JP2021179459A - Sound absorption material and using method of porous material to sound absorption material - Google Patents

Sound absorption material and using method of porous material to sound absorption material Download PDF

Info

Publication number
JP2021179459A
JP2021179459A JP2020083080A JP2020083080A JP2021179459A JP 2021179459 A JP2021179459 A JP 2021179459A JP 2020083080 A JP2020083080 A JP 2020083080A JP 2020083080 A JP2020083080 A JP 2020083080A JP 2021179459 A JP2021179459 A JP 2021179459A
Authority
JP
Japan
Prior art keywords
sound absorbing
sound absorption
porous material
absorbing material
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020083080A
Other languages
Japanese (ja)
Inventor
智永 上野
Tomonaga Ueno
浩司 飯盛
Koji Iimori
和樹 古性
Kazuki Kosho
潤一 中村
Junichi Nakamura
準 仙頭
Jun Sento
浩三 田尻
Kozo Tajiri
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Tokai National Higher Education and Research System NUC
Original Assignee
Nippon Shokubai Co Ltd
Tokai National Higher Education and Research System NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd, Tokai National Higher Education and Research System NUC filed Critical Nippon Shokubai Co Ltd
Priority to JP2020083080A priority Critical patent/JP2021179459A/en
Publication of JP2021179459A publication Critical patent/JP2021179459A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a sound absorption material which consists of a porous material, is lightweight at present, and can exhibit a further enhanced sound absorption coefficient in a low frequency range, than non-woven fabric indicating a sound absorption coefficient having a good balance in a wide range from a low frequency to a high frequency; and provide a using method of the porous material to the sound absorption material, for aiming to provide the sound absorption material which is lightweight at present, and can exhibit the further enhanced sound absorption coefficient in the low frequency range, than the non-woven fabric indicating the sound absorption coefficient having the good balance in the wide range from the low frequency to the high frequency.SOLUTION: A sound absorption material includes fibers, and consists of a porous material, in which the density is 0.5 mg/cm3 - 20 mg/cm3.SELECTED DRAWING: Figure 1

Description

本発明は、吸音材に関する。本発明は、また、多孔質材料の吸音材への使用方法に関する。 The present invention relates to a sound absorbing material. The present invention also relates to a method of using a porous material as a sound absorbing material.

吸音材は、建築、モビリティー、音響などの様々な分野において用いられている。吸音材は、一般に、多孔質吸音材、孔あき吸音材、板状吸音材などが知られている。これらの吸音材の中でも、多孔質吸音材が多く開発されている(例えば、特許文献1)。例えば、ガラス等の短繊維をボード状に成形しグラスウールやロックウール製品、短繊維を粒状にした粒状綿などが実用化されている。 Sound absorbing materials are used in various fields such as architecture, mobility, and acoustics. As the sound absorbing material, a porous sound absorbing material, a perforated sound absorbing material, a plate-shaped sound absorbing material and the like are generally known. Among these sound absorbing materials, many porous sound absorbing materials have been developed (for example, Patent Document 1). For example, glass wool and rock wool products obtained by molding short fibers such as glass into a board shape, and granular cotton in which short fibers are granulated have been put into practical use.

モビリティー分野、特に自動車における吸音材は、走行時の不快な騒音を低減し、車内の快適性を向上させるために用いられる。車内の騒音対策の対象となる周波数領域は5000Hz未満であるが、1000Hz以上の領域は、既存のフェルト、ウレタンなどの吸音材にて対策がなされている。 Sound absorbing materials in the field of mobility, especially in automobiles, are used to reduce unpleasant noise during driving and improve the comfort in the vehicle. The frequency range targeted for noise control in the vehicle is less than 5000 Hz, but the range of 1000 Hz or higher is covered with existing sound absorbing materials such as felt and urethane.

近年の自動車は、温室効果ガス削減のため、動力源の電動化が急速に進んでおり、将来にわたってこの傾向が続くことは明白である。動力源の電動化が進むと、エンジン音に埋もれていた、こもり音、透過音、ロードノイズなどに由来する1000Hz未満の低周波数領域の騒音が顕在化するため、前記領域の騒音対策が新たな課題となっている。しかしながら、既存の吸音材では、1000Hz未満の低周波数領域においては吸音効果が低いため、この周波数領域を対象とする吸音材が望まれている。吸音材は、使用量を増やすことで吸音性能を全体的に向上させられることが可能であるが、車体重量増加、燃費や電費などの効率低下、運動性能低下を招くため、高い吸音性能を維持しつつ、より軽量なものが望まれている。 In recent years, automobiles are rapidly electrifying their power sources in order to reduce greenhouse gases, and it is clear that this trend will continue in the future. As the electrification of power sources progresses, noise in the low frequency region of less than 1000 Hz, which is buried in engine noise and is derived from muffled noise, transmitted noise, road noise, etc., becomes apparent. It has become a challenge. However, since the existing sound absorbing material has a low sound absorbing effect in a low frequency region of less than 1000 Hz, a sound absorbing material targeting this frequency region is desired. The sound absorbing material can improve the sound absorbing performance as a whole by increasing the amount used, but it maintains high sound absorbing performance because it causes an increase in the weight of the vehicle body, a decrease in efficiency such as fuel consumption and electricity cost, and a decrease in exercise performance. However, a lighter one is desired.

軽量かつ低周波数から高周波数までの幅広い周波数領域において、バランスの良い吸音性能を示す吸音材として、不織布が用いられる。例えば、3M社のシンサレートがよく知られている。 Nonwoven fabric is used as a sound absorbing material that is lightweight and exhibits well-balanced sound absorbing performance in a wide frequency range from low frequency to high frequency. For example, 3M's Thinsulate is well known.

多孔質吸音材料中に音が入射すると、音は、吸音材料内の小さな隙間に入るので、音の周波数に応じて空気が圧縮と膨張を繰り返す。繊維からなる細い管を想定すると、空気の粘性および管の断面寸法等によって決まるエネルギー損失によって音は消滅する。また、空気の圧縮と膨張過程で発生し、移動する熱の伝導によっても音は消滅する。さらに、繊維自体の振動によってもエネルギー損失が起こる。このように、音のエネルギーが熱エネルギーに変わって消滅して、吸音される。 When sound is incident on the porous sound absorbing material, the sound enters a small gap in the sound absorbing material, so that the air repeatedly compresses and expands according to the frequency of the sound. Assuming a thin tube made of fibers, the sound disappears due to energy loss determined by the viscosity of air and the cross-sectional dimensions of the tube. In addition, the sound is extinguished by the conduction of heat that is generated and transferred during the compression and expansion of air. Furthermore, energy loss also occurs due to the vibration of the fiber itself. In this way, the energy of sound is converted into heat energy and disappears, and the sound is absorbed.

特開平11−272280号公報Japanese Unexamined Patent Publication No. 11-272280

本発明の課題は、多孔質材料からなる吸音材であって、現時点で軽量かつ低周波数から高周波数までの幅広い領域においてバランスの良い吸音性能を示す不織布よりも、低周波数領域においてさらに高い吸音率を発現できる、吸音材を提供することにある。また、現時点で軽量かつ低周波数から高周波数までの幅広い領域においてバランスの良い吸音性能を示す不織布よりも、低周波数領域において、さらに高い吸音率を発現できる吸音材を提供することを目的とする、多孔質材料の吸音材への使用方法を提供することにある。 The subject of the present invention is a sound absorbing material made of a porous material, which has a higher sound absorption coefficient in a low frequency region than a non-woven fabric which is lightweight and exhibits well-balanced sound absorbing performance in a wide range from low frequency to high frequency at present. The present invention is to provide a sound absorbing material capable of expressing the above. Another object of the present invention is to provide a sound absorbing material capable of exhibiting a higher sound absorption coefficient in a low frequency region than a non-woven fabric which is lightweight and exhibits a well-balanced sound absorbing performance in a wide range from low frequency to high frequency at present. To provide a method of using a porous material as a sound absorbing material.

本発明の実施形態による吸音材は、
繊維を含み、密度が0.5mg/cm〜20mg/cmである、多孔質材料からなる。
The sound absorbing material according to the embodiment of the present invention is
It includes fibers, density of 0.5mg / cm 3 ~20mg / cm 3 , made of a porous material.

一つの実施形態においては、上記多孔質材料がエアロゲルである。 In one embodiment, the porous material is airgel.

一つの実施形態においては、上記繊維の直径が1nm〜1000nmである。 In one embodiment, the fibers have a diameter of 1 nm to 1000 nm.

一つの実施形態においては、上記多孔質材料が2つ以上の層の積層体であり、該2つ以上の層の中の少なくとも2つの層の密度が互いに異なる。 In one embodiment, the porous material is a laminate of two or more layers, and the densities of at least two of the two or more layers are different from each other.

一つの実施形態においては、上記吸音材は、JIS−A−1405−2による吸音率測定において、周波数600Hzにおける吸音率が0.10以上である。 In one embodiment, the sound absorbing material has a sound absorbing coefficient of 0.10 or more at a frequency of 600 Hz in the sound absorbing coefficient measurement by JIS-A-1405-2.

本発明の実施形態による多孔質材料の使用方法は、
繊維を含み、密度が0.5mg/cm〜20mg/cmである多孔質材料を、吸音材として使用する。
The method of using the porous material according to the embodiment of the present invention is as follows.
It includes fibers, density of the porous material is 0.5mg / cm 3 ~20mg / cm 3 , for use as sound absorbing material.

一つの実施形態においては、上記多孔質材料がエアロゲルである。 In one embodiment, the porous material is airgel.

一つの実施形態においては、上記繊維の直径が1nm〜1000nmである。 In one embodiment, the fibers have a diameter of 1 nm to 1000 nm.

一つの実施形態においては、上記多孔質材料が2つ以上の層の積層体であり、該2つ以上の層の中の少なくとも2つの層の密度が互いに異なる。 In one embodiment, the porous material is a laminate of two or more layers, and the densities of at least two of the two or more layers are different from each other.

一つの実施形態においては、上記吸音材は、JIS−A−1405−2による吸音率測定において、周波数600Hzにおける吸音率が0.10以上である。 In one embodiment, the sound absorbing material has a sound absorbing coefficient of 0.10 or more at a frequency of 600 Hz in the sound absorbing coefficient measurement by JIS-A-1405-2.

本発明によれば、多孔質材料からなる吸音材であって、現時点で軽量かつ低周波数から高周波数までの幅広い領域においてバランスの良い吸音率を示す不織布よりも、低周波数領域においてさらに高い吸音率を発現できる、吸音材を提供することができる。また、現時点で軽量かつ低周波数から高周波数までの幅広い領域においてバランスの良い吸音率を示す不織布よりも、低周波数領域において、さらに高い吸音率を発現できる吸音材を提供することを目的とする、多孔質材料の吸音材への使用方法を提供することができる。 According to the present invention, it is a sound absorbing material made of a porous material, and has a higher sound absorbing coefficient in a low frequency region than a non-woven fabric which is currently lightweight and exhibits a well-balanced sound absorbing coefficient in a wide range from low frequency to high frequency. It is possible to provide a sound absorbing material capable of expressing the above. Another object of the present invention is to provide a sound absorbing material capable of exhibiting a higher sound absorption coefficient in a low frequency region than a non-woven fabric which is lightweight and exhibits a well-balanced sound absorption coefficient in a wide range from low frequency to high frequency at present. A method of using a porous material as a sound absorbing material can be provided.

実施例で製造した吸音材と不織布吸音材についての、低周波数領域における吸音率を示すグラフ図である。It is a graph which shows the sound absorption coefficient in a low frequency region about the sound absorption material and the non-woven fabric sound absorption material manufactured in an Example.

≪吸音材≫
本発明の実施形態による吸音材は、繊維を含み、密度が0.5mg/cm〜20mg/cmである、多孔質材料からなる。本発明の実施形態による吸音材が上記のような多孔質材料からなれば、現時点で軽量かつ低周波数から高周波数までの幅広い領域においてバランスの良い吸音率を示す不織布よりも、低周波数領域においてさらに高い吸音率を発現できる、吸音材を提供し得る。
≪Sound absorbing material≫
Sound-absorbing material according to an embodiment of the present invention includes a fiber, density of 0.5mg / cm 3 ~20mg / cm 3 , made of a porous material. If the sound absorbing material according to the embodiment of the present invention is made of the above-mentioned porous material, it is further in the low frequency region than the non-woven fabric which is lightweight and exhibits a well-balanced sound absorbing coefficient in a wide range from low frequency to high frequency at present. It is possible to provide a sound absorbing material capable of exhibiting a high sound absorbing rate.

多孔質材料に含まれる繊維としては、本発明の効果を損なわない範囲で任意の適切な繊維を採用し得る。このような繊維としては、例えば、炭素繊維、無機繊維、金属繊維、有機繊維などが挙げられる。このような繊維は、1種のみであってもよいし、2種以上であってもよい。 As the fiber contained in the porous material, any suitable fiber can be adopted as long as the effect of the present invention is not impaired. Examples of such fibers include carbon fibers, inorganic fibers, metal fibers, organic fibers and the like. Such fibers may be of only one type or of two or more types.

炭素繊維としては、例えば、カーボンナノチューブ繊維、ピッチ系炭素繊維、PAN系炭素繊維、気相成長炭素繊維(VFCG)、セルロースナノファイバーや発酵ナノセルロース等のセルロース系炭素繊維、キチンナノファイバー、キトサンナノファイバー、黒鉛繊炭素繊維などが挙げられる。好ましくは、カーボンナノチューブ繊維およびセルロースナノファイバーであり、より好ましくはカーボンナノチューブ繊維である。 Examples of the carbon fiber include carbon nanotube fiber, pitch carbon fiber, PAN carbon fiber, gas phase growth carbon fiber (VFCG), cellulose carbon fiber such as cellulose nanofiber and fermented nanocellulose, chitin nanofiber, and chitosan nano. Examples include fiber and graphite fiber carbon fiber. Carbon nanotube fibers and cellulose nanofibers are preferable, and carbon nanotube fibers are more preferable.

無機繊維としては、例えば、グラスファイバー、ガラス繊維、セラミックス繊維、ボロン繊維、ロックウール等の人造鉱物繊維、天然鉱物繊維、シリカ繊維、アルミナナノファイバー、酸化チタンナノチューブなどが挙げられる。 Examples of the inorganic fiber include glass fiber, glass fiber, ceramics fiber, boron fiber, artificial mineral fiber such as rock wool, natural mineral fiber, silica fiber, alumina nanofiber, titanium oxide nanotube and the like.

金属繊維としては、例えば、アルミニウム、黄銅、ステンレス、チタン、スチールなどの金属からなる繊維が挙げられる。 Examples of the metal fiber include fibers made of a metal such as aluminum, brass, stainless steel, titanium, and steel.

有機繊維としては、例えば、ポリエステル繊維、ポリアミド繊維、アラミド繊維、ポリアセタール繊維、PBO繊維、ポリフェニレンスルフィド繊維、ポリアクリル繊維、ポリエチレン繊維、ポリアクリル繊維、ナイロン繊維、これらの混合繊維などが挙げられる。 Examples of the organic fiber include polyester fiber, polyamide fiber, aramid fiber, polyacetal fiber, PBO fiber, polyphenylene sulfide fiber, polyacrylic fiber, polyethylene fiber, polyacrylic fiber, nylon fiber, and a mixed fiber thereof.

多孔質材料に含まれる繊維の直径は、好ましくは1nm〜1000nmであり、より好ましくは1nm〜500nmであり、さらに好ましくは1nm〜100nmであり、特に好ましくは2nm〜20nmである。ここで直径とは、走査型電子顕微鏡や透過型電子顕微鏡で繊維を観察し、その幅を多数測定したものの平均値を指す。なお、上記繊維の断面は、丸状である必要はない。上記繊維の断面は、楕円形、多角形、Y字型等でも構わない。上記繊維の断面が丸状以外の場合(例えば、上記の楕円形、多角形、Y字型等)においても、その直径は上記測定方法で直径を算出することは可能であるが、算出が困難な場合には、断面の外接円の直径を繊維の直径としてもよい。上記繊維の長さについては、特に限定されないが、直径の100倍〜200000倍であることが好ましい。繊維の長さが直径に対して上記の範囲である場合、後述するエアロゲル粒子が結合したクラスター構造の形成が促進され、吸音性能が向上する傾向にある。 The diameter of the fiber contained in the porous material is preferably 1 nm to 1000 nm, more preferably 1 nm to 500 nm, still more preferably 1 nm to 100 nm, and particularly preferably 2 nm to 20 nm. Here, the diameter refers to the average value of observing fibers with a scanning electron microscope or a transmission electron microscope and measuring a large number of widths thereof. The cross section of the fiber does not have to be round. The cross section of the fiber may be elliptical, polygonal, Y-shaped or the like. Even when the cross section of the fiber is not round (for example, the ellipse, polygon, Y-shape, etc.), the diameter can be calculated by the above measurement method, but it is difficult to calculate. In this case, the diameter of the circumscribed circle in the cross section may be the diameter of the fiber. The length of the fiber is not particularly limited, but is preferably 100 to 200,000 times the diameter. When the length of the fiber is in the above range with respect to the diameter, the formation of a cluster structure to which the airgel particles described later are bonded is promoted, and the sound absorption performance tends to be improved.

多孔質材料に含まれる繊維の直径が上記範囲内にあれば、現時点で軽量かつ低周波数から高周波数までの幅広い領域においてバランスの良い吸音率を示す不織布よりも、低周波数領域においてさらに高い吸音率を発現できる、吸音材を提供し得る。 If the diameter of the fiber contained in the porous material is within the above range, the sound absorption coefficient is higher in the low frequency region than the non-woven fabric which is currently lightweight and exhibits a well-balanced sound absorption coefficient in a wide range from low frequency to high frequency. Can provide a sound absorbing material capable of expressing the above.

多孔質材料中の繊維の含有割合は、好ましくは1質量%〜70質量%であり、より好ましくは5質量%〜60質量%であり、さらに好ましくは10質量%〜50質量%であり、特に好ましくは15質量%〜45質量%である。多孔質材料中の繊維の含有割合が上記範囲内にあれば、現時点で軽量かつ低周波数から高周波数までの幅広い領域においてバランスの良い吸音率を示す不織布よりも、低周波数領域においてさらに高い吸音率をより発現できる、吸音材を提供し得る。 The content ratio of the fiber in the porous material is preferably 1% by mass to 70% by mass, more preferably 5% by mass to 60% by mass, still more preferably 10% by mass to 50% by mass, and particularly. It is preferably 15% by mass to 45% by mass. If the fiber content in the porous material is within the above range, the sound absorption coefficient is even higher in the low frequency region than the non-woven fabric, which is currently lightweight and exhibits a well-balanced sound absorption coefficient in a wide range from low frequency to high frequency. Can provide a sound absorbing material that can more express the above.

多孔質材料の密度は、0.5mg/cm〜20mg/cmであり、好ましくは1.0mg/cm〜20mg/cmであり、より好ましくは1.0mg/cm〜18mg/cmであり、さらに好ましくは1.5mg/cm〜18mg/cmであり、特に好ましくは2.0mg/cm〜15mg/cmである。多孔質材料の密度が上記範囲内にあれば、現時点で軽量かつ低周波数から高周波数までの幅広い領域においてバランスの良い吸音率を示す不織布よりも、低周波数領域においてさらに高い吸音率を発現できる、吸音材を提供し得る。 The density of the porous material is 0.5mg / cm 3 ~20mg / cm 3 , preferably from 1.0mg / cm 3 ~20mg / cm 3 , more preferably 1.0mg / cm 3 ~18mg / cm 3, and more preferably from 1.5mg / cm 3 ~18mg / cm 3 , particularly preferably from 2.0mg / cm 3 ~15mg / cm 3 . If the density of the porous material is within the above range, it is possible to develop a higher sound absorption coefficient in the low frequency region than the non-woven fabric which is lightweight and exhibits a well-balanced sound absorption coefficient in a wide range from low frequency to high frequency at present. Can provide a sound absorbing material.

多孔質材料は、バインダーを含むことが好ましい。バインダーは、繊維を分散できるものであれば、本発明の効果を損なわない範囲で任意の適切なバインダーを採用し得る。このようなバインダーとしては、例えば、アクリル酸、メタクリル酸、マレイン酸等のカルボキシ基含有単量体の(共)重合体;カルボキシメチルセルロース(CMC)等のカルボキシ基含有(共)重合体;スチレンスルホン酸、2−アクリルアミド−2−メチルプロパンスルホン酸等のスルホン酸基含有単量体の(共)重合体;リグニンスルホン酸、ナフタレンスルホン酸等のスルホン酸基含有(共)重合体;リン酸基含有(共)重合体;等が挙げられる。上記(共)重合体は、含まれる酸基が中和されていなくても、一部または全部が中和されていてもかまわない。上記共重合体における共重合体成分としては、本発明の効果を損なわない範囲で任意の適切な共重合体成分を採用し得る。このような共重合体成分としては、例えば、アクリル酸エステル、メタクリル酸エステル、アミド基含単量体等のノニオン性単量体などが挙げられる。例えば、CMCは水溶媒に速やかに溶けて分散し、水溶媒中で繊維の凝集を抑えることができる。これにより、現時点で軽量かつ低周波数から高周波数までの幅広い領域においてバランスの良い吸音率を示す不織布よりも、低周波数領域においてさらに高い吸音率をより発現できる、吸音材を提供し得る。 The porous material preferably contains a binder. As the binder, any suitable binder may be used as long as the fibers can be dispersed, as long as the effects of the present invention are not impaired. Examples of such a binder include a (co) polymer of a carboxy group-containing monomer such as acrylic acid, methacrylic acid, and maleic acid; a carboxy group-containing (co) polymer such as carboxymethyl cellulose (CMC); and a styrene sulfone. (Co) polymer of sulfonic acid group-containing monomer such as acid, 2-acrylamide-2-methylpropane sulfonic acid; sulfonic acid group-containing (co) polymer such as lignin sulfonic acid and naphthalene sulfonic acid; phosphoric acid group Contains (co) polymer; and the like. In the above (co) polymer, the acid group contained therein may not be neutralized, or a part or all of the acid group may be neutralized. As the copolymer component in the above-mentioned copolymer, any suitable copolymer component can be adopted as long as the effect of the present invention is not impaired. Examples of such copolymer components include nonionic monomers such as acrylic acid esters, methacrylic acid esters, and amide group-containing monomers. For example, CMC can be rapidly dissolved and dispersed in an aqueous solvent to suppress fiber aggregation in the aqueous solvent. As a result, it is possible to provide a sound absorbing material that is lightweight and can further develop a higher sound absorbing coefficient in a low frequency region than a non-woven fabric that is lightweight and exhibits a well-balanced sound absorbing coefficient in a wide range from low frequency to high frequency.

多孔質材料中のバインダーの含有割合は、好ましくは10質量%〜95質量%であり、より好ましくは20質量%〜90質量%であり、さらに好ましくは30質量%〜90質量%であり、特に好ましくは40質量%〜85質量%である。多孔質材料中のバインダーの含有割合が上記範囲内にあれば、現時点で軽量かつ低周波数から高周波数までの幅広い領域においてバランスの良い吸音率を示す不織布よりも、低周波数領域においてさらに高い吸音率をより発現できる、吸音材を提供し得る。 The content ratio of the binder in the porous material is preferably 10% by mass to 95% by mass, more preferably 20% by mass to 90% by mass, still more preferably 30% by mass to 90% by mass, and particularly. It is preferably 40% by mass to 85% by mass. If the content of the binder in the porous material is within the above range, the sound absorption coefficient is higher in the low frequency region than the non-woven fabric which is lightweight and exhibits a well-balanced sound absorption coefficient in a wide range from low frequency to high frequency at present. Can provide a sound absorbing material that can more express the above.

多孔質材料は、必要に応じて、粒子状物質を含んでいてもよい。多孔質材料に粒子状物質を適切に含ませることにより、多孔質材料の細孔を微小化することができ、多孔質材料の密度を調整することができる。粒子状物質としては、本発明の効果を損なわない範囲で任意の適切な粒子状物質を採用し得る。このような粒子状物質としては、例えば、有機材料、無機材料、有機無機複合材料などが挙げられる。このような粒子状物質としては、好ましくは、金属、金属酸化物などの無機材料から選択され、特に好ましくは、空隙を持つ無機多孔質材料が選択される。このような無機多孔質材料としては、例えば、シリカ、アルミナ、チタニア、ジルコニアからなる群から選ばれる少なくとも1種からなる粉末、或いはゾルを用いることができる。 The porous material may contain particulate matter, if desired. By appropriately including the particulate matter in the porous material, the pores of the porous material can be miniaturized, and the density of the porous material can be adjusted. As the particulate matter, any suitable particulate matter can be adopted as long as the effect of the present invention is not impaired. Examples of such particulate matter include organic materials, inorganic materials, and organic-inorganic composite materials. As such a particulate matter, an inorganic material such as a metal or a metal oxide is preferably selected, and an inorganic porous material having voids is particularly preferably selected. As such an inorganic porous material, for example, a powder consisting of at least one selected from the group consisting of silica, alumina, titania, and zirconia, or a sol can be used.

多孔質材料中の粒子状物質の含有割合は、好ましくは20質量%以下である。多孔質材料中の粒子状物質の含有割合が上記範囲内にあれば、現時点で軽量かつ低周波数から高周波数までの幅広い領域においてバランスの良い吸音率を示す不織布よりも、低周波数領域においてさらに高い吸音率をより発現できる、吸音材を提供し得る。 The content ratio of the particulate matter in the porous material is preferably 20% by mass or less. If the content of particulate matter in the porous material is within the above range, it is even higher in the low frequency region than the non-woven fabric, which is currently lightweight and exhibits a well-balanced sound absorption coefficient in a wide range from low frequency to high frequency. It is possible to provide a sound absorbing material capable of more expressing the sound absorbing rate.

多孔質材料は、好ましくは、スポンジ状のエアロゲルである。エアロゲルとは、湿潤ゲルを超臨界乾燥させて得られた低密度の乾燥ゲルを指す。一般的にエアロゲルの内部は網目状の微細構造となっており、2〜20nm程度のエアロゲル粒子(エアロゲルを構成する粒子)が結合したクラスター構造を有している。このクラスターにより形成される骨格間には、200nmに満たない微細な細孔が存在し、三次元的に微細な多孔性の構造をしている。 The porous material is preferably a sponge-like airgel. Airgel refers to a low-density dry gel obtained by supercritical drying a wet gel. Generally, the inside of airgel has a mesh-like fine structure, and has a cluster structure in which airgel particles (particles constituting airgel) having a size of about 2 to 20 nm are bonded. Fine pores of less than 200 nm exist between the skeletons formed by these clusters, and have a three-dimensionally fine porous structure.

本発明の実施形態における吸音材を構成する多孔質材料は、繊維を主成分とし、好ましくは繊維とバインダーを含むスポンジ状のエアロゲルである。 The porous material constituting the sound absorbing material in the embodiment of the present invention is a sponge-like airgel containing fibers as a main component, preferably fibers and a binder.

本発明の実施形態における吸音材は、JIS−A−1405−2による吸音率測定において、周波数600Hzにおける吸音率が、好ましくは0.10以上である。上記吸音率が上記範囲内にあれば、現時点で軽量かつ低周波数から高周波数までの幅広い領域においてバランスの良い吸音率を示す不織布よりも、低周波数領域においてさらに高い吸音率をより発現できる、吸音材を提供し得る。 The sound absorbing material according to the embodiment of the present invention has a sound absorbing coefficient of preferably 0.10 or more at a frequency of 600 Hz in the sound absorbing coefficient measurement by JIS-A-1405-2. If the sound absorption coefficient is within the above range, the sound absorption coefficient can be further expressed in the low frequency region as compared with the non-woven fabric which is lightweight and exhibits a well-balanced sound absorption coefficient in a wide range from low frequency to high frequency at present. Material can be provided.

本発明の吸音材の一つの実施形態(吸音材実施形態1)は、多孔質材料が1つの層からなる。ここにいう層は、層状であればよく、厚みが一定である必要はない。また、層の厚みは、吸音材として配置する場所や環境などに応じて、任意の適切な厚みを採用し得る。 In one embodiment of the sound absorbing material of the present invention (sound absorbing material embodiment 1), the porous material comprises one layer. The layer referred to here may be layered and need not have a constant thickness. Further, as the thickness of the layer, any appropriate thickness may be adopted depending on the place where the sound absorbing material is arranged, the environment, and the like.

本発明の吸音材の別の一つの実施形態(吸音材実施形態2)は、多孔質材料が2つ以上の層の積層体であり、該2つ以上の層の中の少なくとも2つの層の密度が互いに異なる。ここにいう層は、層状であればよく、厚みが一定である必要はない。また、層の厚みは、吸音材として配置する場所や環境などに応じて、任意の適切な厚みを採用し得る。 Another embodiment of the sound absorbing material of the present invention (sound absorbing material embodiment 2) is a laminate of two or more layers of the porous material, and at least two layers in the two or more layers. The densities are different from each other. The layer referred to here may be layered and need not have a constant thickness. Further, as the thickness of the layer, any appropriate thickness may be adopted depending on the place where the sound absorbing material is arranged, the environment, and the like.

吸音材実施形態2において、3つ以上の密度の異なる層が積層される場合、密度が小さいものから大きいものに、もしくは密度が大きいものから小さいものに順に積層されていてもよく、密度が大きいものと小さいものとが交互に積層されていてもよい。 In the sound absorbing material embodiment 2, when three or more layers having different densities are laminated, they may be laminated from the one with the lowest density to the one with the highest density, or from the one with the highest density to the one with the lowest density, and the density is high. Ones and small ones may be alternately laminated.

本発明の吸音材は、例えば、含まれる繊維もしくはバインダー等の材質や組成が異なる多孔質体が積層されている形態であっても良い。 The sound absorbing material of the present invention may be in the form of laminated porous bodies having different materials and compositions such as fibers or binders contained therein.

吸音材実施形態2が、低周波数領域において高い吸音率を発現できることは、例えば、シミュレーションによって実証できている。具体的には、伝達関数法による吸音率測定を模擬した数値計算において、吸音材を粘弾性試料と見なし、2つのマイクの設置位置における音圧の複素振幅を境界要素法により計算することで実証した。その際、前記試料の材料パラメーターとして、密度、ヤング率、ポアソン比、粘性係数などの物性を反映させた。これにより、密度および厚みの異なる2つの試料を積層すると、500Hz〜1000Hzにおいて0.4〜1.0の吸音率を与えることが示唆された。 It has been proved by simulation, for example, that the sound absorbing material embodiment 2 can exhibit a high sound absorbing coefficient in a low frequency region. Specifically, in the numerical calculation simulating the sound absorption coefficient measurement by the transfer function method, the sound absorbing material is regarded as a viscoelastic sample, and the complex amplitude of the sound pressure at the installation positions of the two microphones is calculated by the boundary element method. bottom. At that time, physical characteristics such as density, Young's modulus, Poisson's ratio, and viscosity coefficient were reflected as material parameters of the sample. This suggests that stacking two samples with different densities and thicknesses gives a sound absorption coefficient of 0.4 to 1.0 at 500 Hz to 1000 Hz.

本発明の実施形態における吸音材を構成する多孔質材料は、炭素原子(C)の含有割合が、好ましくは10質量%〜95質量%であり、より好ましくは20質量%〜90質量%であり、さらに好ましくは25質量%〜85質量%であり、特に好ましくは30質量%〜80質量%である。本発明の実施形態における吸音材を構成する多孔質材料中の炭素原子(C)の含有割合が上記範囲内にあれば、現時点で軽量かつ低周波数から高周波数までの幅広い領域においてバランスの良い吸音率を示す不織布よりも、低周波数領域においてさらに高い吸音率をより発現できる、吸音材を提供し得る。 The porous material constituting the sound absorbing material according to the embodiment of the present invention has a carbon atom (C) content of preferably 10% by mass to 95% by mass, more preferably 20% by mass to 90% by mass. It is more preferably 25% by mass to 85% by mass, and particularly preferably 30% by mass to 80% by mass. If the content ratio of the carbon atom (C) in the porous material constituting the sound absorbing material in the embodiment of the present invention is within the above range, it is currently lightweight and has a well-balanced sound absorption in a wide range from low frequency to high frequency. It is possible to provide a sound absorbing material capable of exhibiting a higher sound absorbing coefficient in a low frequency region than a non-woven fabric showing a rate.

≪吸音材の製造≫
本発明の実施形態における吸音材の製造方法としては、本発明の効果を損なわない範囲で、任意の適切な方法によって製造し得る。このような製造方法としては、代表的には、繊維と、好ましくはバインダーと、必要に応じて粒子状物質を、水中で分散させ、これを低温下で凍結乾燥することにより得ることができる。密度の異なる多孔質材料を積層する場合は、繊維とバインダーなどからなる濃度の異なる複数の分散溶液を逐次凍結乾燥すればよい。
≪Manufacturing of sound absorbing material≫
As the method for producing the sound absorbing material according to the embodiment of the present invention, the sound absorbing material can be produced by any suitable method as long as the effect of the present invention is not impaired. As such a production method, a fiber, preferably a binder, and a particulate matter, if necessary, can be typically obtained by dispersing them in water and freeze-drying them at a low temperature. When laminating porous materials having different densities, a plurality of dispersion solutions having different concentrations, such as fibers and binders, may be freeze-dried sequentially.

≪多孔質材料の使用方法≫
本発明の実施形態における多孔質材料の使用方法は、繊維を含み、密度が0.5mg/cm〜20mg/cmである多孔質材料を、吸音材として使用する。
≪How to use porous material≫
Using a porous material according to an embodiment of the present invention includes a fiber, density porous material is 0.5mg / cm 3 ~20mg / cm 3 , for use as sound absorbing material.

本発明の実施形態における多孔質材料の使用方法において使用する多孔質材料は、前述の≪吸音材≫の項における多孔質材料の説明を援用し得る。 As the porous material used in the method of using the porous material in the embodiment of the present invention, the description of the porous material in the above-mentioned << Sound absorbing material >> can be incorporated.

以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。なお、特に断りのない限り、「部」は「質量部」を、「%」は「質量%」を意味する。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited to these examples. Unless otherwise specified, "part" means "part by mass" and "%" means "% by mass".

<吸音率の測定方法>
吸音率は、JIS−A−1405−2に従い、日本音響エンジニアリング製のWinZacMTXを用いて、背後空気層のない剛壁密着条件における垂直入射吸音率を測定した。
<Measurement method of sound absorption coefficient>
The sound absorption coefficient was measured according to JIS-A-1405-2 using WinZac MTX manufactured by Nippon Acoustic Engineering Co., Ltd. under the condition of close contact with a rigid wall without a back air layer.

[実施例1]
直径が2.0nm±0.5nmであるシングルウォールカーボンナノチューブ(株式会社名城ナノカーボン製、Meijo eDIPS EC2.0)0.200gとカルボキシメチルセルロースナトリウム(富士フィルム和光純薬株式会社製、分子量:100,000〜110,000、Na含有率:6.5質量%〜8.5質量%)0.300gを混合し、純水に分散させ200mLとした。これを直径約100mm×深さ13mmのシャーレに入れ、5℃で予備冷却の後、−80℃で凍結した。これをさらに−45℃〜−50℃、圧力10Pa〜20Paで凍結乾燥した。その後、常圧室温下でシャーレからエアロゲルを取り出して、密度3.4mg/cmの吸音材(1)を得た。結果を図1に示す。
図1に示すように、吸音材(1)は、周波数600Hzにおける吸音率が0.11であった。
[Example 1]
Single-wall carbon nanotubes with a diameter of 2.0 nm ± 0.5 nm (Meijo eDIPS EC2.0, manufactured by Meijo Nanocarbon Co., Ltd.) 0.200 g and sodium carboxymethyl cellulose (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd., molecular weight: 100, 000 to 110,000, Na content: 6.5% by mass to 8.5% by mass) 0.300 g was mixed and dispersed in pure water to make 200 mL. This was placed in a petri dish having a diameter of about 100 mm and a depth of 13 mm, pre-cooled at 5 ° C, and then frozen at −80 ° C. This was further freeze-dried at −45 ° C. to −50 ° C. and a pressure of 10 Pa to 20 Pa. Then, the airgel was taken out from the petri dish under normal pressure and room temperature to obtain a sound absorbing material (1) having a density of 3.4 mg / cm 3. The results are shown in FIG.
As shown in FIG. 1, the sound absorbing material (1) had a sound absorbing coefficient of 0.11 at a frequency of 600 Hz.

[実施例2]
直径が2.0nm±0.5nmであるシングルウォールカーボンナノチューブ(株式会社名城ナノカーボン製、Meijo eDIPS EC2.0)0.400gとカルボキシメチルセルロースナトリウム(富士フィルム和光純薬株式会社製、分子量:100,000〜110,000、Na含有率:6.5質量%〜8.5質量%)0.600gを用いたこと以外は、実施例1と同様にして、密度6.1mg/cmの吸音材(2)を得た。当該吸音材の密度は6.1mg/cmであった。結果を図1に示す。
図1に示すように、吸音材(2)は、周波数600Hzにおける吸音率が0.16であった。
[Example 2]
Single-wall carbon nanotubes with a diameter of 2.0 nm ± 0.5 nm (Meijo eDIPS EC2.0, manufactured by Meijo Nanocarbon Co., Ltd.) and 0.400 g of sodium carboxymethyl cellulose (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd., molecular weight: 100, 000 to 110,000, Na content: 6.5% by mass to 8.5% by mass) Sound absorbing material having a density of 6.1 mg / cm 3 in the same manner as in Example 1 except that 0.600 g was used. (2) was obtained. The density of the sound absorbing material was 6.1 mg / cm 3 . The results are shown in FIG.
As shown in FIG. 1, the sound absorbing material (2) had a sound absorbing coefficient of 0.16 at a frequency of 600 Hz.

[実施例3]
直径が3nm〜5nm、配向集合体長さ100μm〜600μmであるシングルウォールカーボンナノチューブ(ゼオンナノテクノロジー株式会社製、ZEONANO SG101)0.800gとカルボキシメチルセルロースナトリウム(富士フィルム和光純薬株式会社製、分子量:100,000〜110,000、Na含有率:6.5質量%〜8.5質量%)1.200gを用いたこと以外は実施例1と同様にして、密度12.2mg/cmの吸音材(3)を得た。結果を図1に示す。
図1に示すように、吸音材(3)は、周波数600Hzにおける吸音率が0.26であった。
[Example 3]
0.800 g of single-wall carbon nanotubes (ZEONANO SG101, manufactured by Zeon Nanotechnology, Inc., ZEONANO SG101) and sodium carboxymethyl cellulose (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd., molecular weight: 100) having a diameter of 3 nm to 5 nm and an orientation aggregate length of 100 μm to 600 μm. 000 to 110,000, Na content: 6.5% by mass to 8.5% by mass) Sound absorbing material having a density of 12.2 mg / cm 3 in the same manner as in Example 1 except that 1.200 g was used. (3) was obtained. The results are shown in FIG.
As shown in FIG. 1, the sound absorbing material (3) had a sound absorbing coefficient of 0.26 at a frequency of 600 Hz.

[比較例1]
1μm〜4μmおよび20μm〜30μmの直径を有する繊維からなり、組成の65%がポリプロピレンであり、厚さが約13mm、密度が18.0mg/cmの不織布吸音材(C1)を入手した。この不織布吸音材(C1)を直径約100mmの円形に切り抜いた。結果を図1に示す。
図1に示すように、吸音材(C1)は、周波数600Hzにおける吸音率が0.08であった。
[Comparative Example 1]
A non-woven sound absorbing material (C1) having a diameter of 1 μm to 4 μm and a diameter of 20 μm to 30 μm, 65% of the composition being polypropylene, a thickness of about 13 mm, and a density of 18.0 mg / cm 3 was obtained. This non-woven fabric sound absorbing material (C1) was cut out into a circle having a diameter of about 100 mm. The results are shown in FIG.
As shown in FIG. 1, the sound absorbing material (C1) had a sound absorbing coefficient of 0.08 at a frequency of 600 Hz.

本発明の実施形態による吸音材は、現時点で軽量かつ低周波数から高周波数までの幅広い領域においてバランスの良い吸音率を示す不織布よりも、低周波数領域においてさらに高い吸音率を発現できるので、低周波数領域の吸音が求められる各種分野の製品の吸音対策として利用可能である。


The sound absorbing material according to the embodiment of the present invention can exhibit a higher sound absorption coefficient in a low frequency region than a non-woven fabric which is lightweight and exhibits a well-balanced sound absorption coefficient in a wide range from low frequency to high frequency at present. It can be used as a sound absorption measure for products in various fields where sound absorption in the area is required.


Claims (10)

繊維を含み、密度が0.5mg/cm〜20mg/cmである、多孔質材料からなる、吸音材。 It includes fibers, density of 0.5mg / cm 3 ~20mg / cm 3 , made of a porous material, sound absorbing material. 前記多孔質材料がエアロゲルである、請求項1に記載の吸音材。 The sound absorbing material according to claim 1, wherein the porous material is airgel. 前記繊維の直径が1nm〜1000nmである、請求項1または2に記載の吸音材。 The sound absorbing material according to claim 1 or 2, wherein the fiber has a diameter of 1 nm to 1000 nm. 前記多孔質材料が2つ以上の層の積層体であり、該2つ以上の層の中の少なくとも2つの層の密度が互いに異なる、請求項1から3までのいずれかに記載の吸音材。 The sound absorbing material according to any one of claims 1 to 3, wherein the porous material is a laminate of two or more layers, and the densities of at least two layers in the two or more layers are different from each other. JIS−A−1405−2による吸音率測定において、周波数600Hzにおける吸音率が0.10以上である、請求項1から4までのいずれかに記載の吸音材。 The sound absorbing material according to any one of claims 1 to 4, wherein the sound absorbing coefficient at a frequency of 600 Hz is 0.10 or more in the sound absorbing coefficient measurement by JIS-A-1405-2. 繊維を含み、密度が0.5mg/cm〜20mg/cmである多孔質材料を、吸音材として使用する、多孔質材料の使用方法。 It includes fibers, density of the porous material is 0.5mg / cm 3 ~20mg / cm 3 , for use as sound absorbing material, the use of a porous material. 前記多孔質材料がエアロゲルである、請求項6に記載の多孔質材料の使用方法。 The method for using a porous material according to claim 6, wherein the porous material is airgel. 前記繊維の直径が1nm〜1000nmである、請求項6または7に記載の多孔質材料の使用方法。 The method for using a porous material according to claim 6 or 7, wherein the fiber has a diameter of 1 nm to 1000 nm. 前記多孔質材料が2つ以上の層の積層体であり、該2つ以上の層の中の少なくとも2つの層の密度が互いに異なる、請求項6から8までのいずれかに記載の多孔質材料の使用方法。 The porous material according to any one of claims 6 to 8, wherein the porous material is a laminate of two or more layers, and the densities of at least two layers in the two or more layers are different from each other. How to use. 前記吸音材の、JIS−A−1405−2による吸音率測定において、周波数600Hzにおける吸音率が0.10以上である、請求項6から9までのいずれかに記載の多孔質材料の使用方法。



The method for using a porous material according to any one of claims 6 to 9, wherein the sound absorption coefficient of the sound absorbing material is 0.10 or more at a frequency of 600 Hz in the sound absorption coefficient measurement by JIS-A-1405-2.



JP2020083080A 2020-05-11 2020-05-11 Sound absorption material and using method of porous material to sound absorption material Pending JP2021179459A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020083080A JP2021179459A (en) 2020-05-11 2020-05-11 Sound absorption material and using method of porous material to sound absorption material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020083080A JP2021179459A (en) 2020-05-11 2020-05-11 Sound absorption material and using method of porous material to sound absorption material

Publications (1)

Publication Number Publication Date
JP2021179459A true JP2021179459A (en) 2021-11-18

Family

ID=78511310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020083080A Pending JP2021179459A (en) 2020-05-11 2020-05-11 Sound absorption material and using method of porous material to sound absorption material

Country Status (1)

Country Link
JP (1) JP2021179459A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117107934A (en) * 2023-10-24 2023-11-24 中国建筑西南设计研究院有限公司 Double-pore sound absorption reinforced composite material and preparation method and application thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117107934A (en) * 2023-10-24 2023-11-24 中国建筑西南设计研究院有限公司 Double-pore sound absorption reinforced composite material and preparation method and application thereof
CN117107934B (en) * 2023-10-24 2024-01-23 中国建筑西南设计研究院有限公司 Double-pore sound absorption reinforced composite material and preparation method and application thereof

Similar Documents

Publication Publication Date Title
Zong et al. Flexible ceramic nanofibrous sponges with hierarchically entangled graphene networks enable noise absorption
Zhu et al. Lightweight, high-strength, and anisotropic structure composite aerogel based on hydroxyapatite nanocrystal and chitosan with thermal insulation and flame retardant properties
Jia et al. Highly compressible and anisotropic lamellar ceramic sponges with superior thermal insulation and acoustic absorption performances
Dou et al. Hierarchical cellular structured ceramic nanofibrous aerogels with temperature-invariant superelasticity for thermal insulation
Cao et al. Porous materials for sound absorption
Liang et al. Light and strong hierarchical porous SiC foam for efficient electromagnetic interference shielding and thermal insulation at elevated temperatures
Cao et al. Ultralight and resilient electrospun fiber sponge with a lamellar corrugated microstructure for effective low-frequency sound absorption
Xie et al. Electrospun wrinkled porous polyimide nanofiber-based filter via thermally induced phase separation for efficient high-temperature PMs capture
Yan et al. “Robust–soft” anisotropic nanofibrillated cellulose aerogels with superior mechanical, flame-retardant, and thermal insulating properties
Cao et al. Hierarchically maze-like structured nanofiber aerogels for effective low-frequency sound absorption
Liu et al. A graphene oxide and functionalized carbon nanotube based semi-open cellular network for sound absorption
Zhao et al. Thermal and mechanical performances of the superflexible, hydrophobic, silica-based aerogel for thermal insulation at ultralow temperature
Tong et al. Si3N4 nanofibrous aerogel with in situ growth of SiO x coating and nanowires for oil/water separation and thermal insulation
Simón-Herrero et al. PVA/nanoclay/graphene oxide aerogels with enhanced sound absorption properties
Dou et al. Semi-template based, biomimetic-architectured, and mechanically robust ceramic nanofibrous aerogels for thermal insulation
JP2021179459A (en) Sound absorption material and using method of porous material to sound absorption material
Zhang et al. Ultralight and heat-insulating mesoporous polyimide aerogels cross-linked with aminated SiO2 nanoparticles
Zhu et al. Metal-organic framework decorated polyimide nanofiber aerogels for efficient high-temperature particulate matter removal
Datsyuk et al. Polystyrene nanofibers for nonwoven porous building insulation materials
Zheng et al. Fiber templated epitaxially grown composite membranes: from thermal insulation to infrared stealth
Li et al. Thermal insulation performances of carbonized sawdust packed bed for energy saving in buildings
Qian et al. 3D needle-punched carbon/quartz fabric reinforced nanoporous phenolic composites with co-optimized mechanics, insulation and ablation
Yu et al. Perfect broadband sound absorption on a graphene-decorated porous system with dual-3D structures
Shen et al. Design of microperforated nanofibrous membrane coated nonwoven structure for acoustic applications
Hamamizadeh et al. Investigating the mechanical, morphological, and acoustic properties of the phenolic aerogel/flexible polyurethane foam composite

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230329

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240507