JP2021183717A - Slide member and method for producing the same and vibrating actuator - Google Patents

Slide member and method for producing the same and vibrating actuator Download PDF

Info

Publication number
JP2021183717A
JP2021183717A JP2020089954A JP2020089954A JP2021183717A JP 2021183717 A JP2021183717 A JP 2021183717A JP 2020089954 A JP2020089954 A JP 2020089954A JP 2020089954 A JP2020089954 A JP 2020089954A JP 2021183717 A JP2021183717 A JP 2021183717A
Authority
JP
Japan
Prior art keywords
sliding member
less
stainless steel
member according
martensitic stainless
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020089954A
Other languages
Japanese (ja)
Inventor
真悟 江口
Shingo Eguchi
慶一 石塚
Keiichi Ishizuka
理恵子 宇佐美
Rieko Usami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2020089954A priority Critical patent/JP2021183717A/en
Publication of JP2021183717A publication Critical patent/JP2021183717A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Apparatuses For Generation Of Mechanical Vibrations (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

To provide a slide member that is composed of martensitic stainless steel and has high hardness and suitable toughness.SOLUTION: A rolled material composed of a martensitic stainless steel is press-worked to make an intermediate material for a slide member, wherein the martensitic stainless steel contains, in wt.%, 0.08% or more and 0.4% or less of carbon, wherein a carbon equivalent is 2.3 or more and 3.5 or less, represented by [carbon equivalent=C+(Mn/6)+(Si/24)+(Ni/40)+(Cr/5)+(Mo/4)+(V/14)], where C, Mn, Si, Ni, Cr, Mo, and V represent mass percentage of each element. The intermediate material is heated under predetermined conditions to produce a slide member that contains a martensite phase and an austenite phase, wherein a volume ratio of the austenite phase to a total of the martensite phase and austenite phase is 0.19 or more and 0.31 or less, and wherein a half-width of an X-ray diffraction peak in an α'(211) plane of the martensite phase is 1.17 or more.SELECTED DRAWING: Figure 6

Description

本発明は、摺動部材とその製造方法及び振動型アクチュエータに関する。 The present invention relates to a sliding member, a method for manufacturing the same, and a vibration type actuator.

電気−機械エネルギ変換素子を備える振動体に所定の振動を励起させ、振動体と接触する接触体に対して振動体から摩擦駆動力を与えることによって振動体と接触体とを相対的に移動させる振動型アクチュエータが知られている。一般的に振動体は、圧電体と弾性体とを接合して構成され、圧電体へ電圧を印加することにより発生する振動を弾性体を介して接触体へ伝達する。 A vibrating body equipped with an electric-mechanical energy conversion element is excited with a predetermined vibration, and a friction driving force is applied from the vibrating body to the contact body in contact with the vibrating body to relatively move the vibrating body and the contact body. Vibration type actuators are known. Generally, the vibrating body is configured by joining the piezoelectric body and the elastic body, and transmits the vibration generated by applying a voltage to the piezoelectric body to the contact body via the elastic body.

ここで、弾性体において接触体と接触する表面は、大きな摩擦力が生じる摺動面となるため、摩耗の発生は避けられない。そのため、振動型アクチュエータを長時間や長期にわたって使用した場合に、摩耗により接触面の表面状態が変化することによって、振動伝達効率が低下し、また、発生した摩耗粉が周辺の機械部品へ悪影響を及ぼす等の問題が生じる。このような問題の発生を抑制するため、接触体に対する接触面の硬度が大きい弾性体が求められている。 Here, since the surface of the elastic body that comes into contact with the contact body is a sliding surface on which a large frictional force is generated, the occurrence of wear is unavoidable. Therefore, when the vibration type actuator is used for a long period of time or for a long period of time, the surface condition of the contact surface changes due to wear, which lowers the vibration transmission efficiency, and the generated wear debris adversely affects the surrounding mechanical parts. Problems such as exerting occur. In order to suppress the occurrence of such a problem, an elastic body having a high hardness of the contact surface with respect to the contact body is required.

高硬度の摺動部材の一例として、マルテンサイト系ステンレス鋼がある。マルテンサイト系ステンレス鋼は、焼き入れによって生じるマルテンサイト変態によって硬度が高くなる一方で靭性(破壊靱性)が低下するため、靭性と硬度を両立させるために一定の残留オーステナイト相を含む組織を形成する必要がある。このような課題に対して特許文献1には、残留オーステナイトを多く含みながらも、表面硬さの大きいマルテンサイト系ステンレス鋼が提案されている。 An example of a high hardness sliding member is martensitic stainless steel. Martensitic stainless steel increases in hardness due to martensitic transformation caused by quenching, but decreases in toughness (fracture toughness), so it forms a structure containing a certain retained austenite phase in order to achieve both toughness and hardness. There is a need. To solve such a problem, Patent Document 1 proposes a martensitic stainless steel having a large surface hardness while containing a large amount of retained austenite.

特開2003−342695号公報Japanese Unexamined Patent Publication No. 2003-342695

振動型アクチュエータの振動体を構成する弾性体には、高い効率での振動伝達を可能にするために、所定の位置に突起部を形成する等、焼き入れ前に素材を任意の形状に加工する(変形させる)必要がある。そして、このような加工手段としては、塑性変形を生じさせる冷間プレス加工等が挙げられる。 The elastic body that constitutes the vibrating body of the vibrating actuator is processed into an arbitrary shape before quenching, such as by forming protrusions at predetermined positions in order to enable highly efficient vibration transmission. Needs to be (transformed). Examples of such processing means include cold press working that causes plastic deformation.

このような加工性に鑑みると、上記特許文献1に記載されたマルテンサイト系ステンレス鋼は、カーボン含有量が0.4重量%以上と多く、焼き入れ前の素材としては硬度が大きいため、冷間プレス加工等の変形加工には不向きである。一方、カーボン含有量を少なくして表面のみを高硬度化すれば、十分に振動体を構成する弾性体として用いることができる。しかし、素材表面の硬度を大きくするためには窒化処理等を施す等の必要があり、その場合には、窒化により耐食性が低下する問題や、専用設備が必要になって製造工程が増加する等の問題が生じる。 In view of such workability, the martensitic stainless steel described in Patent Document 1 has a high carbon content of 0.4% by weight or more and has a high hardness as a material before quenching, so that it is cold. It is not suitable for deformation processing such as inter-press processing. On the other hand, if the carbon content is reduced and only the surface is made harder, it can be sufficiently used as an elastic body constituting a vibrating body. However, in order to increase the hardness of the material surface, it is necessary to perform nitriding treatment, etc., in which case, there is a problem that corrosion resistance is lowered due to nitriding, and a dedicated facility is required, which increases the manufacturing process. Problem arises.

本発明は、表面硬化処理を必要とせず、カーボン含有量が少ないマルテンサイト系ステンレス鋼を用いて高硬度で靭性に優れる摺動部材を提供することを目的とする。 An object of the present invention is to provide a sliding member having high hardness and excellent toughness by using martensitic stainless steel having a low carbon content without requiring a surface hardening treatment.

本発明に係る摺動部材は、マルテンサイト系ステンレス鋼からなる摺動部材であって、前記マルテンサイト系ステンレス鋼は、重量%で0.08%以上0.4%以下の炭素を含有し、且つ、C,Mn,Si,Ni,Cr,Mo,Vの質量%を用いて‘炭素当量=C+(Mn/6)+(Si/24)+(Ni/40)+(Cr/5)+(Mo/4)+(V/14)’で表される炭素当量の値が2.3以上3.5以下であり、前記摺動部材の少なくとも摺動面はマルテンサイト相とオーステナイト相を含み、前記マルテンサイト相と前記オーステナイト相の総量に対して前記オーステナイト相が占める体積比が0.19以上0.31以下であり、且つ、マルテンサイト相のα´(211)面におけるX線回折ピークの半値幅が1.17以上であることを特徴とする。 The sliding member according to the present invention is a sliding member made of martensite-based stainless steel, and the martensite-based stainless steel contains 0.08% or more and 0.4% or less of carbon in weight%. Moreover, using the mass% of C, Mn, Si, Ni, Cr, Mo, and V,'carbon equivalent = C + (Mn / 6) + (Si / 24) + (Ni / 40) + (Cr / 5) + The value of carbon equivalent represented by (Mo / 4) + (V / 14)'is 2.3 or more and 3.5 or less, and at least the sliding surface of the sliding member contains a martensite phase and an austenite phase. The volume ratio of the austenite phase to the total amount of the martensite phase and the austenite phase is 0.19 or more and 0.31 or less, and the X-ray diffraction peak on the α'(211) plane of the martensite phase. It is characterized in that the half price range of is 1.17 or more.

本発明によれば、表面硬化処理を必要とせず、カーボン含有量が少ないマルテンサイト系ステンレス鋼を用いて高硬度で靭性に優れる摺動部材を得ることができる。 According to the present invention, it is possible to obtain a sliding member having high hardness and excellent toughness by using martensitic stainless steel having a low carbon content without requiring a surface hardening treatment.

本発明の実施形態に係る摺動部材のX線回折チャートである。It is an X-ray diffraction chart of the sliding member which concerns on embodiment of this invention. 実施例及び比較例に係る中間素材(試験片)の形状示す図である。It is a figure which shows the shape of the intermediate material (test piece) which concerns on an Example and a comparative example. 実施例及び比較例の作製に用いた焼き入れ温度プロファイルを示す図である。It is a figure which shows the quenching temperature profile used for making of an Example and a comparative example. 実施例及び比較例の焼き入れ処理での加熱処理条件を示す図である。It is a figure which shows the heat treatment condition in the quenching treatment of an Example and a comparative example. 実施例及び比較例の評価結果を示す図である。It is a figure which shows the evaluation result of an Example and a comparative example. 実施例及び比較例でのビッカース硬度と残留オーステナイト比及びα´(211)面半値幅との関係を示すグラフである。It is a graph which shows the relationship between the Vickers hardness, the retained austenite ratio, and the α'(211) full width at half maximum in Examples and Comparative Examples.

以下、本発明の実施の形態について添付図面を参照して詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.

<摺動部材用鋼材>
本発明の実施形態に係る摺動部材は、マルテンサイト系ステンレス鋼からなる。摺動部材に用いられるマルテンサイト系ステンレス鋼は、重量%で0.08%以上0.4%以下の炭素を含有する。また、摺動部材に用いられるマルテンサイト系ステンレス鋼の炭素当量は、‘炭素当量=C+(Mn/6)+(Si/24)+(Ni/40)+(Cr/5)+(Mo/4)+(V/14)’で与えられる。用いられる。ここで、元素記号で示したC,Mn,Si,Ni,Cr,Mo,Vは各元素の質量%である。
<Steel material for sliding members>
The sliding member according to the embodiment of the present invention is made of martensitic stainless steel. The martensitic stainless steel used for the sliding member contains 0.08% or more and 0.4% or less of carbon by weight. The carbon equivalent of martensitic stainless steel used for the sliding member is'carbon equivalent = C + (Mn / 6) + (Si / 24) + (Ni / 40) + (Cr / 5) + (Mo / 4) + (V / 14)'. Used. Here, C, Mn, Si, Ni, Cr, Mo, and V indicated by element symbols are mass% of each element.

前述したように、振動型アクチュエータでは、摺動部材に圧電体を接着して振動体を作製し、圧電体に所定の交流電圧を印加して摺動部材を振動させることにより、摺動部材に接触した接触体と振動体とを相対移動させる。そして、摺動部材を作製するための素材には、焼き入れ前において、所定の位置に突起部を形成する等の任意の形状への塑性変形加工が可能であることが求められる。 As described above, in the vibration type actuator, a piezoelectric body is bonded to the sliding member to produce a vibrating body, and a predetermined AC voltage is applied to the piezoelectric body to vibrate the sliding member to make the sliding member. The contacting body and the vibrating body are moved relative to each other. Further, the material for producing the sliding member is required to be capable of plastic deformation processing into an arbitrary shape such as forming a protrusion at a predetermined position before quenching.

一方で、焼き入れ後の硬度を高めるためには、炭素当量は2.3以上であることが必要である。しかし、炭素当量が過剰になると、焼き入れ前の素材の硬度が上昇し、冷間プレス加工等の手段による塑性変形を行うことが困難となる。また、炭素当量が過剰になると、耐食性、疲労強度、靭性が低下してしまう。 On the other hand, in order to increase the hardness after quenching, it is necessary that the carbon equivalent is 2.3 or more. However, if the carbon equivalent is excessive, the hardness of the material before quenching increases, and it becomes difficult to perform plastic deformation by means such as cold press working. Further, when the carbon equivalent is excessive, the corrosion resistance, fatigue strength and toughness are deteriorated.

このような事情に鑑みて、本実施形態に係るマルテンサイト系ステンレス鋼では、炭素当量を2.3以上3.5以下とする。このときの、炭素の含有量は重量%では0.26%以上0.40%以下であることがより望ましい。このような炭素当量を有する材料としてJISにより成分が定められたマルテンサイト系ステンレス鋼としては、SUS410系やSUS420系のステンレス鋼が挙げられる。 In view of such circumstances, the martensitic stainless steel according to the present embodiment has a carbon equivalent of 2.3 or more and 3.5 or less. At this time, the carbon content is more preferably 0.26% or more and 0.40% or less in terms of weight%. Examples of the martensitic stainless steel whose composition is defined by JIS as a material having such a carbon equivalent include SUS410-based and SUS420-based stainless steel.

なお、ステンレス鋼において窒素(N)は、硬度を向上させる一方で耐食性を低下させるため、本実施形態に係るマルテンサイト系ステンレス鋼では表面窒化処理等を行わず、よって、実質的に窒素を成分として含有しないようにしている。但し、ステンレス鋼の一般的な製造環境において空気中に含まれる窒素の混入は免れないため、窒素を含む場合の含有量は、重量%で0.025%以下であれば許容されるものとする。 In stainless steel, nitrogen (N) improves hardness while lowering corrosion resistance. Therefore, the martensitic stainless steel according to the present embodiment is not subjected to surface nitriding treatment or the like, and thus nitrogen is substantially contained. It is not contained as. However, since nitrogen contained in the air is unavoidable in the general manufacturing environment of stainless steel, it is permissible if the content of nitrogen is 0.025% or less in weight%. ..

<摺動部材の製造方法>
マルテンサイト系ステンレス鋼に冷間プレス加工を施し、任意の形状に成形した中間素材を得る。例えば、振動型アクチュエータの振動体に用いる弾性体として用いる場合、圧電体の振動を接触体に効率的に伝達するための突起部等を形成する。続いて成形後の中間素材をオーステナイト変態点以上に加熱し、その後、急冷する焼き入れ処理を施してマルテンサイト相を形成させることにより高硬度化させて、摺動部材を得る。
<Manufacturing method of sliding member>
Martensitic stainless steel is cold-pressed to obtain an intermediate material molded into any shape. For example, when it is used as an elastic body used for a vibrating body of a vibrating actuator, a protrusion or the like for efficiently transmitting the vibration of the piezoelectric body to the contact body is formed. Subsequently, the intermediate material after molding is heated to the austenite transformation point or higher, and then quenching treatment is performed to form a martensite phase to increase the hardness, thereby obtaining a sliding member.

焼き入れ処理は、酸化を防ぐために非酸化雰囲気で実施する必要があるため、内部を窒素雰囲気(不活性ガス雰囲気)や真空雰囲気に制御可能な炉を用いる必要がある。加熱手段としては、一般的な高温用ヒータを用いることが挙げられるが、高周波加熱やレーザ加熱等により摺動面近傍のみを加熱処理してもよい。焼き入れ温度や保持時間等の加熱条件は、後述するように、焼き入れ後の組織との関係を考慮して決定する必要がある。これは、焼き入れ後の組織は、中間素材の形状や大きさ、ヒータ(加熱手段)の配置や周辺部材(試料台等)の熱容量等の炉内環境に左右されるため、実験的に求める必要があるためである。 Since the quenching treatment needs to be carried out in a non-oxidizing atmosphere in order to prevent oxidation, it is necessary to use a furnace in which the inside can be controlled to have a nitrogen atmosphere (inert gas atmosphere) or a vacuum atmosphere. As a heating means, a general high-temperature heater may be used, but only the vicinity of the sliding surface may be heat-treated by high-frequency heating, laser heating, or the like. Heating conditions such as quenching temperature and holding time need to be determined in consideration of the relationship with the structure after quenching, as will be described later. This is experimentally determined because the structure after quenching depends on the shape and size of the intermediate material, the arrangement of heaters (heating means), and the heat capacity of peripheral members (sample table, etc.). Because it is necessary.

焼き入れ処理では、加熱処理後にマルテンサイト変態が発現するための上部臨界冷却速度以上の冷却速度で急冷する必要がある。冷却方法には、ガス冷却や油冷却、水冷却等を選択的に用いることができる。上述した炭素当量が2.3以上3.5以下のマルテンサイト系ステンレス鋼の場合には、加熱処理温度から300℃までの間を80℃/分以上の冷却速度で冷却処理を行う必要がある。 In the quenching treatment, it is necessary to quench at a cooling rate higher than the upper critical cooling rate for martensitic transformation to occur after the heat treatment. As the cooling method, gas cooling, oil cooling, water cooling and the like can be selectively used. In the case of the above-mentioned martensitic stainless steel having a carbon equivalent of 2.3 or more and 3.5 or less, it is necessary to perform cooling treatment at a cooling rate of 80 ° C./min or more between the heat treatment temperature and 300 ° C. ..

<摺動部材(焼き入れ処理後のマルテンサイト系ステンレス鋼)の組織>
本発明の実施形態に係る摺動部材での摺動面の組織的特徴は、X線回折法(XRD)により確認することが可能である。図1は、本実施形態に係るマルテンサイト系ステンレス鋼からなる摺動部材のX線回折結果(XRDチャート)の一例を示す図である。
<Structure of sliding member (martensitic stainless steel after quenching)>
The organizational characteristics of the sliding surface of the sliding member according to the embodiment of the present invention can be confirmed by the X-ray diffraction method (XRD). FIG. 1 is a diagram showing an example of an X-ray diffraction result (XRD chart) of a sliding member made of martensitic stainless steel according to the present embodiment.

XRDチャート内のオーステナイト相に由来するγ(311)面のピーク強度Iγとマルテンサイト相に由来するα´(211)面のピーク強度Iα´を用いて、オーステナイト相比を算出する。オーステナイト相比は、オーステナイト相とマルテンサイト相の総量に対してオーステナイト相が占める体積比であり、‘オーステナイト相比=Iγ/(Iγ+Iα)’で表される。 The austenite phase ratio is calculated using the peak intensity Iγ of the γ (311) plane derived from the austenite phase and the peak intensity Iα ′ of the α ′ (211) plane derived from the martensite phase in the XRD chart. The austenite phase ratio is the volume ratio of the austenite phase to the total amount of the austenite phase and the martensite phase, and is represented by'austenite phase ratio = Iγ / (Iγ + Iα)'.

オーステナイト相比が低すぎると靭性が低下し、高すぎると硬度が低下するため、0.19以上0.31以下の範囲である必要がある。靭性及び硬度の更なる向上の観点からは、オーステナイト相比は0.20以上0.30以下の範囲であることが望ましい。 If the austenite phase ratio is too low, the toughness decreases, and if it is too high, the hardness decreases. Therefore, it is necessary to be in the range of 0.19 or more and 0.31 or less. From the viewpoint of further improving toughness and hardness, it is desirable that the austenite phase ratio is in the range of 0.20 or more and 0.30 or less.

マルテンサイト相における成長方位であるα´(211)面のピークの半値幅(以下「211面半値幅」という)を算出する。α´(211)面のピークにおいて、バックグラウンド強度を除去したピーク強度の半分の強度におけるピーク幅を211面半値幅と定義する。X線回折ピークにおける半値幅は、結晶子サイズ及び結晶格子間の歪と相関し、結晶子が小さいほど、また、結晶格子の歪が大きいほど、半値幅は大きくなる。 The half width of the peak of the α'(211) plane, which is the growth direction in the martensite phase (hereinafter referred to as "211 plane half width"), is calculated. At the peak of the α'(211) plane, the peak width at half the intensity of the peak strength from which the background strength is removed is defined as the full width at half maximum of the 211 plane. The half-value width at the X-ray diffraction peak correlates with the crystallite size and the strain between the crystal lattices, and the smaller the crystallites and the larger the strain of the crystal lattice, the larger the half-value width.

本発明者らは、マルテンサイト系ステンレス鋼において、焼き入れ後のオーステナイト成分を一定量残しながらも高硬度を発現させるためには、211面半値幅が1.17以上必要であることを見出した。これには、結晶子サイズと結晶の歪量とが複合的に作用しているものと考えられるが、前記条件を満たすことで硬度を高めることが可能となる。 The present inventors have found that in martensitic stainless steel, a width at half maximum of 211 faces is required to be 1.17 or more in order to develop high hardness while leaving a certain amount of austenite component after quenching. .. It is considered that the crystallite size and the amount of strain of the crystal act in a complex manner for this, but it is possible to increase the hardness by satisfying the above conditions.

本実施形態に係るマルテンサイト系ステンレス鋼からなる摺動部材の組織的特徴は、焼き入れの条件に深く関係していると考えられる。加熱が高温且つ長時間であると、母相に含まれる炭化物の分解と炭素原子の拡散が進行してマルテンサイト変態温度が低下することにより、残留オーステナイトが過剰となって硬度が低下する。また、加熱中にオーステナイト粒子径が粗大化することにより、マルテンサイト変態後に粗大なマルテンサイト結晶が析出してしまうことも硬度低下の要因となる。一方で、加熱処理の温度が低く且つ時間が短い場合、炭素原子の拡散と固溶が不十分となって硬度が低下する。 It is considered that the organizational characteristics of the sliding member made of martensitic stainless steel according to the present embodiment are deeply related to the quenching conditions. When the heating is high temperature and long time, the decomposition of carbides contained in the matrix and the diffusion of carbon atoms proceed to lower the martensitic transformation temperature, resulting in excess retained austenite and lower hardness. In addition, the coarsening of the austenite particle size during heating causes the coarse martensite crystals to precipitate after the martensitic transformation, which also causes a decrease in hardness. On the other hand, when the temperature of the heat treatment is low and the time is short, the diffusion and solid solution of carbon atoms become insufficient and the hardness decreases.

このように、マルテンサイト相の結晶径や炭素の固溶を起因とする結晶歪が処理条件により変化し、X線回折ピークでの半値幅として表れているものと考えられる。摺動部材としてのより高い耐摩耗性を得る観点からは、211面半値幅は1.35以上であることがより望ましい。 As described above, it is considered that the crystal diameter of the martensite phase and the crystal strain caused by the solid solution of carbon change depending on the treatment conditions and appear as a half width at the X-ray diffraction peak. From the viewpoint of obtaining higher wear resistance as a sliding member, it is more desirable that the half width at half maximum of 211 planes is 1.35 or more.

本発明に係る摺動部材の実施例について、振動型アクチュエータの振動体に用いられる弾性体を例として、以下に説明する。但し、本発明に係る摺動部材は、このような用途に限定されるものではなく、各種の機械や装置の摺動部材として利用することができる。 Examples of the sliding member according to the present invention will be described below by taking an elastic body used as a vibrating body of a vibrating actuator as an example. However, the sliding member according to the present invention is not limited to such applications, and can be used as a sliding member of various machines and devices.

JIS規格がSUS420J2の圧延材を素材として用いた。この圧延材の具体的な組成(上記式1に関するもののみを示す)は、C:2.6〜4.0%、Cr:12〜14%、Si:1%以下、Mn:1%以下、P:0.04%以下、S:0.03%以下、炭素当量:2.6以上3.4以下である。 A rolled material whose JIS standard is SUS420J2 was used as a material. The specific composition of this rolled material (shown only for the above formula 1) is C: 2.6 to 4.0%, Cr: 12-14%, Si: 1% or less, Mn: 1% or less, P: 0.04% or less, S: 0.03% or less, carbon equivalent: 2.6 or more and 3.4 or less.

図2は、実施例及び比較例に係る摺動部材を得るための中間素材の形状を示す図である。板状の圧延材1を用い、振動体用の弾性体として用いるための突起部2を冷間プレス加工により形成し、その後、分断することで図2に示す中間素材(以下「試験片」という)を得た。続いて、作製した試験片を加熱炉を用いて焼き入れ処理を行った。複数の試験片を耐熱性セラミック板の上に並べたものをヒータに近接するように加熱炉内に載置し、加熱炉に窒素ガスを導入して加熱炉内を窒素雰囲気とした。なお、窒素ガス以外の不活性ガスを用いてもよい。 FIG. 2 is a diagram showing the shape of an intermediate material for obtaining a sliding member according to an example and a comparative example. Using a plate-shaped rolled material 1, a protrusion 2 for use as an elastic body for a vibrating body is formed by cold pressing, and then divided to form an intermediate material (hereinafter referred to as "test piece") shown in FIG. ) Was obtained. Subsequently, the prepared test piece was quenched using a heating furnace. A plurality of test pieces arranged on a heat-resistant ceramic plate were placed in a heating furnace so as to be close to the heater, and nitrogen gas was introduced into the heating furnace to create a nitrogen atmosphere in the heating furnace. An inert gas other than nitrogen gas may be used.

その後、ヒータによる加熱を開始した。図3は、試験片の焼き入れの温度プロファイルを示す図である。また、図4は、焼き入れ処理での加熱処理条件を示す図である。ここでは、温度プロファイルを変更した複数の条件で焼き入れ処理を行った。焼き入れ処理条件は、ヒータ近傍に設置した熱電対による測温値に基づいており、この測温値を基づいてヒータの出力は制御(例えば、PDI制御)されている。 After that, heating with a heater was started. FIG. 3 is a diagram showing a temperature profile of quenching of a test piece. Further, FIG. 4 is a diagram showing heat treatment conditions in the quenching treatment. Here, the quenching process was performed under a plurality of conditions in which the temperature profile was changed. The quenching treatment condition is based on a temperature measurement value by a thermocouple installed in the vicinity of the heater, and the output of the heater is controlled (for example, PDI control) based on this temperature measurement value.

処理温度を図4に示す所定の温度まで昇温して、図4に示す保持時間で温度を保持した。その後、ヒータへの出力を停止して直ちに試験片を乗せたセラミック板へ窒素ガスを噴出することで試験片を冷却した。冷却速度は処理温度から300℃までを約100℃/分とし、その後、加熱炉内の窒素雰囲気を維持したまま常温近くまで自然冷却した後、窒素ガスの供給を停止して、作製された摺動部材を加熱炉内から取り出した。 The treatment temperature was raised to a predetermined temperature shown in FIG. 4, and the temperature was maintained for the holding time shown in FIG. After that, the output to the heater was stopped and the test piece was immediately cooled by ejecting nitrogen gas onto the ceramic plate on which the test piece was placed. The cooling rate was set to about 100 ° C / min from the processing temperature to 300 ° C, and then the nitrogen gas was naturally cooled to near room temperature while maintaining the nitrogen atmosphere in the heating furnace, and then the supply of nitrogen gas was stopped. The moving member was taken out of the heating furnace.

作製した試験片について、ビッカース硬度測定、X線回折法による相同定、靱性評価を行った。なお、比較例5についてのみ、試験片を液体窒素に浸漬させるサブゼロ処理を施した後にビッカース硬度測定とX線回折法による相同定を行った。ビッカース硬度測定には島津製作所社製マイクロビッカース硬度計HMV−2を用い、X線回折にはリガク社製X線回折装置UltimaIVを用いた。X線回折ではCuをターゲットとして用い(CuKα線)、出力を40kV−40mAとし、2θを30°〜100°の範囲とした。 The prepared test piece was subjected to Vickers hardness measurement, phase identification by X-ray diffraction method, and toughness evaluation. Only in Comparative Example 5, the Vickers hardness measurement and the phase identification by the X-ray diffraction method were performed after performing the sub-zero treatment in which the test piece was immersed in liquid nitrogen. A micro Vickers hardness tester HMV-2 manufactured by Shimadzu Corporation was used for measuring the Vickers hardness, and an X-ray diffractometer Ultima IV manufactured by Rigaku Co., Ltd. was used for X-ray diffraction. In X-ray diffraction, Cu was used as a target (CuKα ray), the output was 40 kV-40 mA, and 2θ was in the range of 30 ° to 100 °.

また、靭性を評価するため、各試験片の作製に用いた圧延材と同じ圧延材を用いて50mm×50mm×0.3mmの板状試験片を準備し、図3及び図4に示す条件と同じ条件で、実施例及び比較例に対応する試験片を作製した。各試験片について、中央付近の幅20mm間隔の2点を支持した状態で支持位置の中央に100Nの荷重を付加する試験を実施した。試験後、外観上の変化がなかったものを「◎(良)」、打痕のみで割れなかったものを「〇(可)」、割れたものを「×(不良)」と判断した。 Further, in order to evaluate the toughness, a plate-shaped test piece having a size of 50 mm × 50 mm × 0.3 mm was prepared using the same rolled material as the rolled material used for producing each test piece, and the conditions shown in FIGS. 3 and 4 were met. Under the same conditions, test pieces corresponding to Examples and Comparative Examples were prepared. For each test piece, a test was carried out in which a load of 100 N was applied to the center of the support position while supporting two points with a width of 20 mm near the center. After the test, those with no change in appearance were judged as "◎ (good)", those that were not cracked only by dents were judged as "○ (possible)", and those that were cracked were judged as "× (defective)".

図5は、試験結果(評価結果)をまとめて示す図である。なお、ビッカース硬度測定結果についても、硬度不足であるものを「×(不良)」、所望の硬度が得られたものを2段階で「〇(可)」及び「◎(良)」で評価した。図6は、ビッカース硬度測定結果とX線回折により得られた残留オーステナイト比及び211面半値幅との関係を示す図である。図6では、ビッカース硬度がHv640以上のものを「○」、Hv640未満のものを「×」で示している。また、図6に示す破線枠内の試験片は実施例1〜10であり、破線枠外の試験片は比較例1〜4である。 FIG. 5 is a diagram showing the test results (evaluation results) collectively. Regarding the Vickers hardness measurement results, those with insufficient hardness were evaluated as "x (defective)", and those with the desired hardness were evaluated as "○ (possible)" and "◎ (good)" in two stages. .. FIG. 6 is a diagram showing the relationship between the Vickers hardness measurement result, the retained austenite ratio obtained by X-ray diffraction, and the full width at half maximum of 211 planes. In FIG. 6, those having a Vickers hardness of Hv640 or more are indicated by “◯”, and those having a Vickers hardness of less than Hv640 are indicated by “x”. Further, the test pieces in the broken line frame shown in FIG. 6 are Examples 1 to 10, and the test pieces outside the broken line frame are Comparative Examples 1 to 4.

実施例1〜10は、加熱温度を980℃以上1090℃以下とし、且つ、加熱温度での保持時間を0分以上30分以下としている。残留オーステナイト比が0.19以上、211半値幅が1.17以上、且つ、ビッカース硬度がHv640以上を示す。特に実施例2〜8では、残留オーステナイトが0.2以上0.3以下の範囲で、211面半値幅が1.35以上であることにより、Hv655以上のビッカース硬度と良好な靱性とが得られている。 In Examples 1 to 10, the heating temperature is 980 ° C. or higher and 1090 ° C. or lower, and the holding time at the heating temperature is 0 minutes or longer and 30 minutes or shorter. The residual austenite ratio is 0.19 or more, the half width at half maximum is 1.17 or more, and the Vickers hardness is Hv640 or more. In particular, in Examples 2 to 8, Vickers hardness of Hv655 or more and good toughness can be obtained by having the retained austenite in the range of 0.2 or more and 0.3 or less and the half width at half maximum of 211 planes being 1.35 or more. ing.

一方で、比較例1,4は、残留オーステナイトは多いが211面半値幅が1.1以下と小さく、また、硬度も小さい。比較例2,3は、残留オーステナイト比と211面半値幅が共に小さく、しかも、硬度が小さく、靭性も小さい(脆い)。比較例5は、硬度は大きいが、残留オーステナイト比が小さいため、靭性試験にて破断がみられた。これは、サブゼロ処理を施していることが原因と考えられる。 On the other hand, in Comparative Examples 1 and 4, although the retained austenite is large, the half width at half maximum of 211 planes is as small as 1.1 or less, and the hardness is also small. In Comparative Examples 2 and 3, both the retained austenite ratio and the full width at half maximum of 211 planes are small, the hardness is small, and the toughness is also small (brittle). In Comparative Example 5, although the hardness was high, the retained austenite ratio was small, so that fracture was observed in the toughness test. This is considered to be due to the sub-zero processing.

なお、全ての試験片の表面をアルバックファイ製QuanteraSXMを用いてXPS法による組成分析を行った結果、全ての試験片で窒素は検出されなかった(検出限界以下であった)。この結果から、高硬度を得るために従来の窒化処理を用いた素材と比較して、実施例では、耐食性を損なうことなく、高い硬度及び靱性とが得られていることが確認された。 As a result of composition analysis of the surfaces of all the test pieces by the XPS method using QuanteraSXM manufactured by ULVAC-PHI, nitrogen was not detected in all the test pieces (below the detection limit). From this result, it was confirmed that high hardness and toughness were obtained in the examples without impairing the corrosion resistance as compared with the material using the conventional nitriding treatment in order to obtain high hardness.

以上の説明の通り、本発明によれば、マルテンサイト系ステンレス鋼を用い、耐食性を損なうことなく高硬度で耐摩耗性に優れると共に高い靱性を有する摺動部材を得ることができる。以上、本発明をその好適な実施形態に基づいて詳述してきたが、本発明はこれら特定の実施形態に限られるものではない。 As described above, according to the present invention, it is possible to obtain a sliding member having high hardness, excellent wear resistance and high toughness without impairing corrosion resistance by using martensitic stainless steel. Although the present invention has been described in detail based on the preferred embodiments thereof, the present invention is not limited to these specific embodiments.

1 圧延材
2 突起部
1 Rolled material 2 Protrusions

Claims (15)

マルテンサイト系ステンレス鋼からなる摺動部材であって、
前記マルテンサイト系ステンレス鋼は、重量%で0.08%以上0.4%以下の炭素を含有し、且つ、C,Mn,Si,Ni,Cr,Mo,Vの質量%を用いて‘炭素当量=C+(Mn/6)+(Si/24)+(Ni/40)+(Cr/5)+(Mo/4)+(V/14)’で表される炭素当量の値が2.3以上3.5以下であり、
前記摺動部材の少なくとも摺動面はマルテンサイト相とオーステナイト相を含み、
前記マルテンサイト相と前記オーステナイト相の総量に対して前記オーステナイト相が占める体積比が0.19以上0.31以下であり、且つ、マルテンサイト相のα´(211)面におけるX線回折ピークの半値幅が1.17以上であることを特徴とする摺動部材。
A sliding member made of martensitic stainless steel,
The martensitic stainless steel contains 0.08% or more and 0.4% or less of carbon by weight, and carbon is used in terms of mass% of C, Mn, Si, Ni, Cr, Mo, and V. The value of carbon equivalent represented by equivalent = C + (Mn / 6) + (Si / 24) + (Ni / 40) + (Cr / 5) + (Mo / 4) + (V / 14)'is 2. 3 or more and 3.5 or less,
At least the sliding surface of the sliding member contains a martensite phase and an austenite phase.
The volume ratio of the austenite phase to the total amount of the martensite phase and the austenite phase is 0.19 or more and 0.31 or less, and the X-ray diffraction peak on the α'(211) plane of the martensite phase. A sliding member having a half-value width of 1.17 or more.
前記マルテンサイト系ステンレス鋼は、窒素を含有する場合の含有量は重量%で0.025%以下であることを特徴とする請求項1に記載の摺動部材。 The sliding member according to claim 1, wherein the martensitic stainless steel has a nitrogen content of 0.025% or less in terms of weight%. 前記体積比は0.20以上0.30以下であることを特徴とする請求項1又は2に記載の摺動部材。 The sliding member according to claim 1 or 2, wherein the volume ratio is 0.20 or more and 0.30 or less. 前記α´(211)面におけるX線回折ピークの半値幅は1.35以上であることを特徴とする請求項1乃至3のいずれか1項に記載の摺動部材。 The sliding member according to any one of claims 1 to 3, wherein the half width of the X-ray diffraction peak on the α'(211) plane is 1.35 or more. 前記マルテンサイト系ステンレス鋼における炭素の含有量は重量%で0.26%以上0.40%以下であることを特徴とする請求項1乃至4のいずれか1項に記載の摺動部材。 The sliding member according to any one of claims 1 to 4, wherein the martensitic stainless steel has a carbon content of 0.26% or more and 0.40% or less in weight%. ビッカース硬度がHv640以上であることを特徴とする請求項1乃至5のいずれか1項に記載の摺動部材。 The sliding member according to any one of claims 1 to 5, wherein the Vickers hardness is Hv640 or more. 摺動部材の製造方法であって、
マルテンサイト系ステンレス鋼からなる圧延材をプレス加工して中間素材を作製する工程と、
前記中間素材を、マルテンサイト相とオーステナイト相を含み、前記マルテンサイト相と前記オーステナイト相の総量に対して前記オーステナイト相が占める体積比が0.19以上0.31以下であり、且つ、前記マルテンサイト相のα´(211)面におけるX線回折ピークの半値幅が1.17以上となるように、加熱処理した後に所定の冷却速度での冷却処理を行う工程と、を有し、
前記マルテンサイト系ステンレス鋼は、重量%で0.08%以上0.4%以下の炭素を含有し、且つ、C,Mn,Si,Ni,Cr,Mo,Vの質量%を用いて‘炭素当量=C+(Mn/6)+(Si/24)+(Ni/40)+(Cr/5)+(Mo/4)+(V/14)’で表される炭素当量の値が2.3以上3.5以下であることを特徴とする摺動部材の製造方法。
It is a manufacturing method of sliding members.
The process of pressing a rolled material made of martensitic stainless steel to produce an intermediate material,
The intermediate material contains a martensite phase and an austenite phase, and the volume ratio of the austenite phase to the total amount of the martensite phase and the austenite phase is 0.19 or more and 0.31 or less, and the martensite phase is present. It has a step of performing a cooling treatment at a predetermined cooling rate after the heat treatment so that the half-value width of the X-ray diffraction peak on the α'(211) plane of the site phase is 1.17 or more.
The martensite-based stainless steel contains carbon of 0.08% or more and 0.4% or less in weight%, and carbon is used in terms of mass% of C, Mn, Si, Ni, Cr, Mo, and V. The value of carbon equivalent represented by equivalent = C + (Mn / 6) + (Si / 24) + (Ni / 40) + (Cr / 5) + (Mo / 4) + (V / 14)'is 2. A method for manufacturing a sliding member, which comprises 3 or more and 3.5 or less.
前記マルテンサイト系ステンレス鋼は、窒素を含有する場合の含有量は重量%で0.025%以下であることを特徴とする請求項7に記載の摺動部材の製造方法。 The method for manufacturing a sliding member according to claim 7, wherein the martensitic stainless steel has a nitrogen content of 0.025% or less in terms of weight%. 前記体積比は0.20以上0.30以下であることを特徴とする請求項7又は8に記載の摺動部材の製造方法。 The method for manufacturing a sliding member according to claim 7 or 8, wherein the volume ratio is 0.20 or more and 0.30 or less. 前記α´(211)面におけるX線回折ピークの半値幅は1.35以上であることを特徴とする請求項7乃至9のいずれか1項に記載の摺動部材の製造方法。 The method for manufacturing a sliding member according to any one of claims 7 to 9, wherein the half width of the X-ray diffraction peak on the α'(211) plane is 1.35 or more. 前記マルテンサイト系ステンレス鋼における炭素の含有量は重量%で0.26%以上0.40%以下であることを特徴とする請求項7乃至10いずれか1項に記載の摺動部材の製造方法。 The method for manufacturing a sliding member according to any one of claims 7 to 10, wherein the martensitic stainless steel has a carbon content of 0.26% or more and 0.40% or less in weight%. .. 前記加熱処理は、前記中間素材を加熱炉に載置し、前記加熱炉を非酸化雰囲気に保持して行い、
前記冷却処理は、前記加熱炉に不活性ガスを導入することにより行うことを特徴とする請求項7乃至11のいずれか1項に記載の摺動部材の製造方法。
The heat treatment is performed by placing the intermediate material in a heating furnace and holding the heating furnace in a non-oxidizing atmosphere.
The method for manufacturing a sliding member according to any one of claims 7 to 11, wherein the cooling treatment is performed by introducing an inert gas into the heating furnace.
980℃以上1090℃以下の温度、且つ、0分以上30分以下の保持時間で前記加熱処理を行うことを特徴とする請求項7乃至12のいずれか1項に記載の摺動部材の製造方法。 The method for manufacturing a sliding member according to any one of claims 7 to 12, wherein the heat treatment is performed at a temperature of 980 ° C. or higher and 1090 ° C. or lower and a holding time of 0 minutes or longer and 30 minutes or shorter. .. 前記加熱処理での加熱温度から300℃までの冷却速度を80℃/分以上として前記冷却処理を行うことを特徴とする請求項7乃至13のいずれか1項に記載の摺動部材の製造方法。 The method for manufacturing a sliding member according to any one of claims 7 to 13, wherein the cooling treatment is performed at a cooling rate of 80 ° C./min or more from the heating temperature in the heat treatment to 300 ° C. .. 振動体と、該振動体と接触する接触体とを備える振動型アクチュエータであって、
前記振動体は、
前記接触体に接触する請求項1乃至6のいずれか1項に記載の摺動部材と、
前記摺動部材に接着される圧電体と、を有することを特徴とする振動型アクチュエータ。
A vibrating actuator including a vibrating body and a contact body in contact with the vibrating body.
The vibrating body is
The sliding member according to any one of claims 1 to 6, which comes into contact with the contact body, and the sliding member.
A vibration type actuator characterized by having a piezoelectric body adhered to the sliding member.
JP2020089954A 2020-05-22 2020-05-22 Slide member and method for producing the same and vibrating actuator Pending JP2021183717A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020089954A JP2021183717A (en) 2020-05-22 2020-05-22 Slide member and method for producing the same and vibrating actuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020089954A JP2021183717A (en) 2020-05-22 2020-05-22 Slide member and method for producing the same and vibrating actuator

Publications (1)

Publication Number Publication Date
JP2021183717A true JP2021183717A (en) 2021-12-02

Family

ID=78767170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020089954A Pending JP2021183717A (en) 2020-05-22 2020-05-22 Slide member and method for producing the same and vibrating actuator

Country Status (1)

Country Link
JP (1) JP2021183717A (en)

Similar Documents

Publication Publication Date Title
JP5432451B2 (en) Steel member, heat treatment method thereof, and production method thereof
JP5639064B2 (en) Method for producing carbonitrided member
JP5709025B2 (en) Manufacturing method of base material for wave gear
JP5135562B2 (en) Carburizing steel, carburized steel parts, and manufacturing method thereof
Vahdat et al. Microstructure and tensile properties of 45WCrV7 tool steel after deep cryogenic treatment
JPWO2012108460A1 (en) Carburizing steel, carburized steel parts, and manufacturing method thereof
JP2011528068A5 (en) Hardened martensitic steel with a low content of cobalt, method for producing parts from the steel, and parts obtained thereby
CN105899699B (en) Steel and its manufacture method
WO2002050328A1 (en) Steel wire rod for hard drawn spring, drawn wire rod for hard drawn spring and hard drawn spring, and method for producing hard drawn spring
JP4423608B2 (en) Hardened tool steel material
EP2006398A1 (en) Process for producing steel material
JP2009179869A (en) Method for manufacturing bush
JP2021183717A (en) Slide member and method for producing the same and vibrating actuator
JP2009215656A (en) Tool steel material for quenching
Adetunji et al. Microstructures of mild steel spring after heat treatment
JP4347747B2 (en) Steel sheet for punching blade, punching blade and method for producing the same
JP5223046B2 (en) Grain refinement heat treatment method of high nitrogen nickel-free austenitic stainless steel for biological use
Alava et al. On the influence of cryogenic steps on heat treatment processes
JP5014257B2 (en) High strength and high toughness martensitic steel
Bole et al. A Study on the Effect of Prior Hot Forging on Microstructure and Mechanical Properties of AISI D2 Steel After Quenching
Mesquita et al. Heat treating of hot-work tool steels
JP5463675B2 (en) Bearing steel and manufacturing method thereof
JP6835095B2 (en) Manufacturing method of steel parts
JP6628019B1 (en) Press-formed steel products
Skela et al. Microstructure and Heat Treatment of Hot Work Tool Steel: Influence on Mechanical Properties and Wear Behaviour

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240319

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240517