補強材の剛性が落ちたところで繊維補強コンクリートを解体し、その後、再度加熱処理して金属を液化させても良い。 According to the first embodiment, the disassembled fiber reinforced concrete is heat-treated at a temperature higher than the melting point of the metal, but the heat treatment is performed at a temperature lower than the melting point to increase the rigidity of the metal fiber reinforced concrete. The fiber reinforced concrete may be disassembled at the point where it has fallen, and then heat-treated again to liquefy the metal.

また、前記第1実施形態によれば、遠心分離等によって再生用のコンクリートガラと再生用の金属に分離したが、重力による自然分離やフィルタ等により分離しても良い。 Further, according to the first embodiment, the concrete glass for regeneration and the metal for regeneration are separated by centrifugation or the like, but they may be separated by natural separation by gravity, a filter or the like.

さらに、前記第1実施形態によれば、セメント硬化体の原料となる骨材を石灰石とすることで、コンクリート部分をそのまま再生資源としたが、石灰石を配合しなかったり、或いは、石灰石以外の粉体や骨材を用いて代替しても良い。 Further, according to the first embodiment, the aggregate used as the raw material of the hardened cement is limestone, so that the concrete portion is used as a recycled resource as it is, but limestone is not blended or powder other than limestone is used. It may be replaced by using a body or aggregate.

さらに、前記第1実施形態によれば、材料のリサイクルが可能な繊維補強コンクリート造りのコンクリート構造物として防潮堤について説明したが、コンクリート構造物は、防潮堤に限定されるものではなく、例えば、高層建築物等の外壁に使用されるプレキャストコンクリートカーテンウォール等の他のコンクリート構造物に適用できることは勿論である。 Further, according to the first embodiment, the tide embankment has been described as a concrete structure made of fiber reinforced concrete capable of recycling materials, but the concrete structure is not limited to the tide embankment, for example. Of course, it can be applied to other concrete structures such as precast concrete curtain walls used for outer walls of high-rise buildings and the like.

図6は本発明の第2実施形態の材料のリサイクルが可能な繊維補強コンクリートを示す概略斜視図である。 FIG. 6 is a schematic perspective view showing a fiber reinforced concrete in which the material of the second embodiment of the present invention can be recycled.

図6に示すように、この第2実施形態の材料のリサイクルが可能な繊維補強コンクリート1は、セメント、混和材料、水の一部又はすべてからなる結合剤に、砂(細骨材)、砂利(粗骨材)、混和材料といった材料の一部或いは全部を添加して構成した配合物の硬化体2に、融点の低い金属製の繊維補強材としてアルミニウム製で楕円環状(所謂クリップ形状)の繊維補強材4を多数混入している点が、前記第1実施形態のものとは異なる。 As shown in FIG. 6, the recyclable fiber reinforced concrete 1 of the second embodiment has cement, an admixture material, a binder consisting of a part or all of water, sand (fine aggregate), and gravel. An elliptical annular shape (so-called clip shape) made of aluminum as a fiber reinforced material made of metal with a low melting point is added to the cured body 2 of the compound composed by adding a part or all of materials such as (coarse aggregate) and an admixture material. It differs from that of the first embodiment in that a large number of fiber reinforcing materials 4 are mixed.

この第2実施形態の材料のリサイクルが可能な繊維補強コンクリート1では、繊維補強材4をアルミニウム製で楕円環状の形状とすることで、低剛性・低強度である易融金属でも配合物の硬化体2中に確実に定着することが可能となる。この楕円環状の形状の場合、繊維補強材4同士が絡むことを抑制し、一様性を確保することもできる。また、アルカリ腐食等によって繊維界面に弱点が生じても、多数の繊維補強材4が配合物の硬化体2を抱き込むような形状となっているため、配合物の硬化体2から多数の繊維補強材4が容易に抜けることがない。さらに、前記第1実施形態と同様に、供用済み後の繊維補強コンクリート1は、低温の加熱処理等により、金属繊維とセメント硬化体の分離・再生が可能となり、リサイクルできる。 In the fiber reinforced concrete 1 in which the material of the second embodiment can be recycled, the fiber reinforced concrete 4 is made of aluminum and has an elliptical annular shape, so that the compound can be cured even with an easily meltable metal having low rigidity and low strength. It becomes possible to surely settle in the body 2. In the case of this elliptical annular shape, it is possible to suppress the fiber reinforcing members 4 from being entangled with each other and to ensure uniformity. Further, even if a weak point is generated at the fiber interface due to alkaline corrosion or the like, a large number of fiber reinforcing materials 4 are shaped to embrace the cured body 2 of the compound, so that a large number of fibers from the cured body 2 of the compound are used. The reinforcing material 4 does not easily come off. Further, as in the first embodiment, the fiber-reinforced concrete 1 after service can be recycled by being able to separate and regenerate the metal fiber and the hardened cement by low-temperature heat treatment or the like.

尚、前記第2実施形態によれば、アルミニウム製で楕円環状のものを繊維補強材としているが、アルミニウム以外で、鉛、ルビジウム、錫、亜鉛等の融点の低い金属を楕円環状に形成したものを繊維補強材として用いても良い。 According to the second embodiment, the fiber reinforcing material is made of aluminum and has an elliptical annular shape. However, other than aluminum, a metal having a low melting point such as lead, rubidium, tin, and zinc is formed into an elliptical annular shape. May be used as a fiber reinforcing material.

図7は本発明の第3実施形態の材料のリサイクルが可能な繊維補強コンクリートを示す概略斜視図である。 FIG. 7 is a schematic perspective view showing a fiber reinforced concrete in which the material of the third embodiment of the present invention can be recycled.

図7に示すように、この第3実施形態の材料のリサイクルが可能な繊維補強コンクリート1は、セメント、混和材料、水の一部又はすべてからなる結合剤に、砂(細骨材)、砂利(粗骨材)、混和材料といった材料の一部或いは全部を添加して構成した配合物の硬化体2に、融点の低い金属製の繊維補強材としてアルミニウム製で撚線状(所謂ツイスト形状)の繊維補強材5を多数混入している点が、前記第1実施形態のものとは異なる。 As shown in FIG. 7, the recyclable fiber reinforced concrete 1 of the third embodiment has cement, an admixture material, a binder consisting of a part or all of water, sand (fine aggregate), and gravel. A twisted wire made of aluminum as a fiber reinforced material made of metal with a low melting point in a cured body 2 of a compound composed by adding a part or all of materials such as (coarse aggregate) and an admixture material (so-called twist shape). It is different from that of the first embodiment in that a large number of the fiber reinforcing materials 5 of the above are mixed.

この第3実施形態の材料のリサイクルが可能な繊維補強コンクリート1では、繊維補強材5をアルミニウム製で撚線状の形状とすることで、前記第2実施形態と同様の作用・効果を奏する。 In the fiber reinforced concrete 1 capable of recycling the material of the third embodiment, the fiber reinforced concrete 5 is made of aluminum and has a stranded wire shape, so that the same operations and effects as those of the second embodiment can be obtained.

尚、前記第3実施形態によれば、アルミニウム製で撚線状のものを繊維補強材としているが、アルミニウム以外で、鉛、ルビジウム、錫、亜鉛等の融点の低い金属を撚線状に形成したものを繊維補強材として用いても良い。 According to the third embodiment, the fiber reinforcing material is made of aluminum and has a stranded wire shape. However, other than aluminum, a metal having a low melting point such as lead, rubidium, tin, and zinc is formed in the stranded wire shape. It may be used as a fiber reinforcing material.

図8は本発明の第1、2、3実施形態の材料のリサイクルが可能な複数種類の繊維補強コンクリートの引張特性を比較して示すグラフである。このグラフでは、酸化被膜無しのアルミニウム製で直線状の繊維補強材のものと、第2実施形態のアルミニウム製・楕円環状の繊維補強材4で酸化被膜有り無しのものと、第3実施形態のアルミニウム製・撚線状の繊維補強材5で酸化被膜有り無しのものとを、配合物の硬化体2に混入して成る5種類の材料のリサイクルが可能な繊維補強コンクリート1の引張特性を比較している。 FIG. 8 is a graph showing a comparison of the tensile properties of a plurality of types of fiber reinforced concrete capable of recycling the materials of the first, second and third embodiments of the present invention. In this graph, the aluminum fiber reinforced concrete without an oxide film and the linear fiber reinforced concrete, the aluminum-elliptical annular fiber reinforced concrete 4 of the second embodiment with and without the oxide film, and the third embodiment. Comparison of tensile properties of fiber reinforced concrete 1 made of aluminum and stranded wire-shaped fiber reinforced concrete 5 with and without oxide film, which can be recycled from 5 types of materials mixed in the cured body 2 of the compound. is doing.

第1、2、3実施形態の材料のリサイクルが可能な繊維補強コンクリート1において、アルミニウムを繊維補強材とする場合に生じるアルカリ腐食を抑制するために、スラッジ水(練り混ぜに用いたスコップやミキサー等を洗った際に排出される廃液である高アルカリ水)、または、廃液以外の別の高アルカリ水にアルミニウム製で楕円環状の繊維補強材4を事前に浸漬させ(アルミニウム製で撚線状の繊維補強材5の場合も同様)、その繊維表面に酸化被膜を予め形成しておくことで、配合物の硬化体2に多数の繊維補強材4を添加した後のアルカリ腐食反応を低コストで遅くすることができる。つまり、リサイクルが可能な繊維補強コンクリート1の養生中に、アルミニウム製で楕円環状の繊維補強材4と配合物の硬化体2が化学反応して水素が発生し、繊維補強材4と配合物の硬化体2との間に空隙(隙間)が生じて繊維補強材4の付着低下が起こるが、アルカリ腐食を事前に起こすことで、図8に示すように、酸化被膜無しのアルミニウム製で楕円環状の繊維補強材4を配合物の硬化体2に混入した場合と同様に、酸化被膜有りのアルミニウム製で楕円環状の繊維補強材4を配合物の硬化体2に混入した場合も、リサイクルが可能な繊維補強コンクリート1の養生中に繊維補強材4の付着低下を防ぐことができ、酸化被膜無しのアルミニウム製で直線状の繊維補強材を配合物の硬化体2に混入した場合よりも補強効果をより一段と高めることができる。 In the fiber reinforced concrete 1 capable of recycling the materials of the first, second and third embodiments, sludge water (scoop or mixer used for kneading) is used to suppress alkaline corrosion that occurs when aluminum is used as the fiber reinforced material. (Highly alkaline water, which is a waste liquid discharged when washing etc.), or another high alkaline water other than the waste liquid, soaked an elliptical annular fiber reinforced concrete 4 made of aluminum in advance (made of aluminum and twisted). By forming an oxide film on the fiber surface in advance, the alkaline corrosion reaction after adding a large number of fiber reinforced concrete 4 to the cured body 2 of the compound can be carried out at low cost. Can be slowed down with. That is, during the curing of the recyclable fiber reinforced concrete 1, hydrogen is generated by a chemical reaction between the aluminum elliptical annular fiber reinforced material 4 and the cured body 2 of the compound, and the fiber reinforced material 4 and the compound are generated. A gap (gap) is created between the fiber and the hardened body 2, and the adhesion of the fiber reinforced material 4 is reduced. However, by causing alkaline corrosion in advance, as shown in FIG. 8, it is made of aluminum without an oxide film and has an elliptical ring shape. In the same way as when the fiber reinforced concrete 4 of the above is mixed in the cured body 2 of the compound, it is possible to recycle when the fiber reinforced concrete 4 made of aluminum with an oxide film and having an elliptical annular shape is mixed in the cured body 2 of the compound. It is possible to prevent the adhesion of the fiber reinforced concrete 4 from decreasing during the curing of the fiber reinforced concrete 1, and the reinforcing effect is higher than when a linear fiber reinforced concrete made of aluminum without an oxide film is mixed in the cured body 2 of the compound. Can be further enhanced.

また、アルミニウム製で撚線状の繊維補強材5の場合は、アルカリ腐食を事前に起こしておくことで、配合物の硬化体2と多数のアルミニウム製で撚線状の繊維補強材5の練り混ぜ時に繊維補強材5同士の絡み合いをより一段と抑制することができ、多数の繊維補強材5の一様な分散を期待することができる。これにより、図8に示すように、酸化被膜有りのアルミニウム製で撚線状の繊維補強材5を配合物の硬化体2に混入した場合の方が、酸化被膜無しのアルミニウム製で撚線状の繊維補強材5を配合物の硬化体2に混入した場合よりも、リサイクルが可能な繊維補強コンクリート1の養生中に繊維補強材5の付着低下を防ぐことができ、より一層補強効果を高めることができる。 Further, in the case of the aluminum-made stranded fiber reinforced concrete 5, by causing alkaline corrosion in advance, the cured body 2 of the compound and a large number of aluminum-made stranded fiber reinforced concrete 5 are kneaded. It is possible to further suppress the entanglement of the fiber reinforcing materials 5 at the time of mixing, and it is possible to expect uniform dispersion of a large number of fiber reinforcing materials 5. As a result, as shown in FIG. 8, when the stranded fiber reinforcing material 5 made of aluminum with an oxide film is mixed with the cured body 2 of the compound, it is made of aluminum without an oxide film and has a stranded wire shape. Compared with the case where the fiber reinforced concrete 5 of the above is mixed in the cured body 2 of the compound, it is possible to prevent the adhesion of the fiber reinforced concrete 5 from being lowered during the curing of the recyclable fiber reinforced concrete 1, and the reinforcing effect is further enhanced. be able to.

1 材料のリサイクルが可能な繊維補強コンクリート
2 セメント、混和材料、水の一部又はすべてからなる結合剤に、砂(細骨材)、砂利(粗骨材)、混和材料といった材料の一部或いは全部を添加して構成した配合物の硬化体
3 融点の低い金属製の繊維補強材
4 アルミニウム製で楕円環状の繊維補強材(融点の低い金属製で楕円環状の繊維補強材)
5 アルミニウム製で撚線状の繊維補強材(融点の低い金属製で撚線状の繊維補強材)
10 防潮堤(コンクリート構造物)
1 Recyclable fiber reinforced concrete 2 Cement, admixture material, binder consisting of part or all of water, sand (fine aggregate), gravel (coarse aggregate), part of the admixture material or Hardened compound made by adding all of them 3 Fiber reinforced concrete made of metal with low melting point 4 Fiber reinforced concrete made of aluminum and elliptical annular (Fiber reinforced concrete made of metal with low melting point and elliptical annular fiber)
5 Aluminum stranded fiber reinforced material (metal with low melting point and stranded fiber reinforced material)
10 Seawall (concrete structure)

Claims (8)

セメント、混和材料、水の一部又はすべてからなる結合剤に、細骨材、粗骨材、混和材料といった材料の一部或いは全部を添加して構成した配合物の硬化体に、融点の低い金属製の繊維補強材を混入したことを特徴とする材料のリサイクルが可能な繊維補強コンクリート。 A cured product of a formulation composed by adding a part or all of materials such as fine aggregate, coarse aggregate, and admixture to a binder consisting of cement, admixture, part or all of water, and having a low melting point. Fiber reinforced concrete that can be recycled, which is characterized by being mixed with metal fiber reinforced concrete. 請求項1記載の材料のリサイクルが可能な繊維補強コンクリートであって、
前記融点の低い金属製の繊維補強材は、アルミニウム、ビスマス、セシウム、水銀、カリウム、リチウム、ナトリウム、鉛、ルビジウム、錫、亜鉛、インジウム、ガリウム、カドミウムやこれらの酸化物を主材料として含む合金或いは単体金属からなる金属繊維であることを特徴とする材料のリサイクルが可能な繊維補強コンクリート。
It is a fiber reinforced concrete that can recycle the material according to claim 1.
The low melting point metal fiber reinforcing material is an alloy containing aluminum, bismuth, cesium, mercury, potassium, lithium, sodium, lead, rubidium, tin, zinc, indium, gallium, cadmium and their oxides as main materials. Alternatively, fiber reinforced concrete capable of recycling a material characterized by being a metal fiber made of a single metal.
請求項1又は2記載の材料のリサイクルが可能な繊維補強コンクリートであって、
前記融点の低い金属製の繊維補強材は、楕円環状の形状であることを特徴とする材料のリサイクルが可能な繊維補強コンクリート。
A fiber reinforced concrete capable of recycling the material according to claim 1 or 2.
The metal fiber reinforced concrete having a low melting point is a fiber reinforced concrete whose material is recyclable and is characterized by having an elliptical annular shape.
請求項1又は2記載の材料のリサイクルが可能な繊維補強コンクリートであって、
前記融点の低い金属製の繊維補強材は、撚線状の形状であることを特徴とする材料のリサイクルが可能な繊維補強コンクリート。
A fiber reinforced concrete capable of recycling the material according to claim 1 or 2.
The metal fiber reinforced concrete having a low melting point is a fiber reinforced concrete that can be recycled as a material characterized by having a stranded wire shape.
請求項1、3又は4記載の材料のリサイクルが可能な繊維補強コンクリートであって、
前記融点の低い金属製の繊維補強材は、アルミニウム製であり、繊維の表面に酸化被膜を有した補強材であることを特徴とする材料のリサイクルが可能な繊維補強コンクリート。
A fiber reinforced concrete capable of recycling the material according to claim 1, 3 or 4.
The fiber reinforced concrete made of metal having a low melting point is made of aluminum and is a reinforced concrete having an oxide film on the surface of the fiber, and the material can be recycled.
請求項5記載の材料のリサイクルが可能な繊維補強コンクリートであって、
前記繊維の表面の酸化被膜は、高アルカリ水の化学反応から成ることを特徴とする材料のリサイクルが可能な繊維補強コンクリート。
A fiber reinforced concrete capable of recycling the material according to claim 5.
The oxide film on the surface of the fiber is a fiber reinforced concrete capable of recycling a material characterized by being composed of a chemical reaction of highly alkaline water.
融点の低い金属製の繊維補強材を混入した繊維補強コンクリートからなるコンクリート構造物の供用済み後のリサイクル方法であって、
まず、前記供用済みコンクリート構造物の繊維補強コンクリートを解体し、
次に、前記解体した繊維補強コンクリートを低温で加熱処理して前記融点の低い金属製の繊維補強材を溶融し、
次に、前記低温で加熱処理した繊維補強コンクリートを破砕した後でセメント硬化体の原料となる再生用のコンクリート材と再生用の金属とにそれぞれ分離して回収し、
次に、前記回収された再生用のコンクリート材からなる再生セメントに前記再生用の金属からなる再生繊維補強材を混入して繊維補強コンクリートを再度製造することを特徴とする材料のリサイクルが可能な繊維補強コンクリートのリサイクル方法。
It is a recycling method after the service of a concrete structure made of fiber reinforced concrete mixed with a metal fiber reinforcing material having a low melting point.
First, the fiber-reinforced concrete of the used concrete structure is dismantled.
Next, the disassembled fiber reinforced concrete is heat-treated at a low temperature to melt the metal fiber reinforced concrete having a low melting point.
Next, after crushing the fiber-reinforced concrete heat-treated at a low temperature, the concrete material for regeneration and the metal for regeneration, which are the raw materials for the hardened cement, are separated and recovered.
Next, it is possible to recycle the material, which is characterized in that the recycled fiber reinforced concrete made of the recycled metal is mixed with the recycled cement made of the recovered recycled concrete material to remanufacture the fiber reinforced concrete. How to recycle fiber reinforced concrete.
請求項7記載の材料のリサイクルが可能な繊維補強コンクリートのリサイクル方法であって、
前記融点の低い金属製の繊維補強材は、アルミニウム、ビスマス、セシウム、水銀、カリウム、リチウム、ナトリウム、鉛、ルビジウム、錫、亜鉛、インジウム、ガリウム、カドミウムやこれらの酸化物を主材料として含む合金或いは単体金属からなる金属繊維であることを特徴とする材料のリサイクルが可能な繊維補強コンクリートのリサイクル方法。
A method for recycling fiber reinforced concrete, wherein the material according to claim 7 can be recycled.
The low melting point metal fiber reinforcing material is an alloy containing aluminum, bismuth, cesium, mercury, potassium, lithium, sodium, lead, rubidium, tin, zinc, indium, gallium, cadmium and their oxides as main materials. Alternatively, a method for recycling fiber reinforced concrete, which is characterized by being a metal fiber made of a single metal and capable of recycling a material.
JP2021019707A 2020-05-28 2021-02-10 Fiber-reinforced concrete whose material can be recycled and its recycling method Active JP7300681B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020092875 2020-05-28
JP2020092875 2020-05-28

Publications (2)

Publication Number Publication Date
JP2021187731A true JP2021187731A (en) 2021-12-13
JP7300681B2 JP7300681B2 (en) 2023-06-30

Family

ID=78848092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021019707A Active JP7300681B2 (en) 2020-05-28 2021-02-10 Fiber-reinforced concrete whose material can be recycled and its recycling method

Country Status (1)

Country Link
JP (1) JP7300681B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL442776A1 (en) * 2022-11-10 2024-05-13 Politechnika Krakowska im.Tadeusza Kościuszki Method of processing construction waste into reinforced concrete and technological system of the installation for processing construction waste into reinforced concrete

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5024523A (en) * 1972-11-28 1975-03-15
JPS5364663A (en) * 1976-11-20 1978-06-09 Suzuki Metal Industry Co Ltd Concrete reinforcing metal fiber and said manufacturing process
JPS6236052A (en) * 1985-08-07 1987-02-17 株式会社 江東工業所 Radiation-shielding sound-insulating concrete
JPH03194054A (en) * 1989-11-30 1991-08-23 France Etat Discontinuous wire fiber of drawn steel and fiber composite
JP2004525845A (en) * 2000-11-06 2004-08-26 インスティテュート オブ ペーパー サイエンスアンド テクノロジー インコーポレイテッド Fiber reinforced mineral base material and method for producing the same
JP2009280465A (en) * 2008-05-26 2009-12-03 Runhorn Pretech Engineering Co Ltd Concrete containing uniform metal fiber
JP2014024691A (en) * 2012-07-25 2014-02-06 Taisei Corp Cement composition, cement matrix, fiber-reinforced cement-based mixture, and cement admixture
JP2016132579A (en) * 2015-01-16 2016-07-25 戸田建設株式会社 Fiber-reinforced concrete

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5024523A (en) * 1972-11-28 1975-03-15
JPS5364663A (en) * 1976-11-20 1978-06-09 Suzuki Metal Industry Co Ltd Concrete reinforcing metal fiber and said manufacturing process
JPS6236052A (en) * 1985-08-07 1987-02-17 株式会社 江東工業所 Radiation-shielding sound-insulating concrete
JPH03194054A (en) * 1989-11-30 1991-08-23 France Etat Discontinuous wire fiber of drawn steel and fiber composite
JP2004525845A (en) * 2000-11-06 2004-08-26 インスティテュート オブ ペーパー サイエンスアンド テクノロジー インコーポレイテッド Fiber reinforced mineral base material and method for producing the same
JP2009280465A (en) * 2008-05-26 2009-12-03 Runhorn Pretech Engineering Co Ltd Concrete containing uniform metal fiber
JP2014024691A (en) * 2012-07-25 2014-02-06 Taisei Corp Cement composition, cement matrix, fiber-reinforced cement-based mixture, and cement admixture
JP2016132579A (en) * 2015-01-16 2016-07-25 戸田建設株式会社 Fiber-reinforced concrete

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL442776A1 (en) * 2022-11-10 2024-05-13 Politechnika Krakowska im.Tadeusza Kościuszki Method of processing construction waste into reinforced concrete and technological system of the installation for processing construction waste into reinforced concrete

Also Published As

Publication number Publication date
JP7300681B2 (en) 2023-06-30

Similar Documents

Publication Publication Date Title
Adesina et al. Overview of trends in the application of waste materials in self-compacting concrete production
Qasrawi The use of steel slag aggregate to enhance the mechanical properties of recycled aggregate concrete and retain the environment
Singh et al. Incorporating recycled aggregates in self-compacting concrete: a review
Tyagi et al. A review on sustainable utilization of industrial wastes in radiation shielding concrete
CN105884281B (en) There is high ductility fibre cement cut-pff wall and preparation method using prepared by CHARACTERISTICS OF TAILINGS SAND
KR101820435B1 (en) Concrete repairing method using geopolymer reaction and zinc
CN104129951A (en) Self-cleaned cement based composite material with high toughness and preparation method of self-cleaned cement based composite material
Kobayashi et al. Properties and usage of recycled aggregate concrete
Xiao et al. Fundamental behavior of recycled aggregate concrete–overview II: durability and enhancement
CN205063178U (en) Engineered cementitious composites combination beam component
KR101352937B1 (en) A high early strength concrete composition using the eco-friendly cycling silica sand and repairing method of concrete pavement using the same
JP2021187731A (en) Fiber-reinforced concrete capable of recycling material, and recycling method thereof
KR101861596B1 (en) Environmentally friendly and earthquake-resistant mortar composition and manufacturing method thereof
Sakthivel et al. An innovative method of replacing river sand by quarry dust waste in concrete for sustainability
KR20150142416A (en) Reinforcing metal fiber and pva fiber concrete and manufactuaring method thereof, repair process of pavement using the same thing
JP2013119513A (en) Seismic retrofit method and restoration method for reinforced concrete member
TWI543957B (en) Method for manufacturing hydrated solidified body and hydrated solidified body
CN106968455A (en) The ruggedized construction and reinforcement means of sea sand reinforced beam
Adebanjo et al. Effects of waste steel fibres on the mechanical properties of modified self compacting concrete
Jonsung et al. Sustainable concrete technology
de Azevedo et al. Environmental and durability perspective of the use of curaua fiber treated in mortars
Samarin Wastes in concrete: converting liabilities into assets
KR102271429B1 (en) Composition of high performance cementitious composite (hpcc) for mixing phorocatalyst, and manufacturing method for the same
Noguchi Toward sustainable resource recycling in concrete society
Sivamani et al. Review on impact of construction waste landfill on environment and its reutilization

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20210212

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220729

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230124

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230323

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230612

R150 Certificate of patent or registration of utility model

Ref document number: 7300681

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533