JP2021177712A - Method for producing inulin using inulosucrase from bacillus krulwichiae - Google Patents

Method for producing inulin using inulosucrase from bacillus krulwichiae Download PDF

Info

Publication number
JP2021177712A
JP2021177712A JP2020083704A JP2020083704A JP2021177712A JP 2021177712 A JP2021177712 A JP 2021177712A JP 2020083704 A JP2020083704 A JP 2020083704A JP 2020083704 A JP2020083704 A JP 2020083704A JP 2021177712 A JP2021177712 A JP 2021177712A
Authority
JP
Japan
Prior art keywords
inulin
inulosucrase
gly
ala
asp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020083704A
Other languages
Japanese (ja)
Inventor
藤井孝一
Koichi Fujii
高羽優算
Masakazu Takaba
横井健二
Kenji Yokoi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON ORIGO KK
Toyama Prefecture
Original Assignee
NIPPON ORIGO KK
Toyama Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON ORIGO KK, Toyama Prefecture filed Critical NIPPON ORIGO KK
Priority to JP2020083704A priority Critical patent/JP2021177712A/en
Publication of JP2021177712A publication Critical patent/JP2021177712A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a method for efficiently producing inulin from sucrose, leading to waste reduction and cost reduction.SOLUTION: There is provided an inulosucrase isolated and recombinantly expressed from Bacillus krulwichiae, comprising: sequences consisting of specific amino acid sequences and variants thereof created by recombinant techniques.SELECTED DRAWING: Figure 1

Description

本発明は新規イヌリロスクラーゼ遺伝子、およびそれを組み換え発現して得る新規イヌロスクラーゼを用いたイヌリンの製造方法に関する。 The present invention relates to a novel inulosucrase gene and a method for producing inulin using a novel inulosucrase obtained by recombinantly expressing the gene.

イヌリンは多糖類の一種で、主に一部植物(チコリ、ダリア、キクイモ、ゴボウ、ニンニク、など)の塊茎に多く含まれる。その構造はグルコースのポリマーであるデンプンとは異なり、スクロースのフラクトース側にD-フラクトースがβ-(2→1)結合により重合したものである。その分子量はフラクトースの鎖長により異なり、イヌリンはフラクトースが2個以上重合したものの総称である。通常その鎖長をフラクトースの重合数で表記することが多い(GF10などと表記する)が、短い鎖長のものは1-ケストース(GF2)、1-ニストース(GF3)、1-フルクトフラノシルニストース(GF4)と名称が付く。植物由来のイヌリンは、一般にGF30からGF50程度の鎖長である。イヌリンは主にチコリ、キクイモなど植物の塊茎から抽出・精製して製造されるが、微生物酵素を用いてショ糖を原料にイヌリンを製造する方法はごくわずかしか検討されていない。 Inulin is a type of polysaccharide and is mainly contained in the tubers of some plants (chicory, dahlia, Jerusalem artichoke, burdock, garlic, etc.). Its structure is different from starch, which is a polymer of glucose, and D-fructose is polymerized on the fructose side of sucrose by β- (2 → 1) binding. Its molecular weight varies depending on the chain length of fructose, and inulin is a general term for two or more fructose polymerized. Usually, the chain length is often expressed by the number of polymerizations of fructose (expressed as GF10, etc.), but those with a short chain length are 1-kestose (GF2), 1-nistose (GF3), 1-fructose furanosyl. Named Nistose (GF4). Plant-derived inulin generally has a chain length of about GF30 to GF50. Inulin is mainly produced by extracting and purifying from tubers of plants such as chicory and Jerusalem artichoke, but only a few methods have been studied to produce inulin from sucrose using microbial enzymes.

特許第4676672号Patent No. 4667672 特表2017-536131Special table 2017-536131

イヌリンは、顕著な腸内菌叢改善効果を持つことが知られており、機能性食品素材として需要が高い。イヌリンは植物(チコリ、キクイモなど)の塊茎に多く含まれるが、現在イヌリンの主要な製造方法は植物からの抽出・精製であり、高コスト、廃棄物が多いことなどが課題である。他の方法としては微生物酵素を用いてショ糖を原料にイヌリンを製造する方法があるが、ごくわずかしか検討されておらず効率の良い製造方法とは言い難い。 Inulin is known to have a remarkable effect of improving the intestinal flora, and is in high demand as a functional food material. Inulin is abundantly contained in tubers of plants (chicory, Jerusalem artichoke, etc.), but at present, the main method for producing inulin is extraction and purification from plants, which has problems such as high cost and a large amount of waste. As another method, there is a method of producing inulin from sucrose using a microbial enzyme, but only a few studies have been conducted and it cannot be said that it is an efficient production method.

バチラス・クルルウィッチェJCM11691株の全ゲノム塩基配列が公開されているが、このゲノムは、配列番号3に示す新規イヌロスクラーゼ(InuBK)をコードすると考えられる遺伝子を含む。 The entire genome sequence of the Bacillus cruluwiche JCM11691 strain has been published, and this genome contains a gene thought to encode the novel inulosucrase (InuBK) shown in SEQ ID NO: 3.

このInuBKをコードする遺伝子を、分泌発現するようプラスミドに単離・挿入してブレビバチラス・チョウシネンシスを宿主として発現させたところ、当該タンパク質と推定される約50 kDaのタンパク質の蓄積を確認した。 When this gene encoding InuBK was isolated and inserted into a plasmid for secretory expression and expressed using Brevibatillas chocinensis as a host, the accumulation of a protein of about 50 kDa estimated to be the protein was confirmed.

本発明のバチラス・クルルウィッチェゲノム由来InuBKをコードする遺伝子、合成核酸から組み換え発現したポリペプチドは、その酵素活性および性質を調べた結果、イヌロスクラーゼと同定された。 The gene encoding InuBK derived from the Bacillus cruluwiche genome of the present invention, a polypeptide recombinantly expressed from a synthetic nucleic acid, was identified as inulosucrase as a result of examining its enzymatic activity and properties.

新規イヌロスクラーゼ(InuBK)の酵素の活性(比活性)は、先行特許(特許文献2、およびKralj S, et al., (2018) "Synthesis of fructooligosacchararides (FosA) and inulin (InuO) by GH68 fructosyltransferases from Bacillus agaradhaerens strain WDG185. " Carbohydr. polym., 179, 350-359参照)より少なくとも1.4倍程度高い。この新規なイヌロスクラーゼを利用することにより、スクロースからイヌリンを従来より効率よく製造することである。この遺伝子および/またはその発現産物、その活性断片、InuBKの全体または一部をコードする合成核酸およびプラスミド、それらの変異体およびそれら遺伝子または合成核酸を含む宿主細胞により、イヌロスクラーゼを含む組成物が提供される。 The activity (specific activity) of the enzyme of novel inulosucrase (InuBK) is described in the prior patent (Patent Document 2 and Kralj S, et al., (2018) "Synthesis of fructooligosacchararides (FosA) and inulin (InuO) by GH68 fructosyltransferases". from Bacillus agaradhaerens strain WDG185. "Carbohydr. Polym., 179, 350-359) is at least 1.4 times higher. By utilizing this novel inulosucrase, inulin can be produced from sucrose more efficiently than before. A composition comprising inulosucrase by a host cell comprising this gene and / or its expression product, an active fragment thereof, synthetic nucleic acids and plasmids encoding all or part of InuBK, variants thereof and those genes or synthetic nucleic acids. Is provided.

本発明によれば、バチラス・クルルウィッチェATCC11691株の生産するイヌロスクラーゼInuBKを、ショ糖を含む中性〜微アルカリ性(pH6.0-9.0)緩衝液中で50ないし55℃で作用させることにより、機能性食品素材として需要の高いイヌリンが、植物抽出による製法より少ない工程で容易に、廃棄物も少なく効率良く製造できる。本イヌロスクラーゼは、先行技術よりも比活性が高く、より少ない酵素量でイヌリンが製造でき有利である。 According to the present invention, the inulosucrase InuBK produced by the Bacillus cruluwiche ATCC11691 strain is allowed to act in a neutral to slightly alkaline (pH 6.0-9.0) buffer containing sucrose at 50 to 55 ° C. As a result, inulin, which is in high demand as a functional food material, can be easily and efficiently produced with less steps than the production method using plant extraction, and with less waste. This inulosucrase has a higher specific activity than the prior art, and is advantageous because it can produce inulin with a smaller amount of enzyme.

組み換えInuBKによるイヌリン形成。矢印はそれぞれGF3(ニストース)、GF15の位置を示す。X軸はリテンションタイム(分)、Y軸は検出器応答値(nc)。Inulin formation by recombinant InuBK. Arrows indicate the positions of GF3 (nistose) and GF15, respectively. The X-axis is the retention time (minutes), and the Y-axis is the detector response value (nc). InuBKによるショ糖からイヌリン合成における経時変化(0時間、1時間、3時間、8時間)。矢印は、ショ糖(Suc)、1-ケストース(GF2)、ニストース(GF3)の位置をそれぞれ示す。X軸、Y軸の単位は図面1と同じ。Time course of inulin synthesis from sucrose by InuBK (0 hours, 1 hour, 3 hours, 8 hours). The arrows indicate the positions of sucrose (Suc), 1-kestose (GF2), and nistose (GF3), respectively. The units of the X-axis and Y-axis are the same as in Figure 1. InuBKによるイヌリン形成反応の進行を示す図。40 mlの20%スクロース、50 mMの汎用バッファー、50 μg/mlの精製InuBKを混合し、0、1、2、3、4、6、8時間におけるショ糖(〇)、ブドウ糖(△)、果糖(▼)の濃度を示した。The figure which shows the progress of the inulin formation reaction by InuBK. Mix 40 ml of 20% sucrose, 50 mM general purpose buffer, 50 μg / ml of purified InuBK, sucrose (〇), glucose (△) at 0, 1, 2, 3, 4, 6, 8 hours, The concentration of fructose (▼) is shown. InuBKにより生成された多糖がイヌリンであることを示す図である。ショ糖からInuBKにより生成された多糖を、エタノール沈殿(2回)、遠心分離後水に再溶解し、凍結乾燥して精製多糖粉末(精製イヌリン)を得た。この粉末 0.5 mgを10μlの水に溶かし、さらに10μlのマキルベインバッファー(pH4.5)と混合し、エキソイヌリナーゼ(2000U/ml)、エンドイヌリナーゼ(300U/ml)(ともにメガザイム製)を、それぞれ1 μlづつ添加した。また、同じく粉末0.5 mgを10μlの水に溶かし、10μlの0.1 M MESバッファー(pH6.0)と混合し、エンドレバナーゼ(450U/ml、メガザイム製)を1 μl添加した。すべての酵素反応液を40℃、2時間インキュベートし、薄層クロマトグラフィーに供した。レーン1;無処理、レーン2;エンドイヌリナーゼ処理、レーン3;エキソイヌリナーゼ処理、レーン4;エンドレバナーゼ処理。It is a figure which shows that the polysaccharide produced by InuBK is inulin. The polysaccharide produced by InuBK from sucrose was subjected to ethanol precipitation (twice), centrifuged, and then redissolved in water and lyophilized to obtain a purified polysaccharide powder (purified inulin). Dissolve 0.5 mg of this powder in 10 μl of water and mix with 10 μl of makilbane buffer (pH 4.5) to exoinulinase (2000 U / ml) and endoinulinase (300 U / ml) (both manufactured by Megazyme). Was added in an amount of 1 μl each. Similarly, 0.5 mg of powder was dissolved in 10 μl of water, mixed with 10 μl of 0.1 M MES buffer (pH 6.0), and 1 μl of endolevanase (450 U / ml, manufactured by Megazyme) was added. All enzyme reaction solutions were incubated at 40 ° C. for 2 hours and subjected to thin layer chromatography. Lane 1; no treatment, lane 2; endoinulinase treatment, lane 3; exoinulinase treatment, lane 4; endrevanase treatment. ショ糖溶液からInuBKにより生成した多糖がイヌリンであることを、NMR分析により示した図である。上;InuBKにより生成したイヌリン、中;市販イヌリン(DKSHジャパン製)、下;市販レバン(メガザイム製)。It is a figure which showed by NMR analysis that the polysaccharide produced by InuBK from a sucrose solution is inulin. Top; Inulin produced by InuBK, Medium; Commercial inulin (manufactured by DKSH Japan), Bottom; Commercial levan (manufactured by Megazyme).

本発明において特定したイヌロスクラーゼ遺伝子は、その発現において、ブレビバチラス・チョウシネンシスまたはバチラス・サチリスを宿主として用いることができる。 The inulosucrase gene identified in the present invention can be hosted by Brevibacillus chocinensis or Vatilas satiris in its expression.

使用する培地はブレビバチラス・チョウシネンシスではMT培地、バチラス・サチリスではL培地が適当であるが、使用するプラスミドによって適切な抗生物質を培地に添加して、発現プラスミドの保持を図る必要がある。 The appropriate medium to be used is MT medium for Brevibacillus chocinensis and L medium for Vaticus sachilis, but it is necessary to add an appropriate antibiotic to the medium depending on the plasmid to be used to retain the expression plasmid.

培養条件は温度は30-33℃、振とう培養(例えば回転数250 rpmの回転振とう、180回/分程度の往復振とうでも良い。培養時間は24時間から36時間程度が適当である。 The culture conditions are a temperature of 30-33 ° C., and shaking culture (for example, rotary shaking at a rotation speed of 250 rpm, reciprocating shaking at about 180 times / minute. The appropriate culture time is about 24 to 36 hours.

培養後の培養液中には、十分なイヌロスクラーゼ活性が蓄積されているが、培地成分や菌体代謝産物などが混入しているため、必要に応じて硫酸アンモニウム沈殿、イオン交換クロマトグラフィー、疎水性クロマトグラフィーなどの手法により精製して用いることが好ましい。 Sufficient inulosucrase activity is accumulated in the culture broth after culturing, but since medium components and bacterial cell metabolites are mixed, ammonium sulfate precipitation, ion exchange chromatography, and hydrophobicity are required as necessary. It is preferable to purify and use it by a method such as sex chromatography.

本イヌロスクラーゼ遺伝子は、発現後の酵素のC末端にヒスチジンタグ(ヒスチジン残基が6残基連続する、人工遺伝子により融合発現されるペプチド)が融合発現するよう構築された、プラスミドまたは人工核酸により発現させても、その酵素活性を十分量保持する。このヒスチジンタグ融合イヌロスクラーゼを含む培養液から、アフィニティークロマトグラフィー(例えばニッケル結合カラムを使用)により精製しても良い。 This inulosucrase gene is a plasmid or artificial nucleic acid constructed so that a histidine tag (a peptide in which 6 consecutive histidine residues are fused and expressed by an artificial gene) is fusedly expressed at the C-terminal of the enzyme after expression. Even if it is expressed by, the enzyme activity is maintained in a sufficient amount. The culture medium containing this histidine tag fusion inulosucrase may be purified by affinity chromatography (for example, using a nickel-binding column).

InuBK遺伝子のクローニング
バチラス・クルルウィッチェJCM11691株からゲノムを抽出し、これを鋳型として配列表1,2に示すプライマを用い、InuBK遺伝子をPCR増幅(1395 bp, 使用酵素はKOD plus ポリメラーゼ)した。得られたフラグメントをPNI DNA(タカラバイオ製)のBamHI-XbaI (XbaIはKlenowフラグメントにより平滑化処理)サイトに挿入した。得られたプラスミドをpNIInuBKChisとした。
Cloning of the InuBK gene A genome was extracted from the Bacillus cruluwiche JCM11691 strain, and the InuBK gene was PCR amplified (1395 bp, the enzyme used was KOD plus polymerase) using the prima shown in Sequence Listings 1 and 2 as a template. The obtained fragment was inserted into the BamHI-XbaI (XbaI smoothed with Klenow fragment) site of PNI DNA (manufactured by Takara Bio). The obtained plasmid was designated as pNIInuBKChis.

InuBKによるブレビバチラス・チョウシネンシスの形質転換
ブレビバチラス・チョウシネンシス株(タカラバイオより購入)を、pNIInuBKChisを用いて、ニュー・トリス・ペグ法により形質転換した。形質転換処理菌体は、ネオマイシン(30μg/ml)を含むMT寒天培地上に塗末し、37℃で培養して生育した集落を形質転換体として選抜した。この形質転換株を、ブレビバチラス・チョウシネンシス InuBKhis株とした。
Transformation of Brevibatillas chocinensis by InuBK The Brevibatillas chocinensis strain (purchased from Takara Bio) was transformed by the New Tris peg method using pNIInuBKChis. The transformed cells were coated on MT agar medium containing neomycin (30 μg / ml), and the colonies grown by culturing at 37 ° C. were selected as transformants. This transformed strain was designated as Brevibacillus chocinensis InuBKhis strain.

InuBK発現
ブレビバチラス・チョウシネンシス InuBKhis株を、TM培地(ネオマイシン10μg/mlを含む)にて、37℃で振とう培養(250 rpm、回転式)した。24時間培養後、遠心分離(9500 rpm、10 分)により菌体を除去した。
InuBK-expressing Brevibatillas chocinensis strain InuBKhis was cultured in TM medium (containing 10 μg / ml neomycin) by shaking at 37 ° C. (250 rpm, rotary). After culturing for 24 hours, the cells were removed by centrifugation (9500 rpm, 10 minutes).

InuBK精製
この沈殿をカラム供試液(50 mM トリス・20 mM イミダゾール (pH7.2))に溶解し、不溶物を濾過して除去した(硫安沈殿溶液)。この硫安沈殿溶液を、ヒストラップカラム(GEヘルスケア製)に供し、さらにカラムの10倍容量(50 mM)のカラム供試液で洗浄した。その後、カラム供試液−溶出液(50 mMトリス・600 mMイミダゾール)=100%-0%から0%-100%までの濃度勾配により、吸着タンパク質を順次分別溶出した。活性画分をSDS-PAGEおよび活性測定により検出し、汎用バッファー(50 mM, pH 7.0)に対し透析して精製酵素液とした。酵素のタンパク質濃度は、牛血清アルブミン(Fraction V, SIGMA)を標準とするBradford法により定量した。
InuBK Purification This precipitate was dissolved in a column test solution (50 mM Tris, 20 mM imidazole (pH 7.2)), and the insoluble material was filtered off (sulfate precipitate solution). This ammonium sulfate precipitation solution was applied to a histrap column (manufactured by GE Healthcare), and further washed with a column test solution having a volume 10 times the volume (50 mM) of the column. Then, the adsorbed proteins were sequentially fractionated and eluted with a concentration gradient from column test solution-eluent (50 mM tris / 600 mM imidazole) = 100% -0% to 0% -100%. The active fraction was detected by SDS-PAGE and activity measurement, and dialyzed against a general-purpose buffer (50 mM, pH 7.0) to prepare a purified enzyme solution. The protein concentration of the enzyme was quantified by the Bradford method using bovine serum albumin (Fraction V, SIGMA) as a standard.

高性能アニオン交換クロマトグラフィー
InuBK反応液は、適宜純水で希釈した後、パルス式電流測定検出器を装備したHPAEC装置(ダイオネクス製ICS-5000)に供して分析した。移動層A:0.15 M NaOH-5 mM NaOAc、B:0.15M NaOH-600 mM NaOAc、試料注入量:50μl、カラム温度30℃、カラム:CarbopacPA-1(サーモフィッシャー製、4×250 mm)。なお、濃度勾配は以下のようにした。移動層A:100%(0分)、移動層A:50%, 移動層B:50%(70分)。検出器の印加パルスは、標準クワッド電位:+0.1ボルト(0〜0.4秒);-2.0ボルト(0.41〜0.42秒);0.6ボルト(0.43秒);-0.1ボルト(0.44〜0.5秒)。データはChromeleonソフトウエア(サーモフィッシャー製)により解析した。
High performance anion exchange chromatography
The InuBK reaction solution was appropriately diluted with pure water and then subjected to an analysis using an HPAEC device (ICS-5000 manufactured by Dionex) equipped with a pulsed current measurement detector. Moving layer A: 0.15 M NaOH-5 mM NaOAc, B: 0.15 M NaOH-600 mM NaOAc, sample injection volume: 50 μl, column temperature 30 ° C, column: Carbopac PA-1 (Thermo Fisher, 4 × 250 mm). The concentration gradient was as follows. Moving layer A: 100% (0 minutes), moving layer A: 50%, moving layer B: 50% (70 minutes). The applied pulse of the detector is standard quad potential: +0.1 volt (0-0.4 s); -2.0 volt (0.41-0.42 s); 0.6 volt (0.43 s); -0.1 volt (0.44-0.5 s). The data was analyzed by Chromeleon software (manufactured by Thermo Fisher).

イヌリンの産生
精製InuBKは、イヌリンを生成するため50 mMの汎用バッファー中で濃度50μg/ml、50℃、20%(W/V)のスクロースと共にインキュベートして反応させた。スクロースは時間経過とともに減少し、それと相関してグルコースが増加した。フルクトースはあまり増加しなかった(図3)。
Inulin production Purified InuBK was incubated with 20% (W / V) sucrose at a concentration of 50 μg / ml at 50 ° C. and reacted in 50 mM general-purpose buffer to produce inulin. Sucrose decreased over time, and glucose increased in correlation with it. Fructose did not increase much (Fig. 3).

この反応液(8時間反応時)を、高性能アニオン交換クロマトグラフィー(HPAEC)に供して分析したところ、生成したイヌリン鎖長は少なくともGF2〜GF25の範囲に存在した(図1)。 When this reaction solution (after 8 hours of reaction) was subjected to high-performance anion exchange chromatography (HPAEC) and analyzed, the produced inulin chain length was at least in the range of GF2 to GF25 (Fig. 1).

さらに8時間まで経時的に反応液をサンプリングして、HPAEC分析を行ったところ、この反応条件において3時間から遅くとも8時間までにはイヌリン鎖の伸長は終了した(図2)。 When the reaction solution was sampled over time for up to 8 hours and HPAEC analysis was performed, the extension of the inulin chain was completed from 3 hours to 8 hours at the latest under these reaction conditions (Fig. 2).

40mlの容量で、スクロースを30%(W/V)、精製InuBK50μg/ml(共に終濃度)になるよう、ユニバーサル緩衝液(50 mM, pH7.0)中で混合し、50℃、一夜(約14時間)保温した。保温後、2倍量のエタノールを加え、さらに一夜氷温で保持した。この白濁した溶液を、遠心分離(900×g、1時間)し、上清を除き沈殿を風乾した(エタノール沈殿)。乾燥物を適量(約30ml)の水に再溶解させたのち、エタノール沈殿を繰り返した。得られた乾燥物を適量の水に溶かした後、凍結乾燥した。得られた乾燥品(精製イヌリン)の重量を測定したところ、1.6グラムであった。 In a volume of 40 ml, mix sucrose in a universal buffer (50 mM, pH 7.0) to 30% (W / V) and purified InuBK 50 μg / ml (both final concentrations), and mix at 50 ° C. overnight (about). 14 hours) Keeped warm. After heat insulation, twice the amount of ethanol was added, and the mixture was kept at ice temperature overnight. The cloudy solution was centrifuged (900 × g, 1 hour), the supernatant was removed, and the precipitate was air-dried (ethanol precipitation). The dried product was redissolved in an appropriate amount (about 30 ml) of water, and then ethanol precipitation was repeated. The obtained dried product was dissolved in an appropriate amount of water and then freeze-dried. The weight of the obtained dried product (purified inulin) was measured and found to be 1.6 g.

特性解析
薄層クロマトグラフィー
精製イヌリンを1 mg/20μlの濃度で水に溶解し、シリカゲル60プレート(Merck製)にスポットし、移動層(1-ブタノール:エタノール:水=5:5:3)を用いて展開した。発色液(
アニスアルデヒド1.3 ml、酢酸0.5 ml、濃硫酸1.8 ml、エタノール47.8 ml)をスプレーし、110℃で約15分発色処理した。
Characteristic analysis Thin layer chromatography Purified inulin was dissolved in water at a concentration of 1 mg / 20 μl, spotted on a silica gel 60 plate (manufactured by Merck), and a moving layer (1-butanol: ethanol: water = 5: 5: 3) was applied. Deployed using. Coloring liquid (
Anisaldehyde 1.3 ml, acetic acid 0.5 ml, concentrated sulfuric acid 1.8 ml, ethanol 47.8 ml) was sprayed and color-developed at 110 ° C. for about 15 minutes.

エキソイヌリナーゼ、エンドイヌリナーゼ、エンドレバナーゼ処理
凍結乾燥イヌリン 0.5 mg(1 mg/20μl)を、10μlのマキルベインバッファー(pH4.5)と混合し、エキソイヌリナーゼ(2000U/ml)、エンドイヌリナーゼ(300U/ml)(ともにメガザイム製)を、それぞれ1 μlづつ添加した。また、同じくFOS0.5 mgを、10μlの0.1 M MESバッファー(pH6.0)と混合し、エンドレバナーゼ(450U/ml、メガザイム製)を1 μl添加した。すべての酵素反応液を40℃、2時間インキュベートし、薄層クロマトグラフィーに供した。
Freeze-dried inulinase treated with exoinulinase, endoinulinase, endrevanase 0.5 mg (1 mg / 20 μl) was mixed with 10 μl macylvain buffer (pH 4.5) to exoinulinase (2000 U / ml). , Endoinulinase (300 U / ml) (both manufactured by Megazyme) were added in an amount of 1 μl each. Similarly, 0.5 mg of FOS was mixed with 10 μl of 0.1 M MES buffer (pH 6.0), and 1 μl of endolevanase (450 U / ml, manufactured by Megazyme) was added. All enzyme reaction solutions were incubated at 40 ° C. for 2 hours and subjected to thin layer chromatography.

その結果、未処理のイヌリンでは変化が見られない一方、エンドイヌリナーゼ消化したイヌリンでは分解されて、単糖とイヌリンの中間程度と推定される分子量に、分解された多糖が検出された。エキソイヌリナーゼ消化した場合、単糖の位置にだけスポットが検出された。エンドレバナーゼでは、多糖は殆ど分解されなかった。この結果は、イヌリンはレバンではなく確実なイヌリンであることを示した(図4)。 As a result, no change was observed in untreated inulin, while inulin digested with endoinulinase was degraded, and degraded polysaccharide was detected at a molecular weight estimated to be between monosaccharide and inulin. When digested with exoinulinase, spots were detected only at the positions of monosaccharides. In endolevanase, the polysaccharide was hardly degraded. This result showed that inulin was not levan but reliable inulin (Fig. 4).

スクロースを基質とした場合の糖転移総活性の測定方法は、単位時間の反応中に放出されるグルコース量を測定して行った。また、同反応中に放出されるフルクトース量を測定し、加水分解活性とした。1ユニットは、1分間に1μmolのグルコースまたはフルクトースを放出させる量とした。総活性から加水分解活性を減じた値を転移活性とした。 The method for measuring the total glucose transfer activity when sucrose was used as a substrate was to measure the amount of glucose released during the reaction for a unit time. In addition, the amount of fructose released during the reaction was measured and used as the hydrolysis activity. One unit was the amount that released 1 μmol of glucose or fructose per minute. The value obtained by subtracting the hydrolysis activity from the total activity was defined as the transfer activity.

酵素濃度10μg/ml、基質濃度30%、ユニバーサル緩衝液(50mM, pH7.0)で、酵素1 mgあたりの各酵素活性を測定した結果、総活性は87ユニット、転移活性は78ユニット、加水分解活性は9ユニットであった。 As a result of measuring the activity of each enzyme per 1 mg of enzyme with an enzyme concentration of 10 μg / ml, a substrate concentration of 30%, and a universal buffer solution (50 mM, pH 7.0), the total activity was 87 units, the transfer activity was 78 units, and hydrolysis. The activity was 9 units.

各磁気共鳴法
1%(重量/体積)になるよう精製イヌリン試料を重水素水(Sigma-aldrich製)に溶解した。市販チコリイヌリン(オラフティーGR, DKSHジャパン)、市販レバン(メガザイム製)を対照として使用した。その結果、精製イヌリンのNMRパターンは市販チコリイヌリンのパターンに酷似し、市販レバンのそれとは明らかに異なった(図5)。
Each magnetic resonance method
Purified inulin samples were dissolved in deuterium water (manufactured by Sigma-aldrich) to 1% (weight / volume). Commercially available chicory inulin (Olaf Tea GR, DKSH Japan) and commercially available levan (manufactured by Megazyme) were used as controls. As a result, the NMR pattern of purified inulin closely resembled that of commercial chicory inulin and was clearly different from that of commercial levan (Fig. 5).

本発明により、従来よりさらに効率よく、大量に高純度・高品質なイヌリンの製造方法が提供される。 INDUSTRIAL APPLICABILITY The present invention provides a method for producing high-purity and high-quality inulin in a large amount more efficiently than before.

HPAEC 高性能アニオン交換クロマトグラフィー
NMR 核磁気共鳴法
inuBK バチルス・クルルウィッチェJCM11691株が有するイヌロスクラーゼ遺伝子
InuBK inuBKから転写・翻訳されてできるイヌロスクラーゼ
HPAEC High Performance Anion Exchange Chromatography
NMR nuclear magnetic resonance method
Inulosucrase gene of inuBK Bacillus kluluwiche JCM11691 strain
InuBK Inulosucrase transcribed and translated from inuBK

配列表
SEQUENCE LISTING

<110> Nihon Origo Co. Ltd.
Toyama Pref.
Yokoi, kenji

<120> New Inulin synthesis prodedure using the inulosucrase of Bacillus
krulwichiae

<130> DemoNo.

<160> 4

<170> PatentIn version 3.5

<210> 1
<211> 35
<212> DNA
<213> Artificial Sequence

<220>
<223> Artificial Sequence

<400> 1
acaggatcca aaatcaaaac tcgtaaaaag gtagg 35


<210> 2
<211> 46
<212> DNA
<213> Artificial Sequence

<220>
<223> Artificial sequence

<400> 2
ttagtggtga tggtgatgat gctttaaaga tctaccgtaa ggaccg 46


<210> 3
<211> 1389
<212> DNA
<213> Bacillus krulwichiae


<220>
<221> misc_feature
<222> (1)..(1389)
<223> Levansucrase

<300>
<308> J113868
<309> 2020-02-20
<313> (1)..(1389)

<300>
<308> NZ_CP020814
<309> 2019-12-17
<313> (1)..(1389)

<400> 3
atgaaaatca aaactcgtaa aaaggtagga aaattagttt tatgtgctgc gattttagcg 60

agcagtctga caagcattag cgttgctgcg agctctaact ggagtattga ggatgattac 120

acggcatcat ggtccagaca gcaagcagag aaagtggctc taacggaaga gacgacagcc 180

ccaatcatcg atttggactt tgaagatgta gctccggatg tgtgggtttg ggatacttgg 240

ccgcttcaaa acagagacgg ttcccttgcg aacgtgaaag gttacagaat cgcattcgca 300

ttggttgcac cacgtactta tacttggcat gaccgtcata ctgaagcaag aatcggcatg 360

ttctactcta aaaacggcaa ggattggacg tatgctggaa ttccatacga ctatgacaac 420

gcgttagggc acatgcaatg ggctggatct gctatgttgg acgagaaagg aaaagtgcat 480

ttcttctata cagcaactag tgatatgaat gccaatggcg gtaaagaatt taatcaagac 540

ggatgggtgc aaagagcgga acaacgccta gctaagacga catttgatat cagtgcagac 600

aaaaatggcg tgcatctgac aaatgaaggg gatcaccaaa ttcttcttga agcagatggc 660

catcattatg aaacgatcga acagttccaa gagcacggaa atatcatcac tggattccgc 720

gatccgtttt tcttcaaaga tccgaataca ggtgaagaat acattatttg ggaaggtcaa 780

gcaggcacta acagaaatga tatcaaaccg gaaaatatcg gggataaaga ataccgcgaa 840

tcacacaacg ttcctgatca tgcgaaattt tataacggaa atatcggaat tgcgaaagta 900

cttgacaacg acgtaactaa acttgaaata ttaccgccgc ttcttgagtc ggttggggtt 960

aaccatcagt tagaacgtcc gcatgttgtg gtaaaagacg acacttacta cctgcttaca 1020

atcagtcatg aatttacgtt tgcaccaggt ttaacaggtc cggatggatt gtacggtttt 1080

gtcggcgagg gaagcttgcg cacagattat aagccagtaa atggcacagg tcttgttgtt 1140

gccaatccgg cggaaaaacc gtttcaagct tattcatggt gggcggctcc agatggccag 1200

gttatcagct tcattaatga acctgtagat gagaatggac aagttaaatt tggcggaaca 1260

tttgcaccga cgctgaaggt atcctttgac ggtgacaaaa caaagatcgt gaaagaaatg 1320

caagctggag aaatcaaacc attcggtcct tacggtagat ctttaaagca tcatcaccat 1380

caccactaa 1389


<210> 4
<211> 456
<212> PRT
<213> Bacillus krulwichiae


<220>
<221> Levansucrase
<222> (1)..(456)

<400> 4

Met Lys Ile Lys Thr Arg Lys Lys Val Gly Lys Leu Val Leu Cys Ala
1 5 10 15


Ala Ile Leu Ala Ser Ser Leu Thr Ser Ile Ser Val Ala Ala Ser Ser
20 25 30


Asn Trp Ser Ile Glu Asp Asp Tyr Thr Ala Ser Trp Ser Arg Gln Gln
35 40 45


Ala Glu Lys Val Ala Leu Thr Glu Glu Thr Thr Ala Pro Ile Ile Asp
50 55 60


Leu Asp Phe Glu Asp Val Ala Pro Asp Val Trp Val Trp Asp Thr Trp
65 70 75 80


Pro Leu Gln Asn Arg Asp Gly Ser Leu Ala Asn Val Lys Gly Tyr Arg
85 90 95


Ile Ala Phe Ala Leu Val Ala Pro Arg Thr Tyr Thr Trp His Asp Arg
100 105 110


His Thr Glu Ala Arg Ile Gly Met Phe Tyr Ser Lys Asn Gly Lys Asp
115 120 125


Trp Thr Tyr Ala Gly Ile Pro Tyr Asp Tyr Asp Asn Ala Leu Gly His
130 135 140


Met Gln Trp Ala Gly Ser Ala Met Leu Asp Glu Lys Gly Lys Val His
145 150 155 160


Phe Phe Tyr Thr Ala Thr Ser Asp Met Asn Ala Asn Gly Gly Lys Glu
165 170 175


Phe Asn Gln Asp Gly Trp Val Gln Arg Ala Glu Gln Arg Leu Ala Lys
180 185 190


Thr Thr Phe Asp Ile Ser Ala Asp Lys Asn Gly Val His Leu Thr Asn
195 200 205


Glu Gly Asp His Gln Ile Leu Leu Glu Ala Asp Gly His His Tyr Glu
210 215 220


Thr Ile Glu Gln Phe Gln Glu His Gly Asn Ile Ile Thr Gly Phe Arg
225 230 235 240


Asp Pro Phe Phe Phe Lys Asp Pro Asn Thr Gly Glu Glu Tyr Ile Ile
245 250 255


Trp Glu Gly Gln Ala Gly Thr Asn Arg Asn Asp Ile Lys Pro Glu Asn
260 265 270


Ile Gly Asp Lys Glu Tyr Arg Glu Ser His Asn Val Pro Asp His Ala
275 280 285


Lys Phe Tyr Asn Gly Asn Ile Gly Ile Ala Lys Val Leu Asp Asn Asp
290 295 300


Val Thr Lys Leu Glu Ile Leu Pro Pro Leu Leu Glu Ser Val Gly Val
305 310 315 320


Asn His Gln Leu Glu Arg Pro His Val Val Val Lys Asp Asp Thr Tyr
325 330 335


Tyr Leu Leu Thr Ile Ser His Glu Phe Thr Phe Ala Pro Gly Leu Thr
340 345 350


Gly Pro Asp Gly Leu Tyr Gly Phe Val Gly Glu Gly Ser Leu Arg Thr
355 360 365


Asp Tyr Lys Pro Val Asn Gly Thr Gly Leu Val Val Ala Asn Pro Ala
370 375 380


Glu Lys Pro Phe Gln Ala Tyr Ser Trp Trp Ala Ala Pro Asp Gly Gln
385 390 395 400


Val Ile Ser Phe Ile Asn Glu Pro Val Asp Glu Asn Gly Gln Val Lys
405 410 415


Phe Gly Gly Thr Phe Ala Pro Thr Leu Lys Val Ser Phe Asp Gly Asp
420 425 430


Lys Thr Lys Ile Val Lys Glu Met Gln Ala Gly Glu Ile Lys Pro Phe
435 440 445


Gly Pro Tyr Gly Arg Ser Leu Lys
450 455

配列番号1―プライマー配列
5’-ACAGGATCCAAAATCAAAACTCGTAAAAAGGTAGG-3’
配列番号2―プライマー配列
5’-TTAGTGGTGATGGTGATGATGCTTTAAAGATCTACCGTAAGGACCG-3’
配列番号3ーInuBKをコードするバチルス・クルルウィッチェJCM11691遺伝子のヌクレオチド配列:
ATGAAAATCAAAACTCGTAAAAAGGTAGGAAAATTAGTTTTATGTGCTGCGATTTTAGCGAGCAGTCTGACAAGCATTAGCGTTGCTGCGAGCTCTAACTGGAGTATTGAGGATGATTACACGGCATCATGGTCCAGACAGCAAGCAGAGAAAGTGGCTCTAACGGAAGAGACGACAGCCCCAATCATCGATTTGGACTTTGAAGATGTAGCTCCGGATGTGTGGGTTTGGGATACTTGGCCGCTTCAAAACAGAGACGGTTCCCTTGCGAACGTGAAAGGTTACAGAATCGCATTCGCATTGGTTGCACCACGTACTTATACTTGGCATGACCGTCATACTGAAGCAAGAATCGGCATGTTCTACTCTAAAAACGGCAAGGATTGGACGTATGCTGGAATTCCATACGACTATGACAACGCGTTAGGGCACATGCAATGGGCTGGATCTGCTATGTTGGACGAGAAAGGAAAAGTGCATTTCTTCTATACAGCAACTAGTGATATGAATGCCAATGGCGGTAAAGAATTTAATCAAGACGGATGGGTGCAAAGAGCGGAACAACGCCTAGCTAAGACGACATTTGATATCAGTGCAGACAAAAATGGCGTGCATCTGACAAATGAAGGGGATCACCAAATTCTTCTTGAAGCAGATGGCCATCATTATGAAACGATCGAACAGTTCCAAGAGCACGGAAATATCATCACTGGATTCCGCGATCCGTTTTTCTTCAAAGATCCGAATACAGGTGAAGAATACATTATTTGGGAAGGTCAAGCAGGCACTAACAGAAATGATATCAAACCGGAAAATATCGGGGATAAAGAATACCGCGAATCACACAACGTTCCTGATCATGCGAAATTTTATAACGGAAATATCGGAATTGCGAAAGTACTTGACAACGACGTAACTAAACTTGAAATATTACCGCCGCTTCTTGAGTCGGTTGGGGTTAACCATCAGTTAGAACGTCCGCATGTTGTGGTAAAAGACGACACTTACTACCTGCTTACAATCAGTCATGAATTTACGTTTGCACCAGGTTTAACAGGTCCGGATGGATTGTACGGTTTTGTCGGCGAGGGAAGCTTGCGCACAGATTATAAGCCAGTAAATGGCACAGGTCTTGTTGTTGCCAATCCGGCGGAAAAACCGTTTCAAGCTTATTCATGGTGGGCGGCTCCAGATGGCCAGGTTATCAGCTTCATTAATGAACCTGTAGATGAGAATGGACAAGTTAAATTTGGCGGAACATTTGCACCGACGCTGAAGGTATCCTTTGACGGTGACAAAACAAAGATCGTGAAAGAAATGCAAGCTGGAGAAATCAAACCATTCGGTCCTTACGGTAGATCTTTAAAGTAA
配列番号4-バチルス・クルルウィッチェJCM11691株InuBKのアミノ酸配列
MKIKTRKKVGKLVLCAAILASSLTSISVAASSNWSIEDDYTASWSRQQAEKVALTEETTAPIIDLDFEDVAPDVWVWDTWPLQNRDGSLANVKGYRIAFALVAPRTYTWHDRHTEARIGMFYSKNGKDWTYAGIPYDYDNALGHMQWAGSAMLDEKGKVHFFYTATSDMNANGGKEFNQDGWVQRAEQRLAKTTFDISADKNGVHLTNEGDHQILLEADGHHYETIEQFQEHGNIITGFRDPFFFKDPNTGEEYIIWEGQAGTNRNDIKPENIGDKEYRESHNVPDHAKFYNGNIGIAKVLDNDVTKLEILPPLLESVGVNHQLERPHVVVKDDTYYLLTISHEFTFAPGLTGPDGLYGFVGEGSLRTDYKPVNGTGLVVANPAEKPFQAYSWWAAPDGQVISFINEPVDENGQVKFGGTFAPTLKVSFDGDKTKIVKEMQAGEIKPFGPYGRSLK
Sequence listing
SEQUENCE LISTING

<110> Nihon Origo Co. Ltd.
Toyama Pref.
Yokoi, kenji

<120> New Inulin synthesis prodedure using the inulosucrase of Bacillus
krulwichiae

<130> Demo No.

<160> 4

<170> PatentIn version 3.5

<210> 1
<211> 35
<212> DNA
<213> Artificial Sequence

<220>
<223> Artificial Sequence

<400> 1
acaggatcca aaatcaaaac tcgtaaaaag gtagg 35


<210> 2
<211> 46
<212> DNA
<213> Artificial Sequence

<220>
<223> Artificial sequence

<400> 2
ttagtggtga tggtgatgat gctttaaaga tctaccgtaa ggaccg 46


<210> 3
<211> 1389
<212> DNA
<213> Bacillus krulwichiae


<220>
<221> misc_feature
<222> (1) .. (1389)
<223> Levansucrase

<300>
<308> J113868
<309> 2020-02-20
<313> (1) .. (1389)

<300>
<308> NZ_CP020814
<309> 2019-12-17
<313> (1) .. (1389)

<400> 3
atgaaaatca aaactcgtaa aaaggtagga aaattagttt tatgtgctgc gattttagcg 60

agcagtctga caagcattag cgttgctgcg agctctaact ggagtattga ggatgattac 120

acggcatcat ggtccagaca gcaagcagag aaagtggctc taacggaaga gacgacagcc 180

ccaatcatcg atttggactt tgaagatgta gctccggatg tgtgggtttg ggatacttgg 240

ccgcttcaaa acagagacgg ttcccttgcg aacgtgaaag gttacagaat cgcattcgca 300

ttggttgcac cacgtactta tacttggcat gaccgtcata ctgaagcaag aatcggcatg 360

ttctactcta aaaacggcaa ggattggacg tatgctggaa ttccatacga ctatgacaac 420

gcgttagggc acatgcaatg ggctggatct gctatgttgg acgagaaagg aaaagtgcat 480

ttcttctata cagcaactag tgatatgaat gccaatggcg gtaaagaatt taatcaagac 540

ggatgggtgc aaagagcgga acaacgccta gctaagacga catttgatat cagtgcagac 600

aaaaatggcg tgcatctgac aaatgaaggg gatcaccaaa ttcttcttga agcagatggc 660

catcattatg aaacgatcga acagttccaa gagcacggaa atatcatcac tggattccgc 720

gatccgtttt tcttcaaaga tccgaataca ggtgaagaat acattatttg ggaaggtcaa 780

gcaggcacta acagaaatga tatcaaaccg gaaaatatcg gggataaaga ataccgcgaa 840

tcacacaacg ttcctgatca tgcgaaattt tataacggaa atatcggaat tgcgaaagta 900

cttgacaacg acgtaactaa acttgaaata ttaccgccgc ttcttgagtc ggttggggtt 960

aaccatcagt tagaacgtcc gcatgttgtg gtaaaagacg acacttacta cctgcttaca 1020

atcagtcatg aatttacgtt tgcaccaggt ttaacaggtc cggatggatt gtacggtttt 1080

gtcggcgagg gaagcttgcg cacagattat aagccagtaa atggcacagg tcttgttgtt 1140

gccaatccgg cggaaaaacc gtttcaagct tattcatggt gggcggctcc agatggccag 1200

gttatcagct tcattaatga acctgtagat gagaatggac aagttaaatt tggcggaaca 1260

tttgcaccga cgctgaaggt atcctttgac ggtgacaaaa caaagatcgt gaaagaaatg 1320

caagctggag aaatcaaacc attcggtcct tacggtagat ctttaaagca tcatcaccat 1380

caccactaa 1389


<210> 4
<211> 456
<212> PRT
<213> Bacillus krulwichiae


<220>
<221> Levansucrase
<222> (1) .. (456)

<400> 4

Met Lys Ile Lys Thr Arg Lys Lys Val Gly Lys Leu Val Leu Cys Ala
1 5 10 15


Ala Ile Leu Ala Ser Ser Leu Thr Ser Ile Ser Val Ala Ala Ser Ser
20 25 30


Asn Trp Ser Ile Glu Asp Asp Tyr Thr Ala Ser Trp Ser Arg Gln Gln
35 40 45


Ala Glu Lys Val Ala Leu Thr Glu Glu Thr Thr Ala Pro Ile Ile Asp
50 55 60


Leu Asp Phe Glu Asp Val Ala Pro Asp Val Trp Val Trp Asp Thr Trp
65 70 75 80


Pro Leu Gln Asn Arg Asp Gly Ser Leu Ala Asn Val Lys Gly Tyr Arg
85 90 95


Ile Ala Phe Ala Leu Val Ala Pro Arg Thr Tyr Thr Trp His Asp Arg
100 105 110


His Thr Glu Ala Arg Ile Gly Met Phe Tyr Ser Lys Asn Gly Lys Asp
115 120 125


Trp Thr Tyr Ala Gly Ile Pro Tyr Asp Tyr Asp Asn Ala Leu Gly His
130 135 140


Met Gln Trp Ala Gly Ser Ala Met Leu Asp Glu Lys Gly Lys Val His
145 150 155 160


Phe Phe Tyr Thr Ala Thr Ser Asp Met Asn Ala Asn Gly Gly Lys Glu
165 170 175


Phe Asn Gln Asp Gly Trp Val Gln Arg Ala Glu Gln Arg Leu Ala Lys
180 185 190


Thr Thr Phe Asp Ile Ser Ala Asp Lys Asn Gly Val His Leu Thr Asn
195 200 205


Glu Gly Asp His Gln Ile Leu Leu Glu Ala Asp Gly His His Tyr Glu
210 215 220


Thr Ile Glu Gln Phe Gln Glu His Gly Asn Ile Ile Thr Gly Phe Arg
225 230 235 240


Asp Pro Phe Phe Phe Lys Asp Pro Asn Thr Gly Glu Glu Tyr Ile Ile
245 250 255


Trp Glu Gly Gln Ala Gly Thr Asn Arg Asn Asp Ile Lys Pro Glu Asn
260 265 270


Ile Gly Asp Lys Glu Tyr Arg Glu Ser His Asn Val Pro Asp His Ala
275 280 285


Lys Phe Tyr Asn Gly Asn Ile Gly Ile Ala Lys Val Leu Asp Asn Asp
290 295 300


Val Thr Lys Leu Glu Ile Leu Pro Pro Leu Leu Glu Ser Val Gly Val
305 310 315 320


Asn His Gln Leu Glu Arg Pro His Val Val Val Lys Asp Asp Thr Tyr
325 330 335


Tyr Leu Leu Thr Ile Ser His Glu Phe Thr Phe Ala Pro Gly Leu Thr
340 345 350


Gly Pro Asp Gly Leu Tyr Gly Phe Val Gly Glu Gly Ser Leu Arg Thr
355 360 365


Asp Tyr Lys Pro Val Asn Gly Thr Gly Leu Val Val Ala Asn Pro Ala
370 375 380


Glu Lys Pro Phe Gln Ala Tyr Ser Trp Trp Ala Ala Pro Asp Gly Gln
385 390 395 400


Val Ile Ser Phe Ile Asn Glu Pro Val Asp Glu Asn Gly Gln Val Lys
405 410 415


Phe Gly Gly Thr Phe Ala Pro Thr Leu Lys Val Ser Phe Asp Gly Asp
420 425 430


Lys Thr Lys Ile Val Lys Glu Met Gln Ala Gly Glu Ile Lys Pro Phe
435 440 445


Gly Pro Tyr Gly Arg Ser Leu Lys
450 455

SEQ ID NO: 1-Primer sequence
5'-ACAGGATCCAAAATCAAAACTCGTAAAAAGGTAGG-3'
SEQ ID NO: 2-Primer sequence
5'-TTAGTGGTGATGGTGATGATGCTTTAAAGATCTACCGTAAGGACCG-3'
Nucleotide sequence of Bacillus kluluwiche JCM11691 gene encoding SEQ ID NO: 3-InuBK:

SEQ ID NO: 4-Amino acid sequence of Bacillus kluluwiche JCM11691 strain InuBK
MKIKTRKKVGKLVLCAAILASSLTSISVAASSNWSIEDDYTASWSRQQAEKVALTEETTAPIIDLDFEDVAPDVWVWDTWPLQNRDGSLANVKGYRIAFALVAPRTYTWHDRHTEARIGMFYSKNGKDWTYAGIPYDYDNALGHMQWAGSAMLDEKGKVHFFYTATSDMNANGGKEFNQDGWVQRAEQRLAKTTFDISADKNGVHLTNEGDHQILLEADGHHYETIEQFQEHGNIITGFRDPFFFKDPNTGEEYIIWEGQAGTNRNDIKPENIGDKEYRESHNVPDHAKFYNGNIGIAKVLDNDVTKLEILPPLLESVGVNHQLERPHVVVKDDTYYLLTISHEFTFAPGLTGPDGLYGFVGEGSLRTDYKPVNGTGLVVANPAEKPFQAYSWWAAPDGQVISFINEPVDENGQVKFGGTFAPTLKVSFDGDKTKIVKEMQAGEIKPFGPYGRSLK

Claims (6)

配列番号4のアミノ酸31-456、組み換え技術によって作成されたそれらの変異体を含むバチラス・クルルウィッチェ(Bacillus krulwichiae)由来の単離組み換え発現イヌロスクラーゼ。 An isolated, recombinantly expressed inulosucrase from Bacillus krulwichiae containing amino acids 31-456 of SEQ ID NO: 4, those variants created by recombinant techniques. 配列番号3に示す、請求項1に記載のイヌロスクラーゼのアミノ酸配列全体、または一部をコードするバチラス・クルルウィッチェ(Bacillus krulwichiae)JCM11691由来の核酸。 Nucleic acid derived from Bacillus krulwichiae JCM11691, which encodes the entire or part of the amino acid sequence of inulosucrase according to claim 1, shown in SEQ ID NO: 3. 請求項1に記載の前記イヌロスクラーゼを含む組成物。 The composition containing the inulosucrase according to claim 1. 請求項1に記載の前記イヌロスクラーゼをコードする合成核酸。 The synthetic nucleic acid encoding the inulosucrase according to claim 1. 請求項4に記載の前記合成核酸を含むベクター。 The vector containing the synthetic nucleic acid according to claim 4. 請求項4に記載の前記合成核酸、または請求項5に記載の前記ベクターを含む宿主細胞。 A host cell comprising the synthetic nucleic acid according to claim 4 or the vector according to claim 5.
JP2020083704A 2020-05-12 2020-05-12 Method for producing inulin using inulosucrase from bacillus krulwichiae Pending JP2021177712A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020083704A JP2021177712A (en) 2020-05-12 2020-05-12 Method for producing inulin using inulosucrase from bacillus krulwichiae

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020083704A JP2021177712A (en) 2020-05-12 2020-05-12 Method for producing inulin using inulosucrase from bacillus krulwichiae

Publications (1)

Publication Number Publication Date
JP2021177712A true JP2021177712A (en) 2021-11-18

Family

ID=78509695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020083704A Pending JP2021177712A (en) 2020-05-12 2020-05-12 Method for producing inulin using inulosucrase from bacillus krulwichiae

Country Status (1)

Country Link
JP (1) JP2021177712A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114350724A (en) * 2022-01-28 2022-04-15 山东农业大学 Method for preparing garlic oligosaccharide through enzymolysis

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114350724A (en) * 2022-01-28 2022-04-15 山东农业大学 Method for preparing garlic oligosaccharide through enzymolysis

Similar Documents

Publication Publication Date Title
CN115003805A (en) Engineered alpha-1, 3 branching enzymes
CN107922958A (en) For producing the glucosyltransferase aa sequence motifs of linear poly- 1,3 glucans of α
Li et al. Cloning and characterization of a sucrose isomerase from Erwinia rhapontici NX-5 for isomaltulose hyperproduction
JP2010504082A (en) Method for producing 2-O-glyceryl-α-D-glucopyranoside
KR102068113B1 (en) 3-epimerase and polynucleotides encoding it
KR101787331B1 (en) Thermotolerant agarase and method for producing monomeric sugars using the agarse
Ochiai et al. A biosystem for alginate metabolism in Agrobacterium tumefaciens strain C58: molecular identification of Atu3025 as an exotype family PL-15 alginate lyase
WO2018116266A1 (en) D-psicose 3-epimerase mutant and uses thereof
CN112725319B (en) Alginate lyase FaAly7 with polyG substrate specificity and application thereof
CN110885809B (en) alpha-L-fucosidase and related biological material and application thereof
CN110951803B (en) Method for preparing neoagarobiose by combined utilization of agarase, recombinant host cell and application of recombinant host cell and expression vector
JP2021177712A (en) Method for producing inulin using inulosucrase from bacillus krulwichiae
JP7404537B2 (en) Allulose epimerase variant, method for producing the same, and method for producing allulose using the same
CN113151212A (en) Dextran sucrase and preparation method and application thereof
CN113637691A (en) Grifola frondosa glucosyltransferase gfgel4 and coding gene and application thereof
Bartkowiak et al. The purification of aminoacyl-tRNA synthetases by affinity chromatography
CN110951716B (en) Circumscribed alginate lyase VsAly7D, recombinant strain thereof and application thereof
CN114250210B (en) Mutant A175L with increased difructose anhydride hydrolase activity
WO2002097077A1 (en) Method of preparing sucrose phosphorylase
CN113881648B (en) Method for improving catalytic activity of starch branching enzyme
CN113302299B (en) Psicose epimerase variants, methods of producing the same, and methods of producing psicose using the same
CN114015708A (en) Deep sea bacterium-derived alpha-glucosidase QsGH13 and coding gene and application thereof
CN113234709B (en) Incision type alginate lyase and coding gene and application thereof
WO2002018447A1 (en) Fusion protein containing additional cationic amino acids and improvement of bio-operation by using same
Kumar et al. Purification of Lac repressor protein using polymer displacement and immobilization of the protein

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200704