JP2021176207A - Imaging apparatus - Google Patents

Imaging apparatus Download PDF

Info

Publication number
JP2021176207A
JP2021176207A JP2020080886A JP2020080886A JP2021176207A JP 2021176207 A JP2021176207 A JP 2021176207A JP 2020080886 A JP2020080886 A JP 2020080886A JP 2020080886 A JP2020080886 A JP 2020080886A JP 2021176207 A JP2021176207 A JP 2021176207A
Authority
JP
Japan
Prior art keywords
light
imaging
illumination
light source
image pickup
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020080886A
Other languages
Japanese (ja)
Inventor
陽平 庵下
Yohei Anshita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2020080886A priority Critical patent/JP2021176207A/en
Publication of JP2021176207A publication Critical patent/JP2021176207A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a small-sized imaging apparatus that performs illumination and imaging of a subject through a common optical system, while satisfactorily correcting a drop in the quantity of peripheral light.SOLUTION: An imaging apparatus 1 has: an imaging element 8 that picks up an image of imaging light incident on an imaging optical system from an imaging area; an illumination unit 14 that emits illumination light radiated to the imaging area through the imaging optical system; and a light path separation element 6 that reflects one of the illumination light and the imaging light and transmits the other to direct the illumination light to the imaging optical system and direct the imaging light from the imaging optical system to the imaging element. The illumination unit has a first light source unit 16 that emits first illumination light toward the light path separation element, a second light source unit 17 that emits second illumination light in a direction opposite to the first light source unit, and a reflecting member 18 that reflects the second illumination light to be directed to the light path separation element through the periphery of the first light source unit.SELECTED DRAWING: Figure 1

Description

本発明は、被写体の照明と撮像とを共通の光学系を通して行う撮像装置に関する。 The present invention relates to an imaging device that illuminates a subject and captures images through a common optical system.

被写体の照明と撮像とを共通の光学系(撮像光学系)を通して行うことで、被写体側における撮像領域(撮像領域)に対する照明領域とのずれを小さくすることができる。ただし、光源からの光が、撮像光学系を通って被写体に照射され、該被写体にて反射して撮像光学系を通って撮像面に到達するまでに撮像光学系を2回通過するため、撮像光学系による周辺光量落ちが発生し易い。 By performing the illumination and imaging of the subject through a common optical system (imaging optical system), it is possible to reduce the deviation from the illumination region with respect to the imaging region (imaging region) on the subject side. However, since the light from the light source is applied to the subject through the imaging optical system, is reflected by the subject, and passes through the imaging optical system twice before reaching the imaging surface through the imaging optical system, the imaging is performed. Peripheral light falloff due to the optical system is likely to occur.

このような周辺光量落ちは、特許文献1や特許文献2に開示された撮像装置のように撮像領域の中心部を照明するための光源と周辺部を照明するための光源とで発光量に差を持たせることで低減(補正)することは可能である。 Such a drop in peripheral illumination is different in the amount of light emitted between the light source for illuminating the central portion of the imaging region and the light source for illuminating the peripheral portion as in the imaging apparatus disclosed in Patent Document 1 and Patent Document 2. It is possible to reduce (correct) by having.

特開平07−190726号公報Japanese Unexamined Patent Publication No. 07-190726 特開2008−205227号公報Japanese Unexamined Patent Publication No. 2008-205227

しかしながら、特許文献1、2に開示された撮像装置のように同一基板面上に多数の光源を配置する構成では、撮像装置の小型化が困難である。 However, it is difficult to miniaturize the image pickup device in the configuration in which a large number of light sources are arranged on the same substrate surface as in the image pickup device disclosed in Patent Documents 1 and 2.

本発明は、周辺光量落ちを良好に補正しつつ共通の光学系を通して被写体の照明と撮像とを行う小型の撮像装置を提供する。 The present invention provides a compact imaging device that illuminates and images a subject through a common optical system while satisfactorily correcting peripheral illumination falloff.

本発明の一側面としての撮像装置は、撮像領域から撮像光学系に入射した撮像光を撮像する撮像素子と、撮像光学系を通して撮像領域に照射される照明光を発する照明部と、照明光および撮像光のうち一方を反射して他方を透過させることにより、照明光を撮像光学系に向かわせ、撮像光学系からの撮像光を撮像素子に向かわせる光路分離素子とを有する。照明部は、光路分離素子に向けて第1の照明光を発する第1の光源部と、第1の光源部とは反対向きに第2の照明光を発する第2の光源部と、第2の照明光を第1の光源部の周辺を通って光路分離素子に向かうように反射する反射部材とを有することを特徴とする。 The imaging device as one aspect of the present invention includes an imaging element that captures imaging light incident on the imaging optical system from the imaging region, an illumination unit that emits illumination light that is emitted to the imaging region through the imaging optical system, and illumination light. It has an optical path separation element that directs the illumination light to the imaging optical system and directs the imaging light from the imaging optical system to the imaging element by reflecting one of the imaging lights and transmitting the other. The illumination unit includes a first light source unit that emits a first illumination light toward the optical path separation element, a second light source unit that emits a second illumination light in the direction opposite to the first light source unit, and a second light source unit. It is characterized by having a reflecting member that reflects the illumination light of the above through the periphery of the first light source unit and toward the light path separating element.

本発明によれば、周辺光量落ちを良好に補正しつつ共通の光学系を通して被写体の照明と撮像とを行える小型の撮像装置を実現することができる。 According to the present invention, it is possible to realize a compact image pickup apparatus capable of illuminating and imaging a subject through a common optical system while satisfactorily correcting the drop in peripheral illumination.

本発明の実施例1である撮像装置における照明部の構成を示す断面図。The cross-sectional view which shows the structure of the illumination part in the image pickup apparatus which is Example 1 of this invention. 実施例1の撮像装置を用いた監視カメラシステムの斜視図。The perspective view of the surveillance camera system using the image pickup apparatus of Example 1. FIG. 実施例1の撮像装置の斜視図。The perspective view of the image pickup apparatus of Example 1. FIG. 実施例1の撮像装置の断面図。Sectional drawing of the image pickup apparatus of Example 1. FIG. 実施例1の撮像装置の分解斜視図。An exploded perspective view of the image pickup apparatus of the first embodiment. 実施例1における照明基板を示す図。The figure which shows the lighting substrate in Example 1. FIG. 実施例1の撮像装置の電気的構成を示すブロック図。The block diagram which shows the electrical structure of the image pickup apparatus of Example 1. FIG. 実施例1における周辺光量補正処理を示すフローチャート。The flowchart which shows the peripheral illumination correction processing in Example 1. FIG. 実施例1における周辺光量補正パターンを示す図。The figure which shows the peripheral light amount correction pattern in Example 1. FIG. 実施例1における別の周辺光量補正パターンを示す図。The figure which shows another peripheral illumination correction pattern in Example 1. FIG. 本発明の実施例2における反射部材を示す図。The figure which shows the reflection member in Example 2 of this invention. 本発明の実施例3における照明集光レンズを示す図。The figure which shows the illumination condensing lens in Example 3 of this invention.

以下、本発明の実施例について図面を参照しながら説明する。 Hereinafter, examples of the present invention will be described with reference to the drawings.

図2は、本発明の実施例1である撮像装置1を用いた撮像システムとしての監視カメラシステム100を示している。監視カメラシステム100において、撮像装置1は、駆動機構101によりパン軸Pおよびこれに直交するチルト軸Tを中心としてパン回転駆動およびチルト回転駆動される。これにより、撮像装置1の撮像方向が変更される。撮像装置1を小型・軽量化することにより、駆動機構101の負荷を軽減してこれを小型化することができ、監視カメラシステム100の小型化に有効である。 FIG. 2 shows a surveillance camera system 100 as an imaging system using the imaging device 1 according to the first embodiment of the present invention. In the surveillance camera system 100, the image pickup apparatus 1 is pan-rotated and tilt-rotated around the pan-axis P and the tilt axis T orthogonal to the pan-axis P by the drive mechanism 101. As a result, the imaging direction of the imaging device 1 is changed. By reducing the size and weight of the image pickup device 1, the load on the drive mechanism 101 can be reduced and the size can be reduced, which is effective for the size reduction of the surveillance camera system 100.

図3は撮像装置1の外観を示し、図4は撮像装置1を撮像光軸Xに沿って切断した断面を示している。また図5は撮像装置1を分解して示している。さらに図7は撮像装置1の電気的構成を示している。 FIG. 3 shows the appearance of the image pickup device 1, and FIG. 4 shows a cross section of the image pickup device 1 cut along the image pickup optical axis X. Further, FIG. 5 shows the image pickup apparatus 1 in an exploded manner. Further, FIG. 7 shows the electrical configuration of the image pickup apparatus 1.

撮像装置1は、固定部材2により保持されたレンズ群L1と、移動枠3、4によりそれぞれ保持されたズームレンズ群L2、L3と、絞りユニット13と、移動枠5により保持されたフォーカスレンズ群L4とにより構成された撮像光学系を備えている。なお、撮像光学系は、撮像装置1に対して交換(着脱)可能であってもよい。 The image pickup apparatus 1 includes a lens group L1 held by the fixing member 2, zoom lens groups L2 and L3 held by the moving frames 3 and 4, respectively, an aperture unit 13, and a focus lens group held by the moving frame 5. It includes an imaging optical system configured by L4. The imaging optical system may be interchangeable (detachable) with respect to the imaging device 1.

移動枠3〜5はそれぞれ、固定部材10、11により両端が保持された2本のガイドバーによって撮像光学系の光軸である撮像光軸Xが延びる方向(以下、撮像光軸方向という)に移動可能に支持されている。移動枠3、4、5のそれぞれには、ステッピングモータ23、24、25のリードスクリューに係合するラック部材が取り付けられている。ステッピングモータ23〜25が駆動されてリードスクリューが回転することで、移動枠3〜5はラック部材を介して撮像光軸方向に移動する。移動枠3、4とともにズームレンズ群L2、L3が撮像光軸方向に移動することでズーミングが行われ、移動枠5とともにフォーカスレンズ群L4が撮像光軸方向に移動することでフォーカシングが行われる。 The moving frames 3 to 5 are in the direction in which the imaging optical axis X, which is the optical axis of the imaging optical system, is extended by the two guide bars whose ends are held by the fixing members 10 and 11, respectively (hereinafter referred to as the imaging optical axis direction). It is supported so that it can be moved. Rack members that engage with the lead screws of the stepping motors 23, 24, and 25 are attached to each of the moving frames 3, 4, and 5. By driving the stepping motors 23 to 25 and rotating the lead screw, the moving frames 3 to 5 move in the image pickup optical axis direction via the rack member. Zooming is performed by moving the zoom lens groups L2 and L3 together with the moving frames 3 and 4 in the image pickup optical axis direction, and focusing is performed by moving the focus lens group L4 together with the moving frame 5 in the image pickup optical axis direction.

絞りユニット13は、ステッピングモータ26によって不図示の絞り羽根が開閉方向に駆動されて開口径の大きさが変更されることで、被写体側から入射して撮像光学系を通過し、撮像素子8に到達する光量を調節する。 In the diaphragm unit 13, the diaphragm blades (not shown) are driven in the opening / closing direction by the stepping motor 26 to change the size of the aperture diameter, so that the diaphragm unit 13 is incident from the subject side, passes through the image pickup optical system, and enters the image sensor 8. Adjust the amount of light that reaches.

また撮像装置1は、撮像素子8を有する。撮像素子8は、CCDセンサやCMOSセンサ等の光電変換素子であり、撮像光学系により形成された被写体像を撮像(光電変換)する。撮像素子8は撮像素子基板9に実装され、撮像素子基板9は固定部材12によって保持されている。 Further, the image pickup device 1 has an image pickup element 8. The image pickup element 8 is a photoelectric conversion element such as a CCD sensor or a CMOS sensor, and images a subject image formed by the imaging optical system (photoelectric conversion). The image sensor 8 is mounted on the image sensor substrate 9, and the image sensor substrate 9 is held by the fixing member 12.

また撮像装置1は、撮像光学系と撮像素子8との間に配置され、PBS保持枠7により保持された光路分離素子としての偏光ビームスプリッタ(PBS)6を備えている。PBS6は、S偏光(第1の偏光光)を反射し、該S偏光とは偏光方向が異なるP偏光(第2の偏光光)を透過させる特性を有する。なお、本実施例では、光路分離素子としてPBSを用いる場合について説明したが、PBSに代えてハーフミラーを用いてもよい。PBS保持枠7は、固定部材11により、図4に示すようにPBS6が撮像光軸Xに対して45度の角度をなすように保持されている。 Further, the image pickup apparatus 1 includes a polarization beam splitter (PBS) 6 as an optical path separation element arranged between the image pickup optical system and the image pickup element 8 and held by the PBS holding frame 7. PBS6 has a property of reflecting S-polarized light (first polarized light) and transmitting P-polarized light (second polarized light) having a polarization direction different from that of S-polarized light. In this embodiment, the case where PBS is used as the optical path separation element has been described, but a half mirror may be used instead of PBS. The PBS holding frame 7 is held by the fixing member 11 so that the PBS 6 forms an angle of 45 degrees with respect to the imaging optical axis X as shown in FIG.

さらに撮像装置1は照明部14を備えている。照明部14は、被写体に照射される照明光を発するユニットであり、その光軸である照明光軸XLがハーフミラー6に対して45度の角度をなし、かつ撮像光軸Xと直交するように配置されている。照明部14は、照明基板15と、第1の光源部16と、第2の光源部17と、反射部材18と、カバー19と、照明集光レンズ(光学部材)20と、スペーサ21と、固定板金22とにより構成され、図5に示すように固定部材11に対して同じ方向(上方向)から組み付けられる。第1および第2の光源部16は、直線偏光であるS偏光としての照明光(白色光や赤外光等)を発する。その他の照明部14の詳細については後述する。 Further, the image pickup apparatus 1 includes an illumination unit 14. The illumination unit 14 is a unit that emits illumination light to irradiate the subject, so that the illumination optical axis XL, which is the optical axis thereof, forms an angle of 45 degrees with respect to the half mirror 6 and is orthogonal to the imaging optical axis X. It is located in. The illumination unit 14 includes an illumination substrate 15, a first light source unit 16, a second light source unit 17, a reflection member 18, a cover 19, an illumination condensing lens (optical member) 20, a spacer 21, and the like. It is composed of a fixing sheet metal 22 and is assembled to the fixing member 11 from the same direction (upward direction) as shown in FIG. The first and second light source units 16 emit illumination light (white light, infrared light, etc.) as S-polarized light which is linearly polarized light. Details of the other lighting units 14 will be described later.

このように構成された撮像装置1において、図7に示すように、照明部14から出射したS偏光としての照明光は、PBS6により反射されて撮像光学系を通って被写体が含まれる撮像領域に照射される。被写体にて拡散反射された照明光は無偏光の撮像光として撮像光学系に入射し、該撮像光のうちP偏光がPBS6を透過して撮像素子8上に被写体像を形成する。これにより、被写体の照明と撮像とを共通の光学系である撮像光学系を通して同時に行うことが可能となる。照明と撮像を共通の光学系を通して行うことで、撮像領域に対する照明光の照射領域である照明領域のずれ(パララクス)を小さくすることができる。すなわち、照明領域の位置と大きさを撮像領域の位置と大きさに合わせることができる。被写体像を撮像した撮像素子8から出力される電気信号としての撮像信号は、図7に示すカメラ制御部102に入力される。 In the image pickup apparatus 1 configured in this way, as shown in FIG. 7, the illumination light as S-polarized light emitted from the illumination unit 14 is reflected by the PBS 6 and passes through the imaging optical system to the imaging region including the subject. Be irradiated. The illumination light diffusely reflected by the subject is incident on the imaging optical system as unpolarized imaging light, and the P-polarized light of the imaging light passes through PBS 6 to form a subject image on the imaging element 8. This makes it possible to simultaneously illuminate the subject and perform imaging through an imaging optical system, which is a common optical system. By performing illumination and imaging through a common optical system, it is possible to reduce the deviation (paralux) of the illumination region, which is the irradiation region of the illumination light with respect to the imaging region. That is, the position and size of the illumination area can be adjusted to the position and size of the imaging area. The image pickup signal as an electric signal output from the image pickup device 8 that has captured the subject image is input to the camera control unit 102 shown in FIG. 7.

カメラ制御部102は、CPUやMPU等を含むマイクロコンピュータであり、不図示のネットワーク(LANやインターネット等)を介してパーソナルコンピュータ等の外部端末200と通信を行う。カメラ制御部102は、撮像素子8から入力されたアナログ信号としての撮像信号をデジタル信号に変換し、該デジタル信号に各種画像処理を行って画像データを生成する。画像データは、外部端末200に送信され、モニタに表示されたり記録されたりする。 The camera control unit 102 is a microcomputer including a CPU, an MPU, and the like, and communicates with an external terminal 200 such as a personal computer via a network (LAN, the Internet, etc.) (not shown). The camera control unit 102 converts an image pickup signal as an analog signal input from the image pickup element 8 into a digital signal, and performs various image processing on the digital signal to generate image data. The image data is transmitted to the external terminal 200 and displayed or recorded on the monitor.

またカメラ制御部102は、外部端末200からの指示や画像データから取得されるコントラスト値や輝度値等の情報に応じて、ステッピングモータ23〜26の駆動を制御する。さらにカメラ制御部102は、照明部14の第1および第2の光源部16、17の点灯/消灯および発光量を制御する。カメラ制御部102は、内部メモリとしての補正テーブル記憶部103に記憶された補正テーブルを用いて第1および第2の光源部16、17の発光量を制御する。 Further, the camera control unit 102 controls the driving of the stepping motors 23 to 26 according to the instruction from the external terminal 200 and the information such as the contrast value and the brightness value acquired from the image data. Further, the camera control unit 102 controls the lighting / extinguishing of the first and second light source units 16 and 17 of the lighting unit 14 and the amount of light emitted. The camera control unit 102 controls the amount of light emitted from the first and second light source units 16 and 17 by using the correction table stored in the correction table storage unit 103 as the internal memory.

図1(a)は、撮像装置1のうち照明部14の周辺の詳細な構成を示している。図1(b)は、照明部14からPBS6までを図1(a)中のA−A線で切断して示している。 FIG. 1A shows a detailed configuration of the periphery of the illumination unit 14 in the image pickup apparatus 1. FIG. 1 (b) shows the illumination unit 14 to PBS 6 cut along the line AA in FIG. 1 (a).

図6(a)は照明基板15を示し、図6(b)は照明部14の照明光軸XLに直交する断面であって反射部材18側から見た断面を示している。本実施例における照明部14は、多数ではない2つの光源部(16、17)を用いて照明光のうち中心部に対する周辺部の光量を変更することを可能とし、これにより撮像光学系を2回通過することによる周辺光量落ちを良好に補正(低減)する。 FIG. 6A shows the illumination substrate 15, and FIG. 6B shows a cross section of the illumination unit 14 orthogonal to the illumination optical axis XL and viewed from the reflection member 18 side. The illumination unit 14 in this embodiment makes it possible to change the amount of light in the peripheral portion of the illumination light with respect to the central portion by using two light source units (16, 17) which are not a large number, thereby making the imaging optical system 2 It satisfactorily corrects (reduces) the drop in peripheral light intensity due to passing through the circuit.

照明基板15は、図6(a)、(b)に示すように、第1の光源部16および第2の光源部17がそれぞれ互いに反対側の面に電気的に接続される円形の光源接続部15aと、該光源接続部15aから撮像光軸Xと平行な方向に延びる形状の固定部15b、15cとを有する。照明基板15は、固定部15b、15cによって固定部材11に固定され、固定部15bに接続されたコネクタ15dから第1および第2の光源部16、17を点灯させるための電力が入力される。本実施例において光源接続部15aの形状は円形であるが、撮像素子8の撮像面の形状に対応するアスペクト比を有する矩形であってもよい。 As shown in FIGS. 6A and 6B, the lighting substrate 15 has a circular light source connection in which the first light source unit 16 and the second light source unit 17 are electrically connected to surfaces opposite to each other. It has a portion 15a and fixed portions 15b and 15c having a shape extending in a direction parallel to the imaging optical axis X from the light source connecting portion 15a. The lighting board 15 is fixed to the fixing member 11 by the fixing portions 15b and 15c, and electric power for lighting the first and second light source portions 16 and 17 is input from the connector 15d connected to the fixing portion 15b. In this embodiment, the shape of the light source connection portion 15a is circular, but it may be a rectangle having an aspect ratio corresponding to the shape of the image pickup surface of the image pickup device 8.

図6(b)の断面において二点鎖線で示す矩形の領域Bは、この断面における撮像素子8の矩形の撮像面に対応する領域、言い換えれば被写体を含む矩形の撮像領域に対応する領域を示している。後で詳しく説明するように第2の光源部17から発せられて反射部材18で反射して領域B内を通過した照明光が、撮像領域に到達する。 The rectangular region B shown by the alternate long and short dash line in the cross section of FIG. 6B indicates a region corresponding to the rectangular imaging surface of the image pickup device 8 in this cross section, in other words, a region corresponding to the rectangular imaging region including the subject. ing. As will be described in detail later, the illumination light emitted from the second light source unit 17, reflected by the reflecting member 18, and passed through the region B reaches the imaging region.

第1の光源部16は、図1(a)、(b)および図6(a)に示すように、照明基板15の光源接続部15aのうちPBS6側(光路分離素子側)の第1の面上に配置されており、第2の光源部17は光源接続部15aのうち第1の面とは反対側の第2の面上に配置されている。第1および第2の光源部16、17は、それらの中心がともに照明光軸XL上に位置するように配置されている。第1および第2の光源部16、17はそれぞれ、均一光量の面発光を行うLED等の単一の発光素子と、該発光素子からの無偏光光をS偏光に変換する偏光変換素子とにより構成されている。偏光変換素子は、無偏光光のうちS偏光をそのまま出射させ、S偏光とは偏光方向が異なるP偏光の偏光方向を位相板により回転させてS偏光として出射させる。光路分離素子としてハーフミラーを用いる場合は、偏光変換素子は不要である。なお、各光源部に複数の発光素子を設けてもよい。 As shown in FIGS. 1 (a), 1 (b) and 6 (a), the first light source unit 16 is the first light source connection unit 15a of the lighting substrate 15 on the PBS6 side (optical path separation element side). The second light source unit 17 is arranged on the surface, and the second light source unit 17 is arranged on the second surface of the light source connection unit 15a opposite to the first surface. The first and second light source units 16 and 17 are arranged so that their centers are both located on the illumination optical axis XL. The first and second light source units 16 and 17 are each composed of a single light emitting element such as an LED that emits surface light of a uniform amount of light and a polarization conversion element that converts unpolarized light from the light emitting element into S-polarized light. It is configured. The polarization conversion element emits S-polarized light of unpolarized light as it is, and rotates the polarization direction of P-polarized light, which has a different polarization direction from S-polarized light, by a phase plate to emit it as S-polarized light. When a half mirror is used as the optical path separation element, a polarization conversion element is unnecessary. A plurality of light emitting elements may be provided in each light source unit.

反射部材18は、図1(a)、(b)に示すように、その中心回りにおいて回転対称な形状を有し、研磨や蒸着等の加工によって鏡面とされた内面を有する。反射部材18は、その中心が図1(a)に示すように照明光軸XL上に位置し、内面が第2の光源部17に対向するように、固定板金22を介して固定部材11により保持されている。反射部材18は、照明光軸XL近傍の中心部の内面に第2の光源部17に向かって突出した凸反射面(第1の反射面)18aを有し、さらに照明光軸XLから離れた周辺部の内面に第2の光源部17から離れる側に凹んだ凹反射面(第2の反射面)18bを有する。 As shown in FIGS. 1 (a) and 1 (b), the reflective member 18 has a shape that is rotationally symmetric around the center thereof, and has an inner surface that has been mirrored by processing such as polishing or thin film deposition. The reflection member 18 is located by the fixing member 11 via the fixing sheet metal 22 so that the center thereof is located on the illumination optical axis XL as shown in FIG. 1A and the inner surface faces the second light source portion 17. It is held. The reflection member 18 has a convex reflection surface (first reflection surface) 18a protruding toward the second light source portion 17 on the inner surface of the central portion near the illumination optical axis XL, and is further separated from the illumination optical axis XL. The inner surface of the peripheral portion has a concave reflecting surface (second reflecting surface) 18b recessed on the side away from the second light source portion 17.

カバー19は、反射部材18の外面を覆うように固定部材11に取り付けられており、照明部14の内部に不要な外光や塵埃が侵入することを防ぐ。照明集光レンズ20は、図1(a)、(b)に示すように、スペーサ21と共に、照明基板15と固定部材11との間に挟まれて保持される。 The cover 19 is attached to the fixing member 11 so as to cover the outer surface of the reflective member 18, and prevents unnecessary outside light and dust from entering the inside of the lighting unit 14. As shown in FIGS. 1A and 1B, the illumination condensing lens 20 is sandwiched and held between the illumination substrate 15 and the fixing member 11 together with the spacer 21.

本実施例では、照明集光レンズ20における照明光軸XLを含む中心部に開口部20aが設けられており、第1の光源部16は該開口部20a内に配置されている。このような配置にすることで、照明部14内でのスペース効率を向上させ、照明部14を小型化することができる。 In this embodiment, an opening 20a is provided in the central portion of the illumination condensing lens 20 including the illumination optical axis XL, and the first light source portion 16 is arranged in the opening 20a. With such an arrangement, the space efficiency in the lighting unit 14 can be improved and the lighting unit 14 can be miniaturized.

以上のように構成された照明部14において、図1(b)に示すように、第1の光源部16からの照明光(第1の照明光)Lmは、直接、PBS6の全体に向かう。一方、第2の光源部17は、第1の光源部16とは反対向きに照明光(第2の照明光)Lsを発する。該照明光Lsは、反射部材18の中心部の凸反射面18aに向かう。そして凸反射面18aにより周辺部に向けて反射された照明光Lsは、凹反射面18bにて反射されて照明基板15の周辺(外側)、つまりは第1および第2の光源部16、17の周辺を通ってPBS6に向かう。 In the illumination unit 14 configured as described above, as shown in FIG. 1B, the illumination light (first illumination light) Lm from the first light source unit 16 directly goes to the entire PBS 6. On the other hand, the second light source unit 17 emits illumination light (second illumination light) Ls in the direction opposite to that of the first light source unit 16. The illumination light Ls is directed toward the convex reflecting surface 18a at the center of the reflecting member 18. The illumination light Ls reflected toward the peripheral portion by the convex reflection surface 18a is reflected by the concave reflection surface 18b and is reflected on the periphery (outside) of the illumination substrate 15, that is, the first and second light source portions 16, 17 Head to PBS6 through the perimeter of.

前述したように反射部材18は照明光軸XLを中心とした回転対称形状を有するため、第2の光源部17からの照明光Lsは凸反射面18aにて照明光軸XL回りの周方向全体に広がるように反射し、その後、凹反射面18bにて反射される。このような反射部材18を用いることで、複数の第2の光源部17を設けることなく、1つの第2の光源部17だけで照明光軸XLから離れた周辺部の全周においてPBS6に向けて照明光Lsを出射させることができる。 As described above, since the reflective member 18 has a rotationally symmetric shape centered on the illumination optical axis XL, the illumination light Ls from the second light source unit 17 is formed on the convex reflection surface 18a in the entire circumferential direction around the illumination optical axis XL. It is reflected so as to spread to, and then is reflected by the concave reflecting surface 18b. By using such a reflection member 18, the plurality of second light source units 17 are not provided, and only one second light source unit 17 is directed toward PBS 6 in the entire circumference of the peripheral portion away from the illumination optical axis XL. The illumination light Ls can be emitted.

反射部材18によりPBS6に向かうように反射された照明光Lsは、照明基板15における光源接続部15aと固定部15b、15cの外側の隙間を通過して照明集光レンズ20の周辺部に設けられたレンズ部に入射する。図6(b)に示すように、照明基板15は、円形の光源接続部15aによって照明集光レンズ20のうち照明光軸XL近傍の中心部を覆うように配置されている。このため、反射部材18で反射した照明光Lsが照明集光レンズ20の中心部に向かう光を含んでいても、該光は光源接続部15aによって円形に遮られる。このように、光源接続部15aは、反射部材18の凹反射面18bで反射した照明光LsのうちPBS6における照明光軸XL近傍の中心部に向かう光を遮り、PBS6における中心部よりも照明光軸XLから周辺側に離れた周辺部に向かう光を通過させる遮光部材として機能する。言い換えれば、遮光部材としての光源接続部15aは、撮像領域のうち撮像光軸Xが通る中心の近傍である中心部(第1の領域)に向かう光を遮り、撮像領域の中心部より周辺側の周辺部(第2の領域)に向かう光のみを通過させる。 The illumination light Ls reflected by the reflecting member 18 toward PBS 6 is provided in the peripheral portion of the illumination condensing lens 20 through the gaps outside the light source connecting portion 15a and the fixing portions 15b and 15c of the illumination substrate 15. It is incident on the lens part. As shown in FIG. 6B, the illumination substrate 15 is arranged so as to cover the central portion of the illumination condensing lens 20 in the vicinity of the illumination optical axis XL by the circular light source connection portion 15a. Therefore, even if the illumination light Ls reflected by the reflecting member 18 includes the light directed toward the central portion of the illumination condensing lens 20, the light is circularly blocked by the light source connecting portion 15a. In this way, the light source connecting portion 15a blocks the illumination light Ls reflected by the concave reflecting surface 18b of the reflecting member 18 toward the central portion near the illumination optical axis XL in PBS6, and the illumination light is more than the central portion in PBS6. It functions as a light-shielding member that allows light to pass from the axis XL toward the peripheral portion away from the peripheral side. In other words, the light source connecting portion 15a as a light-shielding member blocks light toward the central portion (first region) of the imaging region, which is near the center through which the imaging optical axis X passes, and is on the peripheral side of the central portion of the imaging region. Only the light directed toward the peripheral part (second region) of the light is passed.

また図6(b)に示すように、照明基板15の固定部15b、15cは、照明集光レンズ20の中心部だけでなく周辺部も覆う。このため、反射部材18によりPBS6に向かうように反射された照明光Lsのうち照明集光レンズ20の中心部に向かう光だけでなく周辺部に向かう光まで固定部15b、15cにより遮られる。この固定部15b、15cによる照明光Lsの遮光の影響については後述する。 Further, as shown in FIG. 6B, the fixed portions 15b and 15c of the illumination substrate 15 cover not only the central portion but also the peripheral portion of the illumination condensing lens 20. Therefore, of the illumination light Ls reflected toward the PBS 6 by the reflecting member 18, not only the light toward the central portion of the illumination condensing lens 20 but also the light toward the peripheral portion is blocked by the fixing portions 15b and 15c. The effect of shading the illumination light Ls by the fixed portions 15b and 15c will be described later.

光源接続部15aの側方の隙間を通過して照明集光レンズ20に入射した照明光Lsは、該照明集光レンズ20により角度が調整されてPBS6上における周辺部に入射する。これにより、図1(b)に示すように、PBS6の中心部には第1の光源部16からの照明光Lmのみが入射し、周辺部には照明光Lmと第2の光源部17からの照明光Lsとが重畳して入射する。このため、第1の光源部16の照明光Lmが照明光軸XLに直交する面内において均一な光量分布を有する場合には、PBS6上では、第1の光源部16からの照明光Lmのみが入射する中心部よりも第1および第2の光源部16、17からの照明光Lm、Lsが重畳する周辺部の方が照明光の光量が大きくなる。 The illumination light Ls that has passed through the lateral gap of the light source connection portion 15a and is incident on the illumination condensing lens 20 is angle-adjusted by the illumination condensing lens 20 and is incident on the peripheral portion on the PBS 6. As a result, as shown in FIG. 1 (b), only the illumination light Lm from the first light source unit 16 is incident on the central portion of the PBS 6, and the illumination light Lm and the second light source portion 17 are incident on the peripheral portion. The illumination light Ls of the above is superimposed and incident. Therefore, when the illumination light Lm of the first light source unit 16 has a uniform light amount distribution in the plane orthogonal to the illumination light axis XL, only the illumination light Lm from the first light source unit 16 is displayed on the PBS 6. The amount of illumination light is larger in the peripheral portion where the illumination lights Lm and Ls from the first and second light source portions 16 and 17 are superimposed than in the central portion where the light is incident.

このように、本実施例の照明部14によれば、多数の光源部を用いなくても、第1および第2の光源部16、17の2つの光源部を用いて中心部より周辺部での照明光量を大きくすることができる。この結果、PBS6で反射して撮像光学系を通って撮像領域に向かう照明光に撮像光学系による周辺光量落ちが生じても、撮像領域の周辺部の照明光量が中心部の照明光量落ちを補正することができる。 As described above, according to the illumination unit 14 of the present embodiment, even if a large number of light source units are not used, the two light source units of the first and second light source units 16 and 17 are used in the peripheral portion from the central portion. The amount of illumination light can be increased. As a result, even if the illumination light reflected by PBS 6 and heading to the imaging region through the imaging optical system has a peripheral illumination drop due to the imaging optical system, the illumination light amount in the peripheral portion of the imaging region corrects the illumination light amount drop in the central portion. can do.

ここで、前述した固定部15b、15cによる照明光Lsの遮光の影響について説明する。照明基板15を固定部材11に固定するためには、光源接続部15aから照明光軸XL回りにおけるいずれかの方向(位相)に固定部15b、15cを設ける必要がある。この場合、反射部材18で反射した照明光Lsのうち一部が固定部15b、15cにより遮られるため、PBS6の周辺部のうち固定部15b、15cと同じ位相の領域では周辺部の照明光量を大きくすることができない。 Here, the influence of shading of the illumination light Ls by the above-mentioned fixed portions 15b and 15c will be described. In order to fix the illumination substrate 15 to the fixing member 11, it is necessary to provide the fixing portions 15b and 15c in any direction (phase) from the light source connecting portion 15a around the illumination optical axis XL. In this case, since a part of the illumination light Ls reflected by the reflecting member 18 is blocked by the fixed portions 15b and 15c, the amount of illumination light in the peripheral portion in the region having the same phase as the fixed portions 15b and 15c in the peripheral portion of the PBS 6 is increased. I can't make it bigger.

しかし、図6(b)に示すように、照明基板15が設けられた断面内における照明光軸XL回りにおいて、固定部15b、15cを撮像領域に対応する(撮像領域に到達する照明光Lsが通過する)矩形領域Bの短辺に平行な方向の位相に設けることで、周辺光量落ちの補正に対する固定部15b、15cによる照明光Lsの遮光の影響が最小になるようにすることができる。本実施例では、図6(b)の断面は撮像光軸Xと平行な面であり、固定部15b、15cは撮像光軸Xに平行な方向の位相に設けられている。 However, as shown in FIG. 6B, the fixed portions 15b and 15c correspond to the imaging region around the illumination optical axis XL in the cross section provided with the illumination substrate 15 (the illumination light Ls reaching the imaging region). By providing the phase in the direction parallel to the short side of the rectangular region B (passing through), it is possible to minimize the influence of the light shielding of the illumination light Ls by the fixed portions 15b and 15c on the correction of the peripheral light falloff. In this embodiment, the cross section of FIG. 6B is a plane parallel to the imaging optical axis X, and the fixed portions 15b and 15c are provided in a phase in a direction parallel to the imaging optical axis X.

撮像光学系による周辺光量落ちは、撮像光軸Xから離れるほど大きく発生する。このため、撮像領域において周辺光量落ちが最小となるのは、撮像領域の中心(撮像光軸X上の位置)から端までの距離が最短となる、該中心から撮像領域の短辺に平行な方向の位相である。このため、この位相では、他の位相に比べて、周辺光量落ちを補正するために周辺部での照明光量を大きくする必要性が最も低い。このため、固定部15b、15cを、照明基板15が配置された図6(b)の断面における撮像領域に対応する矩形領域Bの中心(照明光軸XL)から見て該矩形領域Bの短辺に平行な方向に延びるように設けることで、固定部15b、15cによる照明光Lsの遮光の影響を最小にすることができる。 Peripheral light falloff due to the imaging optical system occurs more as the distance from the imaging optical axis X increases. Therefore, the peripheral light falloff in the imaging region is minimized by the shortest distance from the center of the imaging region (position on the imaging optical axis X) to the edge, which is parallel to the short side of the imaging region. The phase of the direction. Therefore, in this phase, it is least necessary to increase the amount of illumination light in the peripheral portion in order to correct the drop in the amount of peripheral light, as compared with other phases. Therefore, the fixed portions 15b and 15c are short of the rectangular region B when viewed from the center of the rectangular region B (illumination optical axis XL) corresponding to the imaging region in the cross section of FIG. 6B in which the illumination substrate 15 is arranged. By providing the fixtures so as to extend in the direction parallel to the sides, the influence of shading of the illumination light Ls by the fixing portions 15b and 15c can be minimized.

なお、本実施例のように光源接続部15aの外縁と固定部15b、15cの外縁との交点Cが矩形領域Bの短辺上(外縁上)あるいは矩形領域Bの外側にある場合は、撮像領域に対応する矩形領域B内を固定部15b、15c自体で遮光するわけではないため、固定部15b、15cによる遮光の影響は実質的には発生しない。このため、交点Cが矩形領域B内にあり、かつ固定部15b、15cによる遮光の影響が無視できない場合に上記のような位相に固定部15b、15を設けることが望ましい。そしてこの場合には、後で説明する周辺光量補正処理において、固定部15b、15cが設けられた位相に対して他の位相よりも撮像素子8の受光量に対する撮像信号のゲインの補正量を遮光による影響分だけ大きくすればよい。 When the intersection C between the outer edge of the light source connecting portion 15a and the outer edges of the fixed portions 15b and 15c is on the short side (on the outer edge) of the rectangular region B or outside the rectangular region B as in this embodiment, imaging is performed. Since the inside of the rectangular region B corresponding to the region is not shielded by the fixed portions 15b and 15c themselves, the influence of the shielding by the fixed portions 15b and 15c does not substantially occur. Therefore, when the intersection C is in the rectangular region B and the influence of shading by the fixing portions 15b and 15c cannot be ignored, it is desirable to provide the fixing portions 15b and 15 in the above-mentioned phases. In this case, in the peripheral illumination correction processing described later, the correction amount of the gain of the image pickup signal with respect to the light receiving amount of the image pickup element 8 is shaded more than the other phases with respect to the phase provided with the fixed portions 15b and 15c. It is only necessary to increase the effect of.

また、本実施例では、照明部14から出射した照明光がPBS6により反射されて撮像光学系に向かい、撮像光がPBS6を通過して撮像素子8に到達する場合について説明している。しかし、PBS6に対する照明部14と撮像素子8の位置を入れ替えて、照明光がPBS6を透過して撮像光学系に向かい、撮像光がPBS6で反射されて撮像素子8に到達するように構成してもよい。すなわち、光路分離素子は、照明光および撮像光のうち一方を反射して他方を透過させることにより、照明光を撮像光学系に向かわせ、撮像光学系からの撮像光を撮像素子に向かわせるものであればよい。 Further, in this embodiment, the case where the illumination light emitted from the illumination unit 14 is reflected by the PBS 6 and heads toward the imaging optical system, and the imaging light passes through the PBS 6 and reaches the imaging element 8 is described. However, the positions of the illumination unit 14 and the image sensor 8 with respect to the PBS 6 are exchanged so that the illumination light passes through the PBS 6 and heads toward the image pickup optical system, and the image pickup light is reflected by the PBS 6 and reaches the image sensor 8. May be good. That is, the optical path separation element reflects one of the illumination light and the imaging light and transmits the other to direct the illumination light to the imaging optical system and direct the imaging light from the imaging optical system to the imaging element. It should be.

さらに本実施例では、照明基板15における円形の光源接続部15aを遮光部材として用いる場合について説明したが、第1および第2の光源部16、17を透明な照明基板上に配置して第1および第2の光源部16、17自体が遮光部材として機能するようにしてもよい。 Further, in this embodiment, the case where the circular light source connecting portion 15a in the lighting substrate 15 is used as the light shielding member has been described, but the first and second light source portions 16 and 17 are arranged on the transparent lighting substrate and the first The second light source units 16 and 17 themselves may function as light-shielding members.

次に、照明部14による周辺光量落ちの補正の詳細について説明する。図7に示したカメラ制御部102は、ズーミング、フォーカシングおよび光量調節においてステッピングモータ23〜26の駆動パルス数をカウントすることで、ズームレンズ群L2、L3およびフォーカスレンズ群L4の撮像光軸方向での位置や、絞りユニット13の絞り値を検出する。以下の説明では、ズームレンズ群L2、L3およびフォーカスレンズ群L4の位置や絞りユニット13の絞り値をまとめて撮像光学系のパラメータを意味するカメラパラメータという。 Next, the details of the correction of the peripheral light falloff by the illumination unit 14 will be described. The camera control unit 102 shown in FIG. 7 counts the number of drive pulses of the stepping motors 23 to 26 in zooming, focusing, and adjusting the amount of light in the direction of the image pickup optical axis of the zoom lens groups L2 and L3 and the focus lens group L4. The position of the lens and the aperture value of the aperture unit 13 are detected. In the following description, the positions of the zoom lens groups L2 and L3 and the focus lens group L4 and the aperture value of the aperture unit 13 are collectively referred to as a camera parameter which means a parameter of the imaging optical system.

カメラ制御部102は、上述した外部端末200からの指示と画像データから取得した輝度値の情報とカメラパラメータの現在値に応じて、第1および第2の光源部16、17を発光させて被写体の照明を行わせる。さらに補正手段としてのカメラ制御部102は、照明された被写体の撮像により得られた画像データに対して、撮像素子8の受光量に対する撮像信号のゲイン(以下、撮像ゲインという)を変更(補正)する周辺光量補正処理を行うことで、画像データの明るさを適切に補正する。 The camera control unit 102 causes the first and second light source units 16 and 17 to emit light according to the instruction from the external terminal 200 described above, the brightness value information acquired from the image data, and the current value of the camera parameter, and is a subject. Let the lighting be done. Further, the camera control unit 102 as a correction means changes (corrects) the gain of the image pickup signal (hereinafter referred to as the image pickup gain) with respect to the light receiving amount of the image pickup element 8 with respect to the image data obtained by imaging the illuminated subject. The brightness of the image data is appropriately corrected by performing the peripheral illumination correction processing.

ここで、撮像光学系による周辺光量落ちの発生の仕方は、カメラパラメータに応じて変化する。例えば、絞りユニット13の開口径を絞った状態では、撮像光学系に入射した撮像光は、開口径を絞らない場合よりも撮像光軸Xに近い位置を通る光線だけが撮像素子8上に結像するため、撮像素子8上の中心部と周辺部での受光量の差、つまりは周辺光量落ちは小さくなる。また、撮像光学系においてレンズ群L2〜L4の光軸方向での位置が変化すると、撮像光のうち撮像光学系内の周辺部を通過する光線の撮像光軸Xに対する角度範囲が変化し、撮像素子8の中心部と周辺部での受光量の差が変化する。 Here, the method of generating the peripheral light falloff by the imaging optical system changes according to the camera parameters. For example, in a state where the aperture diameter of the aperture unit 13 is narrowed down, as for the image pickup light incident on the image pickup optical system, only the light rays passing through a position closer to the image pickup optical axis X than when the aperture diameter is not narrowed down are concatenated on the image sensor 8. Because of the image, the difference in the amount of light received between the central portion and the peripheral portion on the image sensor 8, that is, the drop in the amount of peripheral light becomes small. Further, when the positions of the lens groups L2 to L4 in the optical axis direction change in the image pickup optical system, the angular range of the light rays passing through the peripheral portion in the image pickup optical system of the image pickup optical system changes with respect to the image pickup optical axis X, and the image pickup is performed. The difference in the amount of light received between the central portion and the peripheral portion of the element 8 changes.

さらに、被写体を照明する場合は撮像光はまず照明光として撮像光学系を通って被写体を照明した後に撮像光学系を通って撮像素子8に到達するため撮像光学系を2回通過するのに対して、被写体を照明しない場合は撮像光学系を1回通るだけである。このため、カメラパラメータが同じであっても被写体を照明する場合と照明しない場合とで撮像素子8上での周辺光量落ちの大きさが異なる。このように、カメラパラメータと照明部14の使用状態(点灯/消灯)に応じて撮像光学系による周辺光量落ちの発生の仕方が変化する。 Further, when illuminating the subject, the image pickup light first illuminates the subject through the image pickup optical system as illumination light, and then passes through the image pickup optical system twice to reach the image pickup element 8 through the image pickup optical system. Therefore, when the subject is not illuminated, it only passes through the imaging optical system once. Therefore, even if the camera parameters are the same, the magnitude of the peripheral illumination drop on the image sensor 8 differs depending on whether the subject is illuminated or not. In this way, the way in which the peripheral light amount is reduced by the imaging optical system changes depending on the camera parameters and the usage state (lighting / extinguishing) of the lighting unit 14.

ただし、撮像光学系による周辺光量落ちは、光学設計上で計算することが可能であり、事前にどのような発生の仕方となるかを把握しておくことが可能である。このため、カメラパラメータと第1の光源部16の使用状態から、周辺光量落ちが大きく発生して撮像領域の周辺部に対する照明が必要な場合にのみ第2の光源部17を点灯させるようにすればよい。これにより、撮像装置1における電力消費を抑えることができる。 However, the peripheral light falloff due to the imaging optical system can be calculated in the optical design, and it is possible to grasp in advance what kind of generation will occur. Therefore, due to the camera parameters and the usage state of the first light source unit 16, the second light source unit 17 should be turned on only when a large drop in peripheral illumination occurs and illumination of the peripheral portion of the imaging region is required. Just do it. As a result, the power consumption of the image pickup apparatus 1 can be suppressed.

また、現在のカメラパラメータと照明部14の使用状態に応じて、撮像素子8の中心部と周辺部の撮像ゲインをどのように補正するかを補正テーブルとして記憶しておけば、撮像時に撮像ゲインの補正量を計算する必要はない。 Further, if the correction table is stored as a correction table for how to correct the image pickup gains of the central portion and the peripheral portion of the image sensor 8 according to the current camera parameters and the usage state of the illumination unit 14, the image pickup gain at the time of image pickup It is not necessary to calculate the correction amount of.

以上のことから、本実施例の撮像装置1では、カメラ制御部102内の補正テーブル記憶部103に、カメラパラメータと第1の光源部16の使用状態とに応じた撮像ゲインの補正量を記憶した補正テーブルを記憶させる。カメラ制御部102は、この補正テーブルを用いて撮像ゲインを補正する周辺光量補正処理を行う。この際、第1の光源部16が点灯している状態で撮像ゲインの補正だけでは周辺光量落ちを十分に補正できないと事前に計算されたカメラパラメータが設定されている場合には、カメラ制御部102は、第2の光源部17も点灯させた上で撮像ゲインの補正を行う。 From the above, in the image pickup apparatus 1 of the present embodiment, the correction table storage unit 103 in the camera control unit 102 stores the correction amount of the image pickup gain according to the camera parameters and the usage state of the first light source unit 16. The corrected correction table is stored. The camera control unit 102 uses this correction table to perform peripheral illumination correction processing for correcting the imaging gain. At this time, if the camera parameter calculated in advance is set so that the peripheral light falloff cannot be sufficiently corrected only by correcting the imaging gain while the first light source unit 16 is lit, the camera control unit The 102 corrects the imaging gain after also turning on the second light source unit 17.

図8のフローチャートは、カメラ制御部102がコンピュータプログラムに従って実行する周辺光量補正処理を示している。本実施例では、補正テーブル記憶部103に記憶された補正テーブルのパターン(補正パターン)が、第1の光源部16の使用状態とカメラパラメータに応じて異なる3つに分かれているものとする。図8において、Sはステップを意味する。 The flowchart of FIG. 8 shows the peripheral illumination correction process executed by the camera control unit 102 according to the computer program. In this embodiment, it is assumed that the pattern (correction pattern) of the correction table stored in the correction table storage unit 103 is divided into three different patterns according to the usage state of the first light source unit 16 and the camera parameters. In FIG. 8, S means a step.

まずS1では、カメラ制御部102は、カメラパラメータの現在値を取得する。 First, in S1, the camera control unit 102 acquires the current value of the camera parameter.

次にS2では、カメラ制御部102は、第1の光源部16が点灯(ON)しているか否かを確認し、消灯(OFF)である場合はS3に進み、ONである場合はS4に進む。本実施例では、第2の光源部17を照明光の周辺光量を上げる場合に使用するため、第1の光源部16がOFFである場合は第2の光源17もOFFであるとする。 Next, in S2, the camera control unit 102 confirms whether or not the first light source unit 16 is lit (ON), proceeds to S3 if it is turned off (OFF), and proceeds to S4 if it is ON. move on. In this embodiment, since the second light source unit 17 is used to increase the peripheral light amount of the illumination light, it is assumed that the second light source unit 17 is also OFF when the first light source unit 16 is OFF.

S3では、カメラ制御部102は、照明部14による被写体の照明を行わない場合に応じた補正パターンを用いて撮像ゲインを補正する。照明を行わない場合には、撮像光学系による周辺光量落ちは被写体からの撮像光が撮像光学系を1回通過する分だけ発生するので、S3ではこの分を補正するように撮像素子8の中心部よりも周辺部の撮像ゲインを大きくする。 In S3, the camera control unit 102 corrects the imaging gain by using a correction pattern corresponding to the case where the illumination unit 14 does not illuminate the subject. When no illumination is performed, the peripheral light falloff due to the image pickup optical system occurs only for the amount of the image pickup light from the subject passing through the image pickup optical system once. Therefore, in S3, the center of the image pickup element 8 is corrected so as to correct this amount. Make the imaging gain of the peripheral part larger than that of the part.

一方、S4では、カメラ制御部102は、S1で取得したカメラパラメータが撮像光学系による周辺光量落ちが撮像ゲインの補正だけで補正可能なカメラパラメータであるか否かを判定する。具体的は、様々なカメラパラメータに対して周辺光量落ちを撮像ゲインの補正だけで補正可能か否かを事前に計算した結果を補正テーブル記憶部103にカメラパラメータごとに記憶させておき、S1で取得したカメラパラメータに対応する結果を読み出すことで判定する。カメラ制御部102は、S4において現在のカメラパラメータが撮像ゲインの補正だけで周辺光量落ちを補正可能である場合はS5に進み、補正不可能である場合はS6に進む。 On the other hand, in S4, the camera control unit 102 determines whether or not the camera parameter acquired in S1 is a camera parameter in which the peripheral light falloff due to the imaging optical system can be corrected only by correcting the imaging gain. Specifically, the result of calculating in advance whether or not the peripheral light falloff can be corrected for various camera parameters only by correcting the imaging gain is stored in the correction table storage unit 103 for each camera parameter, and in S1. Judgment is made by reading the result corresponding to the acquired camera parameter. In S4, the camera control unit 102 proceeds to S5 when the current camera parameter can correct the peripheral light falloff only by correcting the imaging gain, and proceeds to S6 when the correction is not possible.

S5では、カメラ制御部102は、第1の光源部16のみで被写体を照明する場合に応じた補正パターンで撮像ゲインを補正する。この場合は、第1の光源部16からの照明光が撮像光学系を通過するときと被写体からの撮像光が撮像光学系を通過するときの2回分の周辺光量落ちが発生する。このため、S3において照明を行わない場合に用いる補正パターンに比べて、撮像素子8の周辺部の撮像ゲインをより大きく上げる補正パターンを用いる。 In S5, the camera control unit 102 corrects the imaging gain with a correction pattern corresponding to the case where the subject is illuminated only by the first light source unit 16. In this case, the amount of peripheral light is reduced twice when the illumination light from the first light source unit 16 passes through the imaging optical system and when the imaging light from the subject passes through the imaging optical system. Therefore, a correction pattern is used that greatly increases the imaging gain of the peripheral portion of the image pickup device 8 as compared with the correction pattern used when no illumination is performed in S3.

またS6では、カメラ制御部102は、第2の光源部17を点灯させる。これにより、撮像ゲインを補正する前に撮像素子8の周辺部に到達する撮像光の光量が増加する。 Further, in S6, the camera control unit 102 lights the second light source unit 17. As a result, the amount of the image pickup light that reaches the peripheral portion of the image pickup element 8 before the image pickup gain is corrected increases.

そしてS7では、カメラ制御部102は、第1および第2の光源部16、17を用いて被写体を照明する場合に応じた補正パターンを用いて、撮像素子8の周辺部の撮像ゲインを上げる。 Then, in S7, the camera control unit 102 raises the image gain of the peripheral portion of the image sensor 8 by using a correction pattern corresponding to the case where the first and second light source units 16 and 17 are used to illuminate the subject.

図9(a)〜(d)および図10(a)〜(d)を用いて、本実施例における周辺光量落ちの補正(撮像ゲインの補正)の具体例について説明する。各図の横軸は像高位置を示す。0%の像高位置は照明光軸XL上または撮像光軸X上の中心位置を示し、100%に近づくほど各光軸から離れた位置であることを示す。各図の縦軸は、中心位置における値を1としたときの各像高位置での光量比または撮像ゲインの補正量の比率を示している。また各図において、実線は照明を行わない場合(照明OFF時)の光量比または補正量の比率を、一点鎖線は第1の光源部16のみを点灯させて照明を行う場合(第1の光源部ON時)の光量比または補正量の比率を、二点鎖線は第1および第2の光源部16、17を点灯させて照明を行う場合(第1+第2の光源部ON時)の光量比または補正量の比率をそれぞれ示している。 A specific example of the correction of the peripheral illumination amount drop (correction of the imaging gain) in this embodiment will be described with reference to FIGS. 9 (a) to 9 (d) and FIGS. 10 (a) to 10 (d). The horizontal axis of each figure indicates the image height position. The 0% image height position indicates the center position on the illumination optical axis XL or the imaging optical axis X, and the closer to 100%, the farther away from each optical axis. The vertical axis of each figure shows the ratio of the amount of light at each image height position or the ratio of the amount of correction of the imaging gain when the value at the center position is 1. Further, in each figure, the solid line indicates the ratio of the amount of light or the amount of correction when no illumination is performed (when the illumination is OFF), and the one-point chain line indicates the case where only the first light source unit 16 is lit for illumination (first light source). The light amount ratio or the correction amount ratio when the unit is ON), and the light amount when the two-point chain line lights the first and second light source units 16 and 17 to illuminate (when the first + second light source unit is ON). The ratio or the ratio of the correction amount is shown respectively.

図9(a)は、照明OFF時と第1の光源部ON時におけるPBS6上での像高位置ごとの照明光Lmの光量比を示す。照明OFF時は光量比(実線)は0であり、第1の光源部ON時の光量比(一点鎖線)は全像高位置にわたって均一である。 FIG. 9A shows the light intensity ratio of the illumination light Lm for each image height position on the PBS 6 when the illumination is OFF and when the first light source unit is ON. The light intensity ratio (solid line) is 0 when the illumination is off, and the light intensity ratio (dotted chain line) when the first light source unit is ON is uniform over the entire image height position.

図9(b)は、照明OFF時と第1の光源部ON時における撮像素子8上での撮像光軸Xからの像高位置ごとの撮像光の光量比を示す。なお、撮像ゲインを補正する前は、図9(b)に示す撮像光の光量比に対応する明るさ比の画像データ(補正前画像データ)が得られる。図9(c)は、照明OFF時と第1の光源部ON時における撮像素子8上での像高位置ごとの撮像ゲインの補正量の比率を示す。照明OFF時の比率に対応する補正量がS3で用いられる補正テーブルに記憶されており、第1の光源部ON時の比率に対応する補正量がS5で用いられる補正テーブルに記憶されている。図中の閾値は、撮像ゲインの補正後の画像データの画質に影響しない最大の補正量の比率を示している。 FIG. 9B shows the light intensity ratio of the image pickup light for each image height position from the image pickup optical axis X on the image pickup element 8 when the illumination is OFF and when the first light source unit is ON. Before the imaging gain is corrected, image data (image data before correction) having a brightness ratio corresponding to the light amount ratio of the imaging light shown in FIG. 9B can be obtained. FIG. 9C shows the ratio of the correction amount of the imaging gain for each image height position on the image sensor 8 when the illumination is turned off and when the first light source unit is turned on. The correction amount corresponding to the ratio when the illumination is OFF is stored in the correction table used in S3, and the correction amount corresponding to the ratio when the first light source unit is ON is stored in the correction table used in S5. The threshold value in the figure indicates the ratio of the maximum correction amount that does not affect the image quality of the image data after the correction of the imaging gain.

図9(b)に示すように、撮像光が撮像光学系を通過する回数(1回と2回)の差によって、照明OFF時における撮像光の光量比に比べて、第1の光源部ON時における撮像光の光量比は周辺部で低くなる。このため、図9(c)に示すように、照明OFF時における撮像ゲインの補正量の比率に比べて、第1の光源部ON時における撮像ゲインの補正量の比率を周辺部で高くする。 As shown in FIG. 9B, due to the difference in the number of times (1 time and 2 times) the image pickup light passes through the image pickup optical system, the first light source unit is turned on as compared with the light amount ratio of the image pickup light when the illumination is off. The light intensity ratio of the imaged light at time becomes low in the peripheral portion. Therefore, as shown in FIG. 9C, the ratio of the correction amount of the imaging gain when the first light source unit is ON is higher in the peripheral portion than the ratio of the correction amount of the imaging gain when the illumination is OFF.

図9(d)は、照明OFF時と第1の光源部ON時における撮像ゲインの補正(周辺光量補正)後の画像データ上での像高位置ごとの光量(輝度)比を示す。照明OFF時と第1の光源部ON時とでそれぞれ、図9(c)に示した補正量の比率で撮像ゲインを補正することで、周辺部の明るさが同レベルとなるように補正された画像データが得られる。 FIG. 9D shows the light amount (luminance) ratio for each image height position on the image data after the image gain is corrected (peripheral light amount correction) when the illumination is turned off and when the first light source unit is turned on. By correcting the image gain at the ratio of the correction amount shown in FIG. 9 (c) when the illumination is OFF and when the first light source unit is ON, the brightness of the peripheral portion is corrected to be at the same level. Image data can be obtained.

図10(a)は、第1+第2の光源部ON時におけるPBS6上での像高位置ごとの照明光Lm+Lsの光量比を示す。第1+第2の光源部ON時では、図9(a)に示した第1の光源部ON時における照明光Lmに、破線で示す第2の光源部17のみを点灯させたときの照明光Lsが加わるため、周辺部の光量比が第1の光源部ON時よりも高くなる。 FIG. 10A shows the light intensity ratio of the illumination light Lm + Ls for each image height position on the PBS 6 when the first + second light source units are ON. When the first + second light source unit is ON, the illumination light Lm when the first light source unit is ON shown in FIG. 9A is the illumination light when only the second light source unit 17 shown by the broken line is turned on. Since Ls is added, the light amount ratio in the peripheral portion becomes higher than when the first light source portion is ON.

図10(b)は、第1の光源部ON時と第1+第2の光源部ON時における撮像素子8上での像高位置ごとの撮像光の光量比を示す。図10(c)は、第1の光源部ON時と第1+第2の光源部ON時における像高位置ごとの撮像ゲインの補正量の比率を示す。図10(b)は第1の光源部16の点灯だけでは周辺部における撮像光の光量比が低すぎて、撮像ゲインの補正だけでは周辺光量落ちを十分に補正できない場合を示している。すなわち図10(c)に示す補正量の比率が前述した閾値を超える場合を示している。 FIG. 10B shows the light intensity ratio of the image pickup light for each image height position on the image pickup device 8 when the first light source unit is ON and when the first + second light source unit is ON. FIG. 10C shows the ratio of the correction amount of the imaging gain for each image height position when the first light source unit is ON and when the first + second light source unit is ON. FIG. 10B shows a case where the light amount ratio of the imaging light in the peripheral portion is too low only by lighting the first light source unit 16 and the peripheral light amount drop cannot be sufficiently corrected only by correcting the imaging gain. That is, the case where the ratio of the correction amount shown in FIG. 10C exceeds the above-mentioned threshold value is shown.

図10(b)に示すように、第1+2の光源部ON時では周辺部における撮像光の光量比が第1の光源部ON時よりも高くなる。このため、図10(c)に示すように、第1の光源部ON時における撮像ゲインの補正量の比率に比べて、第1+第2の光源部ON時における撮像ゲインの補正量の比率を周辺部で低く(ただし、照明OFF時よりは高く)することができる。このため、閾値を超えない補正量の比率を設定することができる。この第1+第2の光源部ON時の比率に対応する補正量がS7で用いられる補正テーブルに記憶されている。 As shown in FIG. 10B, when the first + 2 light source unit is ON, the light intensity ratio of the imaged light in the peripheral portion is higher than when the first light source unit is ON. Therefore, as shown in FIG. 10C, the ratio of the correction amount of the imaging gain when the first light source unit is ON is compared with the ratio of the correction amount of the imaging gain when the first light source unit is ON. It can be lowered in the peripheral area (however, it is higher than when the lighting is off). Therefore, the ratio of the correction amount that does not exceed the threshold value can be set. The correction amount corresponding to the ratio when the first + second light source unit is ON is stored in the correction table used in S7.

図10(d)は、第1の光源部ON時と第1+第2の光源部ON時における撮像ゲインの補正後の画像データ上での像高位置ごとの光量比を示す。第1の光源部ON時の補正後の画像データでは周辺部が補正不足で暗すぎる。一方、第1+第2の光源部ON時では、周辺部の明るさが十分に補正された画像データが得られる。 FIG. 10D shows the light amount ratio for each image height position on the image data after correction of the imaging gain when the first light source unit is ON and when the first + second light source unit is ON. In the corrected image data when the first light source unit is ON, the peripheral portion is too dark due to insufficient correction. On the other hand, when the first + second light source units are ON, image data in which the brightness of the peripheral portion is sufficiently corrected can be obtained.

このように、本実施例の撮像装置1では、カメラパラメータと照明部14の使用状態(照明OFF、第1の光源部ONおよび第1+第2の光源部ON)に応じて撮像ゲインに対する補正パターンを変更することで、画像データの明るさを適切に補正することができる。 As described above, in the image pickup apparatus 1 of the present embodiment, the correction pattern for the image pickup gain is determined according to the camera parameters and the usage state of the illumination unit 14 (illumination OFF, first light source unit ON and first + second light source unit ON). By changing, the brightness of the image data can be appropriately corrected.

図11(a)、(b)を用いて、本発明の実施例2について説明する。実施例1では照明光軸XLを中心とした回転対称形状の反射部材18を用いる場合について説明したが、周辺光量落ちの補正を撮像領域の全ての周辺部で同じ大きさで行う必要がなければ、必ずしも反射部材は照明光軸XLを中心とした回転対称形状でなくともよい。例えば、矩形の撮像領域においてその中心からの距離が最大で周辺光量落ちが大きくなる対角方向の周辺部で照明光の光量を大きくしたい場合には、照明光がその周辺部に集中するように回転対称形状ではない反射部材を用いることが可能である。 Example 2 of the present invention will be described with reference to FIGS. 11A and 11B. In the first embodiment, the case where the reflection member 18 having a rotationally symmetric shape centered on the illumination optical axis XL has been described. However, if it is not necessary to correct the peripheral light falloff with the same size in all the peripheral portions of the imaging region. The reflecting member does not necessarily have to have a rotationally symmetric shape centered on the illumination optical axis XL. For example, in a rectangular imaging region, when it is desired to increase the amount of illumination light in the diagonal peripheral portion where the distance from the center is the maximum and the peripheral light falloff is large, the illumination light should be concentrated in the peripheral portion. It is possible to use a reflective member that does not have a rotationally symmetric shape.

図11(a)、(b)に示す反射部材27は、反射部材18と同様に、照明光軸XL付近の中心部に内面側(第2の光源部側)に突出した凸反射面(第1の反射面)27aを有する。ただし、反射部材27は、照明光軸XLから離れた周辺部に反射面27bを有し、該反射面27bの複数箇所には、内面側に突出した凸反射面(第2の反射面)27c,27dが形成されている。このように反射部材27は、照明光軸XLを中心とした回転対称形状を有さない。 Similar to the reflection member 18, the reflection member 27 shown in FIGS. 11A and 11B has a convex reflection surface (second light source portion side) projecting to the inner surface side (second light source portion side) in the central portion near the illumination optical axis XL. 1 has a reflective surface) 27a. However, the reflective member 27 has a reflective surface 27b at a peripheral portion away from the illumination optical axis XL, and the convex reflective surface (second reflective surface) 27c protruding inward at a plurality of locations of the reflective surface 27b. , 27d are formed. As described above, the reflecting member 27 does not have a rotationally symmetric shape centered on the illumination optical axis XL.

反射部材27を用いることにより、凸反射面27aから周辺部の反射面27bの方向に反射された照明光を凸反射面27c、27dで反射して撮像領域の対角方向(図11(b)にてクロスした一点鎖線に対応する方向)の周辺部に集光することができる。このように非回転対称形状の反射部材を用いることで、撮像領域のうち特定の周辺部を他の周辺部より明るく照明することができる。 By using the reflecting member 27, the illumination light reflected from the convex reflecting surface 27a in the direction of the peripheral reflecting surface 27b is reflected by the convex reflecting surfaces 27c and 27d in the diagonal direction of the imaging region (FIG. 11B). The light can be focused on the peripheral part (the direction corresponding to the alternate long and short dash line crossed by). By using the non-rotationally symmetrical reflective member in this way, it is possible to illuminate a specific peripheral portion of the imaging region brighter than the other peripheral portions.

なお、実施例1および本実施例の反射部材18、27はともにカップ状の形状を有する一体の反射部材であるが、第2の光源部17からの照明光を撮像領域の周辺部に導くことができれば、板形状等の他の形状を有してもよいし、複数の反射部材を用いてもよい。 Although the reflecting members 18 and 27 of the first embodiment and the reflecting members 18 and 27 of the present embodiment are both integrally reflecting members having a cup-shaped shape, the illumination light from the second light source unit 17 is guided to the peripheral portion of the imaging region. If possible, it may have another shape such as a plate shape, or a plurality of reflective members may be used.

図12を用いて、本発明の実施例3について説明する。実施例1における照明集光レンズ20は、第2の光源部17からの照明光が入射する部分にのみレンズ部を有したが、第1の光源部16からの照明光を集光するレンズが必要な場合もある。このような場合には、照明集光レンズ20とは別に第1の光源部16からの照明光用の照明集光レンズを設けてもよいが、図12に示すように1つで第1の光源部16からの照明光と第2の光源部17からの照明光の集光を行う照明集光レンズ28を設けてもよい。 Example 3 of the present invention will be described with reference to FIG. The illumination condensing lens 20 in the first embodiment has a lens unit only in a portion where the illumination light from the second light source unit 17 is incident, but a lens that condenses the illumination light from the first light source unit 16 It may be necessary. In such a case, an illumination condensing lens for illumination light from the first light source unit 16 may be provided separately from the illumination condensing lens 20, but as shown in FIG. 12, one is the first. An illumination condensing lens 28 that condenses the illumination light from the light source unit 16 and the illumination light from the second light source unit 17 may be provided.

照明集光レンズ28は、照明光軸XL近傍の中心部に設けられて第1の光源部16からの照明光が入射する第1のレンズ部28aと、照明光軸XLから離れた周辺部に設けられて反射部材18により反射された第2の光源部17からの照明光が入射する第2のレンズ部28bとを有する。第1のレンズ部28aと第2のレンズ部28bは互いに異なる形状(曲率)を有する。また第1のレンズ部28aは、第1の光源部16を覆うような半球形状を有する。 The illumination condensing lens 28 is provided in the central portion near the illumination optical axis XL and is located in the first lens portion 28a where the illumination light from the first light source portion 16 is incident and in the peripheral portion away from the illumination optical axis XL. It has a second lens portion 28b to which the illumination light from the second light source portion 17 provided and reflected by the reflecting member 18 is incident. The first lens portion 28a and the second lens portion 28b have different shapes (curvatures) from each other. Further, the first lens portion 28a has a hemispherical shape that covers the first light source portion 16.

このような1つの照明集光レンズ28により、第1および第2の光源部16、17からの照明光を個別に集光することができる。
(その他の実施例)
本発明は、上述の実施形態の1以上の機能を実現するプログラムを、ネットワーク又は記憶媒体を介してシステム又は装置に供給し、そのシステム又は装置のコンピュータにおける1つ以上のプロセッサーがプログラムを読出し実行する処理でも実現可能である。また、1以上の機能を実現する回路(例えば、ASIC)によっても実現可能である。
With such one illumination condensing lens 28, the illumination light from the first and second light source units 16 and 17 can be individually condensed.
(Other Examples)
The present invention supplies a program that realizes one or more functions of the above-described embodiment to a system or device via a network or storage medium, and one or more processors in the computer of the system or device reads and executes the program. It can also be realized by the processing to be performed. It can also be realized by a circuit (for example, ASIC) that realizes one or more functions.

以上説明した各実施例は代表的な例にすぎず、本発明の実施に際しては、各実施例に対して種々の変形や変更が可能である。 Each of the above-described examples is only a representative example, and various modifications and changes can be made to each of the examples in carrying out the present invention.

1 撮像装置
L2、L3 ズームレンズ群
L4 フォーカスレンズ群
6 偏光ビームスプリッタ
8 撮像素子
13 絞りユニット
15 照明基板
16 第1の光源部
17 第2の光源部
18 反射部材
1 Imaging device L2, L3 Zoom lens group L4 Focus lens group 6 Polarized beam splitter 8 Imaging element 13 Aperture unit 15 Lighting substrate 16 First light source unit 17 Second light source unit 18 Reflecting member

Claims (9)

撮像領域から撮像光学系に入射した撮像光を撮像する撮像素子と、
前記撮像光学系を通して前記撮像領域に照射される照明光を発する照明部と、
前記照明光および前記撮像光のうち一方を反射して他方を透過させることにより、前記照明光を前記撮像光学系に向かわせ、前記撮像光学系からの前記撮像光を前記撮像素子に向かわせる光路分離素子とを有し、
前記照明部は、
前記光路分離素子に向けて第1の照明光を発する第1の光源部と、
前記第1の光源部とは反対向きに第2の照明光を発する第2の光源部と、
前記第2の照明光を前記第1および第2の光源部の周辺を通って前記光路分離素子に向かうように反射する反射部材とを有することを特徴とする撮像装置。
An image sensor that captures the imaging light incident on the imaging optical system from the imaging region, and
An illumination unit that emits illumination light that irradiates the imaging region through the imaging optical system, and
By reflecting one of the illumination light and the imaging light and transmitting the other, the illumination light is directed to the imaging optical system, and the imaging light from the imaging optical system is directed to the imaging element. Has a separating element
The lighting unit
A first light source unit that emits a first illumination light toward the optical path separation element, and
A second light source unit that emits a second illumination light in a direction opposite to that of the first light source unit,
An image pickup apparatus comprising: a reflecting member that reflects the second illumination light toward the optical path separating element through the periphery of the first and second light source portions.
前記反射部材で反射された前記第2の照明光のうち前記撮像領域における第1の領域に向かう光を遮り、該第1の領域より周辺側の第2の領域に向かう光を通す遮光部材を有することを特徴とする請求項1に記載の撮像装置。 A light-shielding member that blocks light from the second illumination light reflected by the reflecting member toward the first region in the imaging region and passes light toward a second region on the peripheral side of the first region. The imaging apparatus according to claim 1, wherein the image pickup apparatus has. 前記遮光部材は、前記光路分離素子側の第1の面に前記第1の光源部が配置され、前記第1の面とは反対側の面に前記第2の光源部が配置された基板であることを特徴とする請求項2に記載の撮像装置。 The light-shielding member is a substrate on which the first light source portion is arranged on the first surface on the optical path separation element side and the second light source portion is arranged on the surface opposite to the first surface. The imaging device according to claim 2, wherein the image pickup device is provided. 前記基板は、
前記第1の面と前記第2の面を有する光源接続部と、
前記撮像装置の固定部材に固定される固定部とを有し、
前記第2の照明光のうち前記第1の領域に向かう光は前記光源接続部により遮られ、
前記固定部は、前記基板が設けられた面内において前記撮像領域に対応する領域の外縁上または外側に設けられていることを特徴とする請求項3に記載の撮像装置。
The substrate is
A light source connection portion having the first surface and the second surface,
It has a fixing portion fixed to the fixing member of the image pickup apparatus, and has a fixing portion.
Of the second illumination light, the light directed to the first region is blocked by the light source connection portion.
The imaging device according to claim 3, wherein the fixing portion is provided on or outside the outer edge of the region corresponding to the imaging region in the plane on which the substrate is provided.
前記基板は、
前記第1の面と前記第2の面を有する光源接続部と、
前記撮像装置の固定部材に固定される固定部とを有し、
前記第2の照明光のうち前記第1の領域に向かう光は前記光源接続部により遮られ、
前記第2の照明光のうち前記第2の領域に向かう光の一部は前記固定部により遮られ、
前記固定部は、前記基板が設けられた面内において前記撮像領域に対応する矩形領域における中心から見て該矩形領域の短辺と平行な方向に延びるように設けられていることを特徴とする請求項3に記載の撮像装置。
The substrate is
A light source connection portion having the first surface and the second surface,
It has a fixing portion fixed to the fixing member of the image pickup apparatus, and has a fixing portion.
Of the second illumination light, the light directed to the first region is blocked by the light source connection portion.
A part of the second illumination light toward the second region is blocked by the fixing portion.
The fixing portion is provided so as to extend in a direction parallel to the short side of the rectangular region when viewed from the center of the rectangular region corresponding to the imaging region in the plane on which the substrate is provided. The imaging device according to claim 3.
前記反射部材は、第1の反射面と該第1の反射面よりも周辺側に設けられた第2の反射面とを有し、
前記第2の光源からの前記第2の照明光は、前記第1の反射面により前記第2の反射面に向けて反射され、前記第2の反射面により前記光路分離素子に向けて反射されることを特徴とする請求項1から5のいずれか一項に記載の撮像装置。
The reflective member has a first reflective surface and a second reflective surface provided on the peripheral side of the first reflective surface.
The second illumination light from the second light source is reflected by the first reflecting surface toward the second reflecting surface and reflected by the second reflecting surface toward the optical path separating element. The imaging apparatus according to any one of claims 1 to 5, wherein the image pickup apparatus is characterized by the above.
前記反射部材により反射された前記第2の照明光が透過するレンズ部を有する光学部材を有することを特徴とする請求項1から6のいずれか一項に記載の撮像装置。 The imaging apparatus according to any one of claims 1 to 6, further comprising an optical member having a lens portion through which the second illumination light reflected by the reflecting member is transmitted. 前記光学部材は、前記第2の照明光が透過する前記レンズ部とは異なる形状を有し、前記第1の照明光が透過するレンズ部をさらに有することを特徴とする請求項7に記載の撮像装置。 The seventh aspect of claim 7, wherein the optical member has a shape different from that of the lens portion through which the second illumination light is transmitted, and further has a lens portion through which the first illumination light is transmitted. Imaging device. 前記撮像素子からの出力を用いて生成される画像データの周辺部の明るさを補正する補正処理を行う補正手段を有し、
前記補正手段は、前記撮像光学系のパラメータと前記第1および第2の光源部の使用状態に応じた補正量を用いて前記補正処理を行うことを特徴とする請求項1から8のいずれか一項に記載の撮像装置。
It has a correction means for performing correction processing for correcting the brightness of the peripheral portion of the image data generated by using the output from the image sensor.
Any of claims 1 to 8, wherein the correction means performs the correction process using the parameters of the imaging optical system and the correction amount according to the usage state of the first and second light source units. The imaging apparatus according to paragraph 1.
JP2020080886A 2020-05-01 2020-05-01 Imaging apparatus Pending JP2021176207A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020080886A JP2021176207A (en) 2020-05-01 2020-05-01 Imaging apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020080886A JP2021176207A (en) 2020-05-01 2020-05-01 Imaging apparatus

Publications (1)

Publication Number Publication Date
JP2021176207A true JP2021176207A (en) 2021-11-04

Family

ID=78300552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020080886A Pending JP2021176207A (en) 2020-05-01 2020-05-01 Imaging apparatus

Country Status (1)

Country Link
JP (1) JP2021176207A (en)

Similar Documents

Publication Publication Date Title
US10853604B2 (en) Attachment for a mobile device for reading barcodes and capturing non-barcode images
EP3076330B1 (en) Aimer for barcode scanning
US10248821B2 (en) Target generating structure for an accessory for a mobile device
JP5281923B2 (en) Projection display
US9922221B2 (en) Barcode-reading attachment for focusing a camera of a mobile device
JP2011254330A (en) Overhead type-image reading apparatus
JP2020020894A (en) Image capturing device and monitoring system
JP2010085472A (en) Image projection/imaging apparatus
JP2006166378A (en) Image reading apparatus
JP2021176207A (en) Imaging apparatus
JP4622541B2 (en) Iris photography device
JP5069185B2 (en) Imaging apparatus, imaging method, and image processing method
JP2007047586A (en) Apparatus and method for adjusting assembly of camera module
CN113329140A (en) Compensating vignetting
JP2004012960A (en) Relative position adjusting method for imaging device and photographing lens, and imaging device
JPH06139398A (en) Two-dimensional scanner
JP2021144139A (en) Imaging device, method of controlling the same, and optical device
CN113612934B (en) Light intensity self-adaptive camera system based on IR-CUT
JP2778884B2 (en) 2D code scanner
JP2003018369A (en) Camera for paintings and calligraphy
JP2007235942A (en) Image sensor module and image reader using same
TW202326272A (en) Device and method for image capturing
JPH08240839A (en) Image pickup device and method therefor
JP2022025711A (en) Imaging apparatus and method for controlling the same
JPH08336065A (en) Original illuminator and image input device