JP2021177454A - Sealed battery - Google Patents

Sealed battery Download PDF

Info

Publication number
JP2021177454A
JP2021177454A JP2020081944A JP2020081944A JP2021177454A JP 2021177454 A JP2021177454 A JP 2021177454A JP 2020081944 A JP2020081944 A JP 2020081944A JP 2020081944 A JP2020081944 A JP 2020081944A JP 2021177454 A JP2021177454 A JP 2021177454A
Authority
JP
Japan
Prior art keywords
battery
electrode body
sealed
electrode
battery case
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2020081944A
Other languages
Japanese (ja)
Inventor
勝 石井
Masaru Ishii
翔 安藤
Sho Ando
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2020081944A priority Critical patent/JP2021177454A/en
Publication of JP2021177454A publication Critical patent/JP2021177454A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

To provide a technique capable of preventing energization between an electrode body and a battery case in flooding of a battery, thereby capable of ensuring excellent safety.SOLUTION: In a sealed battery 1 disclosed herein, an electrode body 20 and a nonaqueous electrolyte 30 are sealed at the inside of a battery case 10. The sealed battery 1 includes an electrode terminal 40 having a collector plate 45 connected to the electrode body 20 at one end, and an insulation container 50 made of a resin film, the insulation container accommodating the electrode body 20 and the nonaqueous electrolyte 30 therein. In the sealed battery 1 disclosed herein, a film welded part W1 where the resin films are welded together and a terminal welded part W2 where the resin film is welded to the surface of the collector plate 45 are formed in the insulation container 50, and the inside of the insulation container 50 is sealed. Thus, even if a conductive liquid enters the inside of the battery case 10, the conductive liquid can be prevented from contacting with the electrode body and the nonaqueous electrolyte, so that energization between the electrode body 20 and the battery case 10 in flooding of the battery can be prevented.SELECTED DRAWING: Figure 1

Description

本発明は、密閉型電池に関する。詳しくは、金属製の電池ケースの内部に電極体と非水電解液とが密封された密閉型電池に関する。 The present invention relates to a sealed battery. More specifically, the present invention relates to a sealed battery in which an electrode body and a non-aqueous electrolytic solution are sealed inside a metal battery case.

近年、リチウムイオン二次電池、ニッケル水素電池などの非水電解液二次電池(以下、「二次電池」ともいう)は、様々な機器の電源として広く使用されている。かかる二次電池の用途の一例として、電気自動車(EV)、ハイブリッド自動車(HV)、プラグインハイブリッド自動車(PHV)等に使用する車両駆動用電源や、ノートパソコン、携帯端末等に使用する携帯用電源などが挙げられる。この種の二次電池は、例えば、電極体と非水電解液とを外装体の内部に収容することによって構成される。かかる二次電池の外装体としては、金属製の電池ケースや、ラミネートフィルム製のラミネート外装体などが挙げられる。 In recent years, non-aqueous electrolyte secondary batteries (hereinafter, also referred to as "secondary batteries") such as lithium ion secondary batteries and nickel-metal hydride batteries have been widely used as power sources for various devices. As an example of the use of such a secondary battery, a vehicle drive power source used for an electric vehicle (EV), a hybrid vehicle (HV), a plug-in hybrid vehicle (PHV), etc., a portable power source used for a laptop computer, a mobile terminal, etc. Power supply etc. can be mentioned. This type of secondary battery is configured by, for example, accommodating an electrode body and a non-aqueous electrolytic solution inside an exterior body. Examples of the exterior body of such a secondary battery include a metal battery case and a laminated exterior body made of a laminated film.

一般に、ラミネート外装体は軽量であるため、当該ラミネート外装体を用いた二次電池(ラミネート電池)は、単位重量あたりの出力特性に優れていると考えられている。この種のラミネート電池を車両駆動用電源として使用した技術の一例が特許文献1に開示されている。また、かかるラミネート電池を車両駆動用電源として使用する場合には、車両走行時の衝撃や振動から保護するために、電気的に接続された複数のラミネート電池(組電池)を、種々の電子部品と共にパックケースの内部に収容することが求められる。 In general, since the laminated outer body is lightweight, it is considered that a secondary battery (laminated battery) using the laminated outer body is excellent in output characteristics per unit weight. Patent Document 1 discloses an example of a technique in which this type of laminated battery is used as a power source for driving a vehicle. Further, when such a laminated battery is used as a power source for driving a vehicle, a plurality of electrically connected laminated batteries (combined batteries) are used as various electronic components in order to protect the vehicle from impact and vibration during running. It is also required to be housed inside the pack case.

一方、金属製の電池ケースは、ラミネート外装体よりも耐久性(耐衝撃性や耐擦過性など)に優れている。このため、金属製の電池ケースの内部に電極体と非水電解液とが密封された密閉型電池は、車両走行時の衝撃や振動に対して優れた安全性を確保できる。なお、この種の密閉型電池では、金属製の電池ケースと電極体とが通電することを防止するために、電極体と電池ケースとの間に絶縁部材が配置される。 On the other hand, the metal battery case is superior in durability (impact resistance, scratch resistance, etc.) to the laminated exterior body. Therefore, the sealed battery in which the electrode body and the non-aqueous electrolytic solution are sealed inside the metal battery case can ensure excellent safety against impact and vibration during vehicle running. In this type of sealed battery, an insulating member is arranged between the electrode body and the battery case in order to prevent the metal battery case and the electrode body from being energized.

特許文献2には、電極体と電池ケースとの間に絶縁部材が配置された密閉型電池の一例が開示されている。特許文献2に記載の密閉型電池では、箱状に成形された絶縁フィルムの内部に電極体が収容されている。そして、この絶縁フィルムは、電池ケースの上面(蓋体)と対向する上面開口を形成する領域が延長されており、この延長した部分を折り曲げることによって電極体を覆うように上面開口の一部を塞いでいる。これによって、絶縁フィルム内への異物(金属片等)の侵入による電極体の破損を防止できる。 Patent Document 2 discloses an example of a sealed battery in which an insulating member is arranged between the electrode body and the battery case. In the sealed battery described in Patent Document 2, the electrode body is housed inside the insulating film formed in a box shape. Then, in this insulating film, a region forming an upper surface opening facing the upper surface (cover body) of the battery case is extended, and a part of the upper surface opening is extended so as to cover the electrode body by bending the extended portion. It's blocking. This makes it possible to prevent damage to the electrode body due to the intrusion of foreign matter (metal pieces, etc.) into the insulating film.

特開2016−139522号公報Japanese Unexamined Patent Publication No. 2016-139522 特開2019−110036号公報Japanese Unexamined Patent Publication No. 2019-110036

ところで、近年の二次電池の普及に伴って、電池ケースを使用する密閉型電池に対して更に優れた安全性が求められている。例えば、車両駆動用電源は、基本的に屋外で使用されるため、車両の走行環境や天災などによっては浸水する可能性もあり得る。この場合に、海水などの電気伝導性の高い液体(以下「導電液」ともいう)が電池ケースの内部に侵入すると、当該導電液を介して電池ケースと電極体とが通電してしまう可能性がある。 By the way, with the spread of secondary batteries in recent years, even better safety is required for sealed batteries that use a battery case. For example, since the power source for driving a vehicle is basically used outdoors, it may be flooded depending on the driving environment of the vehicle or a natural disaster. In this case, if a liquid having high electrical conductivity (hereinafter, also referred to as "conductive liquid") such as seawater enters the inside of the battery case, the battery case and the electrode body may be energized through the conductive liquid. There is.

本発明は、かかる事情に鑑みてなされたものであり、その目的は、金属製の電池ケースを使用した密閉型電池において、電池浸水時の電極体と電池ケースとの通電を防止し、優れた安全性を確保できる技術を提供することである。 The present invention has been made in view of such circumstances, and an object of the present invention is to prevent energization between the electrode body and the battery case when the battery is flooded in a sealed battery using a metal battery case, which is excellent. It is to provide technology that can ensure safety.

上述した課題を解決するべく、以下の構成の非水電解液二次電池が提供される。 In order to solve the above-mentioned problems, a non-aqueous electrolyte secondary battery having the following configuration is provided.

ここに開示される密閉型電池では、ケース本体と蓋体とが溶接されてなる金属製の電池ケースの内部に、電極体と非水電解液とが密封されている。かかる密閉型電池は、一方の端部に電極体と接続される平板状の集電板を有し、他方の端部に電池ケースの外部に露出する外部端子を有する電極端子と、電極体と非水電解液とを収容し、電極体と電池ケースとを絶縁する樹脂フィルム製の絶縁容器とを備え、電極端子の集電板は、絶縁容器を貫通している。そして、ここに開示される密閉型電池では、絶縁容器に、樹脂フィルム同士が溶着したフィルム溶着部と、集電板の表面に樹脂フィルムが溶着した端子溶着部とが形成され、当該絶縁容器の内部が密封されている。 In the sealed battery disclosed herein, the electrode body and the non-aqueous electrolytic solution are sealed inside a metal battery case in which the case body and the lid body are welded together. Such a sealed battery has an electrode terminal having a flat plate-shaped current collecting plate connected to the electrode body at one end and an external terminal exposed to the outside of the battery case at the other end, and an electrode body. It is provided with an insulating container made of a resin film that houses the non-aqueous electrolytic solution and insulates the electrode body and the battery case, and the current collector plate of the electrode terminal penetrates the insulating container. Then, in the sealed battery disclosed here, a film welded portion in which the resin films are welded to each other and a terminal welded portion in which the resin film is welded to the surface of the current collector are formed in the insulating container, and the insulating container is formed. The inside is sealed.

上記構成の密閉型電池では、樹脂フィルムからなる絶縁容器の内部に電極体と非水電解液とが密封されている。このため、密閉型電池が浸水してケース内部へ導電液が侵入したとしても、当該導電液が電極体や非水電解液と接触することを防止できる。これによって、電池浸水時の電極体と電池ケースとの通電を確実に防止し、優れた安全性を有する密閉型電池を提供できる。 In the sealed battery having the above configuration, the electrode body and the non-aqueous electrolytic solution are sealed inside an insulating container made of a resin film. Therefore, even if the sealed battery is flooded and the conductive liquid invades the inside of the case, it is possible to prevent the conductive liquid from coming into contact with the electrode body or the non-aqueous electrolyte liquid. This makes it possible to reliably prevent energization between the electrode body and the battery case when the battery is flooded, and to provide a sealed battery having excellent safety.

一実施形態に係る密閉型電池の内部構造を模式的に示す一部断面図である。It is a partial cross-sectional view which shows typically the internal structure of the closed type battery which concerns on one Embodiment. 図1に示す密閉型電池を製造する方法における端子接続工程を示す一部断面図である。It is a partial cross-sectional view which shows the terminal connection process in the method of manufacturing the closed type battery shown in FIG. 図1に示す密閉型電池を製造する方法における収容工程を示す一部断面図である。It is a partial cross-sectional view which shows the accommodating process in the method of manufacturing the closed type battery shown in FIG. 図1に示す密閉型電池を製造する方法における溶着工程を示す一部断面図である。It is a partial cross-sectional view which shows the welding process in the method of manufacturing the closed type battery shown in FIG. 図1に示す密閉型電池を製造する方法における組立体作製工程を示す一部断面図である。It is a partial cross-sectional view which shows the assembly manufacturing process in the method of manufacturing the closed type battery shown in FIG. 図1に示す密閉型電池を製造する方法における注液工程を示す一部断面図である。It is a partial cross-sectional view which shows the liquid injection process in the method of manufacturing the closed type battery shown in FIG.

以下、ここに開示される密閉型電池の一実施形態について図面を参照しながら説明する。なお、本明細書において特に言及している事項以外の事柄であって、ここに開示される技術の実施に必要な事柄(例えば、電極体や非水電解液の材料など)は、当該分野における従来技術に基づいて把握され得る。すなわち、ここに開示される技術は、本明細書に明示されている内容と当該分野における技術常識とに基づいて実施できる。なお、以下の実施形態は、ここに開示される技術を限定することを意図したものではない。また、本明細書にて示す図面では、同じ作用を奏する部材・部位に同じ符号を付して説明している。さらに、各図における寸法関係(長さ、幅、厚さ等)は実際の寸法関係を反映するものではない。 Hereinafter, an embodiment of the sealed battery disclosed herein will be described with reference to the drawings. It should be noted that matters other than those specifically mentioned in the present specification, which are necessary for carrying out the technology disclosed herein (for example, materials for an electrode body and a non-aqueous electrolyte solution, etc.), are in the art. It can be grasped based on the prior art. That is, the technology disclosed herein can be implemented based on the contents specified in the present specification and the common general technical knowledge in the field. The following embodiments are not intended to limit the techniques disclosed herein. Further, in the drawings shown in the present specification, members / parts having the same action are described with the same reference numerals. Furthermore, the dimensional relationships (length, width, thickness, etc.) in each drawing do not reflect the actual dimensional relationships.

1.密閉型電池の構造
図1は、本実施形態に係る密閉型電池の内部構造を模式的に示す一部断面図である。なお、本明細書にて示す各図における符号Xは「(密閉型電池の)幅方向」を示し、符号Zは「(密閉型電池の)高さ方向」を示す。但し、これらの方向は、説明の便宜上定めたものであり、ここに開示される密閉型電池を使用する際の設置態様を限定することを意図したものではない。
1. 1. Structure of Sealed Battery FIG. 1 is a partial cross-sectional view schematically showing the internal structure of the sealed battery according to the present embodiment. In each of the figures shown in the present specification, reference numeral X indicates "width direction (of the sealed battery)", and reference numeral Z indicates "height direction (of the sealed battery)". However, these directions are defined for convenience of explanation, and are not intended to limit the installation mode when the sealed battery disclosed herein is used.

(1)全体構成
本実施形態に係る密閉型電池1は、電池ケース10の内部に電極体20と非水電解液30とを密封することによって構築される。また、かかる密閉型電池1は、上記構成の他に、電極端子40と絶縁容器50とを備えている。以下、各構成について説明する。
(1) Overall Configuration The sealed battery 1 according to the present embodiment is constructed by sealing the electrode body 20 and the non-aqueous electrolytic solution 30 inside the battery case 10. Further, the sealed battery 1 includes an electrode terminal 40 and an insulating container 50 in addition to the above configuration. Hereinafter, each configuration will be described.

(2)電池ケース
図1に示す電池ケース10は、内部空間10aを有する角型の容器であり、当該内部空間10aに電極体20や非水電解液30が収容されている。かかる電池ケース10は、上面が開口した箱型のケース本体12と、板状の蓋体14とを備えている。電池ケース10は、ケース本体12の上面開口を蓋体14で塞ぎ、ケース本体12と蓋体14とを溶接することによって構築される。電池ケース10(すなわち、ケース本体12および蓋体14)は、耐衝撃性や耐擦過性などの耐久性に優れた金属材料によって構成される。かかる電池ケース10の構成材料は、従来公知の金属材料を特に制限なく使用できるが、コスト、重量、熱伝導性などを考慮すると、アルミニウムやアルミニウム合金などが好ましい。
(2) Battery Case The battery case 10 shown in FIG. 1 is a square container having an internal space 10a, and the electrode body 20 and the non-aqueous electrolytic solution 30 are housed in the internal space 10a. The battery case 10 includes a box-shaped case body 12 having an open upper surface and a plate-shaped lid 14. The battery case 10 is constructed by closing the upper surface opening of the case body 12 with a lid body 14 and welding the case body 12 and the lid body 14. The battery case 10 (that is, the case body 12 and the lid 14) is made of a metal material having excellent durability such as impact resistance and scratch resistance. As the constituent material of the battery case 10, a conventionally known metal material can be used without particular limitation, but aluminum, an aluminum alloy, or the like is preferable in consideration of cost, weight, thermal conductivity, and the like.

また、蓋体14には、非水電解液30を注液するための注液口16が設けられており、当該注液口16は封止栓18によって封止されている。詳しくは後述するが、ケース本体12と蓋体14とを溶接した電池ケース10内部に非水電解液30を注液した後に、注液口16を封止栓18で封止することによって電池ケース10の内部が密閉される。 Further, the lid body 14 is provided with a liquid injection port 16 for injecting the non-aqueous electrolytic solution 30, and the liquid injection port 16 is sealed by a sealing plug 18. As will be described in detail later, the battery case is formed by injecting the non-aqueous electrolytic solution 30 into the battery case 10 in which the case body 12 and the lid 14 are welded, and then sealing the injection port 16 with a sealing plug 18. The inside of 10 is sealed.

(3)電極体
ここに開示される技術において、電極体は、特に限定されず、従来公知の構造を特に制限なく採用できる。例えば、図1に示される電極体20は、捲回電極体である。かかる電極体20は、セパレータを介して長尺な正極と長尺な負極とを重ね合わせた積層体を捲回することによって形成される。また、この電極体20の幅方向Xの中央部には、充放電反応の主な場となるコア部20aが形成されている。このコア部20aでは、正極と負極の電極活物質層が対向するように捲回されている。一方、電極体20の幅方向Xの両端部の各々には、電極端子40の集電板45と接続される端子接続部20b、20cが形成されている。この端子接続部20b、20cでは、正極および負極の何れか一方の集電箔がコア部20aからはみ出した状態で捲回されている。なお、電極体20を構成する各部材(正極、負極、セパレータ等)には、従来公知の非水電解液二次電池(例えばリチウムイオン二次電池)に使用され得る材料を特に制限なく使用でき、ここに開示される技術を限定するものではないため詳細な説明を省略する。
(3) Electrode body In the technique disclosed herein, the electrode body is not particularly limited, and a conventionally known structure can be adopted without particular limitation. For example, the electrode body 20 shown in FIG. 1 is a wound electrode body. The electrode body 20 is formed by winding a laminated body in which a long positive electrode and a long negative electrode are overlapped with each other via a separator. Further, a core portion 20a, which is a main field of the charge / discharge reaction, is formed in the central portion of the electrode body 20 in the width direction X. In the core portion 20a, the electrode active material layers of the positive electrode and the negative electrode are wound so as to face each other. On the other hand, terminal connection portions 20b and 20c connected to the current collector plate 45 of the electrode terminal 40 are formed at both ends of the electrode body 20 in the width direction X. In the terminal connection portions 20b and 20c, the current collecting foil of either the positive electrode or the negative electrode is wound in a state of protruding from the core portion 20a. For each member (positive electrode, negative electrode, separator, etc.) constituting the electrode body 20, a material that can be used for a conventionally known non-aqueous electrolyte secondary battery (for example, a lithium ion secondary battery) can be used without particular limitation. , Since the technique disclosed herein is not limited, detailed description thereof will be omitted.

(4)非水電解液
非水電解液30は、非水溶媒に支持塩を溶解させることによって調製される。非水電解液30の一部は、電極体20の内部(正極と負極の極間)に浸透している。なお、非水電解液30の全てが電極体20の内部に浸透している必要はなく、図1のように、一部の非水電解液30が余剰電解液32として電極体20の外部に存在していてもよい。かかる余剰電解液32を設けることによって、電極体20内部の非水電解液30が不足した際に、余剰電解液32を電極体20の内部へ浸透させることができる。なお、電極体20と同様に、非水電解液30の材料についても、従来公知の非水電解液二次電池に使用され得るものを特に制限なく使用でき、ここに開示される技術を限定するものではないため詳細な説明を省略する。
(4) Non-aqueous electrolytic solution The non-aqueous electrolytic solution 30 is prepared by dissolving a supporting salt in a non-aqueous solvent. A part of the non-aqueous electrolytic solution 30 permeates the inside of the electrode body 20 (between the electrodes of the positive electrode and the negative electrode). It is not necessary that all of the non-aqueous electrolytic solution 30 permeates the inside of the electrode body 20, and as shown in FIG. 1, a part of the non-aqueous electrolytic solution 30 is used as the surplus electrolytic solution 32 to the outside of the electrode body 20. It may exist. By providing such a surplus electrolytic solution 32, when the non-aqueous electrolytic solution 30 inside the electrode body 20 is insufficient, the surplus electrolytic solution 32 can be permeated into the inside of the electrode body 20. Similar to the electrode body 20, as the material of the non-aqueous electrolytic solution 30, any material that can be used in a conventionally known non-aqueous electrolytic solution secondary battery can be used without particular limitation, and the techniques disclosed herein are limited. Since it is not a thing, detailed description will be omitted.

(5)電極端子
本実施形態に係る密閉型電池1では、電池ケース10(蓋体14)に一対の電極端子40が取り付けられている。これらの電極端子40の一方は、電極体20の正極に接続されて正極端子として機能し、他方は、負極に接続されて負極端子として機能する。各々の電極端子40は、高さ方向Zに沿って伸びる長尺な導電部材である。これらの電極端子40の一方の端部には、電極体20(典型的には端子接続部20b、20c)と接続される平板状の集電板45が形成される。この集電板45は、後述する絶縁容器50を貫通し、蓋体14の下面まで延びている。また、電極端子40の他方の端部には、電池ケース10の外部に露出する外部端子47が形成される。当該外部端子47を外部機器(モーターや他の二次電池など)と接続することによって、電池ケース10内の電極体20と外部機器とを電気的に接続できる。なお、電極端子40の材料についても、従来公知の非水電解液二次電池に使用され得るものを特に制限なく使用でき、ここに開示される技術を限定するものではないため詳細な説明を省略する。
(5) Electrode Terminals In the sealed battery 1 according to the present embodiment, a pair of electrode terminals 40 are attached to the battery case 10 (cover body 14). One of these electrode terminals 40 is connected to the positive electrode body 20 and functions as a positive electrode terminal, and the other is connected to a negative electrode and functions as a negative electrode terminal. Each electrode terminal 40 is a long conductive member extending along the height direction Z. At one end of these electrode terminals 40, a flat plate-shaped current collector plate 45 connected to the electrode body 20 (typically, terminal connection portions 20b and 20c) is formed. The current collector plate 45 penetrates the insulating container 50 described later and extends to the lower surface of the lid body 14. Further, an external terminal 47 exposed to the outside of the battery case 10 is formed at the other end of the electrode terminal 40. By connecting the external terminal 47 to an external device (motor, other secondary battery, etc.), the electrode body 20 in the battery case 10 and the external device can be electrically connected. As for the material of the electrode terminal 40, those that can be used in a conventionally known non-aqueous electrolytic solution secondary battery can be used without particular limitation, and the techniques disclosed herein are not limited, so detailed description thereof will be omitted. do.

(6)絶縁容器
本実施形態における絶縁容器50は、樹脂フィルム製の袋状の部材である。この密閉型電池1では、絶縁容器50の内部に電極体20と非水電解液30とが収容されている。これによって、電池ケース10と電極体20との通電を防止できる。なお、絶縁容器50を構成する樹脂フィルムには、非水電解液30に溶解せず、かつ、熱溶着が可能な絶縁性の樹脂材料が用いられる。また、フィルムの破損による密閉性の低下を防止するという観点から、一定以上の強度を有していることが好ましい。このような樹脂材料としては、ポリプロピレン(PP)、ポリエチレン(PE)、ポリクロロトリフルオロエチレン、ポリアミド、ポリエステルなどが挙げられる。
(6) Insulated Container The insulated container 50 in the present embodiment is a bag-shaped member made of a resin film. In the sealed battery 1, the electrode body 20 and the non-aqueous electrolytic solution 30 are housed inside the insulating container 50. This makes it possible to prevent the battery case 10 and the electrode body 20 from being energized. As the resin film constituting the insulating container 50, an insulating resin material that is insoluble in the non-aqueous electrolyte solution 30 and can be heat-welded is used. Further, from the viewpoint of preventing deterioration of the airtightness due to breakage of the film, it is preferable that the film has a certain strength or higher. Examples of such a resin material include polypropylene (PP), polyethylene (PE), polychlorotrifluoroethylene, polyamide, polyester and the like.

そして、本実施形態では、高さ方向Zにおける絶縁容器50の上端部に、樹脂フィルム同士が溶着したフィルム溶着部W1と、集電板45の表面に樹脂フィルムが溶着した端子溶着部W2とが形成され、絶縁容器50の内部に電極体20と非水電解液30とが密封されている。これによって、密閉型電池1が浸水して、電池ケース10の内部空間10aに海水等の導電液が侵入したとしても、当該導電液が電極体20や非水電解液30と接触することを防止し、電極体20と電池ケース10との通電を防止できる。従って、本実施形態に係る密閉型電池1は、天災などによって水没した場合でも、電極体20と電池ケース10との通電が生じないという非常に優れた安全性を有する。 In the present embodiment, the film welded portion W1 in which the resin films are welded to each other and the terminal welded portion W2 in which the resin film is welded to the surface of the current collector plate 45 are formed on the upper end portion of the insulating container 50 in the height direction Z. The electrode body 20 and the non-aqueous electrolytic solution 30 are sealed inside the insulating container 50. As a result, even if the sealed battery 1 is flooded and a conductive liquid such as seawater invades the internal space 10a of the battery case 10, the conductive liquid is prevented from coming into contact with the electrode body 20 and the non-aqueous electrolyte liquid 30. However, it is possible to prevent the electrode body 20 and the battery case 10 from being energized. Therefore, the sealed battery 1 according to the present embodiment has a very excellent safety that the electrode body 20 and the battery case 10 are not energized even when the battery 1 is submerged due to a natural disaster or the like.

また、本実施形態に係る密閉型電池1では、密閉された電池ケース10の内部に絶縁容器50が収容されている。これによって、絶縁容器50を構成する樹脂フィルムの経時劣化を抑制することができる。このため、本実施形態に係る密閉型電池1は、浸水対策として電池ケース外部を樹脂材料で覆った密閉型電池と比べて長い期間、優れた安全性を維持できる。 Further, in the sealed battery 1 according to the present embodiment, the insulating container 50 is housed inside the sealed battery case 10. As a result, deterioration of the resin film constituting the insulating container 50 with time can be suppressed. Therefore, the sealed battery 1 according to the present embodiment can maintain excellent safety for a long period of time as compared with the sealed battery in which the outside of the battery case is covered with a resin material as a measure against flooding.

なお、破損による密封性低下を防止するという観点から、絶縁容器50を構成する樹脂フィルムの厚みは、80μm以上が好ましく、85μm以上が好ましく、90μm以上が好ましく、95μm以上が特に好ましい。一方、樹脂フィルムが厚くなりすぎると、電池ケース10内に収容できる電極体20が小さくなって性能低下の原因となる。係る観点から、樹脂フィルムの厚みの上限は、150μm以下が好ましく、145μm以下がより好ましく、140μm以下がさらに好ましく、135μm以下が特に好ましい。 From the viewpoint of preventing deterioration of the sealing property due to breakage, the thickness of the resin film constituting the insulating container 50 is preferably 80 μm or more, preferably 85 μm or more, preferably 90 μm or more, and particularly preferably 95 μm or more. On the other hand, if the resin film becomes too thick, the electrode body 20 that can be accommodated in the battery case 10 becomes small, which causes a decrease in performance. From this point of view, the upper limit of the thickness of the resin film is preferably 150 μm or less, more preferably 145 μm or less, further preferably 140 μm or less, and particularly preferably 135 μm or less.

また、本実施形態における絶縁容器50では、蓋体14の注液口16と対向した領域に、当該注液口16に向かって突出した注液封止部54が設けられている。詳しくは後述するが、この注液封止部54を形成することによって、非水電解液30の注液後にフィルム溶着部W1を容易に形成し、絶縁容器50を適切に密封することができる。 Further, in the insulating container 50 of the present embodiment, a liquid injection sealing portion 54 projecting toward the liquid injection port 16 is provided in a region of the lid 14 facing the liquid injection port 16. As will be described in detail later, by forming the liquid injection sealing portion 54, the film welding portion W1 can be easily formed after the injection of the non-aqueous electrolytic solution 30, and the insulating container 50 can be appropriately sealed.

2.密閉型電池の製造
次に、図1に示す密閉型電池1を製造する方法について説明する。かかる製造方法は、端子接続工程と、収容工程と、溶着工程と、組立体作製工程と、注液工程と、密閉工程とを備えている。図2〜図6は図1に示す密閉型電池を製造する方法における各々の工程を示す一部断面図である。以下、各工程について説明する。
2. Manufacture of Sealed Battery Next, a method of manufacturing the sealed battery 1 shown in FIG. 1 will be described. Such a manufacturing method includes a terminal connecting step, a housing step, a welding step, an assembly manufacturing step, a liquid injection step, and a sealing step. 2 to 6 are partial cross-sectional views showing each step in the method for manufacturing the sealed battery shown in FIG. 1. Hereinafter, each step will be described.

(1)端子接続工程
本工程では、電極体20と電極端子40とを接続する。具体的には、図2に示すように、注液口16が開放された蓋体14の幅方向Xの両端部の各々に電極端子40を取り付ける。そして、一対の電極端子40の各々の集電板45を電極体20の端子接続部20b、20cと接合する。このときの接合処理には、例えば、超音波溶接や抵抗溶接などが用いられる。
(1) Terminal connection step In this step, the electrode body 20 and the electrode terminal 40 are connected. Specifically, as shown in FIG. 2, electrode terminals 40 are attached to each of both ends of the lid 14 in which the liquid injection port 16 is opened in the width direction X. Then, the current collector plates 45 of the pair of electrode terminals 40 are joined to the terminal connection portions 20b and 20c of the electrode body 20. For the bonding process at this time, for example, ultrasonic welding or resistance welding is used.

(2)収容工程
図3に示すように、本工程では、絶縁容器50の内部に電極体20を収容すると共に、蓋体14の注液口16(図2参照)に注液管Pを挿入する。具体的には、上面に開口部52が形成された袋状の絶縁容器50を使用し、当該開口部52を通じて絶縁容器50の内部に電極体20を挿入する。これによって、絶縁容器50内に電極体20が収容され、絶縁容器50の開口部52と蓋体14とが対向する。そして、耐熱性(例えば金属製)の注液管Pを蓋体14の上方から注液口16に挿入する。これによって、絶縁容器50の内部に注液管Pの先端が配置される。なお、上述の通り、本実施形態では、凸状の注液封止部54を有した絶縁容器50が用いられている。このような場合には、注液封止部54と注液管Pとが重なるように、絶縁容器50と注液管Pの各々の位置を調節する。
(2) Containment Step As shown in FIG. 3, in this step, the electrode body 20 is accommodated inside the insulating container 50, and the liquid injection tube P is inserted into the liquid injection port 16 (see FIG. 2) of the lid body 14. do. Specifically, a bag-shaped insulating container 50 having an opening 52 formed on the upper surface is used, and the electrode body 20 is inserted into the insulating container 50 through the opening 52. As a result, the electrode body 20 is housed in the insulating container 50, and the opening 52 of the insulating container 50 and the lid body 14 face each other. Then, a heat-resistant (for example, metal) liquid injection tube P is inserted into the liquid injection port 16 from above the lid 14. As a result, the tip of the liquid injection pipe P is arranged inside the insulating container 50. As described above, in the present embodiment, the insulating container 50 having the convex liquid injection sealing portion 54 is used. In such a case, the positions of the insulating container 50 and the liquid injection pipe P are adjusted so that the liquid injection sealing portion 54 and the liquid injection pipe P overlap each other.

(3)溶着工程
図4に示すように、本工程では、注液管Pが配置された領域を除く、絶縁容器50の上端部を溶着する。具体的には、一対の溶着板WPの間に絶縁容器50の上端部を挟み込ませて圧力を加えながら加熱する。このように、一対の溶着板WPによって絶縁容器50の上端部を加熱・加圧すると、樹脂フィルム同士が対向していた箇所にフィルム溶着部W1(図1参照)が形成され、対向する樹脂フィルムの間に集電板45が介在していた箇所に端子溶着部W2が形成される。なお、溶着板WPは、絶縁容器50の上端部を挟み込むように対向しているが、説明の便宜上、図4では紙面手前側の溶着板を省略し、紙面奥側の溶着板WPのみを記載している。そして、省略した紙面手前側の溶着板も紙面奥側の溶着板WPと同等の形状を有している。また、本実施形態では、注液管Pの表面に樹脂フィルムが溶着することを防止するために、注液管Pと溶着板WPとの干渉を防止するための凹部WP1が溶着板WPに形成されている。
(3) Welding Step As shown in FIG. 4, in this step, the upper end portion of the insulating container 50 is welded except for the region where the liquid injection pipe P is arranged. Specifically, the upper end portion of the insulating container 50 is sandwiched between the pair of welding plates WP and heated while applying pressure. When the upper end portion of the insulating container 50 is heated and pressurized by the pair of welding plates WP in this way, the film welding portion W1 (see FIG. 1) is formed at the portion where the resin films face each other, and the facing resin films are formed. The terminal welded portion W2 is formed at a position where the current collecting plate 45 is interposed between the two. The welding plate WP faces each other so as to sandwich the upper end of the insulating container 50, but for convenience of explanation, the welding plate on the front side of the paper surface is omitted in FIG. 4, and only the welding plate WP on the back side of the paper surface is shown. doing. The omitted welding plate on the front side of the paper surface also has the same shape as the welding plate WP on the back side of the paper surface. Further, in the present embodiment, in order to prevent the resin film from welding to the surface of the injection pipe P, a recess WP1 for preventing interference between the injection pipe P and the welding plate WP is formed in the welding plate WP. Has been done.

(4)組立体作製工程
図5に示すように、本工程では、絶縁容器50に覆われた電極体20をケース本体12に収納し、ケース本体12と蓋体14とを溶接することによって電池組立体100を構築する。具体的には、箱型のケース本体12の上面開口から内部空間10aに電極体20を挿入すると共に、ケース本体12の上面開口を蓋体14で塞ぐ。そして、レーザ溶接などを用いて、ケース本体12と蓋体14との境界部分を溶接する。これによって、電池ケース10内に電極体20が収容された電池組立体100を構築することができる。なお、本明細書における「電池組立体」とは、注液口が封止されて内部空間が密閉される前の密閉型電池を指すものとする。
(4) Assembly manufacturing process As shown in FIG. 5, in this process, the electrode body 20 covered with the insulating container 50 is housed in the case body 12, and the case body 12 and the lid body 14 are welded to form a battery. Build the assembly 100. Specifically, the electrode body 20 is inserted into the internal space 10a from the upper surface opening of the box-shaped case body 12, and the upper surface opening of the case body 12 is closed with the lid body 14. Then, the boundary portion between the case body 12 and the lid 14 is welded by using laser welding or the like. As a result, the battery assembly 100 in which the electrode body 20 is housed in the battery case 10 can be constructed. The term "battery assembly" as used herein refers to a sealed battery before the liquid injection port is sealed and the internal space is sealed.

(5)注液工程
図6に示すように、本工程では、注液管Pを介して絶縁容器50の内部に非水電解液30を注液する。具体的には、本工程では、まず、注液管Pを減圧装置に接続し、絶縁容器50の内部を減圧する。なお、減圧後の絶縁容器50内の圧力は、電極体の内部の容量に応じて適宜調節することが好ましい。次に、注液管Pを注液装置に接続し、絶縁容器50の内部へ非水電解液30を注液した後、所定時間保持する。これによって、減圧されていた電極体20の内部に非水電解液30を効率よく浸透させることができる。
(5) Liquid injection process As shown in FIG. 6, in this step, the non-aqueous electrolytic solution 30 is injected into the inside of the insulating container 50 via the liquid injection pipe P. Specifically, in this step, first, the liquid injection pipe P is connected to the decompression device to depressurize the inside of the insulating container 50. It is preferable that the pressure inside the insulating container 50 after depressurization is appropriately adjusted according to the internal capacity of the electrode body. Next, the liquid injection pipe P is connected to the liquid injection device, the non-aqueous electrolytic solution 30 is injected into the inside of the insulating container 50, and then the non-aqueous electrolytic solution 30 is held for a predetermined time. As a result, the non-aqueous electrolytic solution 30 can be efficiently permeated into the decompressed electrode body 20.

(6)密閉工程
本工程では、注液口16から注液管Pを引き抜き、当該注液管Pを挿入していた未溶着部分における樹脂フィルムを溶着した後に、封止栓18で注液口16を封止する。これによって、図1に示す構造の密閉型電池1が構築される。なお、本実施形態のように、注液封止部54を有する絶縁容器50を用いた場合には、凸状の注液封止部54を注液口16から電池ケース10外へ引き出すことができるため、注液管Pを挿入していた未溶着部分である注液封止部54を容易に溶着し、フィルム溶着部W1を形成できる。
(6) Sealing Step In this step, the liquid injection pipe P is pulled out from the liquid injection port 16, the resin film in the unwelded portion where the liquid injection pipe P is inserted is welded, and then the liquid injection port is inserted with the sealing plug 18. 16 is sealed. As a result, the sealed battery 1 having the structure shown in FIG. 1 is constructed. When the insulating container 50 having the liquid injection sealing portion 54 is used as in the present embodiment, the convex liquid injection sealing portion 54 can be pulled out from the liquid injection port 16 to the outside of the battery case 10. Therefore, the liquid injection sealing portion 54, which is the unwelded portion into which the liquid injection pipe P has been inserted, can be easily welded to form the film welded portion W1.

3.他の実施形態
以上、ここに開示される技術の一実施形態について説明した。なお、上述の実施形態は、ここに開示される技術が適用される一例を示したものであり、ここに開示される技術を限定するものではない。
3. 3. Other Embodiments Above, one embodiment of the technique disclosed herein has been described. It should be noted that the above-described embodiment shows an example to which the technology disclosed herein is applied, and does not limit the technology disclosed herein.

例えば、上述の実施形態では、電極体として捲回電極体を使用している。しかし、電極体の構造は、特に限定されず、捲回電極体以外の構造を採用することもできる。かかる電極体の他の例として、セパレータを介在させながら、複数枚の正極と負極とを順次積層させた積層電極体が挙げられる。 For example, in the above-described embodiment, a wound electrode body is used as the electrode body. However, the structure of the electrode body is not particularly limited, and a structure other than the wound electrode body can be adopted. Another example of such an electrode body is a laminated electrode body in which a plurality of positive electrodes and negative electrodes are sequentially laminated with a separator interposed therebetween.

また、上述の実施形態では、袋状の絶縁容器50を使用し、その上端部の開口部52を溶着することによって容器の内部を密封している。しかし、絶縁容器の形状は、上述の実施形態に限定されない。例えば、一対の樹脂フィルムを用い、上記収容工程において、上端部を除く周縁部を溶着することによって、絶縁容器50の内部に電極体を収容させることもできる。 Further, in the above-described embodiment, the bag-shaped insulating container 50 is used, and the inside of the container is sealed by welding the opening 52 at the upper end thereof. However, the shape of the insulated container is not limited to the above-described embodiment. For example, the electrode body can be accommodated inside the insulating container 50 by using a pair of resin films and welding the peripheral edge portion excluding the upper end portion in the accommodating step.

以上、本発明を詳細に説明したが、上述の説明は例示にすぎない。すなわち、ここで開示される技術には上述した具体例を様々に変形、変更したものが含まれる。 Although the present invention has been described in detail above, the above description is merely an example. That is, the techniques disclosed here include various modifications and modifications of the above-mentioned specific examples.

1 密閉型電池
10 電池ケース
10a 内部空有缶
12 ケース本体
14 蓋体
16 注液口
18 封止栓
20 電極体
20a コア部
20b、20c 端子接続部
30 非水電解液
32 余剰電解液
40 電極端子
45 集電板
47 外部端子
50 絶縁容器
52 開口部
54 注液封止部
100 電池組立体
1 Sealed battery 10 Battery case 10a Internal empty can 12 Case body 14 Lid body 16 Liquid injection port 18 Sealing plug 20 Electrode body 20a Core part 20b, 20c Terminal connection part 30 Non-aqueous electrolytic solution 32 Surplus electrolytic solution 40 Electrode terminal 45 Current collector plate 47 External terminal 50 Insulated container 52 Opening 54 Liquid injection sealing part 100 Battery assembly

Claims (1)

ケース本体と蓋体とが溶接されてなる金属製の電池ケースの内部に、電極体と非水電解液とが密封された密閉型電池であって、
一方の端部に前記電極体と接続される平板状の集電板を有し、他方の端部に前記電池ケースの外部に露出する外部端子を有する電極端子と、
前記電極体と前記非水電解液とを収容し、前記電極体と前記電池ケースとを絶縁する樹脂フィルム製の絶縁容器と
を備え、
前記電極端子の前記集電板は、前記絶縁容器を貫通しており、
前記絶縁容器に、前記樹脂フィルム同士が溶着したフィルム溶着部と、前記集電板の表面に前記樹脂フィルムが溶着した端子溶着部とが形成され、当該絶縁容器の内部が密封されている、密閉型電池。

A sealed battery in which an electrode body and a non-aqueous electrolyte solution are sealed inside a metal battery case in which the case body and the lid body are welded together.
An electrode terminal having a flat plate-shaped current collector plate connected to the electrode body at one end and an external terminal exposed to the outside of the battery case at the other end.
An insulating container made of a resin film that houses the electrode body and the non-aqueous electrolytic solution and insulates the electrode body and the battery case is provided.
The current collector plate of the electrode terminal penetrates the insulating container.
A film welded portion in which the resin films are welded to each other and a terminal welded portion in which the resin film is welded are formed on the surface of the current collector plate in the insulating container, and the inside of the insulating container is sealed. Molded battery.

JP2020081944A 2020-05-07 2020-05-07 Sealed battery Withdrawn JP2021177454A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020081944A JP2021177454A (en) 2020-05-07 2020-05-07 Sealed battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020081944A JP2021177454A (en) 2020-05-07 2020-05-07 Sealed battery

Publications (1)

Publication Number Publication Date
JP2021177454A true JP2021177454A (en) 2021-11-11

Family

ID=78409556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020081944A Withdrawn JP2021177454A (en) 2020-05-07 2020-05-07 Sealed battery

Country Status (1)

Country Link
JP (1) JP2021177454A (en)

Similar Documents

Publication Publication Date Title
KR101253671B1 (en) Lithium secondary battery and manufacturing method of the same
KR102578860B1 (en) Rechargeable battery
KR101216422B1 (en) Secondary Battery Having Sealing Portion of Improved Insulating Property
KR101229228B1 (en) Secondary Battery with Improved Moisture Barrier
KR101200469B1 (en) Secondary battery having differential sealing width
US9755219B2 (en) Electrical storage apparatus
JP2013012428A (en) Secondary battery and secondary battery manufacturing method
CN114079104B (en) Square battery
US20220029253A1 (en) Secondary battery and method for manufacturing same
CN113725523B (en) Battery monomer and battery module
CN112753129B (en) Power storage element and method for manufacturing same
KR101546002B1 (en) electrochemical energy storage device
JP2005071673A (en) Battery
WO2022130999A1 (en) Power storage device
JP2021177454A (en) Sealed battery
CN114865175A (en) Secondary battery
JP2013251123A (en) Square secondary battery
JP7285809B2 (en) Prismatic battery manufacturing method and prismatic battery
JP2021061197A (en) Power storage device
JP2007109544A (en) Housing case, housing member, and film-packaged electric device
JP6360305B2 (en) Prismatic secondary battery
JP7529632B2 (en) Secondary battery
JP2019061893A (en) Power storage element
JP2023061187A (en) secondary battery
CN117954809A (en) Battery cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220809

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230621

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20230628