JP2021182398A - 事象予測装置および事象予測用プログラム - Google Patents
事象予測装置および事象予測用プログラム Download PDFInfo
- Publication number
- JP2021182398A JP2021182398A JP2021110137A JP2021110137A JP2021182398A JP 2021182398 A JP2021182398 A JP 2021182398A JP 2021110137 A JP2021110137 A JP 2021110137A JP 2021110137 A JP2021110137 A JP 2021110137A JP 2021182398 A JP2021182398 A JP 2021182398A
- Authority
- JP
- Japan
- Prior art keywords
- sentence
- index value
- sentences
- word
- classification model
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000013145 classification model Methods 0.000 claims abstract description 70
- 238000004364 calculation method Methods 0.000 claims abstract description 56
- 239000013598 vector Substances 0.000 claims description 95
- 238000000605 extraction Methods 0.000 claims description 21
- 239000000284 extract Substances 0.000 claims description 10
- 238000000034 method Methods 0.000 claims description 7
- 230000006870 function Effects 0.000 claims description 6
- 238000012545 processing Methods 0.000 claims description 4
- 238000010801 machine learning Methods 0.000 description 14
- 239000011159 matrix material Substances 0.000 description 11
- 238000004458 analytical method Methods 0.000 description 7
- 238000013528 artificial neural network Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000000877 morphologic effect Effects 0.000 description 4
- 230000002787 reinforcement Effects 0.000 description 4
- 208000024891 symptom Diseases 0.000 description 4
- 235000019640 taste Nutrition 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 3
- 238000012549 training Methods 0.000 description 3
- 230000009471 action Effects 0.000 description 2
- 238000013473 artificial intelligence Methods 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 241000282326 Felis catus Species 0.000 description 1
- 238000004422 calculation algorithm Methods 0.000 description 1
- 238000013527 convolutional neural network Methods 0.000 description 1
- 238000003066 decision tree Methods 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 208000035475 disorder Diseases 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000012417 linear regression Methods 0.000 description 1
- 238000007477 logistic regression Methods 0.000 description 1
- 238000003062 neural network model Methods 0.000 description 1
- 238000007637 random forest analysis Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000012421 spiking Methods 0.000 description 1
- 238000012706 support-vector machine Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/04—Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/30—Information retrieval; Database structures therefor; File system structures therefor of unstructured textual data
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/30—Information retrieval; Database structures therefor; File system structures therefor of unstructured textual data
- G06F16/33—Querying
- G06F16/3331—Query processing
- G06F16/334—Query execution
- G06F16/3346—Query execution using probabilistic model
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/30—Information retrieval; Database structures therefor; File system structures therefor of unstructured textual data
- G06F16/33—Querying
- G06F16/3331—Query processing
- G06F16/334—Query execution
- G06F16/3347—Query execution using vector based model
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/30—Information retrieval; Database structures therefor; File system structures therefor of unstructured textual data
- G06F16/35—Clustering; Classification
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
- G06F17/16—Matrix or vector computation, e.g. matrix-matrix or matrix-vector multiplication, matrix factorization
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
- G06F17/18—Complex mathematical operations for evaluating statistical data, e.g. average values, frequency distributions, probability functions, regression analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/213—Feature extraction, e.g. by transforming the feature space; Summarisation; Mappings, e.g. subspace methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/22—Matching criteria, e.g. proximity measures
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F40/00—Handling natural language data
- G06F40/20—Natural language analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F40/00—Handling natural language data
- G06F40/20—Natural language analysis
- G06F40/205—Parsing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F40/00—Handling natural language data
- G06F40/20—Natural language analysis
- G06F40/279—Recognition of textual entities
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N20/00—Machine learning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N7/00—Computing arrangements based on specific mathematical models
- G06N7/01—Probabilistic graphical models, e.g. probabilistic networks
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Data Mining & Analysis (AREA)
- General Engineering & Computer Science (AREA)
- Artificial Intelligence (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Software Systems (AREA)
- Mathematical Physics (AREA)
- Evolutionary Computation (AREA)
- Databases & Information Systems (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Evolutionary Biology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Business, Economics & Management (AREA)
- Computational Linguistics (AREA)
- Mathematical Analysis (AREA)
- Computing Systems (AREA)
- Mathematical Optimization (AREA)
- Pure & Applied Mathematics (AREA)
- Computational Mathematics (AREA)
- Strategic Management (AREA)
- Economics (AREA)
- Human Resources & Organizations (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Audiology, Speech & Language Pathology (AREA)
- Medical Informatics (AREA)
- Operations Research (AREA)
- Probability & Statistics with Applications (AREA)
- Algebra (AREA)
- Quality & Reliability (AREA)
- Marketing (AREA)
- Entrepreneurship & Innovation (AREA)
- Game Theory and Decision Science (AREA)
- Tourism & Hospitality (AREA)
- Development Economics (AREA)
- General Business, Economics & Management (AREA)
Abstract
Description
11 単語抽出部
12 ベクトル算出部
12A 文章ベクトル算出部
12B 単語ベクトル算出部
13 指標値算出部
14,14’ 分類モデル生成部
20 予測用データ入力部
21 事象予測部
22 報酬決定部
30 分類モデル記憶部
100 類似性指標値算出部
Claims (2)
- 予測対象とするm’個(m’は1以上の任意の整数)の文章を予測用データとして入力する予測用データ入力部と、
上記m’個の文章を解析し、当該m’個の文章からn個(nは2以上の任意の整数)の単語を抽出する単語抽出部と、
上記m’個の文章をそれぞれ所定のルールに従ってq次元(qは2以上の任意の整数)にベクトル化することにより、q個の軸成分から成るm’個の文章ベクトルを算出する文章ベクトル算出部と、
上記n個の単語をそれぞれ所定のルールに従ってq次元にベクトル化することにより、q個の軸成分から成るn個の単語ベクトルを算出する単語ベクトル算出部と、
上記m’個の文章ベクトルと上記n個の単語ベクトルとの内積をそれぞれとることにより、上記m’個の文章および上記n個の単語間の関係性を反映したm’×n個の類似性指標値を算出する指標値算出部と、
上記指標値算出部により算出される類似性指標値を分類モデルに適用することにより、上記予測用データから複数の事象の何れかを予測する事象予測部とを備え、
上記分類モデルは、学習用データとして入力されたm個(mは2以上の任意の整数)の文章に対して上記単語抽出部、上記文章ベクトル算出部、上記単語ベクトル算出部および上記指標値算出部の処理を実行することによって得られる類似性指標値が入力された際に、1つの文章についてn個の類似性指標値から成る文章指標値群をもとに上記m個の文章が上記複数の事象の何れかに分類されるように機械学習されている
ことを特徴とする事象予測装置。 - 予測対象とするm’個(m’は1以上の任意の整数)の文章を予測用データとして入力する予測用データ入力手段、
上記m’個の文章を解析し、当該m’個の文章からn個(nは2以上の任意の整数)の単語を抽出する単語抽出手段、
上記m’個の文章をそれぞれ所定のルールに従ってq次元(qは2以上の任意の整数)にベクトル化するとともに、上記n個の単語をそれぞれ所定のルールに従ってq次元にベクトル化することにより、q個の軸成分から成るm’個の文章ベクトルおよびq個の軸成分から成るn個の単語ベクトルを算出するベクトル算出手段、
上記m’個の文章ベクトルと上記n個の単語ベクトルとの内積をそれぞれとることにより、上記m’個の文章および上記n個の単語間の関係性を反映したm’×n個の類似性指標値を算出する指標値算出手段、および
学習用データとして入力されたm個(mは2以上の任意の整数)の文章に対して上記単語抽出手段、上記ベクトル算出手段および上記指標値算出手段の処理を実行することによって得られる類似性指標値が入力された際に、1つの文章についてn個の類似性指標値から成る文章指標値群をもとに上記m個の文章が複数の事象の何れかに分類されるように機械学習された分類モデルに対して、上記指標値算出手段により算出された類似性指標値を適用することにより、上記予測用データから上記複数の事象の何れかを予測する事象予測手段
としてコンピュータを機能させるための事象予測用プログラム。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021110137A JP6962532B1 (ja) | 2018-05-02 | 2021-07-01 | 事象予測装置および事象予測用プログラム |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018088829A JP6915809B2 (ja) | 2018-05-02 | 2018-05-02 | 事象予測装置、予測モデル生成装置および事象予測用プログラム |
JP2021110137A JP6962532B1 (ja) | 2018-05-02 | 2021-07-01 | 事象予測装置および事象予測用プログラム |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018088829A Division JP6915809B2 (ja) | 2018-05-02 | 2018-05-02 | 事象予測装置、予測モデル生成装置および事象予測用プログラム |
Publications (2)
Publication Number | Publication Date |
---|---|
JP6962532B1 JP6962532B1 (ja) | 2021-11-05 |
JP2021182398A true JP2021182398A (ja) | 2021-11-25 |
Family
ID=68386981
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018088829A Active JP6915809B2 (ja) | 2018-05-02 | 2018-05-02 | 事象予測装置、予測モデル生成装置および事象予測用プログラム |
JP2021110137A Active JP6962532B1 (ja) | 2018-05-02 | 2021-07-01 | 事象予測装置および事象予測用プログラム |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018088829A Active JP6915809B2 (ja) | 2018-05-02 | 2018-05-02 | 事象予測装置、予測モデル生成装置および事象予測用プログラム |
Country Status (6)
Country | Link |
---|---|
US (1) | US20210042586A1 (ja) |
EP (1) | EP3779728A4 (ja) |
JP (2) | JP6915809B2 (ja) |
KR (1) | KR102315984B1 (ja) |
CN (1) | CN112106040A (ja) |
WO (1) | WO2019212006A1 (ja) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11544564B2 (en) * | 2018-02-23 | 2023-01-03 | Intel Corporation | Method, device and system to generate a Bayesian inference with a spiking neural network |
US11354501B2 (en) * | 2019-08-02 | 2022-06-07 | Spectacles LLC | Definition retrieval and display |
US11861463B2 (en) * | 2019-09-06 | 2024-01-02 | International Business Machines Corporation | Identifying related messages in a natural language interaction |
US11443112B2 (en) * | 2019-09-06 | 2022-09-13 | International Business Machines Corporation | Outcome of a natural language interaction |
US11574128B2 (en) | 2020-06-09 | 2023-02-07 | Optum Services (Ireland) Limited | Method, apparatus and computer program product for generating multi-paradigm feature representations |
KR102370729B1 (ko) | 2021-06-03 | 2022-03-07 | 최연 | 문장 작성 시스템 |
US11698934B2 (en) | 2021-09-03 | 2023-07-11 | Optum, Inc. | Graph-embedding-based paragraph vector machine learning models |
CN115048486B (zh) * | 2022-05-24 | 2024-05-31 | 支付宝(杭州)信息技术有限公司 | 事件抽取方法、装置、计算机程序产品、存储介质及设备 |
JP7386466B1 (ja) * | 2022-12-20 | 2023-11-27 | 株式会社Fronteo | データ解析装置およびデータ解析プログラム |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000020494A (ja) * | 1998-07-07 | 2000-01-21 | Nippon Telegr & Teleph Corp <Ntt> | マルチエージェントモデルを用いて経験強化型強化学習法と環境同定型強化学習法を統合する分散強化学習法 |
JP2002149675A (ja) | 2000-11-15 | 2002-05-24 | Toshiba Corp | テキストデータ分析装置とその方法、およびそのためのプログラムとそれを記録した記録媒体 |
JP4314853B2 (ja) | 2003-03-20 | 2009-08-19 | 富士通株式会社 | 文書分類装置および文書分類プログラム |
JP2004326465A (ja) * | 2003-04-24 | 2004-11-18 | Matsushita Electric Ind Co Ltd | 文書分類用の学習装置、及びこれを用いた文書分類方法並びに文書分類装置 |
JP2005208782A (ja) * | 2004-01-21 | 2005-08-04 | Fuji Xerox Co Ltd | 自然言語処理システム及び自然言語処理方法、並びにコンピュータ・プログラム |
JP6748710B2 (ja) * | 2016-05-20 | 2020-09-02 | 株式会社Fronteo | データ分析システム、その制御方法、プログラム、及び、記録媒体 |
US10467464B2 (en) * | 2016-06-07 | 2019-11-05 | The Neat Company, Inc. | Document field detection and parsing |
WO2017218699A1 (en) * | 2016-06-17 | 2017-12-21 | Graham Leslie Fyffe | System and methods for intrinsic reward reinforcement learning |
JP2018032213A (ja) * | 2016-08-24 | 2018-03-01 | シャープ株式会社 | 情報処理装置、情報処理システム、情報処理方法及びプログラム |
CN107145560B (zh) * | 2017-05-02 | 2021-01-29 | 北京邮电大学 | 一种文本分类方法及装置 |
-
2018
- 2018-05-02 JP JP2018088829A patent/JP6915809B2/ja active Active
-
2019
- 2019-04-23 US US17/050,523 patent/US20210042586A1/en not_active Abandoned
- 2019-04-23 KR KR1020207030777A patent/KR102315984B1/ko active IP Right Grant
- 2019-04-23 CN CN201980029244.3A patent/CN112106040A/zh active Pending
- 2019-04-23 EP EP19797043.7A patent/EP3779728A4/en not_active Withdrawn
- 2019-04-23 WO PCT/JP2019/017193 patent/WO2019212006A1/ja unknown
-
2021
- 2021-07-01 JP JP2021110137A patent/JP6962532B1/ja active Active
Also Published As
Publication number | Publication date |
---|---|
JP6915809B2 (ja) | 2021-08-04 |
JP2019194808A (ja) | 2019-11-07 |
JP6962532B1 (ja) | 2021-11-05 |
KR20200128584A (ko) | 2020-11-13 |
US20210042586A1 (en) | 2021-02-11 |
CN112106040A (zh) | 2020-12-18 |
EP3779728A4 (en) | 2021-03-31 |
EP3779728A1 (en) | 2021-02-17 |
WO2019212006A1 (ja) | 2019-11-07 |
KR102315984B1 (ko) | 2021-10-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6962532B1 (ja) | 事象予測装置および事象予測用プログラム | |
US20220269707A1 (en) | Method and system for analyzing entities | |
Daud et al. | Using machine learning techniques for rising star prediction in co-author network | |
WO2019212005A1 (ja) | 危険行動予測装置、予測モデル生成装置および危険行動予測用プログラム | |
US9633002B1 (en) | Systems and methods for coreference resolution using selective feature activation | |
Fahfouh et al. | PV-DAE: A hybrid model for deceptive opinion spam based on neural network architectures | |
Burdisso et al. | τ-SS3: A text classifier with dynamic n-grams for early risk detection over text streams | |
JP2023546021A (ja) | 機械学習モデルにおける反実仮想説明のためのシステム及び方法 | |
Brophy et al. | Adapting and evaluating influence-estimation methods for gradient-boosted decision trees | |
WO2020208912A1 (ja) | リスク対策解析システム、リスク対策解析方法およびリスク対策解析用プログラム | |
Nazeer et al. | Use of novel ensemble machine learning approach for social media sentiment analysis | |
Jassim et al. | Machine learning-based new approach to films review | |
Ahmad et al. | Sentiment Analysis System of Indonesian tweets using lexicon and naïve Bayes approach | |
Eyraud et al. | TAYSIR Competition: Transformer+\textscrnn: Algorithms to Yield Simple and Interpretable Representations | |
Mollas et al. | LioNets: a neural-specific local interpretation technique exploiting penultimate layer information | |
Vielma et al. | Sentiment analysis with novel GRU based deep learning networks | |
Aslam et al. | Improving the review classification of Google apps using combined feature embedding and deep convolutional neural network model | |
Tallón-Ballesteros et al. | Merging subsets of attributes to improve a hybrid consistency-based filter: a case of study in product unit neural networks | |
Lalbakhsh et al. | TACD: a transportable ant colony discrimination model for corporate bankruptcy prediction | |
Nair et al. | Study of machine learning techniques for sentiment analysis | |
Davis et al. | Abusive Language Detection and Characterization of Twitter Behavior | |
Kumar et al. | Framework On Text And Predictive Analytics | |
Singh | How can a machine learning model generate credible 4-star reviews for beauty products on Amazon? | |
Zhao et al. | Counterfactual Explanation via Search in Gaussian Mixture Distributed Latent Space | |
Ke | Explainable predictive quality inautomotive manufacturing: Case study at Magna Electronics |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210701 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20210701 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210907 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20211005 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6962532 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |