JP2021180595A - Transaction contract calculation device and reactive power transaction system - Google Patents

Transaction contract calculation device and reactive power transaction system Download PDF

Info

Publication number
JP2021180595A
JP2021180595A JP2020085989A JP2020085989A JP2021180595A JP 2021180595 A JP2021180595 A JP 2021180595A JP 2020085989 A JP2020085989 A JP 2020085989A JP 2020085989 A JP2020085989 A JP 2020085989A JP 2021180595 A JP2021180595 A JP 2021180595A
Authority
JP
Japan
Prior art keywords
reactive power
unit
bid information
power
control amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020085989A
Other languages
Japanese (ja)
Other versions
JP7458893B2 (en
Inventor
一郎 高坂
Ichiro Kosaka
聖一 北村
Seiichi Kitamura
一之 森
Kazuyuki Mori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2020085989A priority Critical patent/JP7458893B2/en
Publication of JP2021180595A publication Critical patent/JP2021180595A/en
Application granted granted Critical
Publication of JP7458893B2 publication Critical patent/JP7458893B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/22Flexible AC transmission systems [FACTS] or power factor or reactive power compensating or correcting units

Landscapes

  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

To provide a transaction contract calculation device and a reactive power transaction system, capable of achieving both reduction in cost required for stabilization of a power distribution system and securement in fairness of profitability of consumers who possess a power generation facility, etc.SOLUTION: A transaction contract calculation device according to the present disclosure includes: a buying bid information creation part creating buying bid information; a selling bid information reception part receiving selling bid information transmitted from a selling bidder terminal unit possessed by each of a plurality of consumers; a transaction contract part determining, on the basis of the buying bid information and the selling bid information, a contract amount of reactive power adjustment power that can be adjusted by each of distributed energy resources and a contract unit cost; a reactive power control amount calculation part calculating, on the basis of the contract amount and the unit cost of the reactive power amount, a reactive power control amount to be controlled by each of the distributed energy resources; and a reactive power control amount notification part notifying the reactive power control amount of each of the distributed energy resources.SELECTED DRAWING: Figure 2

Description

本開示は、分散型エネルギーリソースを保有する需要家と配電事業者との間における取引を約定する取引約定計算装置および無効電力取引システムに関する。 The present disclosure relates to a transaction contract calculator and an ineffective power transaction system for contracting a transaction between a consumer who owns distributed energy resources and a distribution company.

電力系統の適正な電圧維持の考え方は、電気事業法施行規則に規定されており、低圧需要家の電圧について、標準電圧100Vに対して101±6V、標準電圧200Vに対して202±20V以内に維持する必要がある。発電設備などが低圧配電系統に大量に連系すると、低圧需要家の電圧が適正値を逸脱するような電圧上昇問題が発生する。 The concept of proper voltage maintenance of the power system is stipulated in the Enforcement Regulations of the Electricity Business Law, and the voltage of low-voltage consumers is within 101 ± 6V for a standard voltage of 100V and within 202 ± 20V for a standard voltage of 200V. Need to maintain. When a large amount of power generation equipment is connected to a low-voltage distribution system, a voltage rise problem occurs in which the voltage of a low-voltage consumer deviates from an appropriate value.

従来、電圧上昇問題に対する需要家側の対策は、電力品質確保に係る系統連系技術要件ガイドラインに規定されている。具体的には、発電設備などからの逆潮流によって低圧需要家の電圧が適正値を逸脱する恐れがあるとき、発電設備などを保有する需要家は、発電設備などに進相無効電力制御機能、出力制御機能、または力率一定制御機能を付加することによって自動的に電圧を調整していた。配電事業者(DSO:Distribution System Operator、以下「DSO」という)側の対策としては、SVR(Step Voltage Regulator)、TVR (Thyristor type step Voltage Regulator)、またはSVC(Static Var Compensator)などの電圧制御機器を高圧配電系統に設置することによって、高圧配電系統の電圧を調整していた。 Conventionally, measures on the consumer side for the voltage rise problem are stipulated in the grid interconnection technical requirement guidelines for ensuring power quality. Specifically, when there is a risk that the voltage of a low-voltage consumer may deviate from the appropriate value due to the reverse current from the power generation facility, the consumer who owns the power generation facility has a phase-advanced reactive power control function for the power generation facility, etc. The voltage was automatically adjusted by adding an output control function or a constant power factor control function. As measures on the distribution company (DSO: Distribution System Operator, hereinafter referred to as "DSO") side, voltage control equipment such as SVR (Step Voltage Regulator), TVR (Thyristor type step Voltage Regulator), or SVC (Static Var Compensator) Was installed in the high-voltage distribution system to adjust the voltage of the high-voltage distribution system.

また、配電系統に接続された複数の分散型電源の無効電力の制御方法が知られている(例えば、特許文献1参照)。特許文献1は、複数の電圧調整点のそれぞれの無効電力感度係数に基づいて決定された制御優先順位に応じて、複数の分散型電源の無効電力を制御する技術である。 Further, a method for controlling the reactive power of a plurality of distributed power sources connected to a distribution system is known (see, for example, Patent Document 1). Patent Document 1 is a technique for controlling the reactive power of a plurality of distributed power sources according to a control priority determined based on the reactive power sensitivity coefficient of each of the plurality of voltage adjustment points.

さらに、配電網に接続された複数のバッテリー装置の充電スケジュールおよび各時刻の力率を制御する方法が知られている(例えば、特許文献2参照)。特許文献2は、配電系統の安定状態を保ったまま、発電設備から供給される有効電力をより多く取り入れるために必要な複数のバッテリー装置の無効電力を決定し制御する技術である。 Further, a method of controlling the charging schedule of a plurality of battery devices connected to the power grid and the power factor at each time is known (see, for example, Patent Document 2). Patent Document 2 is a technique for determining and controlling the reactive power of a plurality of battery devices required to take in more active power supplied from a power generation facility while maintaining a stable state of a distribution system.

特開2009−153333号公報Japanese Unexamined Patent Publication No. 2009-153333 特開2016−32339号公報Japanese Unexamined Patent Publication No. 2016-323339

従来では、発電設備の導入量がさらに増加すると、出力制御機能による出力抑制を迫られる需要家(発電設備などを保有する需要家)が増加する懸念がある。結果として、当該需要家は、収益の面で不利益になり、公平性を保てなくなる。一方、DSO側としては、発電設備の導入箇所および導入量の不確実さを考慮しつつ、費用対効果が最も高くなるように電圧制御機器とその設置場所を選定しなくてはならないため、設備計画問題の複雑さが増す。また、配電系統に接続された分散型電源の無効電力を有効活用できず、電圧制御機器の設置の必要性が高まるため、結果として配電系統の安定化に必要なコストが増大する恐れがある。 Conventionally, if the amount of power generation equipment introduced is further increased, there is a concern that the number of consumers (customers who own power generation equipment, etc.) who are forced to suppress output by the output control function will increase. As a result, the consumer is disadvantaged in terms of profits and cannot maintain fairness. On the other hand, on the DSO side, the voltage control equipment and its installation location must be selected so as to be the most cost-effective, while considering the uncertainty of the installation location and installation amount of the power generation equipment. Increases the complexity of planning issues. In addition, the reactive power of the distributed power source connected to the distribution system cannot be effectively utilized, and the necessity of installing a voltage control device increases. As a result, the cost required for stabilizing the distribution system may increase.

特許文献1の技術では、配電系統に接続された分散型電源の無効電力を有効活用し、配電系統の安定化を実現することができるため、複雑な設備計画問題を解く必要が抑えられる利点と、配電系統の安定化に必要なコストが増大しにくい利点がある。しかし、無効電力の制御効果が高い地点に接続された分散型電源から無効電力を制御しているため、発電設備などを保有する需要家の収益面での公平性は考慮されていない。 The technology of Patent Document 1 has the advantage that the need to solve complicated equipment planning problems can be suppressed because the reactive power of the distributed power source connected to the distribution system can be effectively utilized and the distribution system can be stabilized. There is an advantage that the cost required for stabilizing the distribution system does not increase easily. However, since the reactive power is controlled from the distributed power source connected to the point where the control effect of the reactive power is high, the fairness in terms of profits of the consumers who own the power generation equipment etc. is not taken into consideration.

特許文献2の技術では、発電設備から供給される有効電力がより多くなるため、発電設備などを保有する需要家の収益面での公平性を極力保つことができる利点がある。配電系統に接続されたバッテリー装置の無効電力を有効活用し、電圧制御機器を設置することなく配電系統の安定化を実現することができるため、複雑な設備計画問題を解く必要が抑えられる利点がある。しかし、配電系統に接続したバッテリー装置全てを制御可能なリソースとみなし、その接続時間に応じてインセンティブを付与しているため、配電系統の安定化に必要なコストの観点で改善の余地がある。 Since the amount of active power supplied from the power generation facility is increased in the technique of Patent Document 2, there is an advantage that the fairness in profit of the consumer who owns the power generation facility and the like can be maintained as much as possible. The advantage is that the need to solve complicated equipment planning problems can be suppressed because the reactive power of the battery device connected to the distribution system can be effectively utilized and the distribution system can be stabilized without installing voltage control equipment. be. However, since all the battery devices connected to the distribution system are regarded as controllable resources and incentives are given according to the connection time, there is room for improvement in terms of the cost required for stabilizing the distribution system.

上記より、従来では、配電系統の安定化に必要なコストを安価にすることと、発電設備などを保有する需要家の収益面での公平性を確保することとを両立することができなかった。 From the above, in the past, it was not possible to achieve both low cost required for stabilizing the distribution system and ensuring profitability of consumers who own power generation facilities. ..

本開示は、このような問題を解決するためになされたものであり、配電系統の安定化に必要なコストを安価にすることと、発電設備などを保有する需要家の収益面での公平性を確保することとを両立することが可能な取引約定計算装置および無効電力取引システムを提供することを目的とする。 This disclosure is made to solve such problems, and it is possible to reduce the cost required for stabilizing the distribution system and to make the profitability of consumers who own power generation facilities etc. fair. It is an object of the present invention to provide a transaction contract calculation device and a reactive power trading system that can be compatible with each other.

上記の課題を解決するために、本開示による取引約定計算装置は、配電系統の安定化に必要な無効電力調整力と、当該無効電力調整力の単価との組み合わせである買い入札情報を作成する買い入札情報作成部と、複数の需要家のそれぞれが保有する売り入札者端末装置から送信された、各需要家が保有する分散型エネルギーリソースにおける無効電力調整力と、当該無効電力調整力の単価と、当該無効電力調整力を1時間容量一杯で運用した時の単価である無効電力量の単価との組み合わせである売り入札情報を受け付ける売り入札情報受付部と、買い入札情報作成部が作成した買い入札情報と、売り入札情報受付部が受け付けた売り入札情報とに基づいて、各分散型エネルギーリソースが調整可能な無効電力調整力の約定量と、当該約定量の単価である約定単価とを決定する取引約定部と、取引約定部が決定した約定量と無効電力量の単価とに基づいて、各分散型エネルギーリソースが制御すべき無効電力制御量を計算する無効電力制御量計算部と、無効電力制御量計算部が計算した無効電力制御量を各分散型エネルギーリソースに通知する無効電力制御量通知部とを備える。 In order to solve the above problems, the transaction contract calculation device according to the present disclosure creates buy bid information which is a combination of the reactive power adjustment power required for stabilizing the distribution system and the unit price of the free power adjustment power. Reactive power adjustment power in the distributed energy resources owned by each consumer sent from the buy bid information creation unit and the sell bidder terminal device owned by each of the multiple consumers, and the unit price of the reactive power adjustment power. The sell bid information reception unit that accepts sell bid information, which is a combination of the unit price of the reactive power amount that is the unit price when the reactive power adjustment power is operated at full capacity for one hour, and the buy bid information creation department have created. Based on the buy bid information and the sell bid information received by the sell bid information reception unit, the approximate fixed amount of the reactive power adjustment power that can be adjusted by each distributed energy resource and the contracted unit price, which is the unit price of the specified fixed amount, are calculated. A reactive power control amount calculation unit that calculates the reactive power control amount to be controlled by each distributed energy resource based on the transaction contract unit to be determined, the contract fixed amount determined by the transaction contract unit, and the unit price of the reactive power amount. It is provided with an invalid power control amount notification unit that notifies each distributed energy resource of the reactive power control amount calculated by the reactive power control amount calculation unit.

本開示によると、取引約定計算装置は、買い入札情報作成部が作成した買い入札情報と、売り入札情報受付部が受け付けた売り入札情報とに基づいて、各分散型エネルギーリソースが調整可能な無効電力調整力の約定量と、当該約定量の単価である約定単価とを決定する取引約定部と、取引約定部が決定した約定量と無効電力量の単価とに基づいて、各分散型エネルギーリソースが制御すべき無効電力制御量を計算する無効電力制御量計算部と、無効電力制御量計算部が計算した無効電力制御量を各分散型エネルギーリソースに通知する無効電力制御量通知部とを備えるため、配電系統の安定化に必要なコストを安価にすることと、発電設備などを保有する需要家の収益面での公平性を確保することとを両立することが可能となる。 According to the present disclosure, the transaction execution calculation device is invalid so that each distributed energy resource can be adjusted based on the buy bid information created by the buy bid information creation unit and the sell bid information received by the sell bid information reception unit. Each distributed energy resource is based on the contracted unit that determines the contracted amount of power adjustment power and the contracted unit price that is the unit price of the contracted power, and the unit price of the contracted amount and the amount of reactive power determined by the contracted contractor. It is provided with an invalid power control amount calculation unit that calculates the reactive power control amount to be controlled by the user, and an invalid power control amount notification unit that notifies each distributed energy resource of the invalid power control amount calculated by the invalid power control amount calculation unit. Therefore, it is possible to reduce the cost required for stabilizing the distribution system and to secure the fairness in terms of profits of the consumers who own the power generation equipment and the like.

実施の形態による配電系統の一例を示す概略図である。It is a schematic diagram which shows an example of the distribution system by an embodiment. 実施の形態による無効電力取引システムの構成の一例を示す図である。It is a figure which shows an example of the configuration of the reactive power trading system by an embodiment. 実施の形態による取引約定計算装置の構成の一例を示すブロック図である。It is a block diagram which shows an example of the structure of the transaction contract calculation apparatus by embodiment. 実施の形態による取引約定計算装置のハードウェア構成の一例を示す図である。It is a figure which shows an example of the hardware composition of the transaction contract calculation apparatus by an embodiment. 実施の形態による売り入札者端末装置の構成の一例を示すブロック図である。It is a block diagram which shows an example of the structure of the selling bidder terminal apparatus by embodiment. 実施の形態における売り入札者端末装置のハードウェア構成の一例を示す図である。It is a figure which shows an example of the hardware composition of the selling bidder terminal apparatus in embodiment. 実施の形態による無効電力取引に参加可能なPV用PCSの運転可能範囲の一例を示す図である。It is a figure which shows an example of the operable range of the PCS for PV which can participate in the invalid power transaction by an embodiment. 実施の形態による無効電力取引に参加可能なBESS用PCSの運転可能範囲の一例を示す図である。It is a figure which shows an example of the operable range of the PCS for BESS which can participate in the invalid power transaction by an embodiment. 実施の形態によるPV用PCSの無効電力調整力の一例を示す概略図である。It is a schematic diagram which shows an example of the reactive power adjustment power of the PCS for PV by an embodiment. 実施の形態によるBESS用PCSの無効電力調整力の一例を示す概略図である。It is a schematic diagram which shows an example of the reactive power adjustment power of PCS for BESS according to an embodiment. 実施の形態による買い入札情報のデータスキーマの一例を示す図である。It is a figure which shows an example of the data schema of the buy bid information by an embodiment. 実施の形態による売り入札情報のデータスキーマの一例を示す図である。It is a figure which shows an example of the data schema of the sell bid information by an embodiment. 実施の形態による取引約定計算装置および売り入札者端末装置の処理フローの一例を示す図である。It is a figure which shows an example of the processing flow of the transaction contract calculation apparatus and the selling bidder terminal apparatus by embodiment. 実施の形態によるある時間における無効電力調整力の単価を決定するフローチャートである。It is a flowchart which determines the unit price of the reactive power adjustment power in a certain time by an embodiment. 実施の形態による無効電力制御量の計算に係る動作の一例を示すフローチャートである。It is a flowchart which shows an example of the operation which concerns on the calculation of the reactive power control amount by an embodiment.

<実施の形態>
<構成>
図1は、本実施の形態による配電系統の一例を示す概略図である。
<Embodiment>
<Structure>
FIG. 1 is a schematic diagram showing an example of a distribution system according to the present embodiment.

一般的に、発電事業者は、電力系統へ特別高圧で電力を供給する。当該電力は、基幹系統101および送電系統102を経由し、配電系統103に供給される。配電系統103において、配電用変電所104は、特別高圧で供給された電圧を6.6kVの高圧に降圧し、配電用変電所104の下流側に接続された複数のフィーダ105(フィーダ1、2、・・・、N)に供給する。各フィーダ105では、柱上変圧器が100Vまたは200Vの低圧に降圧し、各需要家106に供給する。一部の需要家106は、蓄電システム107または太陽光発電システム108などの分散型エネルギーリソースを保有している。 Generally, a power generation company supplies electric power to an electric power system at an extra high voltage. The electric power is supplied to the distribution system 103 via the backbone system 101 and the power transmission system 102. In the distribution system 103, the distribution substation 104 steps down the voltage supplied at an extra high voltage to a high voltage of 6.6 kV, and a plurality of feeders 105 (feeders 1, 2) connected to the downstream side of the distribution substation 104. , ..., N). In each feeder 105, the pole transformer steps down to a low voltage of 100V or 200V and supplies it to each consumer 106. Some consumers 106 have distributed energy resources such as a power storage system 107 or a photovoltaic system 108.

本実施の形態による取引約定計算装置および無効電力取引システムは、各フィーダ105、または配電用変電所104と配電用変電所104の下流側に接続された複数のフィーダ105とを対象に設ける。以下では、各フィーダ105を対象として取引約定計算装置および無効電力取引システムが設けられているものとして説明する。 The transaction contract calculation device and the non-power transaction system according to the present embodiment are provided for each feeder 105, or a plurality of feeders 105 connected to the distribution substation 104 and the downstream side of the distribution substation 104. In the following, it is assumed that the transaction contract calculation device and the reactive power transaction system are provided for each feeder 105.

図2は、本実施の形態による無効電力取引システム201の構成の一例を示す図である。 FIG. 2 is a diagram showing an example of the configuration of the reactive power trading system 201 according to the present embodiment.

無効電力取引システム201は、複数の売り入札者端末装置203と、複数の売り入札者端末装置203と通信ネットワーク204を介して連携する取引約定計算装置202とで構成される。なお、売り入札者端末装置203は分散型エネルギーリソースを保有する需要家が保有してもよく、取引約定計算装置202はDSOが保有してもよい。 The reactive power trading system 201 includes a plurality of selling bidder terminal devices 203, and a transaction contract calculation device 202 that cooperates with the plurality of selling bidder terminal devices 203 via the communication network 204. The selling bidder terminal device 203 may be owned by a consumer who owns a distributed energy resource, and the transaction contract calculation device 202 may be owned by a DSO.

図3は、本実施の形態による取引約定計算装置202の構成の一例を示すブロック図である。 FIG. 3 is a block diagram showing an example of the configuration of the transaction contract calculation device 202 according to the present embodiment.

取引約定計算装置202は、無効電力調整力必要量受付部212と、買い入札情報作成部213と、情報保管部214と、通信部215と、売り入札情報受付部216と、取引約定部217と、約定結果通知部218と、系統状態監視部219と、無効電力制御量計算部220と、無効電力制御量通知部221とを備えている。 The transaction contract calculation device 202 includes a reactive power adjustment force required amount reception unit 212, a buy bid information creation unit 213, an information storage unit 214, a communication unit 215, a sell bid information reception unit 216, and a transaction contract unit 217. , A contract result notification unit 218, a system status monitoring unit 219, an ineffective power control amount calculation unit 220, and an ineffective power control amount notification unit 221.

無効電力調整力必要量受付部212は、取引約定計算装置202が対象とするフィーダ105の電圧を適正範囲内に維持するために必要となる、当該フィーダ105を複数に分割した区間毎および時間毎の無効電力調整力の必要量と、無効電力調整力の単価との組み合わせの入力を受け付ける。ここで、時間毎とは、例えば、1日を等間隔な48コマに分割した各コマ(30分)のことをいう。 The required amount of reactive power adjustment power reception unit 212 is required to maintain the voltage of the feeder 105 targeted by the transaction contract calculation device 202 within an appropriate range, and the feeder 105 is divided into a plurality of sections and every hour. Accepts the input of the combination of the required amount of the reactive power adjustment power and the unit price of the reactive power adjustment power. Here, every hour means, for example, each frame (30 minutes) in which one day is divided into 48 frames at equal intervals.

買い入札情報作成部213は、無効電力調整力必要量受付部212に入力された区間毎および時間毎の無効電力調整力と単価との組み合わせ、区間情報、および買い入札者を識別するID情報を含む買い入札情報を作成する。 The buy bid information creation unit 213 obtains the combination of the invalid power adjustment power and the unit price for each section and each time input to the required amount reception unit 212 for the reactive power adjustment power, the section information, and the ID information for identifying the buy bidder. Create buy bid information including.

情報保管部214は、買い入札情報作成部213が作成した買い入札情報、複数の売り入札者端末装置203の各々から受け付けた売り入札情報、買い入札情報に対応した取引の約定結果、および売り入札情報に対応した取引の約定結果などを保管する。 The information storage unit 214 includes the buy bid information created by the buy bid information creation unit 213, the sell bid information received from each of the plurality of sell bidder terminal devices 203, the execution result of the transaction corresponding to the buy bid information, and the sell bid. Stores the contract results of transactions corresponding to the information.

通信部215は、通信ネットワーク204を介して、複数の売り入札者端末装置203の各々と相互にデータを通信する。 The communication unit 215 communicates data with each of the plurality of bidder terminal devices 203 via the communication network 204.

売り入札情報受付部216は、通信部215を介して、複数の売り入札者端末装置203の各々から送信された売り入札情報を受け付ける。 The sell bid information reception unit 216 receives the sell bid information transmitted from each of the plurality of sell bidder terminal devices 203 via the communication unit 215.

取引約定部217は、買い入札情報と売り入札情報とに基づいて、区間毎および時間毎に無効電力調整力の取引を成立させ、区間毎および時間毎の無効電力調整力の約定単価とその約定量とを決定する。 Based on the buy bid information and the sell bid information, the transaction contract unit 217 concludes a transaction of the reactive power adjustment power for each section and each time, and the contract unit price of the reactive power adjustment power for each section and each hour and its contract. Determine the quantification.

約定結果通知部218は、通信部215を介して、複数の売り入札者端末装置203の各々に対して約定結果を通知する。約定結果は、売り入札者端末装置203が所属する区間における時間毎の約定単価と、売り入札者端末装置203が管理する分散型エネルギーリソースの約定量とを含む。 The contract result notification unit 218 notifies each of the plurality of bidder terminal devices 203 of the contract result via the communication unit 215. The contract result includes the contract unit price for each hour in the section to which the sell bidder terminal device 203 belongs, and the contract amount of the distributed energy resource managed by the sell bidder terminal device 203.

系統状態監視部219は、取引約定計算装置202が対象とするフィーダ105内で計測した各地点の電圧などの情報を取得する、または当該フィーダ105内で計測した限られた地点の電圧などの情報を用いて配電系統モデルの状態推定を行うことによって各地点の電圧などの情報を得る。 The system condition monitoring unit 219 acquires information such as the voltage at each point measured in the feeder 105 targeted by the transaction contract calculation device 202, or information such as the voltage at a limited point measured in the feeder 105. Information such as the voltage at each point is obtained by estimating the state of the distribution system model using.

無効電力制御量計算部220は、無効電力調整力の範囲内で、配電系統の電圧を適正範囲内に維持することを可能な限り少ないコストで実現するために必要となる分散型エネルギーリソース毎の無効電力制御量を計算する。 The reactive power control amount calculation unit 220 is required for each distributed energy resource to maintain the voltage of the distribution system within the appropriate range within the range of the reactive power adjustment force at the lowest possible cost. Calculate the amount of free power control.

無効電力制御量通知部221は、通信部215を介して、無効電力制御量計算部220が計算した分散型エネルギーリソース毎の無効電力制御量を、各売り入札者端末装置203に通知する。 The reactive power control amount notification unit 221 notifies each seller bidder terminal device 203 of the reactive power control amount for each distributed energy resource calculated by the reactive power control amount calculation unit 220 via the communication unit 215.

図4は、本実施の形態による取引約定計算装置のハードウェア構成の一例を示す図である。 FIG. 4 is a diagram showing an example of the hardware configuration of the transaction contract calculation device according to the present embodiment.

取引約定計算装置202は、キーボードおよびマウスなどの入力装置255と、ディスプレイモニタなどの出力装置256と、演算処理装置であるCPU(Central Processing Unit)253と、ハードディスクドライブなどの主記憶装置252と、DRAM(Dynamic Random Access Memory)等の二次記憶装置251と、例えばインターネットなどの通信ネットワーク204に接続するための通信機器254とを備えている。 The transaction contract calculation device 202 includes an input device 255 such as a keyboard and a mouse, an output device 256 such as a display monitor, a CPU (Central Processing Unit) 253 which is an arithmetic processing unit, and a main storage device 252 such as a hard disk drive. It includes a secondary storage device 251 such as a DRAM (Dynamic Random Access Memory) and a communication device 254 for connecting to a communication network 204 such as the Internet.

図5は、本実施の形態による売り入札者端末装置203の構成の一例を示すブロック図である。 FIG. 5 is a block diagram showing an example of the configuration of the seller / bidder terminal device 203 according to the present embodiment.

売り入札者端末装置203は、BESS(Battery Energy Storage System)充放電計画受付部231と、PV(Photovoltaic)出力予測受付部232と、情報保管部233と、売り入札情報作成部234と、売り入札情報通知部235と、通信部236と、約定結果受付部237と、無効電力制御量受付部238と、制御部239とを備えている。 The sell bidder terminal device 203 includes a BESS (Battery Energy Storage System) charge / discharge plan reception unit 231, a PV (Photovoltaic) output prediction reception unit 232, an information storage unit 233, a sell bid information creation unit 234, and a sell bid. It includes an information notification unit 235, a communication unit 236, a contract result reception unit 237, an invalid power control amount reception unit 238, and a control unit 239.

BESS充放電計画受付部231は、EMS(Energy Management System)などから幅を持ったBESSの充放電計画の入力を受け付ける。幅を持ったBESSの充放電計画は、幅を持ったPV出力予測値、および消費電力の予測値などを入力として、BCP(Business Continuity Planning)および電気料金の低減などを目的とした蓄電システムの充放電計画を立案するなどの方法によって得られる。 The BESS charge / discharge plan reception unit 231 receives input of a wide range of BESS charge / discharge plans from an EMS (Energy Management System) or the like. The BESS charge / discharge plan with a width is a power storage system for the purpose of BCP (Business Continuity Planning) and reduction of electricity charges, etc. by inputting a PV output predicted value with a width and a predicted value of power consumption. It can be obtained by making a charge / discharge plan.

PV出力予測受付部232は、EMSなどから幅を持ったPV出力予測値の入力を受け付ける。 The PV output prediction receiving unit 232 receives an input of a PV output predicted value having a width from EMS or the like.

情報保管部233は、幅を持ったBESSの充放電計画、幅を持ったPV出力予測値、および売り入札情報に対応した取引の約定結果などの情報を保管する。 The information storage unit 233 stores information such as a BESS charge / discharge plan having a width, a PV output predicted value having a width, and a transaction execution result corresponding to the sell / bid information.

売り入札情報作成部234は、幅を持ったBESSの充放電計画、および幅を持ったPV出力予測値などを入力として、需要家(売り入札者端末装置203を保有する需要家)が保有する分散型エネルギーリソースの、時間毎の無効電力調整力と無効電力調整力の単価と、無効電力調整力を1時間容量一杯で運用した時の単価である無効電力量の単価との組み合わせ、売り入札者を識別するID情報、および分散型エネルギーリソースの種別情報を含む売り入札情報を作成する。 The sell bid information creation unit 234 is owned by a consumer (a consumer who owns the sell bidder terminal device 203) by inputting a BESS charge / discharge plan having a width, a PV output predicted value having a width, and the like. Combining the unit price of the reactive power adjustment power and the reactive power adjustment power for each hour of the distributed energy resource with the unit price of the reactive power amount which is the unit price when the reactive power adjustment power is operated at the full capacity for one hour, sell bid Create sell / bid information including ID information that identifies a person and type information of distributed energy resources.

売り入札情報通知部235は、通信部236を介して、取引約定計算装置202に売り入札情報を通知する。 The sell bid information notification unit 235 notifies the transaction contract calculation device 202 of the sell bid information via the communication unit 236.

通信部236は、通信ネットワーク204を介して、取引約定計算装置202と相互にデータを通信する。 The communication unit 236 communicates data with and from the transaction contract calculation device 202 via the communication network 204.

約定結果受付部237は、通信部236を介して、取引約定計算装置202から約定結果を受け付ける。 The contract result reception unit 237 receives the contract result from the transaction contract calculation device 202 via the communication unit 236.

無効電力制御量受付部238は、通信部236を介して、取引約定計算装置202から分散型エネルギーリソース毎の無効電力制御量を受け付ける。 The reactive power control amount receiving unit 238 receives the reactive power control amount for each distributed energy resource from the transaction contract calculation device 202 via the communication unit 236.

制御部239は、需要家(売り入札者端末装置203を保有する需要家)が保有する分散型エネルギーリソースに対して、無効電力制御量、および無効電力制御量を出力するための力率などを必要ならば計算し、通知する。分散型エネルギーリソースは、通知された無効電力制御量となるように無効電力の出力を制御する。 The control unit 239 determines the reactive power control amount, the power factor for outputting the reactive power control amount, and the like for the distributed energy resources owned by the consumer (the consumer who owns the sell bidder terminal device 203). Calculate and notify if necessary. The distributed energy resource controls the output of the reactive power so as to be the notified reactive power control amount.

なお、分散型エネルギーリソースを保有する需要家は、ほとんどの場合でPCS(Power Conditioning Subsystem)を保有している。無効電力取引に参加可能なPCSは、ある範囲で無効電力の出力を自由に調整可能な機能を備える必要がある。以下では、PV用のPCSのことを「PV用PCS」といい、BESS用のPCSのことを「BESS用PCS」という。 In most cases, consumers who own distributed energy resources have a PCS (Power Conditioning Subsystem). A PCS capable of participating in a reactive power transaction needs to have a function that can freely adjust the output of the reactive power to a certain extent. Hereinafter, the PCS for PV is referred to as "PCS for PV", and the PCS for BESS is referred to as "PCS for BESS".

図5の例では、需要家が分散型エネルギーリソースとして蓄電システム107および太陽光発電システムを保有している場合について説明したが、これに限るものではない。例えば、需要家が蓄電システム107のみを保有している場合、売り入札者端末装置203のPV出力予測受付部232は不要である。また、需要家が太陽光発電システムのみを保有している場合、売り入札者端末装置203のBESS充放電計画受付部231は不要である。 In the example of FIG. 5, the case where the consumer has the power storage system 107 and the solar power generation system as distributed energy resources has been described, but the present invention is not limited to this. For example, when the consumer owns only the power storage system 107, the PV output prediction reception unit 232 of the seller bidder terminal device 203 is unnecessary. Further, when the consumer owns only the photovoltaic power generation system, the BESS charge / discharge plan reception unit 231 of the seller / bidder terminal device 203 is unnecessary.

図6は、実施の形態における売り入札者端末装置203のハードウェア構成の一例を示す図である。 FIG. 6 is a diagram showing an example of the hardware configuration of the bidder terminal device 203 according to the embodiment.

売り入札者端末装置203は、キーボードおよびマウスなどの入力装置265と、ディスプレイモニタなどの出力装置266と、演算処理装置であるCPU263と、ハードディスクドライブなどの主記憶装置262と、DRAM等の二次記憶装置261と、例えばインターネットなどの通信ネットワーク204に接続するための通信機器264とを備えている。 The seller terminal device 203 includes an input device 265 such as a keyboard and a mouse, an output device 266 such as a display monitor, a CPU 263 as an arithmetic processing device, a main storage device 262 such as a hard disk drive, and a secondary such as a DRAM. It includes a storage device 261 and a communication device 264 for connecting to a communication network 204 such as the Internet.

図7は、本実施の形態による無効電力取引に参加可能なPV用PCSの運転可能範囲の一例を示す図である。 FIG. 7 is a diagram showing an example of the operable range of the PV PCS capable of participating in the reactive power transaction according to the present embodiment.

図7に示すグラフにおいて、横軸は有効電力Pを示し、縦軸は無効電力Qを示している。グラフ中の円は、PV用PCSの皮相電力容量を半径とした円である。例えば、グラフ中の斜線部で示す運転可能範囲内で制御量を指令可能なPV用PCSであれば、有効電力の出力によって無効電力の出力可能範囲を変えることができる。このように、PV用PCSの運転可能範囲を指定することができる場合、グラフ中に示すPV出力の予測範囲の下限値を用いることによって、無効電力の出力をある一定時間継続して可能なQからQまでの範囲を求めることができ、QからQまでの範囲内で無効電力を制御することができる。なお、PV出力の予測範囲の下限値とは、ある一定時間におけるPV出力の予測範囲の下限値のうちの最低出力のことである。 In the graph shown in FIG. 7, the horizontal axis represents the active power P and the vertical axis represents the reactive power Q. The circle in the graph is a circle whose radius is the apparent power capacity of the PV PCS. For example, if the PV PCS can command the control amount within the operable range shown by the shaded area in the graph, the output possible range of the active power can be changed by the output of the active power. In this way, when the operable range of the PV PCS can be specified, by using the lower limit of the predicted range of the PV output shown in the graph, it is possible to continuously output the reactive power for a certain period of time. The range from + to Q can be obtained, and the reactive power can be controlled within the range from Q + to Q −. The lower limit of the PV output prediction range is the lowest output of the lower limit of the PV output prediction range in a certain period of time.

図8は、本実施の形態による無効電力取引に参加可能なBESS用PCSの運転可能範囲の一例を示す図である。 FIG. 8 is a diagram showing an example of the operable range of the PCS for BESS capable of participating in the reactive power transaction according to the present embodiment.

図8に示すグラフにおいて、横軸は有効電力Pを示し、縦軸は無効電力Qを示している。グラフ中の円は、BESS用PCSの皮相電力容量を半径とした円である。例えば、グラフ中の斜線部で示す運転可能範囲内で制御量を指令可能なBESS用PCSであれば、有効電力の出力にほとんどよらず無効電力の出力可能範囲を変えることができる。 In the graph shown in FIG. 8, the horizontal axis represents the active power P and the vertical axis represents the reactive power Q. The circle in the graph is a circle whose radius is the apparent power capacity of the PCS for BESS. For example, if the BESS PCS can command the control amount within the operable range indicated by the shaded area in the graph, the output possible range of the active power can be changed regardless of the output of the active power.

無効電力調整力(ΔkVar)とは、実需給時点で無効電力の出力をある一定時間調整することが可能な無効電力容量のことである。一定時間とは、例えば、1日を等間隔な48コマに分割した1コマ分の時間である。また、無効電力容量は、進相側無効電力の容量だけでなく、遅相側無効電力の容量を含めてもよい。以下では、無効電力容量とは、進相側無効電力の容量とする。 The reactive power adjusting power (ΔkVar) is a reactive power capacity capable of adjusting the output of the reactive power for a certain period of time at the time of actual supply and demand. The fixed time is, for example, the time for one frame obtained by dividing a day into 48 frames at equal intervals. Further, the reactive power capacity may include not only the capacity of the phase-advancing side reactive power but also the capacity of the slow-phase side reactive power. In the following, the reactive power capacity is the capacity of the phase-advancing side reactive power.

取引約定計算装置202の取引約定部217で取引が成立して無効電力調整力の供出の責務を負った分散型エネルギーリソースは、約定した無効電力調整力の範囲内で、取引約定計算装置202の無効電力制御量通知部221から通知された無効電力制御量に一定時間応じなくてはならない。 The distributed energy resource, which was responsible for providing the reactive power adjustment power after the transaction was completed in the transaction contract unit 217 of the transaction contract calculation device 202, is within the range of the contracted reactive power adjustment power of the transaction contract calculation device 202. It is necessary to respond to the disabled power control amount notified from the disabled power control amount notification unit 221 for a certain period of time.

図9は、本実施の形態によるPV用PCSの無効電力調整力の一例を示す概略図である。 FIG. 9 is a schematic view showing an example of the reactive power adjusting force of the PV PCS according to the present embodiment.

PV用PCSについて、取引が成立し、グラフ内の双方向ベクトルで表される無効電力調整力(ΔkVar)の供出の責務を負った場合、約定した無効電力調整力の範囲内で無効電力制御量の指令に応じなくてはならない。 For PV PCS, if the transaction is completed and the responsibility is to supply the reactive power adjustment power (ΔkVar) represented by the bidirectional vector in the graph, the reactive power control amount is within the range of the contracted free power adjustment power. Must comply with the instructions of.

図10は、本実施の形態によるBESS用PCSの無効電力調整力の一例を示す概略図である。 FIG. 10 is a schematic diagram showing an example of the reactive power adjusting force of the PCS for BESS according to the present embodiment.

BESS用PCSについて、取引が成立し、グラフ内の双方向ベクトルで表される無効電力調整力(ΔkVar)の供出の責務を負った場合、約定した無効電力調整力の範囲内で無効電力制御量の指令に応じなくてはならない。 For PCS for BESS, if the transaction is completed and the responsibility is to supply the reactive power adjustment power (ΔkVar) represented by the bidirectional vector in the graph, the free power control amount is within the range of the contracted free power adjustment power. Must comply with the instructions of.

図11は、本実施の形態による買い入札情報のデータスキーマの一例を示す図である。 FIG. 11 is a diagram showing an example of a data schema of buy bid information according to the present embodiment.

取引約定計算装置202の買い入札情報作成部213が作成する買い入札情報は、無効電力取引システム201が対象とするフィーダ105を複数に分割した区間毎および時間毎の無効電力調整力(ΔkVar(買))と、無効電力調整力の単価(ΔkVar単価)との組み合わせ、区間情報、および買い入札者を識別するID情報を含む。本開示では、区間毎および時間毎の無効電力調整力と、無効電力調整力の単価との組み合わせの数を特に限定しないが、以下の説明では、区間毎および時間毎の無効電力調整力と、無効電力調整力の単価との組み合わせの数を15組とする。なお、図中の#1〜#15は、組み合わせ番号を示している。 The buy bid information created by the buy bid information creation unit 213 of the transaction contract calculation device 202 is the reactive power adjustment force for each section and each time when the feeder 105 targeted by the reactive power trading system 201 is divided into a plurality of sections (ΔkVar (buy)). )) Includes a combination of the unit price of the reactive power adjustment power (ΔkVar unit price), section information, and ID information that identifies the buyer / bidder. In the present disclosure, the number of combinations of the reactive power adjusting force for each section and time and the unit price of the reactive power adjusting force is not particularly limited. The number of combinations with the unit price of the reactive power adjustment power is set to 15. Note that # 1 to # 15 in the figure indicate combination numbers.

例えば、区間Aにおいて、2000年10月10日の0:00〜0:30に、ΔkVar(買)とΔkVar単価との1つ目の組み合わせを(ΔkVar(買),ΔkVar単価)=(500kVar,1円/kVar)と指定し、2つ目の組み合わせを(400kVar,3円/kVar)と指定したとすると、ΔkVar単価が1円/kVar以下の場合は、ΔkVarを500kVar購入する意思があることを意味する。また、ΔkVar単価が3円/kVar以下で1円/kVarより高い場合は、ΔkVarを400kVar購入する意思があることを意味する。 For example, in section A, from 0:00 to 0:30 on October 10, 2000, the first combination of ΔkVar (buy) and ΔkVar unit price (ΔkVar (buy), ΔkVar unit price) = (500 kVar, If 1 yen / kVar is specified and the second combination is specified as (400 kVar, 3 yen / kVar), if the unit price of ΔkVar is 1 yen / kVar or less, there is an intention to purchase 500 kVar of ΔkVar. Means. If the unit price of ΔkVar is 3 yen / kV or less and higher than 1 yen / kVar, it means that there is an intention to purchase 400 kVar of ΔkVar.

図12は、実施の形態による売り入札情報のデータスキーマの一例を示す図である。 FIG. 12 is a diagram showing an example of a data schema of sell / bid information according to an embodiment.

売り入札者端末装置203の売り入札情報作成部234が作成する売り入札情報は、売り入札者端末装置203を保有する需要家が保有する分散型エネルギーリソースの時間毎の無効電力調整力(ΔkVar(売))と、無効電力調整力の単価(ΔkVar単価)と、無効電力調整力を1時間容量一杯で運用した時の単価である無効電力量の単価(kVarh単価)との組み合わせ、売り入札者を識別するID情報、および分散型エネルギーリソースの種別情報を含む。本開示では、時間毎の無効電力調整力と、無効電力調整力の単価と、無効電力調整力を1時間容量一杯で運用した時の単価である無効電力量の単価との組み合わせの数を特に限定しないが、以下の説明では、時間毎の無効電力調整力と、無効電力調整力の単価と、無効電力調整力を1時間容量一杯で運用した時の単価である無効電力量の単価との組み合わせの数を15組とする。なお、図中の#1〜#15は、組み合わせ番号を示している。 The sell bid information created by the sell bid information creation unit 234 of the sell bidder terminal device 203 is the hourly reactive power adjustment power of the distributed energy resource owned by the consumer who owns the sell bidder terminal device 203 (ΔkVar (ΔkVar). Sell)), the unit price of the reactive power adjustment power (ΔkVar unit price), and the unit price of the reactive power amount (kVar unit price), which is the unit price when the reactive power adjustment power is operated at full capacity for one hour, the seller bidder Includes ID information that identifies the power source and type information of the distributed energy resource. In this disclosure, the number of combinations of the unit price of the reactive power adjusting power for each hour, the unit price of the reactive power adjusting power, and the unit price of the reactive power amount, which is the unit price when the reactive power adjusting power is operated at the full capacity for one hour, is particularly specified. Although not limited, in the following explanation, the unit price of the reactive power adjusting power for each hour, the unit price of the reactive power adjusting power, and the unit price of the reactive power amount which is the unit price when the reactive power adjusting power is operated at the full capacity for one hour. The number of combinations is 15. Note that # 1 to # 15 in the figure indicate combination numbers.

例えば、2000年10月10日の0:00〜0:30に、ΔkVar(売)と、ΔkVar単価と、kVarh単価との1つ目の組み合わせを(ΔkVar(売),ΔkVar単価,kVarh単価)=(10kVar,1円/kVar,2円/kVarh)と指定し、2つ目の組み合わせを(20kVar,2円/kVar,4円/kVarh)と指定したとすると、ΔkVar単価が2円/kVar以上の場合は、ΔkVarを20kVar販売する意思があることを示し、20kVarの無効電力の出力を1時間継続した時の単価が4円/kVarhであることを意味する。また、ΔkVar単価が1円/kVar以上で2円/kVar未満の場合は、ΔkVarを10kVar販売する意思があることを示し、10kVarの無効電力の出力を1時間継続した時の単価が2円/kVarhであることを意味する。 For example, from 0:00 to 0:30 on October 10, 2000, the first combination of ΔkVar (sale), ΔkVar unit price, and kVar unit price (ΔkVar (sale), ΔkVar unit price, kVar unit price) If = (10 kVar, 1 yen / kVar, 2 yen / kVarh) is specified and the second combination is specified as (20 kVar, 2 yen / kVar, 4 yen / kVarh), the unit price of ΔkVar is 2 yen / kVar. In the above case, it means that there is an intention to sell 20 kVar of ΔkVar, and it means that the unit price when the output of the reactive power of 20 kVar is continued for 1 hour is 4 yen / kVarh. If the unit price of ΔkVar is 1 yen / kV or more and less than 2 yen / kVar, it indicates that the intention is to sell 10 kVar of ΔkVar, and the unit price when the output of 10 kVar of reactive power is continued for 1 hour is 2 yen / kVar. It means that it is kVarh.

<動作>
図13は、本実施の形態による取引約定計算装置202および売り入札者端末装置203の処理フローの一例を示す図である。図13に示すように、処理フローは、調達フェーズ(ステップS101〜ステップS107)と運用フェーズ(ステップS108〜ステップS112)とに分けられる。
<Operation>
FIG. 13 is a diagram showing an example of the processing flow of the transaction contract calculation device 202 and the seller bidder terminal device 203 according to the present embodiment. As shown in FIG. 13, the processing flow is divided into a procurement phase (steps S101 to S107) and an operation phase (steps S108 to S112).

まず、調達フェーズの処理フローについて説明する。 First, the processing flow of the procurement phase will be described.

ステップS101において、取引約定計算装置202の買い入札情報作成部213は、買い入札情報を作成する。 In step S101, the buy bid information creation unit 213 of the transaction contract calculation device 202 creates the buy bid information.

ステップS102において、売り入札者端末装置203の売り入札情報作成部234は、売り入札情報を作成する。 In step S102, the sell bid information creation unit 234 of the sell bidder terminal device 203 creates the sell bid information.

ステップS103において、売り入札情報通知部235は、売り入札情報作成部234が作成した売り入札情報を、通信部236を介して取引約定計算装置202に通知する。 In step S103, the sell bid information notification unit 235 notifies the transaction contract calculation device 202 of the sell bid information created by the sell bid information creation unit 234 via the communication unit 236.

ステップS104において、取引約定計算装置202の売り入札情報受付部216は、売り入札者端末装置203から通知された売り入札情報を受け付ける。 In step S104, the sell bid information receiving unit 216 of the transaction contract calculation device 202 receives the sell bid information notified from the sell bidder terminal device 203.

なお、取引約定計算装置202の買い入札情報作成部213が買い入札情報を作成するタイミングは、取引約定計算装置202の売り入札情報受付部216が売り入札者端末装置203から通知された売り入札情報を受け付けた後でもよい。 The timing at which the buy bid information creation unit 213 of the transaction contract calculation device 202 creates the buy bid information is the sell bid information notified by the sell bid information reception unit 216 of the transaction contract calculation device 202 from the sell bidder terminal device 203. It may be after accepting.

買い入札情報作成部213による買い入札情報の作成、および売り入札情報受付部216による売り入札情報の受け付けは、例えば、無効電力調整力(ΔkVar)の受け渡し開始時刻の30分前までに行う。 The buy bid information creation unit 213 creates the buy bid information and the sell bid information reception unit 216 accepts the sell bid information, for example, 30 minutes before the delivery start time of the reactive power adjustment force (ΔkVar).

ステップS105において、取引約定計算装置202の取引約定部217は、無効電力調整力(ΔkVar)の受け渡し開始時刻の30分前に、売り入札者端末装置203から通知された売り入札情報に含まれる売り入札者を識別するID情報から、当該売り入札者端末装置203が所属する区間を特定する。そして、取引約定部217は、取引約定計算装置202からの買い入札情報と複数の売り入札者端末装置203からの売り入札情報とを区間別および時間別に統合し、統合した買い入札情報と売り入札情報とに基づいてブラインドシングルプライスオークションなどの方法で取引を成立させる。これにより、区間毎および時間毎の約定単価と約定量が決定される。 In step S105, the transaction contract unit 217 of the transaction contract calculation device 202 is included in the sell bid information notified from the sell bidder terminal device 203 30 minutes before the delivery start time of the invalid power adjusting force (ΔkVar). From the ID information that identifies the bidder, the section to which the selling bidder terminal device 203 belongs is specified. Then, the transaction contract unit 217 integrates the buy bid information from the transaction contract calculation device 202 and the sell bid information from the plurality of sell bidder terminal devices 203 by section and time, and integrates the buy bid information and the sell bid. Close a transaction by a method such as a blind single price auction based on the information. As a result, the contract unit price and the contract fixed amount for each section and each time are determined.

ステップS106において、取引約定計算装置202の約定結果通知部218は、取引の約定結果として、当該売り入札者端末装置203が所属する区間の時間毎の約定単価と、当該売り入札者端末装置203が管理する分散型エネルギーリソースの約定量とを売り入札者端末装置203に通知する。 In step S106, the contract result notification unit 218 of the transaction contract calculation device 202 sets the contract unit price for each time of the section to which the sell bidder terminal device 203 belongs and the sell bidder terminal device 203 as the contract result of the transaction. Notify the seller terminal device 203 of the approximate fixed amount of distributed energy resources to be managed.

ステップS107において、売り入札者端末装置203の約定結果受付部237は、取引約定計算装置202から通知された取引の約定結果を受け付ける。 In step S107, the contract result receiving unit 237 of the selling bidder terminal device 203 receives the contract result of the transaction notified from the transaction contract calculation device 202.

次に、運用フェーズの処理フローについて説明する。 Next, the processing flow of the operation phase will be described.

無効電力調整力(ΔkVar)の受け渡し開始時刻に到達した後、ステップS108において、取引約定計算装置202の系統状態監視部219は、無効電力取引システム201が対象とするフィーダ105内で計測した各地点の電圧などの情報、または当該フィーダ内で計測した限られた地点の電圧などの情報を用いて配電系統の状態推定を行うことで得られる各地点の電圧などの情報から、無効電力取引システム201が対象とするフィーダ105の電圧を監視する。 After reaching the delivery start time of the reactive power adjustment force (ΔkVar), in step S108, the system status monitoring unit 219 of the transaction contract calculation device 202 measures each point in the feeder 105 targeted by the reactive power trading system 201. Reactive power trading system 201 from the information such as the voltage of each point obtained by estimating the state of the distribution system using the information such as the voltage of the Monitors the voltage of the feeder 105 of interest.

ステップS109において、取引約定計算装置202の無効電力制御量計算部220は、無効電力制御量を既に売り入札者端末装置203の少なくとも1つに通知している場合、または監視対象の全ての地点の電圧が適正範囲内にない場合、約定した無効電力調整力(ΔkVar)の範囲内で、配電系統の電圧を適正範囲に維持することを可能な限り少ないコストで実現するために必要となる分散型エネルギーリソース毎の無効電力制御量を計算する。 In step S109, when the reactive power control amount calculation unit 220 of the transaction contract calculation device 202 has already notified at least one of the seller bidder terminal devices 203 of the reactive power control amount, or at all the points to be monitored. Distributed type required to maintain the voltage of the distribution system within the proper range at the lowest possible cost within the range of the contracted reactive power adjustment force (ΔkVar) when the voltage is not within the proper range. Calculate the amount of reactive power control for each energy resource.

ステップS110において、取引約定計算装置202の無効電力制御量通知部221は、無効電力制御量計算部220が計算した分散型エネルギーリソース毎の無効電力制御量を各売り入札者端末装置203に通知する。 In step S110, the reactive power control amount notification unit 221 of the transaction contract calculation device 202 notifies each seller bidder terminal device 203 of the reactive power control amount for each distributed energy resource calculated by the reactive power control amount calculation unit 220. ..

ステップS111において、売り入札者端末装置203の無効電力制御量受付部238は、分散型エネルギーリソース毎の無効電力制御量を受け付ける。 In step S111, the disabled power control amount receiving unit 238 of the selling bidder terminal device 203 receives the disabled power control amount for each distributed energy resource.

ステップS112において、売り入札者端末装置203の制御部239は、当該売り入札者端末装置203が管理する分散型エネルギーリソースに対して、無効電力制御量および無効電力制御量を出力するための力率などを計算し、通知する。 In step S112, the control unit 239 of the sell bidder terminal device 203 has a power factor for outputting the reactive power control amount and the reactive power control amount to the distributed energy resource managed by the sell bidder terminal device 203. Etc. are calculated and notified.

なお、運用フェーズ後に行われる精算フェーズとしては、例えば、約定結果を用いて、無効電力調整力(ΔkVar)の供出に係る対価と、無効電力量の単価と無効電力量の出力実績、無効電力制御量を用いて、無効電力量の出力に係る対価を、DSOから需要家に支払う方法がある。 As the settlement phase performed after the operation phase, for example, using the contract result, the consideration for the supply of the reactive power adjustment power (ΔkVar), the unit price of the reactive power amount, the output result of the reactive power amount, and the reactive power control. There is a method of paying the consideration for the output of the amount of reactive power from the DSO to the consumer by using the quantity.

<売り入札情報の作成方法>
売り入札者端末装置203の売り入札情報作成部234による売り入札情報の作成方法の詳細について説明する。
<How to create sell bid information>
The details of the method of creating the sell bid information by the sell bid information creation unit 234 of the sell bidder terminal device 203 will be described.

売り入札情報の作成方法は、PCSの出力可能範囲の違いにより、PV用PCSの場合とBESS用PCSの場合とでわずかに異なるが、基本的な考えは同じである。以下では、PV用PCSの場合における売り入札情報の作成方法について述べる。 The method of creating the sell bid information is slightly different between the case of PCS for PV and the case of PCS for BESS due to the difference in the output range of PCS, but the basic idea is the same. In the following, a method of creating sell bid information in the case of PCS for PV will be described.

<PV用PCSの場合における売り入札情報の作成方法>
無効電力調整力の単価は、幅を持ったPV出力予測値、皮相電力容量、指定可能な力率の範囲、およびPVシステムのイニシャルコストと運用可能な想定年数を入力にして、予め設定した無効電力調整力の量毎に、その容量に相当する単価を決定する。
<How to create selling bid information in the case of PCS for PV>
The unit price of the reactive power adjustment power is set in advance by inputting the PV output predicted value with a range, the apparent power capacity, the range of the power factor that can be specified, the initial cost of the PV system and the estimated number of years that it can be operated. For each amount of power adjustment power, the unit price corresponding to the capacity is determined.

無効電力量の単価は、幅を持ったPV出力予測値、皮相電力容量、および有効電力量の単価を入力にして、当該無効電力調整力の量毎に、無効電力調整力を1時間容量一杯で運用した時に失われる収益の期待値を計算し、無効電力量の単価に変換することによって決定する。これらにより、無効電力調整力と、無効電力調整力の単価と、無効電力量の単価との組み合わせを求める。なお、有効電力量の単価は、例えば、FIT(Feed in Tariff)価格、または小売電気事業者と事前に契約した情報から計算される単価である。 For the unit price of the reactive power amount, input the PV output predicted value with a range, the apparent power capacity, and the unit price of the active power amount, and fill the capacity of the reactive power adjustment power for one hour for each amount of the reactive power adjustment power. It is determined by calculating the expected value of the profit lost when operating in and converting it to the unit price of the amount of reactive power. From these, the combination of the ineffective power adjustment power, the unit price of the ineffective power adjustment power, and the unit price of the ineffective power amount is obtained. The unit price of the active electric power amount is, for example, a FIT (Feed in Tariff) price or a unit price calculated from information previously contracted with a retail electric power company.

図14は、ある時間における無効電力調整力の単価を決定するフローチャートである。Iは、無効電力調整力と、無効電力調整力の単価と、無効電力量の単価との組み合わせ番号の集合であり、iは集合Iの要素である。 FIG. 14 is a flowchart for determining the unit price of the reactive power adjusting force at a certain time. I is a set of combination numbers of the reactive power adjusting force, the unit price of the reactive power adjusting force, and the unit price of the reactive power amount, and i is an element of the set I.

ステップS201において、無効電力の出力をある一定時間継続可能な無効電力容量の最大値ΔkVar_ub[kVar]を求める。下記の式(1)は、無効電力の出力をある一定時間継続可能な無効電力容量の最大値ΔkVar_ub[kVar]を計算する式である。なお、PV出力の予測範囲の下限値をP_lb[kW]、皮相電力容量S[kVA]、指定可能な力率の範囲の下限をcosφ’とする。

Figure 2021180595
In step S201, the maximum value ΔkVar_ub [kVar] of the reactive power capacity capable of continuing the output of the reactive power for a certain period of time is obtained. The following formula (1) is a formula for calculating the maximum value ΔkVar_ub [kVar] of the reactive power capacity capable of continuing the output of the reactive power for a certain period of time. The lower limit of the predicted range of PV output is P_lb [kW], the apparent power capacity S [kVA], and the lower limit of the range of the specifiable power factor is cosφ'.
Figure 2021180595

ステップS202において、i=1を代入する。 In step S202, i = 1 is substituted.

ステップS203において、予め設定した無効電力調整力の量と、無効電力の出力をある一定時間継続可能な無効電力容量とを比較し、判定結果が偽である場合は、計算を終了する。一方、判定結果が正である場合は、ステップS204に移行する。 In step S203, the amount of the reactive power adjusting force set in advance is compared with the reactive power capacity capable of continuing the output of the reactive power for a certain period of time, and if the determination result is false, the calculation is terminated. On the other hand, if the determination result is positive, the process proceeds to step S204.

ステップS204において、iが16未満であるか否かを判定し、判定結果が偽である場合は、計算を終了する。一方、判定結果が正である場合は、ステップS205に移行する。 In step S204, it is determined whether or not i is less than 16, and if the determination result is false, the calculation is terminated. On the other hand, if the determination result is positive, the process proceeds to step S205.

ステップS205において、予め設定した無効電力調整力の量ΔkVar[kVar]を確保した時の、有効電力の容量Pc[kW]を求める。下記の式(2)は、有効電力の容量Pc[kW]を計算する式である。

Figure 2021180595
In step S205, the capacity Pc [kW] of the active power when the amount ΔkVar [kVar] of the reactive power adjusting force set in advance is secured is obtained. The following formula (2) is a formula for calculating the capacity Pc [kW] of the active power.
Figure 2021180595

ステップS206において、無効電力調整力の単価C_ΔkVar[円/kVar]を求める。PVシステムのイニシャルコストEt[円]を運用可能な想定時間Tt[0.5h]で除算することによって、ある一定時間(0.5時間)の皮相電力容量のコストDs[円/0.5h]を求める(下記の式(3))。皮相電力容量のコストDs[円/0.5h]を皮相電力容量S[kVA]で除算することによって、皮相電力容量の単価Cs[円/kVA]を求める(下記の式(4))。従来、有効電力の容量を主に使用していたことから、有効電力の容量の単価Cp[円/kW]は、皮相電力容量の単価Cs[円/kVA]と等しいとみなす(下記の式(5))。その後、有効電力の容量のコストDp[円/0.5h](下記の式(6))と、無効電力調整力のコストD_ΔkVar[円/0.5h](下記の式(7))との和が皮相電力容量のコストDs[円/0.5h]と等しくなるように(下記の式(8))、無効電力調整力の単価C_ΔkVar[円/kVar]を決定する(下記の式(9))。下記の式(3)〜式(9)は、無効電力調整力の単価C_ΔkVar[円/kVar]を計算する式である。

Figure 2021180595
Figure 2021180595
Figure 2021180595
Figure 2021180595
Figure 2021180595
Figure 2021180595
Figure 2021180595
In step S206, the unit price C_ΔkVar [yen / kVar] of the reactive power adjusting force is obtained. By dividing the initial cost Et [yen] of the PV system by the assumed time Tt [0.5h] that can be operated, the cost Ds [yen / 0.5h] of the apparent power capacity for a certain period of time (0.5 hours). (Equation (3) below). By dividing the apparent power capacity cost Ds [yen / 0.5h] by the apparent power capacity S [kVA], the unit price Cs [yen / kVA] of the apparent power capacity is obtained (the following formula (4)). Since the active power capacity has been mainly used in the past, the unit price Cp [yen / kW] of the active power capacity is regarded as equal to the unit price Cs [yen / kVA] of the apparent power capacity (the following formula (the following formula). 5)). After that, the cost Dp [yen / 0.5h] of the capacity of the active power (the following formula (6)) and the cost D_ΔkVar [yen / 0.5h] of the reactive power adjustment power (the following formula (7)) The unit price C_ΔkVar [yen / kVar] of the reactive power adjustment force is determined so that the sum is equal to the cost Ds [yen / 0.5h] of the apparent power capacity (the following formula (8)) (the following formula (9). )). The following equations (3) to (9) are equations for calculating the unit price C_ΔkVar [yen / kVar] of the reactive power adjusting force.
Figure 2021180595
Figure 2021180595
Figure 2021180595
Figure 2021180595
Figure 2021180595
Figure 2021180595
Figure 2021180595

ステップS207において、iに1を加算し、ステップS203に移行する。 In step S207, 1 is added to i, and the process proceeds to step S203.

以上により、ある時間における無効電力調整力の単価を決定することができる。なお、必要に応じて、無効電力調整力の単価に、経費に係る単価などを加算しても差し支えない。 From the above, the unit price of the reactive power adjusting force at a certain time can be determined. If necessary, the unit price related to expenses may be added to the unit price of the reactive power adjustment power.

無効電力量の単価は、無効電力調整力の量毎に、無効電力調整力を1時間容量一杯で運用した時に失われる収益の期待値E_Pc[円]を計算し(下記の式(10))、無効電力量の単価に変換することによって決定する(下記の式(11))。 For the unit price of the reactive power amount, the expected value E_Pc [yen] of the profit lost when the reactive power adjusting power is operated at the full capacity for one hour is calculated for each amount of the reactive power adjusting power (the following formula (10)). , Determined by converting to the unit price of reactive power (Equation (11) below).

下記の式(10),(11)は、無効電力量の単価C_kVarh[円/kVarh]を計算する式である。なお、t1はある一定時間の開始時刻、t2はある一定時間の終了時刻、t2−t1はある一定時間[h]、P_der[kW]は分散型エネルギーリソースの有効電力、f_Pderは確率変数を分散型エネルギーリソースの有効電力P_der[kW]とする確率密度関数、C_kWh[円/kWh]は有効電力量の単価である。Pc[kW]は有効電力の容量のことであり、上記の式(2)で計算した結果を用いる。

Figure 2021180595
Figure 2021180595
The following equations (10) and (11) are equations for calculating the unit price C_kVarth [yen / kVarth] of the amount of invalid power. Note that t1 is the start time of a certain fixed time, t2 is the end time of a certain fixed time, t2-t1 is a fixed time [h], P_der [kW] is the active power of the distributed energy resource, and f_Pder is the random variable. The random density function C_kWh [yen / kWh] with the active power P_der [kW] of the type energy resource is the unit price of the active power amount. Pc [kW] is the capacity of active power, and the result calculated by the above equation (2) is used.
Figure 2021180595
Figure 2021180595

以上により、ある時間における無効電力量の単価を決定することができる。なお、必要に応じて、無効電力量の単価に、経費に係る単価などを加算しても差し支えない。 From the above, the unit price of the amount of ineffective power at a certain time can be determined. If necessary, the unit price related to expenses may be added to the unit price of the amount of disabled power.

<分散型エネルギーリソース毎の無効電力制御量の計算方法>
取引約定計算装置202の無効電力制御量計算部220による分散型エネルギーリソース毎の無効電力制御量の計算方法の詳細について説明する。
<Calculation method of reactive power control amount for each distributed energy resource>
The details of the method of calculating the reactive power control amount for each distributed energy resource by the reactive power control amount calculation unit 220 of the transaction contract calculation device 202 will be described.

図15は、無効電力制御量の計算に係る動作の一例を示すフローチャートである。 FIG. 15 is a flowchart showing an example of the operation related to the calculation of the reactive power control amount.

ステップS301において、無効電力制御量計算部220は、監視対象の配電系統における全ての地点の電圧が適正範囲内であるか否かを判定する。判定結果が偽である場合は、ステップS303に移行する。一方、判定結果が真である場合は、ステップS302に移行する。 In step S301, the reactive power control amount calculation unit 220 determines whether or not the voltage at all points in the distribution system to be monitored is within an appropriate range. If the determination result is false, the process proceeds to step S303. On the other hand, if the determination result is true, the process proceeds to step S302.

ステップS302において、無効電力制御量計算部220は、無効電力制御量を既に売り入札者端末装置203に指令している状態を継続していないか否かを判定する。判定結果が偽の場合は、ステップS303に移行する。一方、判定結果が真の場合は、処理を終了する。 In step S302, the reactive power control amount calculation unit 220 determines whether or not the state in which the reactive power control amount has already been instructed to the seller terminal device 203 has not been continued. If the determination result is false, the process proceeds to step S303. On the other hand, if the determination result is true, the process ends.

ステップS303において、無効電力制御量計算部220は、約定した無効電力調整力(ΔkVar)の範囲内で、配電系統の電圧を適正範囲に維持することを可能な限り少ないコストで実現するために必要となる、分散型エネルギーリソース毎の無効電力制御量を計算する。 In step S303, the reactive power control amount calculation unit 220 is necessary to maintain the voltage of the distribution system within an appropriate range within the range of the contracted reactive power adjustment force (ΔkVar) at the lowest possible cost. The amount of reactive power control for each distributed energy resource is calculated.

分散型エネルギーリソース毎の無効電力制御量は、運用コスト最小化を目的とした最適潮流計算問題を解くことで求めることができる。 The amount of reactive power control for each distributed energy resource can be obtained by solving the optimum power flow calculation problem aimed at minimizing operating costs.

ここで、ある時刻における監視対象系統の最適潮流計算問題を以下に示す。 Here, the optimum power flow calculation problem of the monitored system at a certain time is shown below.

(集合)
N:対象系統の分散型エネルギーリソースおよび需要家の集合(n∈N)
I:無効電力調整力と、無効電力調整力の単価と、無効電力量の単価との組み合わせ番号の集合(i∈I)
(set)
N: A set of distributed energy resources and consumers of the target system (n ∈ N)
I: A set of combination numbers of the reactive power adjusting force, the unit price of the reactive power adjusting force, and the unit price of the reactive power amount (i ∈ I).

(定数)
:適正電圧下限[V]
:適正電圧上限[V]
ΔkVar:無効電力調整力の量[kVar]
ΔkVar_con:無効電力調整力の約定量[kVar]
D_kVarh:無効電力量のコスト[円]
C_kVarh:無効電力量の単価[円/kVarh]
Δt:無効電力制御量計算部の演算周期[h]
u:区分区間の線形関数の定数項[円・kVar/kVarh]
M:任意の大きな定数
Pl:自家消費有効電力[kW]
Pder:分散型エネルギーリソースの有効電力[kW]
Ql:自家消費無効電力[kVar]
(constant)
V : Appropriate voltage lower limit [V]
V + : Appropriate voltage upper limit [V]
ΔkVar: Amount of reactive power adjustment force [kVar]
ΔkVar_con: Approximately quantitative amount of reactive power adjustment power [kVar]
D_kVarh: Cost of invalid electric energy [yen]
C_kVarh: Unit price of invalid electric energy [yen / kVarh]
Δt: Calculation cycle of the reactive power control amount calculation unit [h]
u: Constant term of the linear function of the division interval [Circle · kVar / kVarh]
M: Arbitrary large constant Pl: Self-consumed active power [kW]
Pder: Active power of distributed energy resources [kW]
Ql: Self-consumption reactive power [kVar]

(変数)
Qder:分散型エネルギーリソースの無効電力(無効電力制御量)[kVar]
b:区分区間を表現するバイナリ変数の要素となるバイナリ変数(b[0][n]=0)
V:電圧[V]
(variable)
Qder: Reactive power of distributed energy resources (reactive power control amount) [kVar]
b: Binary variable that is an element of the binary variable that expresses the division interval (b [0] [n] = 0)
V: Voltage [V]

(従属変数)
B:区分区間を表現するバイナリ変数
(Dependent variable)
B: Binary variable representing the division interval

(目的関数)

Figure 2021180595
(Objective function)
Figure 2021180595

(制約式)

Figure 2021180595
Figure 2021180595
Figure 2021180595
Figure 2021180595
Figure 2021180595
Figure 2021180595
fp、fq:潮流方程式 (Constraint expression)
Figure 2021180595
Figure 2021180595
Figure 2021180595
Figure 2021180595
Figure 2021180595
Figure 2021180595
fp, fq: tidal current equation

式(12)は、無効電力制御量に係る運用コストを最小化する目的関数である。式(13)は、各需要家の無効電力量に係る運用コストを表す式である。式(14)は、区分区間を表現するバイナリ変数を表す式である。式(15)は、どの区分区間に属するか判別するための制約式である。式(16)は、電圧が取り得る範囲を表す制約式である。式(17)は、無効電力制御量が取り得る範囲を表す制約式である。式(18)は、潮流方程式である。 Equation (12) is an objective function that minimizes the operating cost related to the controlled amount of reactive power. Equation (13) is an equation expressing the operating cost related to the amount of invalid power of each consumer. Equation (14) is an equation representing a binary variable representing a division interval. Equation (15) is a constraint equation for determining which division interval it belongs to. Equation (16) is a constraint equation representing a range that the voltage can take. Equation (17) is a constraint equation representing a range that the reactive power control amount can take. Equation (18) is a tidal current equation.

上記の最適潮流計算問題を解いた結果として得られる分散型エネルギーリソースの無効電力が、分散型エネルギーリソース毎の無効電力制御量と等価である。 The reactive power of the distributed energy resource obtained as a result of solving the above optimum power flow calculation problem is equivalent to the reactive power control amount for each distributed energy resource.

<効果>
以上で説明した取引約定計算装置および無効電力取引システムによれば、DSOとしては、配電系統に分散する分散型エネルギーリソースの無効電力調整力(ΔkVar)を必要な時に必要な場所から必要な量を調達することができるため、発電設備の導入箇所および導入量の不確実さを考慮した複雑な設備計画問題を解く必要を抑えられる。また、各需要家に公平な機会を与え、より安価に無効電力調整力(ΔkVar)を調達することができるため、配電系統の安定化にかかるコストをできる限り安価にすることができる。さらに、出力抑制を迫られていた分散型エネルギーリソースを保有する需要家としては、無効電力制御量を供出するために出力を抑制した場合であっても、無効電力量の供出に係る収益が得られ、収益の面で不利益を緩和することができるため、公平性を極力保つことができる。
<Effect>
According to the transaction contract calculation device and the reactive power trading system described above, the DSO obtains the required amount of the reactive power adjustment power (ΔkVar) of the distributed energy resources distributed in the distribution system from the required place when necessary. Since it can be procured, it is possible to reduce the need to solve complicated equipment planning problems that take into account the uncertainty of the installation location and installation amount of power generation equipment. In addition, since it is possible to provide each consumer with a fair opportunity and procure the reactive power adjustment force (ΔkVar) at a lower cost, the cost for stabilizing the distribution system can be reduced as much as possible. Furthermore, as a consumer who owns distributed energy resources that have been forced to curb output, even if the output is curtailed in order to deliver the controlled amount of reactive power, profits related to the supply of the amount of reactive power can be obtained. As a result, the disadvantages in terms of profits can be mitigated, and fairness can be maintained as much as possible.

なお、本開示の範囲内において、実施の形態を適宜、変形、省略することが可能である。 Within the scope of the present disclosure, the embodiments can be appropriately modified or omitted.

101 基幹系統、102 送電系統、103 配電系統、104 配電用変電所、105 フィーダ、106 需要家、107 蓄電システム、108 太陽光発電システム、201 無効電力取引システム、202 取引約定計算装置、203 売り入札者端末装置、204 通信ネットワーク、212 無効電力調整力必要量受付部、213 買い入札情報作成部、214 情報保管部、215 通信部、216 売り入札情報受付部、217 取引約定部、218 約定結果通知部、219 系統状態監視部、220 無効電力制御量計算部、221 無効電力制御量通知部、231 BESS充放電計画受付部、232 PV出力予測受付部、233 情報保管部、234 売り入札情報作成部、235 売り入札情報通知部、236 通知部、237 約定結果受付部、238 無効電力制御量受付部、239 制御部、251 二次記憶装置、252 主記憶装置、253 CPU、254 通信機器、255 入力装置、256 出力装置、261 二次記憶装置、262 主記憶装置、263 CPU、264 通信機器、265 入力装置、266 出力装置。 101 backbone system, 102 transmission system, 103 distribution system, 104 distribution substation, 105 feeder, 106 consumer, 107 power storage system, 108 solar power generation system, 201 invalid power trading system, 202 transaction contract calculator, 203 sell bid Person terminal device, 204 communication network, 212 Invalid power adjustment power required amount reception unit, 213 buy bid information creation department, 214 information storage department, 215 communication department, 216 sell bid information reception department, 217 transaction contract department, 218 contract result notification 219 System status monitoring unit, 220 Invalid power control amount calculation unit, 221 Invalid power control amount notification unit, 231 BESS charge / discharge plan reception unit, 232 PV output prediction reception unit, 233 Information storage unit, 234 Sell bid information creation unit 235 Sell bid information notification unit, 236 notification unit, 237 execution result reception unit, 238 invalid power control amount reception unit, 239 control unit, 251 secondary storage device, 252 main storage device, 253 CPU, 254 communication equipment, 255 input Devices, 256 output devices, 261 secondary storage devices, 262 main storage devices, 263 CPUs, 264 communication devices, 265 input devices, 266 output devices.

Claims (5)

配電系統の安定化に必要な無効電力調整力と、当該無効電力調整力の単価との組み合わせである買い入札情報を作成する買い入札情報作成部と、
複数の需要家のそれぞれが保有する売り入札者端末装置から送信された、各前記需要家が保有する分散型エネルギーリソースにおける無効電力調整力と、当該無効電力調整力の単価と、当該無効電力調整力を1時間容量一杯で運用した時の単価である無効電力量の単価との組み合わせである売り入札情報を受け付ける売り入札情報受付部と、
前記買い入札情報作成部が作成した前記買い入札情報と、前記売り入札情報受付部が受け付けた前記売り入札情報とに基づいて、各前記分散型エネルギーリソースが調整可能な無効電力調整力の約定量と、当該約定量の単価である約定単価とを決定する取引約定部と、
前記取引約定部が決定した前記約定量と、前記無効電力量の単価とに基づいて、各前記分散型エネルギーリソースが制御すべき無効電力制御量を計算する無効電力制御量計算部と、
前記無効電力制御量計算部が計算した前記無効電力制御量を各前記分散型エネルギーリソースに通知する無効電力制御量通知部と、
を備える、取引約定計算装置。
The buy bid information creation unit that creates buy bid information that is a combination of the reactive power adjustment power required to stabilize the distribution system and the unit price of the reactive power adjustment power.
The reactive power adjustment power in the distributed energy resource owned by each consumer, the unit price of the reactive power adjustment power, and the reactive power adjustment transmitted from the seller terminal device owned by each of the plurality of consumers. The sell bid information reception unit that accepts sell bid information, which is a combination with the unit price of the amount of reactive power, which is the unit price when the power is operated at full capacity for one hour,
Based on the buy bid information created by the buy bid information creation unit and the sell bid information received by the sell bid information reception unit, the approximate quantitative amount of the ineffective power adjustment power that can be adjusted by each of the distributed energy resources. And the transaction contract section that determines the contract unit price, which is the unit price of the contract,
A reactive power control amount calculation unit that calculates the reactive power control amount to be controlled by each distributed energy resource based on the contracted amount determined by the transaction contract unit and the unit price of the reactive power amount.
An ineffective power control amount notification unit that notifies each of the distributed energy resources of the ineffective power control amount calculated by the ineffective power control amount calculation unit.
A transaction execution calculation device.
前記無効電力調整力は、実需給時点において、無効電力の出力を予め定められた時間調整することが可能な無効電力容量である、請求項1に記載の取引約定計算装置。 The transaction contract calculation device according to claim 1, wherein the reactive power adjusting power is an disabled power capacity capable of adjusting the output of the reactive power for a predetermined time at the time of actual supply and demand. 前記無効電力制御量計算部は、前記無効電力制御量に係る運用コスト最小化を目的とした最適潮流計算問題を解いて、前記分散型エネルギーリソースごとの前記無効電力制御量を求める、請求項1または2に記載の取引約定計算装置。 The reactive power control amount calculation unit solves the optimum power flow calculation problem for the purpose of minimizing the operating cost related to the reactive power control amount, and obtains the reactive power control amount for each of the distributed energy resources. Or the transaction contract calculation device according to 2. 複数の需要家のそれぞれが保有する売り入札者端末装置と、各前記売り入札者端末装置と通信ネットワークを介して接続された取引約定計算装置とを備える無効電力取引システムであって、
前記売り入札者端末装置は、
各前記需要家が保有する分散型エネルギーリソースにおける無効電力調整力と、当該無効電力調整力の単価と、当該無効電力調整力を1時間容量一杯で運用した時の単価である無効電力量の単価との組み合わせである売り入札情報を作成する売り入札情報作成部を有し、
前記取引約定計算装置は、
配電系統の安定化に必要な無効電力調整力と、当該無効電力調整力の単価との組み合わせである買い入札情報を作成する買い入札情報作成部と、
前記売り入札者端末装置から送信された前記売り入札情報を受け付ける売り入札情報受付部と、
前記買い入札情報作成部が作成した前記買い入札情報と、前記売り入札情報受付部が受け付けた前記売り入札情報とに基づいて、各前記分散型エネルギーリソースが調整可能な無効電力調整力の約定量と、当該約定量の単価である約定単価とを決定する取引約定部と、
前記取引約定部が決定した前記約定量と、前記無効電力制御量の単価とに基づいて、各前記分散型エネルギーリソースが制御すべき無効電力制御量を計算する無効電力制御量計算部と、
前記無効電力制御量計算部が計算した前記無効電力制御量を各前記分散型エネルギーリソースに通知する無効電力制御量通知部と、
を有する、無効電力取引システム。
A reactive power trading system including a selling bidder terminal device owned by each of a plurality of consumers and a transaction contract calculation device connected to each of the selling bidder terminal devices via a communication network.
The selling bidder terminal device is
The unit price of the reactive power adjustment power in the distributed energy resource owned by each consumer, the unit price of the reactive power adjustment power, and the unit price of the reactive power amount when the reactive power adjustment power is operated at the full capacity for one hour. It has a sell bid information creation unit that creates sell bid information that is a combination with
The transaction contract calculation device is
The buy bid information creation unit that creates buy bid information that is a combination of the reactive power adjustment power required to stabilize the distribution system and the unit price of the reactive power adjustment power.
A sell bid information receiving unit that receives the sell bid information transmitted from the sell bidder terminal device, and a sell bid information reception unit.
Based on the buy bid information created by the buy bid information creation unit and the sell bid information received by the sell bid information reception unit, the approximate quantitative amount of the ineffective power adjustment power that can be adjusted by each of the distributed energy resources. And the transaction contract section that determines the contract unit price, which is the unit price of the contract,
A reactive power control amount calculation unit that calculates the reactive power control amount to be controlled by each of the distributed energy resources based on the contract amount determined by the transaction contract unit and the unit price of the reactive power control amount.
An ineffective power control amount notification unit that notifies each of the distributed energy resources of the ineffective power control amount calculated by the ineffective power control amount calculation unit.
Has a reactive power trading system.
前記分散型エネルギーリソースは、前記無効電力制御量通知部から通知された前記無効電力制御量となるように無効電力の出力を制御する、請求項4に記載の無効電力取引システム。 The reactive power trading system according to claim 4, wherein the distributed energy resource controls the output of the reactive power so as to be the reactive power control amount notified from the reactive power control amount notification unit.
JP2020085989A 2020-05-15 2020-05-15 Trade contract calculation device and reactive power trading system Active JP7458893B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020085989A JP7458893B2 (en) 2020-05-15 2020-05-15 Trade contract calculation device and reactive power trading system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020085989A JP7458893B2 (en) 2020-05-15 2020-05-15 Trade contract calculation device and reactive power trading system

Publications (2)

Publication Number Publication Date
JP2021180595A true JP2021180595A (en) 2021-11-18
JP7458893B2 JP7458893B2 (en) 2024-04-01

Family

ID=78510656

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020085989A Active JP7458893B2 (en) 2020-05-15 2020-05-15 Trade contract calculation device and reactive power trading system

Country Status (1)

Country Link
JP (1) JP7458893B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04217817A (en) * 1990-02-28 1992-08-07 Westinghouse Electric Corp <We> Method and apparatus for optimizing cost of power circuit network
JP2002300726A (en) * 2001-03-30 2002-10-11 Tokyo Gas Co Ltd Power supply system, reactive power supply method, independent power equipment parallel-off method and reactive power supply command device
JP2003161745A (en) * 2001-11-26 2003-06-06 Toshiba Corp Method and apparatus for calculation of electrical energy charge
JP2012253851A (en) * 2011-05-31 2012-12-20 Toshiba Corp Home energy management system
JP2019091106A (en) * 2017-11-10 2019-06-13 株式会社日立製作所 Electric power planning apparatus, electric power supply demand control system and electric power planning method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04217817A (en) * 1990-02-28 1992-08-07 Westinghouse Electric Corp <We> Method and apparatus for optimizing cost of power circuit network
JP2002300726A (en) * 2001-03-30 2002-10-11 Tokyo Gas Co Ltd Power supply system, reactive power supply method, independent power equipment parallel-off method and reactive power supply command device
JP2003161745A (en) * 2001-11-26 2003-06-06 Toshiba Corp Method and apparatus for calculation of electrical energy charge
JP2012253851A (en) * 2011-05-31 2012-12-20 Toshiba Corp Home energy management system
JP2019091106A (en) * 2017-11-10 2019-06-13 株式会社日立製作所 Electric power planning apparatus, electric power supply demand control system and electric power planning method

Also Published As

Publication number Publication date
JP7458893B2 (en) 2024-04-01

Similar Documents

Publication Publication Date Title
Imani et al. Demand response modeling in microgrid operation: a review and application for incentive-based and time-based programs
EP3358426B1 (en) Building energy cost optimization system with asset sizing
Chen et al. Incorporating post zonal reserve deployment transmission constraints into energy and ancillary service co-optimization
Joskow et al. Reliability and competitive electricity markets
US8706650B2 (en) Optimization of microgrid energy use and distribution
US8364609B2 (en) Optimization of microgrid energy use and distribution
EP3455913B1 (en) Systems and methods for regulating a microgrid
JP6512503B2 (en) Power adjustment device, power adjustment method, program
EP3547234A1 (en) Building energy optimization system with capacity market program (cmp) participation
Mokryani et al. Evaluating the integration of wind power into distribution networks by using Monte Carlo simulation
Greve et al. A system operator’s utility function for the frequency response market
US20140344189A1 (en) Electricity rate managing system
US20160042369A1 (en) Dynamic co-optimization management for grid scale energy storage system (gsess) market participation
US20180137580A1 (en) Power station system, and server for power station system
JP6226282B2 (en) Power adjustment apparatus, power adjustment method, and program
US20180097366A1 (en) Method and apparatus for controlling power grid member behavior
Jordehi et al. A two-stage stochastic model for security-constrained market clearing with wind power plants, storage systems and elastic demands
Al-Bukhaytan et al. Dynamic planning of active distribution network's wire and nonwire alternatives considering ancillary services market participation
JP7458893B2 (en) Trade contract calculation device and reactive power trading system
US11128145B2 (en) System for controlling energy supply across multiple generation sites
Moreira et al. Business case in support for reactive power services from distributed energy storage
Xia et al. Peer-to-peer energy trading participating in ancillary service market as federated power plants
JP2005333751A (en) Power supply system and power supply method
DHAHRAN Adnan Salman Nasser Albukhaytan
SHARIATKHAH et al. A New Real-Time Pricing Scheme Considering Smart Building Energy Management System

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221017

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230725

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240319

R150 Certificate of patent or registration of utility model

Ref document number: 7458893

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150