JP2021186152A - Negative pressure air-conditioning system capable of taking infection countermeasures using internal combustion engine - Google Patents

Negative pressure air-conditioning system capable of taking infection countermeasures using internal combustion engine Download PDF

Info

Publication number
JP2021186152A
JP2021186152A JP2020092833A JP2020092833A JP2021186152A JP 2021186152 A JP2021186152 A JP 2021186152A JP 2020092833 A JP2020092833 A JP 2020092833A JP 2020092833 A JP2020092833 A JP 2020092833A JP 2021186152 A JP2021186152 A JP 2021186152A
Authority
JP
Japan
Prior art keywords
negative pressure
air
engine
duct
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020092833A
Other languages
Japanese (ja)
Inventor
雨晨 劉
Yuchen Liu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan E&p Int Corp
Japan E&p International Corp
Original Assignee
Japan E&p Int Corp
Japan E&p International Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan E&p Int Corp, Japan E&p International Corp filed Critical Japan E&p Int Corp
Priority to JP2020092833A priority Critical patent/JP2021186152A/en
Publication of JP2021186152A publication Critical patent/JP2021186152A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Air-Conditioning For Vehicles (AREA)
  • Accommodation For Nursing Or Treatment Tables (AREA)
  • Ventilation (AREA)

Abstract

To provide an infection countermeasure air-conditioning system which generates and maintains negative pressure in a vehicle or in a room.SOLUTION: An air-conditioning system generates and maintains negative pressure in a vehicle or in a room by using vacuum with the suction air by introducing the air including pathogens generated in an infectious patient transportation vehicle, infection countermeasure sickroom, temporary sickroom, biohazard laboratory or hospital ship into an air suction system of an engine of a vehicle or power generator or a power engine of a ship. As a result, the power consumption for suctioning the air is eliminated and the operable time of an emergency power source can be extended. Also, by breaking, incinerating and deactivating the pathogens included in the air with the heat and pressure in the combustion process of the internal combustion engine, the exhaust air can be detoxified without using a HEPA filter. As a result, not only the cost for exchanging and discarding the filter can be reduced but also the incompetence of a medical function due to the temporary unavailability following the replacement work of the filter and the stagnation in production, supply and discarding processing of the filter in the case of emergency can be avoided.SELECTED DRAWING: Figure 1

Description

本発明は、内燃機関を利用した感染症対策可能な陰圧空調システム The present invention is a negative pressure air conditioning system that can take measures against infectious diseases using an internal combustion engine.

感染症対策病室、感染症患者搬送車両、バイオハザード実験施設等では、病原体となる細菌、真菌、ウイルス等の拡散を防止するために、室内または車内の気圧を陰圧(外気圧より低い圧力)に維持する。この陰圧を維持するためには、室内または車内の空気を吸引し、エアフィルターを通じて外部に排出する(特許文献1)。エアフィルターは、陰圧を維持するのに十分な流量を確保しつつ、病原体の流出を防ぐよう、その捕集効率や圧力損失等の性能について各国の基準により定められている。例えば、日本では、厚生労働省の指針によりHEPAフィルター(JIS Z 8122)を使用することを定められている(非特許文献1)。 Infectious disease control hospital rooms, infectious disease patient transport vehicles, biohazard experimental facilities, etc., in order to prevent the spread of pathogens such as bacteria, fungi, and viruses, the air pressure inside or inside the vehicle is negative pressure (pressure lower than the outside air pressure). To maintain. In order to maintain this negative pressure, the air inside the room or the vehicle is sucked and discharged to the outside through an air filter (Patent Document 1). Air filters are stipulated by national standards for their collection efficiency, pressure loss, and other performance so as to prevent the outflow of pathogens while ensuring a sufficient flow rate to maintain negative pressure. For example, in Japan, the guidelines of the Ministry of Health, Labor and Welfare stipulate that a HEPA filter (JIS Z 8122) should be used (Non-Patent Document 1).

しかし、フィルターを用いて病原体を除去する方式では、フィルターの目詰まりにより空気透過性が低下するため、定期的に交換する必要がある。その交換作業の間は、病室・車両・施設の利用が不可になる。一方、SARSや新型コロナウイルスのような大規模感染症の場合は、前記病室、車両の稼働率の低下を避けたい。また、大規模感染症の際に、需要の急増や原料の不足による供給停滞も懸念される。それに、使用済みのフィルターは感染症廃棄物に分類され、処理コストが高いだけでなく、災害、戦争、テロ等による社会機能不全の際に処理が追い付かない可能性がある。更に、フィルターを通じて空気を吸引するのに電気を消費するため、停電時には非常電源の燃料を多く消費する。即ち、現行の病原体除去方式では、1-フィルターの目詰まりによる効果の低下、2-フィルターの交換による一時利用停止の発生、3-フィルターの交換によるランニングコストの発生、4-有事の際にフィルターの生産、供給、廃棄処理が停滞、5-電力を消費するため、非常用電源の稼働時間を短縮させる、という欠点がある。 However, in the method of removing pathogens using a filter, the air permeability is reduced due to clogging of the filter, so it is necessary to replace the filter regularly. During the replacement work, the hospital room, vehicle, and facility cannot be used. On the other hand, in the case of a large-scale infectious disease such as SARS or the new coronavirus, it is desirable to avoid a decrease in the operating rate of the hospital room and the vehicle. In addition, in the event of a large-scale infectious disease, there are concerns about supply stagnation due to a rapid increase in demand and a shortage of raw materials. In addition, used filters are classified as infectious disease waste, and not only are they expensive to dispose of, but they may not be able to keep up with social dysfunction due to disasters, wars, terrorism, etc. Furthermore, since electricity is consumed to suck air through the filter, a large amount of fuel for an emergency power source is consumed in the event of a power failure. That is, in the current pathogen removal method, 1-the effect is reduced due to clogging of the filter, 2-the temporary suspension of use occurs due to the replacement of the filter, 3-the running cost is incurred due to the replacement of the filter, and 4-the filter in case of an emergency. It has the disadvantages of stagnant production, supply and disposal, and consumption of 5-power, which shortens the operating time of the emergency power supply.

一方、病原体となる細菌、真菌、ウイルスといった微生物は、水分を除き基本的に有機物により構成されるため、その化学的性質からは焼却により無害化することが可能である。例えば、金属製の実験器具や医療器具の消毒では、アルコールランプ等により加熱し、病原体となる微生物を焼却、除去する方式を採用することがある。しかし、この焼却方式では数百℃以上の火炎または高温が必要であり、安全面及びエネルギー効率の問題からは、空調システムへの応用が困難である。 On the other hand, microorganisms such as bacteria, fungi, and viruses that are pathogens are basically composed of organic substances except for water, and therefore can be detoxified by incineration due to their chemical properties. For example, in the disinfection of metal laboratory equipment and medical equipment, a method of incinerating and removing microorganisms that cause pathogens by heating with an alcohol lamp or the like may be adopted. However, this incinerator method requires a flame of several hundred degrees Celsius or higher or a high temperature, and it is difficult to apply it to an air conditioning system due to safety and energy efficiency problems.

特開2003―024396号公報Japanese Unexamined Patent Publication No. 2003-024396

「病院設備設計ガイドライン(空調設備編)-病院空調設備設計・管理指針」、一般社団法人日本医療福祉設備協会、2013"Hospital Equipment Design Guidelines (Air Conditioning Equipment) -Hospital Air Conditioning Equipment Design and Management Guidelines", Japan Medical Welfare Equipment Association, 2013

現行の感染症対策のための陰圧空調システムは、HEPAフィルターにより病原体を捕集、除去する方式を採用しているが、1-フィルターの交換と処理が必要で、有事時の生産、供給、廃棄処理が追い付かない可能性、2-空気の吸引に電気を消費するため、非常用電源の稼働時間を短縮させる、という問題点がある。本発明は、フィルターといった消耗部品を使用せず、感染症廃棄物を発生することなく、かつ電気を使用せずに陰圧を発生できる空調システムを提供する。 The current negative pressure air conditioning system for infectious disease control adopts a method of collecting and removing pathogens with a HEPA filter, but 1-filter replacement and processing are required, and production, supply, in case of emergency, There is a problem that the disposal process may not catch up, and 2-the operation time of the emergency power supply is shortened because electricity is consumed for sucking air. The present invention provides an air conditioning system capable of generating negative pressure without using consumable parts such as filters, generating infectious disease waste, and using electricity.

本発明は、感染症対策病室、感染症患者搬送車両、救急車、バイオハザード実験室、仮設病院、病院船等を対象に、下記の工程(a)‐(d)を有した陰圧発生方法と病原体除去方法、及び下記の構成(A)−(D)を有した空調システムである。 The present invention relates to a negative pressure generation method having the following steps (a)-(d) for an infectious disease control hospital room, an infectious disease patient transport vehicle, an ambulance, a biohazard laboratory, a temporary hospital, a hospital ship, and the like. It is an air conditioning system having a pathogen removal method and the following configurations (A)-(D).

(a)内燃機関の吸気を利用し陰圧を作成する、陰圧発生工程。例えば、感染症患者搬送車両、救急車のエンジン、病院、実験施設の自家発電設備、野戦病院の非常用発電機、電源車のエンジン、または病院船、艦船、その他船舶の動力機関による吸気を利用し、陰圧を発生、維持する、陰圧発生工程。好適には、内燃機関の吸気ダクトに分岐(合流)ダクトを取付け、その先端を各室内、車内、テント内に設置する(図1)。これにより、内燃機関の稼動に伴う吸気により室内、車内、テント内に陰圧を発生し、病原体の拡散防止を実現できる。 (A) A negative pressure generation step of creating a negative pressure by using the intake air of an internal combustion engine. For example, using infectious disease patient transport vehicles, ambulance engines, hospitals, private power generation facilities in experimental facilities, emergency generators in field hospitals, power vehicle engines, or intake from hospital ships, ships, and other power engines of ships. , Negative pressure generation process to generate and maintain negative pressure. Preferably, a branch (merging) duct is attached to the intake duct of the internal combustion engine, and the tip thereof is installed in each room, a car, or a tent (FIG. 1). As a result, negative pressure is generated in the room, the inside of the vehicle, and the inside of the tent by the intake air accompanying the operation of the internal combustion engine, and the diffusion of pathogens can be prevented.

(b)前記陰圧発生工程で発生した陰圧により、車内、室内またはテント内にある病原体を含む空気(以下は汚染空気と記す)をエンジン内に吸引し、燃焼室に送り込む空気供給工程。好適には、汚染空気を内燃機関のエアクリーナーと吸気制御系(スロットルバルブ、過給機、インタークーラー等)の間に導入する。これは、1-エアクリーナーの下流側の陰圧が強く、汚染空気への吸引効果が高い、2-エンジン停止時においても、エアクリーナーにより病原体の外部飛散を遮断できる、3-エンジン吸気の圧力や温度への影響が小さく、吸気制御系への改修は不要であり、従来のエンジン性能を維持できる、という利点がある。ただし、同様な効果を達成できる場合や、ダクトの配管スペースが限られる場合は、上記の配置方式とは限らない。 (B) An air supply step in which air containing pathogens (hereinafter referred to as contaminated air) in a vehicle, a room, or a tent is sucked into an engine by the negative pressure generated in the negative pressure generation step and sent into a combustion chamber. Preferably, contaminated air is introduced between the air cleaner of the internal combustion engine and the intake control system (throttle valve, turbocharger, intercooler, etc.). This is because 1-the negative pressure on the downstream side of the air cleaner is strong and the suction effect to contaminated air is high, 2-the air cleaner can block the external scattering of pathogens even when the engine is stopped, 3-the engine intake pressure. There is an advantage that the influence on the temperature and the temperature is small, there is no need to modify the intake control system, and the conventional engine performance can be maintained. However, the above arrangement method is not always applicable when the same effect can be achieved or when the piping space of the duct is limited.

(c)前記空気供給工程により燃焼室に送り込まれた汚染空気を燃料と混合、燃焼させることで、動力を得ると共に汚染空気中にある病原体を焼却、不活化させる、無害化燃焼工程。前記燃料とは、内燃機関の指定燃料であるガソリン、灯油、軽油、重油、天然ガス、LPG、アルコール、バイオ燃料、廃天ぷら油、またはそれらに潤滑油、添加剤と混ぜたものである。前記燃料は、燃焼工程において数百℃〜千℃以上の高温、高圧ガスを発生するため、有機物により構成される病原体を焼却、無害化できる。 (C) A detoxification combustion step in which the contaminated air sent into the combustion chamber by the air supply step is mixed and burned with fuel to obtain power and incinerate and inactivate pathogens in the contaminated air. The fuel is gasoline, kerosene, light oil, heavy oil, natural gas, LPG, alcohol, biofuel, waste tempura oil, which are designated fuels for internal combustion engines, or a mixture thereof with lubricating oil and additives. Since the fuel generates high-temperature, high-pressure gas of several hundred ° C. to 1,000 ° C. or higher in the combustion process, pathogens composed of organic substances can be incinerated and detoxified.

(d)前記無害化燃焼工程で発生した燃焼ガスを、触媒、マフラー等を通し、大気中に放出する、排気工程。燃焼ガスに含まれる未焼却の病原体を、高温の触媒、マフラーを通すことで、徹底的に焼却、除去する。 (D) An exhaust step in which the combustion gas generated in the detoxification combustion step is released into the atmosphere through a catalyst, a muffler, or the like. Unincinerated pathogens contained in combustion gas are thoroughly incinerated and removed by passing through a high-temperature catalyst and muffler.

また、本発明に係る陰圧空調システムは、下記の構成(A)−(D)を有する。 Further, the negative pressure air conditioning system according to the present invention has the following configurations (A)-(D).

(A)車内、室内、船内またはテント内の汚染空気を吸い出し、内燃機関に送り込むダクト系統。ダクト系統は、主に以下の部分(1)−(3)により構成される。
(1)既存の内燃機関の吸気ダクトに改修または増設するダクト合流部。
(2)ダクト合流部から、エンジンルームまたは機関室の外部に延伸するメイン陰圧ダクト。
(3)メイン陰圧ダクトから、各室内、テント内まで延伸する陰圧分岐ダクト。
(A) A duct system that sucks out contaminated air inside a vehicle, room, ship, or tent and sends it to an internal combustion engine. The duct system is mainly composed of the following parts (1)-(3).
(1) A duct confluence that is repaired or added to the intake duct of an existing internal combustion engine.
(2) The main negative pressure duct extending from the duct confluence to the outside of the engine room or engine room.
(3) A negative pressure branch duct that extends from the main negative pressure duct to each room and tent.

(B)前記ダクト系統、及び内燃機関の吸気ダクトに設置する、各ダクトの圧力、温度、流量、流速、病原体含有濃度等を測定するセンサー類。
(C)前記ダクト系統、及び内燃機関の吸気ダクトに設置する、各ダクトの開閉、圧力または流量を調整するためのバルブ類。
(D)前記センサー類によるデータを基に演算を行い、前記バルブ類の開閉度合を最適に制御する、演算制御部。
(B) Sensors installed in the duct system and the intake duct of an internal combustion engine for measuring pressure, temperature, flow rate, flow velocity, pathogen content concentration, etc. of each duct.
(C) Valves installed in the duct system and the intake duct of an internal combustion engine for adjusting the opening / closing, pressure or flow rate of each duct.
(D) A calculation control unit that performs calculations based on data from the sensors and optimally controls the degree of opening / closing of the valves.

本発明は、感染症対策病室、感染症患者搬送車両、救急車、バイオハザード実験室、仮設病院、病院船内の汚染空気を内燃機関の吸気ダクトに供給することで、車内、室内、船内またはテント内において陰圧を発生、維持可能にした。また、内燃機関による燃焼ガスまたは熱を利用し、病原体の活性を阻害、またはその構造を破壊、焼却することで、フィルター使用せずに病原体の無害化を実現可能にした。 INDUSTRIAL APPLICABILITY The present invention supplies contaminated air in an infectious disease control room, an infectious disease patient transport vehicle, an ambulance, a biohazard laboratory, a temporary hospital, or a hospital ship to an intake duct of an internal combustion engine, thereby providing a vehicle, a room, a ship, or a tent. Negative pressure was generated and made sustainable. In addition, by using the combustion gas or heat generated by the internal combustion engine to inhibit the activity of the pathogen, or to destroy or incinerate its structure, it has become possible to detoxify the pathogen without using a filter.

本発明のイメージ図である。It is an image diagram of this invention. 本発明の第1の実施形態に係る説明図である。It is explanatory drawing which concerns on 1st Embodiment of this invention. 本発明の第2の実施形態に係る説明図である。It is explanatory drawing which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施形態に係る説明図である。It is explanatory drawing which concerns on 3rd Embodiment of this invention. 本発明の第4の実施形態に係る説明図である。It is explanatory drawing which concerns on 4th Embodiment of this invention. 本発明の第5の実施形態に係る説明図である。It is explanatory drawing which concerns on 5th Embodiment of this invention.

<第1の実施形態> <First Embodiment>

図2は、本発明の第1の実施形態に係る説明図である。 FIG. 2 is an explanatory diagram according to the first embodiment of the present invention.

本実施形態では、ガソリンエンジンを搭載した救急車への応用を想定する。車体2の内部は、運転室仕切り21により、運転室R1と患者を収容する後部キャビン(以下は救護室と記す)R2へと分割される。運転室仕切り21には、陰圧ダンパー23が設置され、車内空気を運転室R1から救護室R2へと一方的に流動可能にする。運転室R1と救護室R2の適切な箇所には、それぞれのキャビンから空気を吸い出すための陰圧分岐ダクト32a、32bを設け、陰圧分岐ダクト毎にチョーク弁31a、31bを設ける。また、陰圧分岐ダクト32a、32bは、車両の床20下またはエンジンルーム内の適切な場所で合流し、陰圧ダクト33一本になる。更に、陰圧ダクト33の先端は、エンジンの吸気ダクト12に増設したダクト合流部34に接続する。エンジン機関部(吸気系)と接続イメージを拡大図Cに示す。好適には、ダクト合流部34をエンジンのエアクリーナー11とスロットルバルブ13の間に設置し、更にエアクリーナー11とダクト合流部34の間にもチョーク弁35を増設する。上記のチョーク弁31a、31b、35を制御するためのコントローラー30を、車内の適切な場所に設置する。なお、ガソリンエンジンのほか、ガソリンエンジンをベースにしたCNGエンジン、LPGエンジンも、この導入方式を採用すると良い。 In this embodiment, application to an ambulance equipped with a gasoline engine is assumed. The inside of the vehicle body 2 is divided into a driver's cab R1 and a rear cabin (hereinafter referred to as a first aid room) R2 for accommodating a patient by a driver's cab partition 21. A negative pressure damper 23 is installed in the driver's cab partition 21 to unilaterally allow the air inside the vehicle to flow from the driver's cab R1 to the first aid room R2. Negative pressure branch ducts 32a and 32b for sucking air from the respective cabins are provided at appropriate locations in the driver's cab R1 and the first aid room R2, and choke valves 31a and 31b are provided for each negative pressure branch duct. Further, the negative pressure branch ducts 32a and 32b merge under the floor 20 of the vehicle or at an appropriate place in the engine room to form one negative pressure duct 33. Further, the tip of the negative pressure duct 33 is connected to the duct merging portion 34 added to the intake duct 12 of the engine. An enlarged view C shows an image of connection with the engine engine section (intake system). Preferably, the duct merging portion 34 is installed between the air cleaner 11 and the throttle valve 13 of the engine, and a choke valve 35 is further added between the air cleaner 11 and the duct merging portion 34. The controller 30 for controlling the choke valves 31a, 31b, 35 is installed at an appropriate place in the vehicle. In addition to gasoline engines, CNG engines and LPG engines based on gasoline engines should also adopt this introduction method.

通常、内燃機関(ガソリンエンジン)1aが稼動時には、エアクリーナー11を通じて外部の空気101を導入し、吸気ダクト12、スロットルバルブ13、吸気分岐ダクト14を順次に経由して燃焼室に吸い込む。その吸気により、エアクリーナー11から燃焼室にわたる吸気系の内部に負圧が発生する。この負圧により、キャビン内の汚染空気102、103を、チョークバルブ31a、31b、陰圧分岐ダクト32a、32b、陰圧ダクト33を通じて、ダクトの合流部34まで吸い込む。合流部34では、汚染空気102、103と、エアクリーナー11からの清浄空気101と合流し、更にスロットルバルブ13、吸気分岐ダクト (インテークマニホールド)14を通じて燃焼室に吸い込まれる。燃焼後の高温ガスは、排気分岐ダクト15、排気ダクト他16を経て大気中に排出される。このように、キャビン内の汚染空気をエンジンの吸気系に導入し、エンジン内で燃焼させることで、病原体の焼却または無害化を実現できる。なお、一般機種では、吸気ダクト12(スロットルバルブ13の上流側)で発生する負圧は1kPa以上に達するため、エンジンが稼動中である限り、キャビン内に2.5Pa(CDCガイドライン)の陰圧を作成、維持することが十分可能である。 Normally, when the internal combustion engine (gasoline engine) 1a is operating, the external air 101 is introduced through the air cleaner 11 and sucked into the combustion chamber through the intake duct 12, the throttle valve 13, and the intake branch duct 14 in sequence. Due to the intake, a negative pressure is generated inside the intake system extending from the air cleaner 11 to the combustion chamber. Due to this negative pressure, the contaminated air 102 and 103 in the cabin are sucked into the confluence portion 34 of the duct through the choke valves 31a and 31b, the negative pressure branch ducts 32a and 32b, and the negative pressure duct 33. At the merging portion 34, the contaminated air 102 and 103 and the clean air 101 from the air cleaner 11 are merged, and further sucked into the combustion chamber through the throttle valve 13 and the intake branch duct (intake manifold) 14. The high-temperature gas after combustion is discharged into the atmosphere through the exhaust branch duct 15, the exhaust duct and the like 16. In this way, by introducing the contaminated air in the cabin into the intake system of the engine and burning it in the engine, it is possible to incinerate or detoxify the pathogen. In general models, the negative pressure generated in the intake duct 12 (upstream side of the throttle valve 13) reaches 1 kPa or more, so as long as the engine is running, the negative pressure in the cabin is 2.5 Pa (CDC guideline). It is quite possible to create and maintain.

また、キャビン内の陰圧を一定の圧力に維持する要求に対し、エンジンの負荷状況により吸気ダクト12内の負圧が変化する。この矛盾を解決するためには、陰圧分岐ダクト32a、32bに設置するチョークバルブ31a、31bを制御することで、キャビン内の陰圧を安定させることが可能である。例えば、エンジンが低負荷(アイドリングなど)時には、吸気ダクト12内の負圧が低い(絶対圧が高い)ため、吸引効果が弱い。この状態でチョークバルブ31a、31bを開けることで、陰圧分岐ダクト32a、32bにおける吸気抵抗を低下させ、キャビン内空気102、103への吸引効果を高めることができる。一方、エンジンが高負荷時には、吸気ダクト12の負圧が高く(絶対圧が低い)ため、キャビン内の空気を過吸引するリスクがある。この場合は、チョークバルブ31a、31bを閉めることで、キャビン内への吸引効果を抑え、過吸引するリスクを回避できる。 Further, in response to the requirement to maintain the negative pressure in the cabin at a constant pressure, the negative pressure in the intake duct 12 changes depending on the load condition of the engine. In order to solve this contradiction, it is possible to stabilize the negative pressure in the cabin by controlling the choke valves 31a and 31b installed in the negative pressure branch ducts 32a and 32b. For example, when the engine has a low load (idling or the like), the negative pressure in the intake duct 12 is low (absolute pressure is high), so that the suction effect is weak. By opening the choke valves 31a and 31b in this state, the intake resistance in the negative pressure branch ducts 32a and 32b can be reduced, and the suction effect on the cabin air 102 and 103 can be enhanced. On the other hand, when the engine is under heavy load, the negative pressure of the intake duct 12 is high (absolute pressure is low), so there is a risk of oversuctioning the air in the cabin. In this case, by closing the choke valves 31a and 31b, the suction effect into the cabin can be suppressed and the risk of oversuction can be avoided.

他に、車両の扉が開放する状態では、車外から大量の空気が流れ込むため、陰圧の作成が困難になることを予想される。この場合は、吸気ダクト12に増設したチョーク弁35を絞ることで、エンジンに供給する空気の100%をキャビン内の汚染空気102、103によって賄うことが可能である。さらに、エンジンの回転数を上げることで、汚染空気102、103への吸引効果を最大限に発揮し、扉開放時における病原体の飛散防止を実現できる。 In addition, when the door of the vehicle is open, a large amount of air flows in from the outside of the vehicle, and it is expected that it will be difficult to create negative pressure. In this case, by throttle the choke valve 35 added to the intake duct 12, 100% of the air supplied to the engine can be covered by the contaminated air 102 and 103 in the cabin. Further, by increasing the engine speed, the suction effect on the contaminated air 102 and 103 can be maximized, and the scattering of pathogens can be prevented when the door is opened.

<第2の実施形態> <Second embodiment>

図3は、本発明の第2の実施形態に係る説明図である。 FIG. 3 is an explanatory diagram according to a second embodiment of the present invention.

本実施形態では、ディーゼルエンジンを搭載した高規格救急車または感染症患者搬送車両への応用を想定する。車体2の構造は、前記第1の実施形態と同様に、仕切り21により運転室R1と救護室R2の2キャビンへと分割される。それぞれのキャビンに陰圧ダクト32a、32bを設け、キャビン内の汚染空気102、103を陰圧ダクト33に集約しエンジンの吸気系に供給する。ディーゼルエンジンの場合は、スロットルバルブが存在しない一方、過給機及びインタークーラーを備えるケースがほとんどである。この場合は、過給機より下流側が正圧(絶対圧>1気圧)であるため、負圧が発生する箇所は過給機17の上流側のみである。即ち、本実施形態では、ダクト合流部34の設置可能な場所は、エアクリーナー11と過給機17の間に限られる。また、エアクリーナー11とダクト合流部34の間に、チョーク弁35を増設する。なお、ディーゼルエンジンのほか、過給機を搭載したガソリンエンジンも、この導入方式を採用すると良い。 In this embodiment, application to a high-standard ambulance equipped with a diesel engine or an infectious disease patient transport vehicle is assumed. Similar to the first embodiment, the structure of the vehicle body 2 is divided into two cabins, a driver's cab R1 and a rescue room R2, by a partition 21. Negative pressure ducts 32a and 32b are provided in each cabin, and the contaminated air 102 and 103 in the cabin are collected in the negative pressure duct 33 and supplied to the intake system of the engine. In the case of a diesel engine, there is no throttle valve, but in most cases, a supercharger and an intercooler are provided. In this case, since the downstream side of the turbocharger has a positive pressure (absolute pressure> 1 atm), the negative pressure is generated only on the upstream side of the turbocharger 17. That is, in the present embodiment, the place where the duct merging portion 34 can be installed is limited to the space between the air cleaner 11 and the turbocharger 17. Further, a choke valve 35 is added between the air cleaner 11 and the duct merging portion 34. In addition to diesel engines, gasoline engines equipped with turbochargers should also adopt this introduction method.

前記第1の実施形態と同様に、エンジンが稼動している限り、吸気ダクト12に負圧が発生する。この負圧により、キャビン内の汚染空気102、103を、チョークバルブ31a、31b、陰圧分岐ダクト32a、32b、陰圧ダクト33を通じて、ダクトの合流部34まで吸い込む。合流部34で合流した空気は、過給機17、インタークーラー18、吸気分岐ダクト (インテークマニホールド)14を通じて燃焼室に送り込まれる。燃焼後の高温ガスは、排気分岐ダクト15、過給機17(ターボチャージャーの場合)、排気ダクト他16を経て大気中に排出される。また、前記第1の実施形態と同様に、エンジンの負荷状況に応じてチョーク弁31a、31bを調整することで、キャビン内の陰圧を一定値に維持したり、または扉開放時に最大吸引効果を発揮させたりすることが可能である。即ち、本実施形態は、エンジンの種類による汚染空気の導入箇所の違いを除き、前記第1実施形態と同様な原理、効果を有する。 Similar to the first embodiment, negative pressure is generated in the intake duct 12 as long as the engine is running. Due to this negative pressure, the contaminated air 102 and 103 in the cabin are sucked into the confluence portion 34 of the duct through the choke valves 31a and 31b, the negative pressure branch ducts 32a and 32b, and the negative pressure duct 33. The air merged at the merging portion 34 is sent to the combustion chamber through the supercharger 17, the intercooler 18, and the intake branch duct (intake manifold) 14. The high-temperature gas after combustion is discharged into the atmosphere through the exhaust branch duct 15, the supercharger 17 (in the case of a turbocharger), the exhaust duct and 16 and the like. Further, as in the first embodiment, by adjusting the choke valves 31a and 31b according to the load condition of the engine, the negative pressure in the cabin can be maintained at a constant value, or the maximum suction effect can be obtained when the door is opened. It is possible to exert. That is, the present embodiment has the same principle and effect as the first embodiment except for the difference in the introduction location of the contaminated air depending on the type of the engine.

<第3の実施形態> <Third embodiment>

図4は、本発明の第3の実施形態に係る説明図である。 FIG. 4 is an explanatory diagram according to a third embodiment of the present invention.

本実施形態では、一般病院、感染症対策病室、バイオハザード実験棟など、病原体を扱う施設への応用を想定する。例えば、3階建ての建物40の各階に、陰圧室(例えば、感染症病室/患者収容室/バイオハザード実験室)R5、前室R4、廊下R3が設けられる。各部屋を仕切る壁47に陰圧ダンパー48が設置され、空気を廊下R3→前室R4→陰圧室R5へと一方的に流動可能にする。陰圧室R5の中には、病床またはバイオ実験装置41が設置され、その上部付近に陰圧分岐ダクト32cの吸引口を配置する。吸引口の奥にチョーク弁31cを設けることで、負圧による吸引効果、即ち室内の陰圧具合を調整できる。各部屋からの陰圧分岐ダクト32cは陰圧ダクト33に接続される。更に、陰圧ダクト33は、建物を吹き抜ける配管スペース49を通じて、屋上にある自家用発電設備1c(例えばディーゼル発電機)の吸気ダクトまで繋げる。なお、各階には、天井42の上にスペース46があるが、天井42のシール性が良好であり、天井裏スペース46を通っての空気流入/流出ができないとされる。 In this embodiment, application to facilities dealing with pathogens such as general hospitals, infectious disease control rooms, and biohazard experimental buildings is assumed. For example, a negative pressure room (for example, an infectious disease room / patient accommodation room / biohazard laboratory) R5, an anterior room R4, and a corridor R3 are provided on each floor of a three-story building 40. A negative pressure damper 48 is installed on the wall 47 that partitions each room, and allows air to flow unilaterally from the corridor R3 → the front chamber R4 → the negative pressure chamber R5. A bed or a bio-experimental device 41 is installed in the negative pressure chamber R5, and a suction port of the negative pressure branch duct 32c is arranged near the upper portion thereof. By providing the choke valve 31c at the back of the suction port, the suction effect due to the negative pressure, that is, the degree of negative pressure in the room can be adjusted. The negative pressure branch duct 32c from each room is connected to the negative pressure duct 33. Further, the negative pressure duct 33 is connected to the intake duct of the private power generation facility 1c (for example, a diesel generator) on the roof through the piping space 49 that blows through the building. Although there is a space 46 above the ceiling 42 on each floor, it is said that the sealing property of the ceiling 42 is good and air inflow / outflow through the space 46 behind the ceiling cannot be performed.

自家用発電機1cは、稼動する際に吸気ダクトに負圧が発生する。この負圧により、陰圧ダクト33、陰圧分岐ダクト32cを通じて陰圧室R5から空気103を吸引することで、陰圧を発生、維持することができる。また、扉の開閉時に流入した空気101と、陰圧ダンパー48を通じて導入した空気101、102も、汚染空気103と一緒に吸引され、陰圧分岐ダクト32c、陰圧ダクト33を通じて屋上の自家用発電機1cまで供給される。なお、陰圧室R5から供給される汚染空気103の量が限られるため、発電機1cの運転に所要な空気は自身のエアクリーナーからも供給される。発電機1cのエンジンに導入された汚染空気は、燃焼過程を経て排気ガス104として大気中に排出される。その燃焼過程は、高温、高圧条件で行われるため、汚染空気103に含まれる病原体を焼却、無害化することができる。ただし、自家用発電設備を常に稼動させる施設が少なく、平常時には商業電源を利用するケースが多いため、本システムを従来型の陰圧空調システムのバックアップとして利用できる。これにより、災害等に伴う大規模感染症の際に、外部電源喪失かつHEPAフィルターの生産供給が不足する場合においても、施設として従来の機能を発揮できる。 When the private power generator 1c operates, a negative pressure is generated in the intake duct. By this negative pressure, the negative pressure can be generated and maintained by sucking the air 103 from the negative pressure chamber R5 through the negative pressure duct 33 and the negative pressure branch duct 32c. Further, the air 101 that has flowed in when the door is opened and closed and the air 101 and 102 introduced through the negative pressure damper 48 are also sucked together with the contaminated air 103, and are used as a private generator on the roof through the negative pressure branch duct 32c and the negative pressure duct 33. It is supplied up to 1c. Since the amount of contaminated air 103 supplied from the negative pressure chamber R5 is limited, the air required for operating the generator 1c is also supplied from its own air cleaner. The contaminated air introduced into the engine of the generator 1c is discharged into the atmosphere as exhaust gas 104 through a combustion process. Since the combustion process is performed under high temperature and high pressure conditions, pathogens contained in the contaminated air 103 can be incinerated and detoxified. However, since there are few facilities that constantly operate private power generation facilities and commercial power sources are often used in normal times, this system can be used as a backup for conventional negative pressure air conditioning systems. As a result, in the event of a large-scale infectious disease caused by a disaster or the like, even if the external power supply is lost and the production and supply of the HEPA filter is insufficient, the conventional function as a facility can be exhibited.

<第4の実施形態> <Fourth Embodiment>

図5は、本発明の第4の実施形態に係る説明図である。 FIG. 5 is an explanatory diagram according to a fourth embodiment of the present invention.

本実施形態では、コンテナハウスやテントによる仮設病院、野戦病院、または体育館、屋内避難所の中に設置する隔離ブース等への応用を想定する。例えば、屋外の空き地に、テント50を4つ設置される。その内部には、前室R4、陰圧室R5を設けられ、その仕切り壁に陰圧ダンパーが設置される。陰圧室R5の適切な箇所に陰圧分岐ダクト32dを取り付け、その先端を陰圧ダクト33に繋げる。陰圧ダクト33は、屋外に設置する非常用発電機1cの吸気ダクトに合流する。 In this embodiment, it is assumed that the container house or tent is applied to a temporary hospital, a field hospital, a gymnasium, an isolation booth installed in an indoor evacuation center, or the like. For example, four tents 50 are installed in an outdoor vacant lot. Inside, a front chamber R4 and a negative pressure chamber R5 are provided, and a negative pressure damper is installed on the partition wall thereof. A negative pressure branch duct 32d is attached to an appropriate position in the negative pressure chamber R5, and the tip thereof is connected to the negative pressure duct 33. The negative pressure duct 33 joins the intake duct of the emergency generator 1c installed outdoors.

前記第3の実施形態と同様に、自家用発電機1cは、稼動する際に吸気ダクトに負圧が発生する。この負圧により、テント50の陰圧室R5から空気を吸引することで陰圧を発生、維持できる。また、テント50は、常設施設と比べて剛性が弱く、気密性も低いことから、外部から大量の空気が流入することが想定される。この場合、汚染空気103への吸引効果を維持するためには、発電機1cエンジンのチョーク弁を絞ることで、運転に所要する空気の大半または全部を陰圧室5Rから導入するように制御することができる。好適には、発電機1cのエンジンにガソリンエンジンまたはディーゼルエンジンを採用し、その吸気ダクトにダクト合流部材34を増設すると良いが、前記合流部材34を取り付けた電源車または他の車両エンジンを用いても良い。 Similar to the third embodiment, when the private power generator 1c operates, a negative pressure is generated in the intake duct. With this negative pressure, negative pressure can be generated and maintained by sucking air from the negative pressure chamber R5 of the tent 50. Further, since the tent 50 has weaker rigidity and lower airtightness than the permanent facility, it is assumed that a large amount of air will flow in from the outside. In this case, in order to maintain the suction effect on the contaminated air 103, the choke valve of the generator 1c engine is throttled to control that most or all of the air required for operation is introduced from the negative pressure chamber 5R. be able to. Preferably, a gasoline engine or a diesel engine may be adopted as the engine of the generator 1c, and a duct merging member 34 may be added to the intake duct thereof, but a power supply vehicle or another vehicle engine to which the merging member 34 is attached may be used. Is also good.

<第5の実施形態> <Fifth Embodiment>

図6は、本発明の第5の実施形態に係る説明図である。 FIG. 6 is an explanatory diagram according to a fifth embodiment of the present invention.

本実施形態では、病院船、商船または軍用艦船への応用を想定する。例えば、病院船60は、複数のデッキ(甲板)を有し、各デッキに複数の船室(陰圧病室)61を有する。また、各船室61に、チョーク弁31eを有する二次陰圧分岐ダクト32eが設けられ、室内の空気102、103を吸引することができる。更に、各船室61からの二次陰圧分岐ダクト32eは、デッキごとに配置される一次陰圧分岐ダクト32Eに合流し、最終的に陰圧ダクト33一本まで合流する。 In this embodiment, application to a hospital ship, a commercial ship, or a military ship is assumed. For example, the hospital ship 60 has a plurality of decks (deck), and each deck has a plurality of cabins (negative pressure room) 61. Further, a secondary negative pressure branch duct 32e having a choke valve 31e is provided in each cabin 61, and the air 102 and 103 in the room can be sucked. Further, the secondary negative pressure branch duct 32e from each cabin 61 merges with the primary negative pressure branch duct 32E arranged for each deck, and finally joins up to one negative pressure duct 33.

一方、船体60の中央後部には、主機関(ディーゼルエンジンまたはガスタービン)64と、主に停泊中に使用される発電機または補助機関65が配置される。その吸気ダクト66と排気ダクト67は、最上層デッキまで届くように設けられる。また、吸気ダクト66の適切な箇所にダクト合流部34を設け、そこに前記陰圧ダクト33を取付ける。更に、吸気ダクト66上でダクト合流部34より上流側の適切な箇所に、チョーク弁35を増設する。各チョーク弁31e、35は、指令室または操縦室62より制御できるように艤装される。 On the other hand, a main engine (diesel engine or gas turbine) 64 and a generator or auxiliary engine 65 mainly used during berthing are arranged at the central rear portion of the hull 60. The intake duct 66 and the exhaust duct 67 are provided so as to reach the uppermost deck. Further, a duct merging portion 34 is provided at an appropriate position of the intake duct 66, and the negative pressure duct 33 is attached thereto. Further, a choke valve 35 is added at an appropriate position on the intake duct 66 on the upstream side of the duct merging portion 34. The choke valves 31e and 35 are equipped so as to be controllable from the command room or the control room 62.

病院船60は、運用中である限り、主機関64または発電機や補助動力機関65等の内燃機関を常に稼動し続ける。そのため、吸気ダクト66内には常に負圧が維持される。この負圧により、陰圧ダクト33、一次陰圧分岐ダクト32E、二次陰圧分岐ダクト32eを通じて、各船室61内の空気102、103を吸引することで陰圧を発生、維持できる。吸引された空気102、103は、前記内燃機関に供給され、燃焼過程を経て大気中に放出する。その際、空気102、103に含まれる病原体は焼却、無害化され、排気ガス104とともに排出される。 As long as the hospital ship 60 is in operation, the main engine 64 or an internal combustion engine such as a generator or an auxiliary power engine 65 is constantly operated. Therefore, a negative pressure is always maintained in the intake duct 66. By this negative pressure, negative pressure can be generated and maintained by sucking air 102 and 103 in each cabin 61 through the negative pressure duct 33, the primary negative pressure branch duct 32E, and the secondary negative pressure branch duct 32e. The sucked air 102 and 103 are supplied to the internal combustion engine and released into the atmosphere through a combustion process. At that time, the pathogens contained in the air 102 and 103 are incinerated, detoxified, and discharged together with the exhaust gas 104.

なお、停泊中の場合は、船室61の多さ、即ち空気102、103の供給の多さに対し、発電機または補助機関65による空気の消費量が少ない。その結果、各船室61への吸引効果が不足になり、十分な陰圧を発生・維持できない可能性を予想される。この場合は、吸気ダクト66上でダクト合流部34の上流側に設けられるチョーク弁35を絞ることで、吸気ダクト66内の負圧を上げ、船室内の空気102、103への吸引効果を高めることができる。 When berthed, the amount of air consumed by the generator or auxiliary engine 65 is small compared to the large number of cabins 61, that is, the large supply of air 102 and 103. As a result, the suction effect on each cabin 61 becomes insufficient, and it is expected that sufficient negative pressure cannot be generated and maintained. In this case, the choke valve 35 provided on the upstream side of the duct merging portion 34 on the intake duct 66 is throttled to increase the negative pressure in the intake duct 66 and enhance the suction effect on the air 102 and 103 in the cabin. be able to.

また、大型船の場合、船室61によって陰圧ダクト33までの配管距離が大きく異なり、流動抵抗による圧力損失も大きく異なる。この場合は、各二次陰圧分岐ダクト32eに設けられるチョーク弁31eの開閉具合を制御することで、船室61ごとに陰圧具合を調整することが可能である。好適には、陰圧ダクト33または各一次陰圧分岐ダクト32Eにもチョーク弁36を設け、デッキごとに、または区画ごとに陰圧具合を調整できるようにすると良い。 Further, in the case of a large ship, the piping distance to the negative pressure duct 33 differs greatly depending on the cabin 61, and the pressure loss due to the flow resistance also differs greatly. In this case, the negative pressure condition can be adjusted for each cabin 61 by controlling the opening / closing condition of the choke valve 31e provided in each secondary negative pressure branch duct 32e. Preferably, a choke valve 36 is also provided in the negative pressure duct 33 or each primary negative pressure branch duct 32E so that the negative pressure condition can be adjusted for each deck or each section.

上記の実施形態は、あくまでも、現在のところの最良の形態の一つに過ぎない。本発明の構造、材質、ダクトの配置方式、内燃機関の種類、使用する燃料、各部材の規格と連結方式、制御システム、演算方法、アルゴリズム、プログラム、などは、本発明の要旨を変更しない範囲で、様々に変更可能である。 The above embodiment is just one of the best embodiments at present. The structure, material, duct arrangement method, internal combustion engine type, fuel used, standard and connection method of each member, control system, calculation method, algorithm, program, etc. of the present invention are within the scope of the present invention. And it can be changed in various ways.

1a :内燃機関(ガソリンエンジン)
1b :内燃機関(ディーゼルエンジン)
1c :自家発電または非常用発電機
2 :車体
10 :内燃機関による動力の出力先(クラッチ、トランスミッションまたは発電機等)
11 :エアクリーナー
12 :吸気ダクト
13 :スロットルバルブ
14 :吸気分岐ダクト (インテークマニホールド)
15 :排気分岐ダクト
16 :排気ダクト他(触媒、マフラー、EGR、ほかセンサー類等を省略)
17 :過給機(ターボチャージャー、スーパーチャージャー)
18 :インタークーラー
20 :フロア(床)
21 :運転室仕切り
22 :エアフィルター(外気導入口)
23 :陰圧ダンパー
30 :コントローラー(制御部)
31a:チョーク弁(運転室)
31b:チョーク弁(救護/搬送室)
31c:チョーク弁(病室/バイオハザード研究施設)
31d:チョーク弁(仮設病室)
31e:チョーク弁(船室)
32a:陰圧分岐ダクト(運転室)
32b:陰圧分岐ダクト(救護/搬送室)
32c:陰圧分岐ダクト(病室/バイオハザード研究施設)
32d:陰圧分岐ダクト(仮設病室等)
32E:一次陰圧分岐ダクト(船舶等)
32e:二次陰圧分岐ダクト(船舶等)
33 :陰圧ダクト
34 :ダクト合流部
35 :チョーク弁(吸気ダクトに増設)
36 :チョーク弁(一括制御)
40 :建物躯体
41 :病床
42 :天井
43 :廊下・通路
44 :前室
45 :病室
46 :天井裏スペース
47 :壁
48 :陰圧ダンパー
49 :垂直配管スペース
50 :仮設病室(コンテナ/テント/クリーンブース/野戦病院等)
51 :扉
52 :前室
53 :陰圧ダンパー
60 :船体(病院船/商船/軍用艦船)
61 :船室(陰圧室等)
62 :指令室または操縦室
63 :エレベーター
64 :主機関(船舶用ディーゼルエンジンまたはガスタービン)
65 :発電機または補助動力機関
66 :吸気ダクト
67 :排気ダクト
101:清浄な空気
102:汚染される可能性が低い空気
103:汚染される可能性が高い空気
104:排気
A :本発明における空気の流動経路図
B :既設の内燃機関における空気の流動経路図
C :内燃機関の吸排気系の一部拡大イメージ図
R1 :運転室
R2 :救護/搬送室
R3 :廊下/通路
R4 :前室
R5 :感染症病室/患者収容室/バイオハザード実験室

1a: Internal combustion engine (gasoline engine)
1b: Internal combustion engine (diesel engine)
1c: Private power generation or emergency generator 2: Body 10: Power output destination by internal combustion engine (clutch, transmission, generator, etc.)
11: Air cleaner 12: Intake duct 13: Throttle valve
14: Intake branch duct (intake manifold)
15: Exhaust branch duct 16: Exhaust duct, etc. (catalyst, muffler, EGR, other sensors, etc. omitted)
17: Supercharger (turbocharger, supercharger)
18: Intercooler 20: Floor (floor)
21: Driver's cab partition 22: Air filter (outside air inlet)
23: Negative pressure damper
30: Controller (control unit)
31a: Choke valve (driver's cab)
31b: Choke valve (rescue / transport room)
31c: Choke valve (hospital room / biohazard research facility)
31d: Choke valve (temporary hospital room)
31e: Choke valve (cabin)
32a: Negative pressure branch duct (driver's cab)
32b: Negative pressure branch duct (rescue / transport room)
32c: Negative pressure branch duct (hospital room / biohazard research facility)
32d: Negative pressure branch duct (temporary hospital room, etc.)
32E: Primary negative pressure branch duct (ships, etc.)
32e: Secondary negative pressure branch duct (ships, etc.)
33: Negative pressure duct 34: Duct confluence 35: Choke valve (added to the intake duct)
36: Choke valve (collective control)
40: Building frame 41: Bed 42: Ceiling
43: Corridor / passage 44: Front room 45: Hospital room 46: Ceiling space 47: Wall 48: Negative pressure damper 49: Vertical piping space 50: Temporary hospital room (container / tent / clean booth / field hospital, etc.)
51: Door 52: Front room 53: Negative pressure damper 60: Hull (hospital ship / commercial ship / military ship)
61: Cabin (negative pressure room, etc.)
62: Command room or control room 63: Elevator 64: Main engine (marine diesel engine or gas turbine)
65: Generator or auxiliary power engine 66: Intake duct 67: Exhaust duct 101: Clean air 102: Air that is unlikely to be contaminated
103: Air that is likely to be contaminated 104: Exhaust
A: Air flow path diagram in the present invention B: Air flow path diagram in an existing internal combustion engine
C: Partially enlarged image of the intake / exhaust system of the internal combustion engine R1: Driver's cab R2: Rescue / transport room R3: Corridor / passage R4: Front room R5: Infectious disease room / patient accommodation room / biohazard laboratory

Claims (3)

感染症患者搬送車両、感染症対策病室、バイオハザード実験室、コンテナハウス、テント、クリーンブース、野戦病院、病院船、商船、艦船を対象に、内燃機関の吸気系で発生する負圧を利用し、車内、室内、施設内、船内の空気を吸引することで、陰圧を発生、維持する空調システム。 Using the negative pressure generated in the intake system of the internal combustion engine for infectious disease patient transport vehicles, infectious disease control rooms, biohazard laboratories, container houses, tents, clean booths, field hospitals, hospital ships, commercial ships, and ships. An air conditioning system that generates and maintains negative pressure by sucking air inside the car, indoors, facilities, and ships. 病原体となる細菌、真菌、ウイルスのうち、少なくとも1種を含んだ空気、または前記病原体を含む可能性がある空気を内燃機関に供給し、燃焼過程における燃焼ガス、熱または圧力を利用し、病原体を無害化する空調システム。 Air containing at least one of the pathogen bacteria, fungi, and viruses, or air that may contain the pathogen, is supplied to the internal combustion engine, and the combustion gas, heat, or pressure in the combustion process is used to utilize the pathogen. An air conditioning system that makes the virus harmless. ガソリンエンジン、ディーゼルエンジン、LPGエンジン、CNGエンジン、ロータリーエンジン、ガスタービンエンジン、前記エンジンをベースにした改造エンジン、または前記内燃機関を有する発電機、の何れかまたは複数を用いた、請求項2記載の空調システム。 The second aspect of claim 2, wherein any or a plurality of a gasoline engine, a diesel engine, an LPG engine, a CNG engine, a rotary engine, a gas turbine engine, a modified engine based on the engine, or a generator having the internal combustion engine is used. Air conditioning system.
JP2020092833A 2020-05-28 2020-05-28 Negative pressure air-conditioning system capable of taking infection countermeasures using internal combustion engine Pending JP2021186152A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020092833A JP2021186152A (en) 2020-05-28 2020-05-28 Negative pressure air-conditioning system capable of taking infection countermeasures using internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020092833A JP2021186152A (en) 2020-05-28 2020-05-28 Negative pressure air-conditioning system capable of taking infection countermeasures using internal combustion engine

Publications (1)

Publication Number Publication Date
JP2021186152A true JP2021186152A (en) 2021-12-13

Family

ID=78850486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020092833A Pending JP2021186152A (en) 2020-05-28 2020-05-28 Negative pressure air-conditioning system capable of taking infection countermeasures using internal combustion engine

Country Status (1)

Country Link
JP (1) JP2021186152A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022031003A (en) * 2020-08-07 2022-02-18 三菱重工パワーインダストリー株式会社 Negative pressure chamber, exhaust emission control system of negative pressure chamber including negative pressure chamber, movable body including exhaust emission control system of negative pressure chamber, and exhaust emission control method of negative pressure chamber

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022031003A (en) * 2020-08-07 2022-02-18 三菱重工パワーインダストリー株式会社 Negative pressure chamber, exhaust emission control system of negative pressure chamber including negative pressure chamber, movable body including exhaust emission control system of negative pressure chamber, and exhaust emission control method of negative pressure chamber
JP7113872B2 (en) 2020-08-07 2022-08-05 三菱重工パワーインダストリー株式会社 Negative pressure room, exhaust purification system for negative pressure room provided with negative pressure room, mobile body provided with exhaust purification system for negative pressure room, and exhaust purification method for negative pressure room

Similar Documents

Publication Publication Date Title
JP5607879B2 (en) Air filtration for reactor habitable areas
CN107387265B (en) High-pressure gas double-wall pipe ventilating system
US20060080971A1 (en) Power trailer structural elements for air flow, sound attenuation and fire suppression
BRPI0506637A (en) air purifier using centrifuge rotor liquid
US20070130844A1 (en) Isolation Shelter Pressurized to Avoid Transfer of Contaminants Between an Isolation Space and the Outside Environment
CN207245887U (en) Low-pressure fuel gas double-wall pipe ventilating system
JP2021186152A (en) Negative pressure air-conditioning system capable of taking infection countermeasures using internal combustion engine
CN113218013B (en) Negative pressure ward exhaust purification system
CN104896624A (en) Operating room with positive pressure and negative pressure conversion function
Afshari et al. Ventilation system design and the coronavirus (COVID-19)
SE532362C2 (en) Vessel for temporary refuge
CN218777678U (en) Ship ventilation system and ship applying same
CN101875323A (en) Emergency medicinal health anti-epidemic processing system vehicle
CN204704964U (en) There is the operating room of malleation and negative pressure translation function
CN103968392A (en) Tail gas switching peak value purification device with heat accumulating type incinerator
CN207226758U (en) A kind of energy-conserving elevator for recycling air
CN113978607A (en) Epidemic prevention isolation ship
KR101986223B1 (en) Ceramic cremation furnace with high efficiency structure
CN201736871U (en) Emergency medical treatment and public health epidemic prevention processing system vehicle
CN111846187B (en) Centralized air intake and exhaust system of offshore nuclear power platform
CN110714812A (en) Dedicated aircraft tail gas cleanup unit of aerospace
CN210511698U (en) Miniature garbage incinerator with bidirectional air curtain structure
CN111397075B (en) Ventilation system and ventilation method
Volintiru et al. Considerations on the Calculation of Ventilation Systems for Special Ships
CN214129093U (en) Negative pressure ambulance fuel oil heater filtering and sterilizing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230301

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231004

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231031

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20240423